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Abstract

Monitoring the deformations of both natural and man-made structures is a central task in
engineering geodesy. Terrestrial laser scanning (TLS) is well-established for detecting geometric
changes at the centimeter level. However, at the millimeter scale, the differences observed
from one epoch to another may arise from either actual deformation or remaining systematic
errors present in the processing chain. Classical congruency tests assess significance based on a
purely stochastic model, which can lead to overly optimistic results when systematic effects are
significant.

We propose an interval-extended 2D congruency test for planar displacement vectors. The
stochastic part is treated probabilistically through a covariance matrix, while remaining systematic
effects are represented as unknown-but-bounded deviations within an admissible set B ⊂ R2.
For each observation 𝒅, the quadratic-form statistic becomes interval-valued, [𝑇] = [𝑇min, 𝑇max],
which induces a three-valued decision rule: strict accept (stable for all admissible biases), reject
(deformed for all admissible biases), and an intermediate ambiguous region where bias and
deformation are not separable. In 2D, the regions admit a transparent geometric interpretation
via Minkowski sum and difference of the classical acceptance ellipse with B.

Bias–noise separated Monte Carlo experiments quantify conditional decision probabilities as bias
maps over the admissible set B. We compare an axis-aligned error box with a generator-based
zonotope to illustrate how the chosen systematic model affects the size and structure of the
ambiguity region.

1 Motivation and Scope

In high-precision deformation monitoring, apparent epoch-to-epoch differences may reflect
true geometric change, but they may also be induced by measurement effects such as residual
registration artefacts, incidence-angle dependent effects, atmospheric variability, or surface
reflectance changes. When monitoring at the millimeter level, remaining systematic effects can
be of the same order as the sought signal. A purely stochastic uncertainty model may then
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underestimate the risk of false decisions. Classical concepts of network-based deformation analysis
and congruency testing are discussed, for example, in (Caspary and Rüeger, 1987; Heunecke
et al., 2013). Early extensions that explicitly account for observation imprecision (remaining
systematic error) in hypothesis testing and congruency testing are presented in (Neumann and
Kutterer, 2007, 2006). Recent work on terrestrial laser scanning has developed interval-based
uncertainty bounding and deterministic interval uncertainty models that separate stochastic
variability from bounded systematic effects. These models provide the methodological basis
for constructing plausible admissible bias sets (see references (Naeimaei and Schön, 2025a,b)).
A broader perspective on dealing with uncertainty beyond purely probabilistic error models is
provided in (Kutterer, 2002).

This contribution focuses on the decision step in deformation analysis: testing whether an
observed displacement is compatible with zero deformation. We treat stochastic variability with
the conventional covariance-based model, but represent remaining systematics as bounded sets.
The resulting interval test aims to (i) avoid overconfident binary decisions, (ii) separate robust
decisions from non-identifiable situations, and (iii) provide an interpretable geometry that can
support diagnostics and communication of uncertainty.

2 2D Congruency Test

2.1 Measurement Model and Hypotheses

Let 𝒅 ∈ R2 denote an observed planar displacement between two epochs. We adopt the additive
model

𝒅 = 𝝁𝑑 + 𝒃 + 𝒆, 𝒆 ∼ N(0,𝚺𝑑), (1)
where 𝝁𝑑 is the true displacement, 𝒆 is the stochastic component, and 𝒃 represents remaining
systematic effects that are unknown but bounded. The hypotheses are

𝐻0 : 𝝁𝑑 = 0 vs. 𝐻𝑎 : 𝝁𝑑 ≠ 0. (2)

2.2 Classical Congruency Test

In the nominal case (𝒃 = 0), the quadratic form

𝑇cls = 𝒅⊤𝚺−1
𝑑 𝒅 (3)

is 𝜒2-distributed with ℎ = 2 degrees of freedom under 𝐻0. For significance level 𝛼, the critical
value is 𝑘𝛼 = 𝜒2

2,1−𝛼 and the classical acceptance region is the ellipse

E =
{
𝒅 : 𝒅⊤𝚺−1

𝑑 𝒅 ≤ 𝑘𝛼
}
. (4)

The decision is binary: accept 𝐻0 if 𝑇cls ≤ 𝑘𝛼 and reject otherwise.

This classical formulation is standard in geodetic deformation analysis and congruency testing
under Gaussian assumptions (Caspary and Rüeger, 1987; Heunecke et al., 2013).
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Analytical power (classical test). Under a fixed mean displacement 𝒎 = 𝝁𝑑 + 𝒃, the quadratic
form 𝑇cls follows a non-central 𝜒2 distribution with ℎ = 2 degrees of freedom and non-centrality
parameter

𝜆(𝒃) = 𝒎⊤𝚺−1
𝑑 𝒎 = (𝝁𝑑 + 𝒃)⊤𝚺−1

𝑑 (𝝁𝑑 + 𝒃). (5)

This yields 𝑃(reject | 𝒃) = 1 − 𝐹𝜒2
2,𝜆(𝒃)

(𝑘𝛼) and provides a reference for Monte Carlo results.

2.3 Interval-Extended Congruency Test

To incorporate remaining systematic effects, the unknown bias vector 𝒃 is constrained to a
bounded set B ⊂ R2. We consider two practical models:

(a) Error box. An axis-aligned box

B = 𝐵 = [−Δ𝑥 ,Δ𝑥] × [−Δ𝑦,Δ𝑦] . (6)

(b) Zonotope. A generator-based zonotope

B = 𝑍 =

{
𝑝∑︁
𝑖=1

𝜁𝑖 𝒈
(𝑖) : 𝜁𝑖 ∈ [−1, 1]

}
= {𝑮𝜻 : 𝜻 ∈ [−1, 1] 𝑝} , (7)

with a generator matrix 𝑮 = [𝒈(1) · · · 𝒈(𝑝)] ∈ R2×𝑝. Zonotopes can encode preferred directions
of bounded deviations and dependencies between displacement components.

For a hypothetical admissible bias 𝒃 ∈ B, the bias-corrected displacement is 𝒅 − 𝒃 and the
associated quadratic form is

𝑇ext(𝒃) = (𝒅 − 𝒃)⊤𝚺−1
𝑑 (𝒅 − 𝒃). (8)

Because 𝒃 is unknown but bounded, the statistic becomes interval-valued (Moore et al., 2009),

[𝑇] = [𝑇min, 𝑇max], 𝑇min = min
𝒃∈B

𝑇ext(𝒃), 𝑇max = max
𝒃∈B

𝑇ext(𝒃). (9)

Using the same critical value 𝑘𝛼 = 𝜒2
2,1−𝛼 as in the classical test, the extended decision rule is:

strict accept ⇔ 𝑇max ≤ 𝑘𝛼, (10)
reject ⇔ 𝑇min ≥ 𝑘𝛼, (11)
ambiguous ⇔ 𝑇min ≤ 𝑘𝛼 < 𝑇max. (12)

Geometric interpretation. Let E = {𝒅 : 𝒅⊤𝚺−1
𝑑
𝒅 ≤ 𝑘𝛼} denote the classical acceptance ellipse.

The interval extension induces three decision regions that can be described using Minkowski
operations (sum ⊕ and difference ⊖), summarized in Table 1. Intuitively, the inner region E ⊖ B



152 Naeimaei & Schön

contains displacements that remain inside E even after adding any admissible bias, while the
outer region B ⊕ E expands E by all admissible biases. Displacements outside B ⊕ E cannot be
explained by any admissible bias and are therefore rejected robustly. The grey zone in between
corresponds to a structural identifiability limit: without additional information, deformation and
admissible bias cannot be separated.

Tabelle 1: Geometric characterization of decision regions for the interval-extended congruency test.

Region Set expression Interpretation

Outer region 𝐴ext = B ⊕ E Outside 𝐴ext, deformation is certain (reject).
Inner region 𝐴in = E ⊖ B Inside 𝐴in, stability is certain (strict accept).
Grey zone 𝐴amb = 𝐴ext \ 𝐴in Bias and deformation are not separable (ambiguous).

2.4 Monte Carlo Design (Bias–Noise Separation)

We estimate conditional decision probabilities by separating deterministic bias from stochastic
noise. For a fixed admissible bias 𝒃 ∈ B, we generate

𝒅 ( 𝑗) = 𝝁𝑑 + 𝒃 + 𝒆( 𝑗) , 𝒆( 𝑗) ∼ N(0,𝚺𝑑), 𝑗 = 1, . . . , 𝑁stoch, (13)

and compute empirical frequencies 𝑃(strict accept | 𝒃), 𝑃(ambiguous | 𝒃), and 𝑃(reject | 𝒃).
Repeating this for a set of biases {𝒃𝑘 }𝑁bias

𝑘=1 ⊂ B yields decision maps over bias space.

3 Simulation Study: Box and Zonotope Models

3.1 Error-Box Example (units in cm)

Configuration:

𝝁𝑑 =

[
2
1

]
, 𝚺𝑑 =

[
0.82 0

0 0.52

]
, B = [−Δ𝑥 ,Δ𝑥] × [−Δ𝑦,Δ𝑦], Δ𝑥 = Δ𝑦 = 0.2, 𝛼 = 0.05.

Here, Δ𝑥 = Δ𝑦 = 0.2 cm corresponds to ±2 mm; therefore the bias maps are evaluated over
(𝑏𝑥 , 𝑏𝑦) ∈ [−2, 2] × [−2, 2] mm. For the box case, we evaluate a regular bias grid with 𝑛grid = 200
points per axis (𝑁bias = 𝑛2

grid) and use 𝑁stoch = 2000 noise realizations per bias.

Bias maps (classical vs. interval-extended). Figure 1 shows conditional decision probabilities
as functions of the fixed bias 𝒃 = (𝑏𝑥 , 𝑏𝑦)⊤ ∈ B. Under 𝐻𝑎, the classical rejection probability is
driven by the noncentrality parameter 𝜆(𝒃); biases aligned with 𝝁𝑑 increase detection probability,
while opposing biases reduce it. In the interval-extended test, decision mass is redistributed
among reject, ambiguous, and strict accept, reflecting whether the observation can be explained
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Abb. 1: Error-box case: bias maps over 𝒃 ∈ [−2, 2] × [−2, 2] mm. Top: classical maps 𝑃cls(reject | 𝒃)
and 𝑃cls(accept | 𝒃). Bottom: extended maps 𝑃ext(reject | 𝒃), 𝑃ext(ambiguous | 𝒃), and
𝑃ext(strict accept | 𝒃).

(a) 𝒃 = 𝒃0 = [0, 0]⊤ mm.

(b) 𝒃 = 𝒃max = [2, 2]⊤ mm.
Abb. 2: Error-box case: conditional Monte Carlo displacement samples and decisions for two fixed bias

settings (centre and extreme).

by an admissible bias correction. In particular, the ambiguous probability is largest where the
deterministic bias most effectively counteracts the mean displacement.
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Representative conditional clouds and statistics. We illustrate two fixed settings, 𝒃0 =

(0, 0)⊤ mm and 𝒃max = (2, 2)⊤ mm. Figure 2 summarizes the corresponding conditional Monte
Carlo outcomes: for each bias setting it shows the displacement cloud together with the decision
regions, and the associated empirical distributions of 𝑇cls as well as the interval endpoints
(𝑇min, 𝑇max) relative to the critical value 𝑘𝛼. The spread between 𝑇min and 𝑇max quantifies how
strongly admissible bias corrections can shift the statistic from an optimistic (best-case) to a
pessimistic (worst-case) interpretation.

3.2 Zonotope Example

A zonotope bias model represents remaining systematic effects with structured behavior between
components. We use

𝝁𝑑 =

[
2
1

]
, 𝚺𝑑 =

[
0.82 0

0 0.52

]
, B = {𝑮𝒖 : 𝒖 ∈ [−1, 1]3}, 𝑮 =

[
0.2 0 0.2
0 0.2 0.2

]
, 𝛼 = 0.05.

Because the third generator contributes to both components, the bounding box of B extends to
±4 mm in each coordinate; therefore the maps are shown over (𝑏𝑥 , 𝑏𝑦) ∈ [−4, 4] × [−4, 4] mm,
with values defined only inside the admissible zonotope. For visualization, admissible biases are
generated by sampling 𝒖 ∈ [−1, 1]3 and setting 𝒃 = 𝑮𝒖. This procedure yields a dense coverage
of B, but is not strictly uniform inside the zonotope; exact uniform sampling is not required for
the conditional map visualization shown here.

Bias maps (classical vs. interval-extended). Figure 3 reports conditional decision probabilities
as functions of the fixed bias 𝒃 ∈ B. The zonotope’s preferred directions induce an anisotropic
admissible bias set, which in turn changes the extent and shape of the ambiguity region compared
to the axis-aligned box.

Representative conditional clouds and statistics. We again show two fixed settings, 𝒃0 =

(0, 0)⊤ mm and 𝒃max = (2, 2)⊤ mm. Figure 4 summarizes the corresponding conditional outco-
mes: for each bias setting, it shows the displacement cloud together with the decision regions,
and the associated empirical distributions of 𝑇cls and (𝑇min, 𝑇max) relative to the critical value 𝑘𝛼.

4 Discussion and Conclusions

When remaining systematic effects are modeled as a bounded set B, the classical quadratic-form
statistic extends to an interval [𝑇] = [𝑇min, 𝑇max]. This yields a three-valued decision rule that
distinguishes outcomes that are robust to all admissible biases (strict accept or reject) from
outcomes that cannot be decided without additional information (ambiguous). In the 2D setting,
the geometry is explicit: the classical acceptance ellipse E induces an inner strict-accept region
E ⊖ B and an outer robust-reject boundary B ⊕ E, with the grey zone between them.
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Abb. 3: Error-box case: bias maps over 𝒃 ∈ [−2, 2] × [−2, 2] mm. Top: classical maps 𝑃cls(reject | 𝒃)
and 𝑃cls(accept | 𝒃). Bottom: extended maps 𝑃ext(reject | 𝒃), 𝑃ext(ambiguous | 𝒃), and
𝑃ext(strict accept | 𝒃).

(a) 𝒃 = 𝒃0 = [0, 0]⊤ mm.

(b) 𝒃 = 𝒃max = [2, 2]⊤ mm.
Abb. 4: Zonotope case: conditional Monte Carlo displacement samples and decisions for two fixed bias

settings (centre and extreme).

The simulations demonstrate that ignoring remaining systematics can substantially shift the
binary decision probabilities of the classical test, particularly when admissible biases are aligned
or anti-aligned with the displacement direction. The interval extension avoids overconfident
conclusions by allocating probability mass to an interpretable ambiguity region. The size and
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structure of this region depend on both the stochastic anisotropy (through 𝚺𝑑) and the chosen bias
model (box versus zonotope). In practice, this implies that constructing a plausible admissible set
B is a central modeling step and should be tied to the dominant residual systematic effects of the
employed sensor and processing pipeline.

Effect of set geometry and orientation. The ambiguity region is governed by the geometry
of B relative to the stochastic acceptance ellipse. For an axis-aligned box, the Minkowski
difference E ⊖ B can be interpreted as shrinking the ellipse by the box support function; hence,
directions where the ellipse is narrow relative to the box are affected most. If 𝚺𝑑 is not diagonal
(rotated ellipse), the grey zone changes accordingly because the admissible set and ellipse are no
longer aligned. Zonotopes generalize this behavior by introducing preferred directions via their
generators, which can enlarge or reduce the grey zone anisotropically.

Outlook. Future work will focus on (a) deriving admissible bias sets B from TLS processing
chains (registration, surface modeling, and incidence-angle effects), (b) exact computation of 𝑇min
and 𝑇max via convex optimization and vertex enumeration for general polytopes, and (c) extension
to higher-dimensional displacement parameters and spatially distributed tests on surfaces.
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