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Abstract

The present thesis is devoted to the approximation of Dirac operators with §-shell po-
tentials supported on the boundary of a two or three-dimensional C?-domain. These
singular potentials are used as idealized replacements for potentials which are strongly
localized in a neighbourhood of the support of the d-shell potential and they often
simplify the spectral analysis. To justify the usage of such potentials it is essential
to prove that Dirac operators with d-shell potentials can be approximated by Dirac
operators with strongly localized potentials in a way which transfers the spectral
properties. The most important contribution of this thesis is the establishment of
conditions for the convergence of Dirac operators with strongly localized potentials in
the norm resolvent sense. This type of convergence implies that the spectrum of the
Dirac operator with d-shell potential can be completely characterized by the spectra
of the approximating operators and vice versa. In the special case of electrostatic
and Lorentz scalar d-shell potentials an explicit convergence condition is provided.
Furthermore, counterexamples which imply the sharpness of this condition are also
presented.

Zusammenfassung

Das Ziel dieser Dissertation ist es, Dirac Operatoren mit d-Potentialen, welche auf
dem Rand eines zwei- oder dreidimensionalen C?-Gebietes definiert sind, zu appro-
ximieren. Derartige J-Potentiale werden als Idealisierung von reguldren Potentialen
gesehen, welche stark in der Umgebung des Trégers des d-Potentials lokalisert sind.
Um eine Verwendung von solchen Potentialen rechtzufertigen, muss gezeigt werden,
dass Dirac Operatoren mit d-Potentialen durch Dirac Operatoren mit stark loka-
lisierten Potentialen auf eine Weise angenéhert werden kénnen, welche auch spek-
trale Eigenschaften tiibertragt. Der wichtigste Beitrag dieser Arbeit zur aktuellen
Forschung ist die Angabe von Bedingungen fiir die Konvergenz im Normresolventen-
sinn. Konvergenz in diesem Sinn impliziert, dass das Spektrum des Dirac Operators
mit J-Potential vollstédndig durch die Spektren der approximierenden Operatoren
charakterisiert werden kann und umgekehrt dasselbe gilt. Fiir den Spezialfall von
elektrostatischen und Lorentz-skalaren d-Potentialen wird eine explizite Konvergenz-
bedinung angegeben. Durch passende Gegenbeispiele wird zuséatzlich gezeigt, dass
die Bedingung auch scharf ist.






Contents

1 Introduction 3
1.1 Description of the problem . . . . . ... .. ... ... ... ... .. 3
1.2 Stateoftheart . . . . . . . .. ... 4
1.3 Rigorous definition of various objects . . . . . . . .. .. ... .. 6
1.4 New results and structure of this thesis . . . . . . . ... .. ... .. 8
2 Preliminaries 13
2.1 Notations . . . . . . . . . .. 13
2.2 Special C?-surfaces and corresponding Sobolev spaces . . . . . . . . . 17
2.3 Tubular neighbourhoods of special C?-surfaces . . . . . ... .. ... 21
2.4 Bochner spaces . . . . . . .. 27
2.5 Norm resolvent convergence . . . . . . .. .. ... ... ... ..., 32
2.6 Invertibility of bounded operators . . . . . . . .. ... ... 35
3 The free Dirac operator and perturbed Dirac operators 37
3.1 The free Dirac operator and associated integral operators . . . . . . . 37
3.2 Dirac operators with regular potentials . . . . . . .. ... ... ... 44
3.3 Dirac operators with d-shell potentials . . . . . ... ... ... ... 46
4 Norm resolvent convergence of Dirac operators with general strongly
localized potentials 51
4.1 A resolvent formula for Dirac operators with strongly localized potentials 52
4.2 The shift operator . . . . . . .. ..o 54
4.3 Convergence of A.(z), Bo(z) and Co(z) . . . . . ..o o oo 59
4.4 Properties of the limit operators Ag(z), Bo(z) and Co(z) . . . . . .. 66
4.5 Convergence conditions for Dirac operators with general strongly lo-
calized potentials . . . . . . .. ... oo 73
5 An explicit convergence condition for Dirac operators with strongly
localized electrostatic and Lorentz scalar potentials 77
5.1 Analysis of I + B.(z)Vq for rotated C¢-graphs . . . . . .. ... ... 78
5.1.1 Hyperplanes and constant interaction strengths . . . . . . .. 80
5.1.2  General rotated CZ-graphs . . . . . .. ... ... ... ... 92
5.2 Mainresults . . . ... 108

6 Counterexamples 119



7 Consequences of the approximation results 133
7.1 Approximation of Dirac operators with d-shell potentials that induce

confinement . . . . . .. ..o 133

7.2 Spectra of Dirac operators with strongly localized potentials . . . . . 144

8 Convergence of Dirac operators with semilocal potentials 149
8.1 General interactions . . . . . . .. ..o 150

8.2 An explicit condition for electrostatic and Lorentz scalar interactions 153

Appendix A. Partitions of unity 160
Appendix B. Proof of the estimate (4.34) 163
Appendix C. Additional results for Section 5.1.2 and Section 8.2 176

References 181

1



Acknowledgment

I want to make use of the opportunity to thank the following people, without whom
this thesis would not have been possible. First, I would like to thank my supervisor
Prof. Jussi Behrndt as well as Dr. Markus Holzmann for their guidance and sup-
port throughout this process. I would also like to express my gratitude towards my
colleagues Georg Stenzel and Prof. Petr Siegl for taking their time to proofread the
introduction and to give feedback. Moreover, I would like to thank Nicolas Weber for
interesting conversations which led to improvements within this thesis. Thanks also
to Dr. Albert Mas and Dr. Matéj Tusek for kindly agreeing to evaluate this thesis.
Lastly, I must thank my family, especially my wife, for their unwavering support and
understanding while writing and completing this thesis.

Thank you all.






1 Introduction

1.1 Description of the problem

Differential operators coupled with singular potentials are frequently used in math-
ematical physics. Such singular potentials model regular potentials which have very
large values in the vicinity of a set of measure zero and small values everywhere else.
In contrast to regular potentials, they cannot be represented by functions and have
to be described by distributions. Nonetheless, the spectral analysis of differential
operators with singular potentials often simplifies substantially and may even reduce
to an explicitly solvable problem.

To justify the replacement of regular potentials by singular potentials, approximation
results are necessary, i.e. if H is a differential operator and S is a singular potential,
one has to show that H+S can be approximated by H+V, as ¢ — 0 in a suitable sense,
where (V).~0 is a family of regular potentials which converges in the distributional
sense to S. Here, “suitable sense” means in particular that the convergence should
relate the spectra as well as the associated spectral projections of H+S5 and H+V;. In
the context of self-adjoint unbounded operators, appropriate notions of convergence
are the strong resolvent convergence and the norm resolvent convergence, which
means that (H + V. — i)~ converges to (H +S — i)~ as € — 0 in the strong sense
or in the operator norm, respectively.

In this thesis we focus on the approximation of Dirac operators with J-shell potentials.
We start by explaining Dirac operators. They were introduced by Paul Dirac in 1929
and are used to describe spin 1/2 particles in a quantum mechanical framework.
Moreover, in contrast to Schrédinger operators, they also comply with the theory of
relativity. The free Dirac operator without any potential has the following form in
natural units:

0
H=-iY a;0;+mp, domH=H'R;CY)cL*R;CY).  (L1)
j=1

Here, 6 € {1,2,3} denotes the space dimension, m € R describes the mass of a
particle and ai,..., a9, 8 € CVN, N = 2[4], are the Dirac matrices introduced in
Definition 3.1 for 6 € {2,3}. For § € {1,2} one has a; = 0;, j € {1,...,0}, and
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[ = o3, with the Pauli matrices

01 0 —i 1 0
n=(o) =) =)

Adding a symmetric matrix-valued potential S to H allows one to also model the
influence of external fields, e.g. electrostatic, Lorentz scalar or magnetic fields. In
this thesis we are interested in the case S = Vdyx, where dx is the singular d-shell
potential supported on a C2?-smooth hypersurface ¥ C R? and V is a symmetric
matrix-valued function on X. If V. = nly + 76 + Xi(a - v) + w(a - v), where v
is the unit normal vector on ¥ and - v = 25:1 a,v;, we call the scalar functions
n, 7, A and w the electrostatic, Lorentz scalar, anomalous magnetic and magnetic
interaction strengths, respectively.

The main aim of this thesis is to study the norm resolvent convergence of the oper-
ators Hy, = H + V., where (V.).>¢ is a family of regular potentials which converges
for ¢ — 0 in the distributional sense to Vx.

1.2 State of the art

For Schrodinger operators, which are the nonrelativistic counterparts of Dirac opera-
tors, the literature regarding such approximation results is extensive. It is well-known
that in the one-dimensional setting, where X is either a single point or a countable
set of points, Schrodinger operators with d-potentials can be approximated in the
norm resolvent sense by Schrédinger operators with strongly localized potentials; see
for instance [1] and the references therein. In two and three dimensions this problem
was also considered for various choices of ¥; see |2, 30, 31, 58, 68|. Furthermore, in [7]
norm resolvent convergence was proven for a general class of C2-smooth hypersurfaces
in the multidimensional setting.

Approximation problems for one-dimensional Dirac operators with ¥ = {0} were first
considered in 1989 by Seba in [67]. He investigated Dirac operators with potentials of
the form V. = Vh,, where V =nl,n € R,or V =75, 7 € R, and (h.).~¢ is a suitable
family of functions converging for ¢ — 0 in the distributional sense to g, which is the
d-potential supported in {0}. In this setting he was able to show that Hy, converges
in the norm resolvent sense to the operator Hys . Here, V= 1l or V= 73, where
1 and T are rescaled interaction strengths which depend nonlinearly on n and T,
respectively. This rescaling does not appear in the case of Schrodinger operators
and had already been observed a few years prior in various physics papers, see e.g.
[22, 52, 53|, when comparing the solutions of the Dirac eigenvalue equation with 4-
potentials and strongly localized potentials. Furthermore, Seba and the authors of
[52, 53| related this phenomenon to Klein’s paradox. In the nineties Hughes showed
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in [40, 41, 42| that Hyj, converges in the strong resolvent sense to Hy, for self-
adjoint matrices V & C2Xf. Moreover, she was also able to find an explicit formula
for the rescaling of V' to V; cf. [42, Theorem 1 and Theorem 2|. In our terminology
this formula is given by

V =2aq sin(%) cos.(%)_1 (1.2)

provided that Cos(%

[72] the works of Seba and Hughes by proving norm resolvent convergence in the one-
dimensional setting for a large class of self-adjoint interaction matrices V € C?*2.

) is an invertible matrix. Finally, in 2020, TuSek extended in

In the multidimensional setting the literature is less complete than in the one-
dimensional case and so far there only exist results on strong resolvent convergence.
In this setting one defines based on a matrix-valued function V' given on 3, for € > 0
a potential V. which is supported in an e-neighbourhood of ¥ and converges for ¢ — 0
in the distributional sense to Vdx. In 2018 Mas and Pizzichillo considered this prob-
lem in three dimensions in [51], where ¥ was assumed to be a compact C*-surface.
Inspired by the methods used in [7] for the approximation of Schrédinger operators
with d-shell potentials, they were able to show strong resolvent convergence in the
case of purely electrostatic and purely Lorentz scalar interactions, if the interaction
strengths satisfy a nonexplicit smallness condition. Moreover, they observed a sim-
ilar rescaling of V to V' as known from the one-dimensional counterpart. For the
special case where ¥ is the sphere, the same authors considered the convergence of
the eigenvalues in [50]. Recently, the two-dimensional case with ¥ being a smooth
closed curve was considered for the first time in [24] by Cassano, Lotoreichik, Mas
and TusSek. In this paper the authors established strong resolvent convergence of
Hy, to Hyg  for interaction matrices of the type V = nly + 78 + Xi(a - v)3 with-
out any smallness assumption. Behrndt, Holzmann and Tusek showed an analogous
statement in the case where ¥ is a straight line in [18]|. Furthermore, in [74], Zreik
transferred the methods from [24] to the three-dimensional setting and showed that
Hy, converges in the strong resolvent sense to Hy;s  for combinations of electrostatic
and Lorentz scalar interaction strengths.

A different approach to approximate Dirac operators with J-shell potentials, which
goes back to [23, 67], is via so-called nonlocal potentials; see also [34]. In one dimen-
sion such potentials are given by V. = (-, he)r2r)V he and they also converge in the
distributional sense to Vdy. However, in contrast to the classical strongly localized
potentials, Hy, converges in the norm resolvent sense to Hys,, i.e. no rescaling of
the interaction matrix is necessary. Tusek and Heriban took up this idea in [35] and
considered the norm resolvent convergence of Dirac operators with such potentials
in the multidimensional case. It turned out that in the mentioned case no rescaling
is necessary either, but in contrast to the one-dimensional case, the limit operator is
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not a Dirac operator with a local d-shell potential but rather a Dirac operator with
a so-called nonlocal d-shell potential.

1.3 Rigorous definition of various objects

Before we state and discuss the main results of this thesis, let us fix some necessary
notations. We assume that Q, C R?, 6 € {2,3}, is a possibly unbounded C*-smooth
domain (according to Definition 2.1) and we set X := 9, and Q_ := R\ Q..
Moreover, we denote the unit outward normal vector field of 2, by v. For a function
u: R — CV we write uy = u | Q4 and we denote the Dirichlet trace operator
by t& : H'Y(Qu;CY) — HY2(%;CV), where H® are the L?-based Sobolev spaces.
Recall that aq,..., a9, 8 € CN*N are the Dirac matrices defined in Definition 3.1.
To shorten notation, we make use of the abbreviations

0 0
a-V = E a;0;, and «a-z:= E T, 33:(.’13'1,...,$9>€Ce.
=1 j=1

For m € R and V € L®(%; CVN) such that V = V*, ie. V(zy) = (V(xy))* for ae.
Ty, € X, we introduce the operator

Hys u = (—i(a- V) +mBluy @ (—i(a- V) +mp)u_,

dom Hys = {ueHl(Q+;(CN)@H1(Q;(CN): (1.3)

7
(o v)(thuy —tgu ) + §(t§u+ +isu_) = 0} c L*(R?;CY).

This is a rigorous realization of the formal operator
H+Véy = —i(a- V) +mf + Vi,

which was studied under various assumptions on V and the interaction support
in [4, 5, 8,9, 13, 16, 18, 19, 24, 59, 60]. The operator exhibits different behaviours
depending on the properties of V. To illustrate this fact, let us consider V= nln+703
with 77,7 € R. It is well-known that Hy; is self-adjoint if d= n? — 7% # 4. This
case is referred to as the noncritical case. In the critical case, i.e. d = 4, Hy,  is
not closed and only essentially self-adjoint; see [12, 13, 19, 56]. Not only this, by
[12, 13, 17, 18, 19, 20| the spectral properties also change drastically in the critical
case. We conclude the discussion of Hy; by mentioning that if d=72—72=—4,
then Hys  splits into the orthogonal sum of two operators acting in L*(Q,;C") and
L*(2_;CN); cf. Proposition 3.15 (ii). This implies that the particle described by
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Hys, cannot cross 2 and thus stays confined either in €24 or in (2_. Hence, we say
that Hy . induces confinement in this case.

It is the main goal of the present thesis to show that Hy; can be approximated in
the norm resolvent sense by Dirac operators with strongly localized potentials. To
introduce the latter operators, we define the map

LN X R =R (s, t) i=ax +tr(ry), (7x,t) €T xR,

and for e € (0, 00) we set €. := (X x(—¢,¢)), which is the so-called tubular neighbour-
hood of ¥. Furthermore, for ey,, > 0 sufficiently small the map ¢ [ X X (—&¢up, Etup)
is injective; cf. Proposition 2.12. To define the above mentioned strongly localized
potentials, we choose

1

g€ L>*((—-1,1);R) with / q(s)ds =1

1

and
Ve WL(S;CV*N) such that V = V™,

where WL denotes the first order L>-based Sobolev space. Since ¢ | R X (—&¢up, Etup)
is injective, we can define for € € (0, eyp)

_JiVis)a(Y), w=las,t) € Q.
Vs(x) T {0’ " ¢ QE, (1.4)

and for m € R and ¢ € (0, eqp) the operator

Hyu:= —i(a- V)u+mpu+ Vou, dom Hy, := H'(R? C").

£

Note that Hy, = H+V. is self-adjoint in L?(R?; CV) as V. = V* € L>®°(R?; CV*V) and
the free Dirac operator H from (1.1) is self-adjoint; cf. Proposition 3.3. Moreover, the
sequence V. converges to Vdy, as € — 0 in the sense of distributions by construction.

Recall from Section 1.2 that the expected limit operator is not Hy s, but rather Hy P

where V has been rescaled to V. Provided that 005(%)_1 € WL(3;CV*N) | the
rescaling is given by

V =2(x-v) sin((a'”

2)‘/) cos((o"”)v)_l, (1.5)

2

where analytic functions of matrices are defined via the corresponding power series;
cf. (1.2) for the one-dimensional counterpart of this formula. If n,7 € WL (3;R) and
V =nly + 70, then the rescaling can be simplified to

~ 2 tan(‘/Ta)

V= V., d=n-7"
N7 1
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In particular,
~ 2tan(ﬁ)
V=nly+78 with (7,7)=—222(n,7
ol (7.7) 7 (7, 7)
in this special case, which is prevalent in literature; see [18, 24, 74| for analogous
rescalings.

(1.6)

1.4 New results and structure of this thesis

Having established some necessary notations in Section 1.3, we are now in the position
to discuss the main new contributions of this thesis. The results, which are partially
included in the preprints [14, 15|, are presented in a manner that also elucidates
the structure of this dissertation. After the preliminary Chapters 2-3, we find in
Chapter 4 abstract conditions which guarantee the norm resolvent convergence of
Hy, to Hys, for ¢ — 0, where V. is the strongly localized potential based on the

interaction matrix V from (1.4) and V = V(V) is the rescaled interaction matrix
given by (1.5); see Theorem 4.15. In Corollary 4.16 we apply this theorem and show
that if [|V||wy (zovxvy is sufficiently small, then the operator Hy,_ is self-adjoint and
Hy, converges in the norm resolvent sense to Hy5 for € — 0. Theorem 4.15 extends
the current literature in the following three aspects:

(i) Instead of strong resolvent convergence, we prove the norm resolvent conver-
gence of the approximating family, which has not been established in the multi-
dimensional situation so far. This type of convergence ensures that the spectrum
of the limit operator Hy;s  can be completely characterized by the spectra of
the approximating operators and it also implies the convergence of the related
spectral projections.

(ii) Instead of bounded curves in R? or bounded surfaces in R?, we treat a general
class of bounded and unbounded interaction supports ¥ which we call special
C?-surfaces. This class of surfaces can be described by finitely many rotated
graphs of C?-functions with bounded derivatives; see Definition 2.1. In partic-
ular, this class includes graphs of C?-functions with bounded derivatives and
boundaries of bounded C?-domains.

(iii) Instead of considering only electrostatic, Lorentz scalar, and anomalous mag-
netic interactions (which can be described by three real-valued functions), we
allow general symmetric 2 x 2 or 4 x 4 matrix-valued functions as interaction
strengths in dimensions two or three, respectively, and provide an explicit for-
mula for rescaling when passing to the limit.
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The key idea for the improvement from strong resolvent convergence to norm re-
solvent convergence mentioned in (i) is the following: We factorize the resolvent
differences of the free Dirac operator and Dirac operators with strongly localized
potentials and instead of viewing the individual factors as operators in L2-spaces, we
study their convergence properties as operators between various (Bochner-)Sobolev
spaces.

In Chapter 5 we focus on interaction matrices having the form V = nly + 74 with
n,7 € CHE;R), where C}(X;R) is the set of all real-valued bounded C'-smooth
functions on ¥ which have bounded first derivatives. The interaction strengths n
and 7 are used to model electrostatic and Lorentz scalar interactions, respectively,
and they are the most common interaction types in the literature of Dirac operators
with J-shell potentials; see for instance [4, 9, 13, 19, 60]. In this setting we prove
in Theorem 5.20 that the abstract conditions from Theorem 4.15 for norm resolvent
convergence simplify to the explicit condition

71_2

sup d(zy) < —, d=n*—12 (1.7)
Ty €Y 4

Inspired by the last paragraph of [24, Section 8] we then add a strongly localized
magnetic potential to Hy,; more precisely, we choose V' = nly + 76 + ©(a - v).
It turns out that in this case Hy, also converges in the norm resolvent sense; see
Theorem 5.21. However, by the specific choice of m as the magnetic interaction
strength, the magnetic term disappears when rescaling. Hence, we end up with a
limit operator Hy; which is again a Dirac operator with 0-shell potential and only
electrostatic and Lorentz scalar interactions, where the rescaling of 1 and 7 is different
than in the case V = nly + 7. Using this result and Theorem 5.20 we can formulate
Corollary 5.22, which states that every Dirac operator with a given d-shell potential
Vs, V=nly+78, 1,7 € CL(X;R), and d = 1j* — 72 fulfilling

sup |d(zg)| <4 or inefZ |d(zx)] >4 (1.8)
rs

Ty €Y

can be approximated by a sequence of Dirac operators with strongly localized poten-
tials. In the case of constant interaction strengths this is particularly interesting, as
it implies that every Dirac operator with a d-shell potential and constant electrostatic
and Lorentz scalar interaction strengths satisfying |d| # 4 can be approximated in
the norm resolvent sense by Dirac operators with strongly localized potentials.

In Chapter 6 we show that the condition (1.7) is in fact optimal. We do this by
providing suitable counterexamples. To discuss the counterexamples in more detail
we assume V = nly + 70 with n,7 € R. By (1.6) we have

d=n*-7%= 4tan(‘/7g).
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We dlstmgulsh between the critical (d = 4) and the noncritical (d # 4) case. Note
that if d < =, i.e. (1. 7) is fulfilled, then d < 4 and hence V is noncritical. Now, let

us assume that d > I ie. (1.7) is not fulfilled. If d = 4, then Hyg  is not closed
and only essentially self—adjoint. Hence, Hy, cannot converge in the norm resolvent
sense to Hy, . Moreover, as also the spectral properties change in the critical case,
we are able to show in Theorem 6.1 that Hy, does not even converge to the closure
of Hys in the norm resolvent sense if ¥ is compact and C*°-smooth. Furthermore,

ifd > 721—2 and EZV% 4 we show in Theorem 6.7 that Hy, does not converge to Hy;s
in the norm resolvent sense under the geometric assumption that ¥ contains a flat
part.

Chapter 7 is split into two parts. In the first part we approximate Dirac opera-
tors which induce confinement and in the second part we present various spectral
implications of the approximation results. Let us start by explaining the first part
in more detail. From (1.8) we conclude that the confinement case, i.e. d = —4, is
not included in our approximation results. To approximate Dirac operators with -
shell potentials that induce confinement, we use the following approach: We choose
V = nly + 76 with n,7 € C;(X;R) such that sup, .y d(zs) < 0. Moreover, we
assume that f : (0,en) — (0,00) is a suitable scaling function with f(g) — oo for
¢ — 0; the exact conditions are given in (7.2). Then, Theorem 7.4 states that H .y,
converges in the norm resolvent sense to Hy;s , where

2
Vd|
~2

This immediately shows that d= N2 —7%=—4,ie. V induces indeed confinement.
After considering the approximation of Dirac operators with d-shell potentials which
induce confinement, we deal in Section 7.2 with the discrete and essential spectrum
of Hy.. In particular, we find conditions which guarantee the existence of discrete
eigenvalues in various situations.

V =iy +78 (7, 7) = (n, 7).

Finally, in Chapter 8, we introduce so-called semilocal potentials. Recall from Sec-
tion 1.2 that one can use nonlocal potentials to approximate Dirac operators with
0-shell potentials without any rescaling in the one-dimensional setting. As already
mentioned, this approach does not work for # € {2,3}. This leads us to the definition
of semilocal potentials which allow approximations of Dirac operators with J-shell
potentials supported on ¥ Without any rescaling. For V = V* € WL (X, CV*V),
q € L>*((—1,1);R) with f t)dt =1 and € € (0, £4yp) we define

Ve LQ(RG;CN) — L*(R%CY),
Vem)a(?) [1 uleles,s)as)
(Vou)(z) == -det(I — seW(xx))ds, x=i(zry,t) € Qs.,
0, x ¢ Q..
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Here W denotes the Weingarten map associated with ¥ and plays only a secondary
role since it is scaled with €. We call such potentials semilocal since they behave
nonlocally with respect to the variable ¢ in the normal direction of ¥ and locally
with respect to the variable xy, € . Similarly as in the local setting, however
without any rescaling, we are able to show the norm resolvent convergence of Hy,
to Hys, for general interaction matrices under abstract conditions; see Theorem 8.3.
For interaction matrices of the form V = nly + 78, n,7 € C}(X;R), we show in
Theorem 8.9 that the simple condition

sup d(zy) < 4, d=n*—-12

Ty EX
guarantees the norm resolvent convergence.

Before concluding the introduction, it should be mentioned that in the process of
writing this thesis, the language tool DeepL. was consulted for stylistic and grammat-
ical improvements concerning the English language.






2 Preliminaries

In this chapter we provide necessary preliminary results. We start by introducing
various notations and conventions in Section 2.1. Then, we define in Section 2.2 spe-
cial C?-surfaces which are roughly speaking subsets of unions of rotated C¢-graphs.
These surfaces are important because we consider d-shell potentials and integral oper-
ators on such surfaces in the main parts of this thesis; cf. Section 3.1 and Section 3.3.
After introducing and constructing Sobolev spaces on these special C%-surfaces, we
study tubular neighbourhoods of such surfaces in Section 2.3. In Section 2.4 we
provide elementary definitions and results for Bochner spaces, which turn out to be
very useful in the Chapters 4-7, where we consider functions with values on Sobolev
spaces on special C?-surfaces. In Section 2.5 we deal with the norm resolvent con-
vergence of unbounded self-adjoint operators and its spectral implications. Finally,
in Section 2.6, we collect conditions for the invertibility of bounded operators, which
is crucial for handling resolvent formulas.

2.1 Notations

In this section we provide a list with frequently used notations and conventions
throughout this thesis.

(i) By 6 € {2,3} we denote the space dimension and we set N = 2 for § = 2 and
N =4 for 0 = 3.

(ii) The symbol Q. denotes an open subset of R? such that its boundary ¥ is a
special C2-surface as in Definition 2.1. In this case we set Q_ := R?\ 2, and
if u is a function defined on R?, then we define uy :=u | Q4.

(iii) For a topological vector space X the expression X’ denotes its dual space; i.e.
the space of all continuous linear functionals defined on X'. Moreover, for z € X
and ' € X’ we introduce the bilinear duality product

(2 x)y =2 ().

If the space X is equipped with a continuous antilinear conjugation operation
X > 2 — 7€ XfulfillingZ = x for all z € X, then we introduce the sesquilinear
duality product

<l’/, :U>XI><X = x <$/,f>x.

13
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(iv)

(viii)

Furthermore, if Y is also a topological vector space with a continuous antilinear
conjugation operation and A is a linear bounded operator mapping from X to
Y, then the antidual operator A’ : )’ — &” (which is again linear and bounded)
is defined by the relationship

<y/,./4.%'>yl><y = <.A/y/,$>xl><x Vr € X,y’ c yl.

Let H and G be Hilbert spaces and A be a linear operator mapping from H to
G. The domain, kernel and range of A are denoted by dom A, ker A and ran A,
respectively. The norm and the scalar product (which is antilinear with respect
to the second argument) in H are expressed by ||||» and (-, ). If A is bounded
and everywhere defined, then we write || A||3_¢ for its operator norm. If H = G
and A is closed, then the resolvent set, the spectrum and the point spectrum
of A are denoted by p(A), o(A) and 0,(A), respectively. Furthermore, if the
domain of A is dense in H, then the adjoint of A is denoted by A* and if
A = A*, then 0e(A) and ogsc(A) are the essential and discrete spectrum of
A.

Let H and G be Hilbert spaces, J be a countable index set, A;,j € J, and A be
bounded linear operators mapping from H to G. If for every u € H and 6 > 0
exists a finite index set .Js5,, C J such that HZ]EJ, Aju— AUHH < ¢ for all finite
index sets J' with J' D Js,,, then we say that the family (A;);es is strongly
summable and set the ;A; = A. Furthermore, if H and (j are also Hilbert
spaces and B : G — G and C : H — H are bounded linear operators, then the
family (BA;C);jcs is strongly summable and 3% BA;C = B(z;te] A;j)C.

j€J
The expression [+, -] denotes the commutator of two operators.

To denote sets of functions, we use symbols having the structure S(A; B), where
S reflects the properties of the functions and A and B denote the domain and
codomain of the functions, respectively. For example L*(R%; CV), C*(%;R),
WYHR; CN*N) etc. Moreover, if S(A) is not specified otherwise, then we set
S(A) := S(A;C). For example L*((—1,1)) := L*((—1,1);C).

If n € Nand U C R" is open, then H"(U) and W/ (U) denote the L*- and L>°-
based Sobolev spaces of order r, respectively; cf. [54, Chaper 3|. Moreover, if
Y is the boundary of a C*-domain, then H"(X) and W (¥) are Sobolev spaces
on the boundary ¥; cf. Section 2.2. Vector and matrix-valued Sobolev spaces
are defined in the natural way, i.e. component-wise.

If k,n € Nand U C R" is an open set, then we write C¥(U) for the space
which contains all f € C*(U) such that f and all partial derivatives of f up
to order k are bounded. Moreover, we set C;°(U) = (oo, CF(U). If ¥ is a
C%-smooth hypersurface and k < 2, then the space CF(X) is defined via local
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(xii)

(xiii)

(xiv)

coordinates. The corresponding spaces of vector and matrix-valued functions
are defined component-wise.

If n € Nand U C R” is open, then C§°(U) denotes the set of all compactly
supported C*®-functions on U. Furthermore, the set C5°(U) contains all C'>°-
functions on U which have an extension to a function in C{°(R"). Again,
the corresponding spaces of vector and matrix-valued functions are defined
component-wise.

The usual L*((—1,1))-based Bochner space of H-valued functions is denoted by
L*((—1,1); H); cf. Section 2.4. For H = H"(S;CY), where S is either equal to
¥ or equal to R~ we write B"(S) instead of L2((—1,1); H"(S;C")). We also
write |||, for the norm in B"(S). In a similar way, we define

[l 2= H'”BT(S)—>BT'(S)>

-l =2 = Nl 35y,
-l = -l ()

If (0,4, )\) denotes a measure space, and f : & — C is an integrable function,
then [, f(t) d\(t) denotes the integral of f In the case that A is the Lebesgue
measure we simplify this notation to [, f(t) dt.

Following [54, Appendix B|, we call (7—[0,7—[1) a compatible pair, if Hoy and H;
are two Hilbert spaces which are continuously embedded in a bigger Hausdorff
topological vector space. In this situation, one can construct with the K-method
(or various other methods, see [25, 26, 43, 54|, which yield the same spaces with
equivalent norms) a family of Hilbert spaces [Ho, H1],, 7 € (0,1), such that
Ho N Hy C [Ho,Hilr C Ho + Hy for all 7 € (0,1). Assume that (G, Gy) is
another compatible pair of Hilbert spaces. Then, for two bounded operators
Ao : Ho — Gy and A; : Hiy — G; such that Agu = Aju for all u € Ho N Hy,
there exists by |54, Theorem B.2| a unique bounded linear operator

A 2 [Ho, Halr = [Go, Gil;

such that Agu = Aju = A u for all u € Ho N H;1. Moreover, its norm can be
estimated by

||*’4 ||[HOH1]T —1[Go,G1]+ < ||A0||H0—>go||“41||;1—>g1-

The application of a holomorphic function to a matrix (or a matrix-valued
function) A is defined via the associated power series, whenever it converges.
This implies for two holomorphic functions f, g that f(A)g(A) = (fg)(A).
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(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

(xxi)

The symbol || is used for the absolute value, the Euclidean vector norm or the
Frobenius norm of a number, a vector or a matrix, respectively. We write (-, -)
for the Euclidean scalar product in C", n € N, which is antilinear in the second
argument.

For v = (vy,...,v,)T € C", n € N, we simply write v = (vy,...,v,). Similarly,
we use the notation v = (v/,v,) for the vector v = (v'7,v,)" with v/ € C**
and v, € C. Moreover, we set v[j] = v; for j € {1,...,n}. Analogously, if
A € C™™", then A[j, k], j,k € {1,...,n}, denotes the (j, k)-th entry of the
matrix A.

The expression F denotes the Fourier transform in R%~'. Moreover, F; and
F, denote the partial Fourier transforms in R? with respect to the first § — 1

variables and the #-th variable, respectively. These transforms are given for
Y € S(R’1) and u € S(RY) by

FUE) = o [ pe S, g em
Fule) = o [ G, €= (€6 € B
Faul€) = <= [ g o)z, E=(€.6) <R,

and can be uniquely extended to continuous operators in S'(R?~1) and S'(R?),
where S denotes the space of tempered distributions; cf. |63, Chapter IX].
Moreover, the application of the Fourier transform to vector and matrix-valued
functions or distributions is defined component-wise. The complete Fourier
transform in R? is given by Fio = FiFy = Fo .

The letter C' > 0 always denotes a generic constant which may change in-
between lines.

The branch of the square root is fixed by Imy/w > 0 for w € C \ [0, c0).

The tangens cardinalis tanc : C\ {n7 4 5 : n € Z} — C is defined by

tan(w) -
tanc(w) := {1w ’ weg\({o}U{nW—l—z.nGZ}),
) w = V.

tanh(x)

For z € R\ {0} the equation tanc(iz) = is valid.

The expression SO(#) denotes the rotation matrices in R%*?  i.e. the real 6 x 6
orthogonal matrices which have determinant one.
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2.2 Special C%-surfaces and corresponding Sobolev spaces

We introduce and study in this section, which is based on [14, Section 2.1|, so-
called special C?-surfaces in R?. Moreover, by a partition of unity and suitable
parametrizations we are able to define Sobolev spaces on such surfaces.

Definition 2.1. Let Q, C R’ 0 € {2,3}, be an open set and ¥ := 9. Then,

we call ¥ a special C*-surface if there exist open sets Wh,..., W, C R? . mappings
Ciy-. ¢ € CEHRYLR), rotation matrices ki, ..., k, € SO(0), and an ex > 0 such
that the following is true:

() £ UL, W

(i) If x € 0y =X, then there exists | € {1,...,p} such that B(z,ex) C W].

(iii) W, N Qy = W, Ny, where Q) = {/il(xl,ng) cxg < (o), (', 79) € R}, for
le{l,...,p}.

Furthermore, in this case we define the sets ¥y .= 0 = {r;(2', G (2")) : 2’ € R%~1}
and Q_ := R\ Q_, denote the unit normal vector field at ¥ that is pointing outwards
of Q4 by v and use the expression o for the (6 — 1)-dimensional Hausdorff measure
restricted to Y.

One can check easily that compact C*-hypersurfaces and C?-graphs are special C?-
surfaces. This class is essentially the intersection of the hypersurfaces described
by |70, Chapter VI, Section 3.3] and |7, Definition 2.1 and Hypothesis 2.3]. The
assumptions in [70] guarantee us on the one hand the existence of suitable trace and
extension theorems, see Proposition 2.3 and Proposition 2.6, and on the other hand
the assumptions in [7| imply that the e-tubular neighbourhood can be identified with
the set ¥ x (—¢,¢); see Proposition 2.12. Both are essential in the later parts of this
thesis.

Next, we introduce Sobolev spaces on special C%-surfaces. We recall that Sobolev
spaces on open sets are defined as in [54, Chapter 3]. To transfer the definitions
to X, we choose the partition of unity ¢1,...,p, € Cf°(R?) for ¥ subordinate to
Wi, ..., W, from Proposition A.4. We define for I € {1,...,p}

s R %y, (') = k(2 G (), (2.1)

and for ¢ € L2(3;CN) we write

o o 1 aba@)Galah), sa(a’) €%,
wZz( ) : {0’ %l(l',) ¢ .



18 2 Preliminaries

Then, ¢y, € LX(RHCY) and (zs) = Yo7, o5 ¥n, (34 (ax)) for s € B As

usual, we introduce for r € [0, 2]
H'(%CV) = {y € LX(5,CN) g, € H'(RHCY) forall L = 1,...,p}  (2.2)

and endow this space with the scalar product

p

(6, V) rseny = 3 (G s ) @oreny, 6,1 € H'(S;CY).

=1

Sobolev spaces H"(%;CV) with r € [-2,0) are defined by duality. Furthermore,
setting U := s (X N'W,) allows us to define for V € {C;CY*N} and k € {1,2} the
Sobolev space

WE(S; V) = {F € L5 V): (Fosq) | U € WE(U; V) foralll=1,...,p}
and equip it with the norm

IF|lwe sy == max ||(Fosq) | Ullwewwy), F€WEE;DV).

le{1,..., p}”

Since the Sobolev spaces on > are defined via Sobolev spaces on open sets, one can
check that H"(3;CY) is a Hilbert space and WX (3;V) is a Banach space. We state
useful properties of the just introduced Sobolev spaces on ¥ in the next proposition.

Proposition 2.2. Let V € {C,CN*N} ¥ C RY be a special C*-surface as in Defi-
nition 2.1, k € {1,2} and r,ry,ry € [=2,2]. Then, the following statements hold:

(i) Ifr = (1 = 7)ry + 77y, then H™(Z;CN) = [H™(X; CN), H™(3; CV)),.
(i) If 0 <7y <y, then H™(X;CN) is densely contained in H™(3;CV).
(iii) If |r| < k, o € H(S;CN) and F € WE(X; V), then Fyp € H(Z;CN) and
[EY] e (ssevy < ClFllwe e ll¥ e siem),
where C' > 0 does not depend on ¢ and F.
(iv) If F,G € WE(3;V), then FG € WE(3:V) and
|FGllwe vy < CIFlwe vy 1Gllwe ),
where C' > 0 does not depend on F and G.

(v) If I C R is an open interval, F € CH(I;V), G € WL(2) and G(X) C I, then
FoGeWL(%;V) and

|F o Gllwysy) < ClFlweawlGllwe ),
where C > 0 does not depend on F and G.
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Proof. We start by showing (i). This can be found in [54, Theorem B.11] for the
case that X is compact. The proof in [54] works as follows. First, the case of graphs
is considered and then a partition of unity ¢, ..., p, € C5°(R?) for 3 subordinate
to Wi,...,W, and functions xi,...,x, € C5(R’) which fulfil suppy; € W; and
ot = ¢ forl € {1,...,p} are used to transfer the results to compact hypersurfaces.
However, the proof does not change if the functions ¢1,...,¢, and x1,...,X, are
assumed to be in C°(R?) instead of C5°(RY) and hence Proposition A.4 shows that
(i) is also valid if 3 is a special C*-surface.

Next, let us consider (ii). By |54, the lines above eq. (3.22)] H™ (R%~1; CV) is densely
contained in H™(R?~1;CV). Using this knowledge and the definition of H"(3;CY)
in (2.2) via the partition of unity ¢4, ..., from Proposition A.4 one concludes that
also H™(3; CV) is densely contained in H™(%; CV).

To prove (iii), we first assume that r is a nonnegative integer, then by applying the
product rule for weak derivatives, see |29, Section 4.2.2|, we get

P
IF @l meny = DI 0 sa)ds @)
=1

p
< CY NF o sallfe wan s 1 we
=1

p
S CHFHI%V&(E,V) Z|’leH§{T(R9*1;CN)
=1

= OHF“%V;@O(E;V)||1/}||§JT(E;CN)-

If r € [0, k], then the result follows by interpolation from (i) and Section 2.1 (xiii).
If r € [—k,0), then F is defined by (anti-)duality via

(FY, ) prsienys - seny = (U, F*Y) prmevyxp-reeyy vy € H7(5;CV).
Thus, the result is a consequence of the case where r is positive.

Items (iv) and (v) follow from the definition of WX (3;V) via Sobolev spaces on
open sets and the product rule and chain rule for weak derivatives; see again |29,
Section 4.2.2]. O

Next, we formulate a suitable trace theorem for special C2-surfaces.

Proposition 2.3. Let ¥ = 90y C R?, 0 € {2,3}, be a special C?-surface as in

Definition 2.1 and r € (3,3). Then, the following is true:
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(i) There ezists a unique bounded and surjective operator
ts: H'(Qy;CY) — HTﬁl/Q(E;(CN)
such that tsu =u | Y for allu € H(Qx; CV) N C(Qx; CV).
(ii) There ezists a unique bounded and surjective operator
ty: H'(R%;CY) — H™'/*(5;CY)
such that tsu = u | X for all w € H"(R%;CY) N C(R% CY).

Proof. Item (i) follows from |21, Theorem 8.7] and [48, Theorem 2|. Moreover, defin-
ing tyu = tiu, for u € HY(R;CY) shows that there exists a bounded surjective
operator satisfying tyu = u [ ¥ for u € H"(R?; CV) N C(R?; CV). The operator ty is
unique since the set H"(R?; CY) N C(R?, CY) is dense H"(R?; CV); see for instance
[54, the text above eq. (3.22)]. Thus, also (ii) is true. a

Remark 2.4. For u € H"(R? \ ©;CN) = H"(Q,;CN) @ H"(Q_;CY) we define
tiu = tiuy, where uy = u | Q+.

Corollary 2.5. Let ¥ = 09, C R? be a special C?-surface as in Definition 2.1,
v be the unit normal vector field pointing outwards of Qy, f,g € H'(Qx;CN) and
je{l,...,0}. Then,

(0; 1, 9)r2(nev) + (F,059) 2 (0p0ny = £V [, E59) 12(s.0m),
where v]j| denotes the j-th component of v.

Proof. If f,g € C5°(Q+; CN), then the statement is a consequence of the divergence
theorem. The divergence theorem for Lipschitz domains with compact boundaries is
given by |54, Theorem 3.34]. However, as f,g € C5°(Qx;CY), i.e. they have com-
pactly supported C™-extensions to RY, the divergence theorem for compact bound-
aries is also applicable in our setting. According to [54, the text below (3.23)]
C3°(Qy; CN) is dense in H'(Q1; CV). Thus, the result follows from the continuity of
the trace operator. O

Under our geometric assumptions we not only have a suitable trace theorem, addition-
ally, according to the upcoming proposition there also exists an extension operator
extending functions from H"(2.;CY) to functions in H"(R? CV).

Proposition 2.6. Let ¥ = 90y C R? be a special C*-surface as in Definition 2.1.
Then, there exists a bounded extension operator (called Stein’s extension operator)
E* : L*(Q4;CN) — L2(R% CYN) which satisfies (Fuy) | Qi = ux for all functions
u € L?(Q4;CN) and also acts as a bounded operator from H"(Q4; CN) to H"(R?; CY)
for allr > 0.
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Proof. 1If r € Ny, then the proof follows from |70, Chapter VI, Section 3.1, Theorem 5|
since )1 satisfies the conditions in [70, Chapter VI, Section 3.3|. If r ¢ Ny, then
interpolation, see |54, Theorem B.7 and Theorem B.8] and Section 2.1 (xiii), yields
the claim. O

2.3 Tubular neighbourhoods of special C?-surfaces

In this section, which contains parts of [14, Section 2.1 and Appendix A|, we study
tubular neighbourhoods of ¥. This is important, as we define in (4.3) so-called
strongly localized potentials on such sets.

Definition 2.7. Let ¥ C RY be a special C?-surface, v, ¥; and 4 be as in Defini-
tion 2.1, and » be defined by (2.1). Then, we set

LY xR =R L(zs, t) == zx +tr(zy),

and for ¢ > 0 we call Q. = (X X (—¢,¢)) the (e-)tubular neighbourhood of ¥.
Moreover, we define for 1 € {1,...,p} the function

u:RPXxR = R u(@',t) == sq(2") + tv(>4(2")),

where v; denotes the unit normal vector field on ¥, pointing outwards of €);.

Note that t(s4(z'),t) = y(2/,t) for all 2’ € 55 (%), t € Rand [ € {1,...,p}, and
/fl(—VQ(x’), 1)

V14 IVG ()

with (; from Definition 2.1. From now on we write v;(2’) instead of v;(s4(x’)) for
2’ € R%1 in order to simplify notation.

v ((2')) = vz’ € RO

Before we study the maps ¢ and ¢; in detail, we provide a useful variant of the mean
value theorem for vector and matrix-valued functions.

Lemma 2.8. Let k,I,n € N, U C R™ be an open set and A € CL({U;CF*Y). If
x,y € U and the line segment connecting x and y is contained in U, then

A@) - AW < sup (YO +ply—2)P) e )

relo,1] j=1

<vn  sup  [(9A)(z+ ply — x))l|lz —yl.

pel0,1],je{1,...,n}
In particular, if U =R"™ and [ = 1, then

|A(z) = A(y)| < [|DA|| oo (gnorxnmle —y| - Va,y € R™.
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Proof. Recall that |-| denotes, depending on the argument, the absolute value, the
Euclidean vector norm, or the Frobenius matrix norm. The fundamental theorem of
calculus and the Cauchy-Schwarz inequality lead to

)~ ) = | [ @A ) o~

/DaA (& + uly — )| (& — 9| dp

rel0,1] j=1

<vn  sup  |(QjA)(x+ ply —x))l|z —yl.
pel0,1],7€{1,...n}

The estimate for the special case U = R" and [ = 1 is an immediate consequence of
the above estimate. O

Proposition 2.9. Let ¥ C RY be a special C?-surface as in Definition 2.1, and let
v and vy, I € {1,...,p}, be as in Definition 2.7. Then, there exists an €, > 0 and
constants C,1,C, 2 > 0 such that the following holds:

(i) For all 2,y € R t s € (—¢,,¢,) andl € {1,...,p} we have

Coi (I =91+t = s]) < lu(@, ) —uly,s)| < Ca(l2" —y/| + [t = s]).

(ii) For all xs,ys € ¥ and t,s € (—¢,,¢,) we have
Cos (lzs —ys| + [t = s|) < lu(zs,t) = (ys, s)] < Coa(lzs —ys| + |t = s]).

Proof. (i) Let 2/,y € R°~! and t,s € (—¢,,¢,) be fixed, where ¢, > 0 is, at the
moment, a fixed number. Using Definition 2.7, Lemma 2.8, »(z) = k(2/, §(2'))
and s4(y') = ri(y', G(y')) we find

lu(@’,t) —u(y', s)| < [sa(@) = sa(y)| + [tn(a’) — su(y)]
< a(2') = sa(y)| + [tn(2") —u(y)]| + [t — s]
< |2 =y [+ Q") = Q)| + elnl(@’) —uy)] + [t — s
< [2" = Y[ + VGl oo (o-1,20-1) 2" — V]
b el Dull oo |2 — ]+
< (1 + ||VCZHL°°(R9*1;R9*1) + 5L||DVZHLoo(Refl;Rex(e—l))) (\x' - y/! + [t — 5|)
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Now, the second estimate in (i) follows if we fix 0 < ¢, < 1 and choose

CL,l > 1+ ler{rllaxp}(HvClHLOO(RG_l;Rg_l) + ||Dyl||L00(R9—1;R0><(971))>7

,,,,,

which is finite since we assumed in Definition 2.1 that ¢; € CZ(R~LR), 1 € {1,...,p}.

Next, we prove the first inequality in (i). We start by rewriting

Jula, t)—bz( s)* = lsa(2') — sa(y)*
+20a(2) = sa(y'), tu(@') — suy)) + ltu(z') — su(y)*.

We estimate all three terms on the right-hand side separately. For the first one, we
find with s¢(2") = ri(2, G(2")), s2a(y') = ki(y, G(¥')), and as k; € SO(6) that

a(a’) = sa(y)]* = 12" =y + |Q(2') = @)I* > " — /| (2.4)

Next, we consider the second term on the right-hand side of (2.3). We start by
observing

(2.3)

T = |(a(2') = sa(y). tr(a"))|

- 1+|é<,(x/)|2< (Q(w) g( ))’ml(_v%@/)»‘

@ — ¥, ~Val) +a() - aw) |
T+ VG

=1t

The mean value theorem shows (;(2') — ((v) = (&' — ¢, V(2" + u(y — 2'))) for
some p € [0,1]. Using Lemma 2.8 the above expression can be further estimated by

T < sup [P =Y VGE) — VA 4+l — )
nelod 1+ VG (a)[?

< sup efr’ —y[|luy’ — DVl poo mo-1.p0-1x0-1)
nelo,1]

t

<&t =y PIIDVG oo o101 <01y
Similarly, one has
|(pa(a’) = sa(y'), su(y))| < a2’ — Z/’Q”DVQHLoo(Re—l;Rw—l)xw—l)),
and thus

205a(2") = sa(y), tn(z') — su(y'))

(2.5)
> —de |2’ — y/|2||DVQ||Lw(Ref1;R(a—1)x(e—1))-
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To estimate the third term on the right-hand side in (2.3), we use Lemma 2.8 as well
as (a —b)? > 1a? — b? for a,b > 0 and calculate

[tn(2') = su(y)]* = [(t — s)u(a’) — s(m(y) — n(@)

2
> (Jt = 5|~ Is((y/) - ()]
1 2.6
>t = s = Su(y) - ()P 28)
1
> Slt = 5l = &2’ = /I D0 s

By plugging (2.4)—(2.6) into (2.3) we obtain

1
(@', t) —uly' ) > Slt= 5|
+ 2" =y (1 — 42| DV G| oo o1 mo-xi0-1) — 5?||DV1Hioo(Re—l;Rex(e—1>)>-

As before we conclude from ¢; € CZ(R?"1;R) that for £, > 0 sufficiently small and
C,1 > 0 sufficiently large the first inequality in (i) is also fulfilled.

(ii)) We fix zx,ys € ¥ and t,s € (—¢,,¢,). Let us first assume that zyx,ys € %
for some [ € {1,...,p}. Then, there exist z’,y € R’~! such that x5, = sq(2’) and
ys = »(y'), and therefore «(zyx,t) = y(a',t) and (ys, s) = (v, s). In this case we
see

s —ysl = Vo' =y +1G() = Q)

and therefore combining

2 —o/] < oz — ye| < 2’ —¥1\/1+ VG omrmoms

with (i) yields (ii). It remains to consider the case where xy,ys € ¥ and there is
no [ € {1,...,p} such that zx,ys € ¥;. Then, (ii) and (iii) from Definition 2.1
imply |rs — ys| > 5, where ey is the number specified in Definition 2.1. We choose
e, < ex/6. Then, |zx — ys| > 6¢,, |tv(zs) — sv(ys)| < 26, and |t — s| < 2¢, yield

4 4
(s, 0) = (s, )] < I — v+ 22, < los — sl < 5(as — s+ 1= )

and

(Jzs —ys| + [t — s|) SW—FaL:@—FBQ—QQ

<oy —ys| — 26, < |u(zs,t) — (s, 5)],

N | —

which imply (ii) also in this case. |
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Eventually, we state a useful consequence of Proposition 2.9.

Corollary 2.10. Let ¥ = 99y C RY be a special C*-surface as in Definition 2.1 and
let €, be as in Proposition 2.9. Then, the following holds:

(i) For any xx, € ¥ and t € (0,¢,) one has xx + tv(zs) € Q_.

(ii) For any xsx € ¥ and t € (—¢,,0) one has zx, + tv(zs) € Q.

Proof. We only show item (i), the proof of assertion (ii) follows along the same lines.
We verify the claim by an indirect proof. Assume that there are s, € ¥ and t € (0,¢,)
such that zx + tv(zy) ¢ Q_. Since v is pointing outwards of Q2 , we have for small
p > 0 that xy+ptv(xy) € Q_. By continuity, this implies that there exists ug € (0, 1]
such that xy, + potv(zy) € 3. However, we obtain from Proposition 2.9 for all ys, € 3
with a constant C, 2 > 0 the inequality

s + potv(zs) — ys| > Cr5 pot > 0;

this is a contradiction. O

Proposition 2.9 shows that ¢ is a bi-Lipschitz mapping on ¥ x (—¢,,¢,). In particular,
¢ is injective on ¥ X (—¢,,¢,) and thus ¢ [ 3 x (—¢,,¢,) is a bijection between ()., and
¥ X (—¢,,&,). In Proposition 2.12 we show that we can also identify Lebesgue spaces
on these sets with one another. Before we do so, let us introduce the Weingarten
map (or shape operator) on X.

Definition 2.11. Let X C R? be a special C2-surface as in Definition 2.1 and denote
for xy = q(2') € X, 1 € {1,...,p}, the tangent hyperplane of ¥ in the point xx by
the symbol Ty, = span{0;»(x’) : j = 1,...,0 — 1}. The Weingarten map is the
linear operator W(xy) : Tpy — Ty defined by

W (xs)0;24(z") = —0;v(5a(x)), je{l,....0 -1}

Using the chain rule and |v(zx)| = 1 it is easy to show that W (zy) is well-defined,
i.e. it is independent of the parametrization s and —0;v(s¢(z")) € T,,,; see also [47,
Lemma 3.9].

Furthermore, we denote the matrix representation of W (zy) corresponding to the
basis {0;24(2') : 7 =1,...,0 — 1} of T,,, by L;(z’). Then, the eigenvalues of W (zy)
and L;(z") coincide and therefore the expression

det(] — tW (xy)) i= det(ly_s — tLi(2))),  teR,

is well-defined. In the next proposition we state important properties of ¢ and W,
and identify L'(Q.) with L'(X x (—¢,¢)).
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Proposition 2.12. Let ¥ C R? be a special C*-surface as in Definition 2.1 and let
L be as in Definition 2.7. Then, there exists an ey, € (0,€,) such that the following
18 true:

(1) ¢ [ X X (—Etub, Equp) @8 injective.

(ii) There exists a C > 0 such that |1 —det(I — W (zy))| < Ce < 1/2 for all
xy € X and € € (—Etub, Etub) -

(iii) For e € (0,&up) one has uo (1 [ ¥ x (—¢,¢€)) € LY (X x (—¢,¢)) if and only if
u € L' () and in this case

/ () dy = [ s vt dentr = 5w () ) .

Proof. Let ¢, be the number specified in Proposition 2.9 and let e, € (0,¢,). Then,
by Proposition 2.9 (ii) there exists C, 5 > 0 such that

(s, t) =y, )| 2 Cy (Jos —ys|+ [t —s[), (25,1), (ys,5) € B X (—Euwp, Eun)-

Hence, ¢ [ 3 X (—&gup, €tub) 18 injective, i.e. item (i) is true.

Next, we show assertion (ii). For this, we first define for I € {1,...,p} and 2’ € R%~!
the matrices

77777

Hl(xl) = (<8j%l(x/)’ _akyl(x/»)j’ke{l 77777 6—-1}
Then, we have for 2’ € R~! such that »(z') = 25 € ¥ and j,k € {1,...,0 — 1}

Hy(2")[j, k] = (02a(2"), W (25) O30 (2"))

0—-1
= > (0y5a(a"), L) n, Kld,za(a")

= > M), nl (@) . K
= (Mz(l'/)Ll(x/»[j? k).

Moreover, using the definition of s(z’) one concludes M;(z') = Io_1+V(2") VG (2)T.
The inverse of M;(x') is given by Ip_, — (1 +|V{(2')]?) "IV (2") VG (2')T. Hence,

Li(2') = (Ip-1 — (1 + [VG(@)]*) VG 2)VG(a')") Hi2'). (2.7)

Now, recall that det(I — eW (zy)) = det(lp_1; — eLy(2')) for zx = x(2') € ¥. Ex-
pressing the determinant as the product of the eigenvalues one verifies the equation
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1—det(lp_1—cLi(2")) = eP,(g), where P, is a polynomial in £ with coefficients depend-
ing continuously on the entries of L;(z'). Since ¢, € CZ(R?~1;R) by Definition 2.1,
equation (2.7) and the definition of H;(2') imply sup,cqy oy aest () a(2)] < oo
This shows that (ii) holds if €y, > 0 is chosen sufficiently small.

Finally, the claim in (iii) follows from |7, Proposition 2.6] since (i), (ii), and Propo-
sition 2.9 (i) show that ¥ satisfying Definition 2.1 also fulfils [7, Hypothesis 2.3|. O

2.4 Bochner spaces

Bochner spaces play an essential role in this dissertation. They allow us to consider
a certain class of integral operators, which are classically viewed as operators acting
in L2(X x (—1,1); CN), cf. [51, Section 3|, as operators acting in the Bochner space
L*((—1,1); L*(3; CY)). Moreover, by considering restrictions and extensions of these
operators to L?((—1,1); H"(3Z;C")) we can also incorporate Sobolev regularity in
our analysis. With this motivation in mind, we study Bochner spaces and operators
acting in Bochner spaces in the current section, which is an extended version of |14,
Section 2.2] and is based on [43, Chapter 1].

In this section we always assume that H and G are separable Hilbert spaces, (&, 27, \)
and (£, A, i) are measure spaces with o-finite measures, and £(H,G) is the set of
bounded linear operators from H to G. Let us start by defining measurability for
functions with values in Hilbert spaces.

Definition 2.13. We call f : 0 — H (weakly) measurable if for all p € H the map-
ping O >t (f(t),¢), is measurable with respect to the measure \. Furthermore,
we call F: 0 — L(H,G) measurable if 0 >t — F(t)h is measurable for all h € H.

Recall that a function f : & — H is (strongly) measurable if f is A-a.e. the pointwise
limit of simple functions, and that in the present situation both notions of measurabil-
ity coincide due to Pettis theorem; see |43, Theorem 1.1.20]. Moreover, if f : & — H
and ' : ¢ — L(H,G) are measurable, then the function & > t — F(t)f(t) € G is
measurable; see [43, Proposition 1.1.28|.

Definition 2.14. We call a function f : O — H simple if there exist n € N,
Ui,..., 0, € H and A-measurable sets <, ..., o, C O with finite measure such
that f = > X1, where X.; denotes the characteristic function of the set <,
l€{1,...,n}. In this case the Bochner integral of f is given by

/ﬁ FE) D) = 3 M.
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Moreover, we call a measurable function f : & — H Bochner integrable if there exists
a sequence of simple functions (fx)ren such that

;}Lr?o/ﬁ If = felly = 0.

In this case the sequence ([, fi(s)ds)ren converges and we define the integral of f
(which does not depend on the particular choice of the sequence (fi)ken) by

/f D) = Jim [ A(0)axe)

By [43, Proposition 1.2.2] we have the following useful characterisation of Bochner
integrability:

f is Bochner integrable <= f is measurable and /||f(t)|| dA\(t) < oco. (2.8)
o

Furthermore, it follows directly from the definition of the Bochner integral, that if
M € L(H,G) and f : € — H is integrable, then Mf : 0 — G, t — Mf(t), is
integrable and there holds M [, f(t) d\(t) = [, M f(t) dA(t).

Many of the classical results from integration theory have natural extensions to the
Bochner integration theory. Prominent examples of these extensions are Fubini’s
theorem and the dominated convergence theorem for Bochner integrals. They read
as follows:

Proposition 2.15 (Fubini’s theorem, [43, Proposition 1.2.7]). Let f: 0 x & — H
be a Bochner-integrable function. Then, the following statements hold:

(i) The function t — f(t,s) is Bochner integrable for p-a.e. s € P.
(ii) The function s +— f(t,s) is Bochner integrable for A-a.e. t € 0.

(iii) The functions t — [, f(t,s)du(s) and s — [, f(t,s)d\(t) are Bochner inte-

grable and
/Wfa,s)cw Jdp(s) / ([ set9axe) duts

_ /ﬁ /@ (¢, ) di(s)) (1),

Proposition 2.16 (Dominated convergence theorem, [43, Proposition 1.2.5]). Let
the functions f, : © — H, n € N, be Bochner integrable. If a function f: O — H as
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well as a nonnegative integrable function g : © — R such that lim,,_, f, = [ A-a.e.
and || fully < g A-a.e. exist, then f is Bochner integrable and we have

tim [ 16 = o) a0) = .

In particular,
lim fn / f(t)d\(t
n—oo

Having stated these fundamental results regarding the Bochner integral, we turn to
the definition of Bochner L2-spaces.

Definition 2.17. We define L*(0;H) as the space which contains all (equivalence
classes of ) \-measurable functions f: & — H such that

/ﬁ 1F )% dA() < oo

Furthermore, we equip this space with the scalar product

/ﬁ .9y N, fog € TX(O:H).

It is not difficult to show that L?*(&;H) is a Hilbert space; cf. [43, the comments
below Definition 1.2.15]. The space L?(&’; H) inherits many properties from H. In
this dissertation we are particularly interested in duality results, interpolation results,
and in the case that H itself is a L*-space, i.e. H = L?*(£?;G). We summarize such
results in the upcoming proposition.

Proposition 2.18. Suppose that L*(0;H) and L*(0;G) are Bochner spaces. Then,
the following holds:

(i) Functionals defined by
PO 29 [ wlf®.00miNO, [ L(0H)
induce an isometric isomorphism between L*(O;H') and the dual of L*(O;H),
- LX(0:H) ~ [2(6: ).

(ii) IfG is a Hilbert space such that (H,G) is a compatible pair, cf. Section 2.1 (xiii),
then also (L*(O;H), L*(0;G)) is a compatible pair and
120, [1,6],) = [IX(0:H), 13(0:6)], € (0,)

with equivalent norms.
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(iii) Let H = L*(2;G). In this case the identification of F € L*(0 x 2;G) with the
function f :t — F(t,-) induces an isometric isomorphism between the spaces
L*(Ox 2:G) and L*(O;H). Furthermore, if f : O — H is Bochner integrable,
then

( /ﬁ f(@) d/\(t)>(8) = /ﬁ FO)(s)dA(t)  for pac. s € P.

Proof. The assertions (i), (ii) and (iii) follow from [43, Corollary 1.3.13 and Theorem
1.3.21], [43, Theorem 2.2.6 and Corollary C.4.2| and [43, Proposition 1.2.24 and
Proposition 1.2.25], respectively. (|

After providing elementary statements about Bochner spaces, we turn to operators
in these spaces. We start by introducing the most simple and natural classes of
operators. Let Q@ € L*(0) and A € L(H,G). In this case we define

Mg L*(O:H) — L*(O; ), (Mo f)(t) := Q1) f (1),
Mua: L0 H) — L*(0:9), (Maf)(t) == A(f(#)).
Note that the norms [[Moll 25120 a0 [Mall 2o r2(0.6) are equal to

1@l =0y and [|A[[;,_4, respectively. Moreover, from now on we identify Mg and
M4 with Q and A. In the case that O is bounded the embedding

(2.9)

Il
PN

J:H = LA (O;H), (Tp)(t) :== ¢, (2.10)
and its adjoint

3 LAO:H) - H, G*f:/of(t)dt (2.11)

are well-defined and bounded. After introducing these simple operators, we turn to
so-called decomposable operators. To do so, let us assume that

M e L¥(0;L(H,G)) :={F : 0 — L(H,G) »measurable : |F|,,_,; € L*(0)}.
Then, we define the operator M : L*(0;H) — L*(0;G) through
(MF)(t) = M(#)f(t) forte O and f € L*(O;H). (2.12)

Such operators are generalizations of multiplication operators and are usually con-
sidered in the context of direct integrals, see for instance [27] or [64, Section XIII.16],
where the operators M (t), t € O, are called the fibers of M. Similarly to before, we
often identify M with M. Next, we summarize the main properties of these operators
in the following proposition.
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Proposition 2.19. Let M € L>(0;L(H,G)) and M be defined by (2.12). Then,
M is a well-defined bounded operator and its norm equals ess sup;e,||M(t)]5_g-
Moreover, M is continuously invertible if and only if M(t) is continuously invertible
for \-a.e. t € O and M~ € L>®(0;L(G,H)). In this case there holds for every
g € L*(0;G) the equality (M™1q)(t) = (M(t))"*g(t) for \-a.e. t € 0.

Proof. The proof follows from [27, Lemma 1.2 and Lemma 1.3]. O

Next, we consider operators induced by functions with values in the space of (un-
bounded) self-adjoint operators.

Proposition 2.20 (|64, Theorem XIIL.85]). Let A be a function mapping from €
into the space of (unbounded) self-adjoint operators in H, such that (A + 1)~! is
measurable. Moreover, let the operator A acting in L*(O;H) be defined by

dom A := {f € L*(O;H) : f(t) € dom A(t) for M-a.e. t € O and the function
defined by ¢ — A(t)f(t) is in L*(O; 1)},
(Af)(t) := A(t)f(t) for M-a.e.t € O and f € dom A.

Then, the operator A is self-adjoint and z € o(A) if and only if for all 6 > 0 the set
{te 0 :0(At))N(z—=0,2+9) # 0} has positive measure.

As already mentioned in the beginning of this section we are particularly interested
in the setting where L?(0;H) = L*((—1,1); H"(S;CN)), ie. 0 = (—1,1), o is
the corresponding o-algebra of Lebesgue measurable sets on (—1,1), A is the clas-
sical Lebesgue measure and H = H"(S;C"), r € [-2,2], where S is either R~ or
S C R? is a special C?-surface as in Definition 2.1. In order to shorten notation,
we set B'(S) := L?((—1,1,); H"(S;C")) and use the conventions for the norm from
Section 2.1 (xi) in this setting. We summarize important properties of these spaces
in the following proposition.

Proposition 2.21. Let S = R~ or S C R? be a special C?-surface as in Defini-
tion 2.1. Then, the following is true:

(i) If T €(0,1), ri,ro € [=2,2] and r = (1 — 7)ry + 77, then

B'(5) = [B(5), B(5)]

.
and the corresponding norms are equivalent.

(ii) Forr € [0,2] there exists an isometric isomorphism between the dual space of
B"(S) and B~"(S), i.e.
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(iii) If 0 <1 <ry <2, then B2(S) is densely contained in B (S).

Proof. Ttem (i) and (ii) follow from Proposition 2.18, the definition of H"(3;CY)
in Section 2.2 and Proposition 2.2. It remains to prove (iii). We already know
from Proposition 2.2 (ii) that H"2(S;C") is densely contained in H™(S;C") if S
is a special C%-surface. If S = R~  then this is well known and can be found for
example in [54, the text above eq. (3.22)]. Now, let f € B™(S) and § > 0. Then,
according to [43, Lemma 1.2.19], there exists a simple function f5 =Y " | x.»t with
1, .., 0, € H(S;CY) and measurable sets 4, ..., 4, with finite measure such
that || f — fsll,, < %. Moreover, we can choose 1;[ € H™(S;CN), 1 € {1,...,n}, such

that
1

§ .
7 206 | xanll oy

1 = ol g s
Thus, f5 = S0, X th € B™*(S) and
1f = Fsll,, < I = follo, + 1F5 = £l
S SR
=1

i ~
=5+ Z 10 = ull g s.omy Xl L2 1.1
=1
<0,

which finishes the proof. O

2.5 Norm resolvent convergence

In this section we study the convergence of unbounded self-adjoint operators via the
concept of norm resolvent convergence. Throughout this section we assume that
Z C R and H is a Hilbert space.

Definition 2.22. Let (A,)wez be a family of self-adjoint operators in H, wy € T
and A be a self-adjoint operator in H. Then, we say that (Ay)wez (or simply A,)
converges for w — wy in the norm resolvent sense to A if for all z € C\ R

[(Ay—2)7" = (A -2

)_1H7_HH—>O for w — wy.

We start by stating a classical result which shows that A, converges in the norm
resolvent sense to A if (A, — 29) ! converges to (A — z)~* for only one zy € p(A).
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Proposition 2.23. Let (Ay).ez be a family of self-adjoint operators in H, wy € T
and A be a self-adjoint operator in H. Moreover, assume that there exists a zy € C
such that zy € p(A) N p(Ay) if |w —wol is sufficiently small and

H(Aw—zo)_l—(.A—zO —0 for w— wp.

>_1HH—>H

Then, A, converges for w — wy in the norm resolvent sense to A.

Proof. The statement follows from |73, Satz 9.20 a)]. O

Next, we show that norm resolvent convergence is invariant with respect to bounded
self-adjoint perturbations.

Proposition 2.24. Let (A,)wez be a family of self-adjoint operators in H which

converges for w — wy € I in the norm resolvent sense to the self-adjoint operator A,
KC be a bounded self-adjoint operator in H and z € C\ R. Then,
H(AW—HC —2) = (A+ K~ z)’lHHﬁH

< (14 [tm 2] ) | (Aw — 2) 7 = (A — Vw € T.

Z)_lH’H,—>’H

In particular, A, + K converges for w — wq in the norm resolvent sense to A+ K.

Proof. Let z € C\ R. Then,

(A, +K—2) ' —(A+K—2)!
=([-A+K-2)"'"K) (A —2) "= (A—2) YT - KA, + K—2)7")

and therefore
(A, +K=2)" = (A+K - z)’luﬂﬁﬂ

< (1 I 2 K o) [l (A = 2)7F = (A= 2)7

converges to zero for w — wy. O

In the next proposition we summarize important spectral implications of the norm
resolvent convergence.

Proposition 2.25. Let (A, )wer be a family of self-adjoint operators in H which
converges for w — wy € Z in the norm resolvent sense to the self-adjoint operator A.
Then, there holds the following:

(i) limy, ,u, 0(Ay) = 0(A) is valid; this notation means on the one hand that the
limit of every convergent sequence (A, )nen with A, € 0(Ay,) for a w, € T and
wn "= w is in o(A). On the other hand this means also that every A € o(A)
is the limit of such a sequence.
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(ii) limyg, ,u, Oess(Aw) = Tess(A) in the same sense as described in (i).

iii) If a,b € p(A) with a < b, then a,b € p(A,) for |w — wp| sufficiently small and
(iii) P P y
there holds
|Pa,(a,b) = Pa(a,b)|lyyy = 0 for w — wo,

where Py, and Py denote the spectral measures of A, and A, respectively.

Proof. See [73, Satz 9.24]. a

Next, we present two consequences of the previous proposition.

Proposition 2.26. Let (A, )wez be a family of self-adjoint operators in H which
converges for w — wy € I in the norm resolvent sense to the self-adjoint operator A
and assume that A has at least M € N discrete eigenvalues counted with multiplic-
ity. Then, A, has also at least M discrete eigenvalues counted with multiplicity for
sufficiently small |w — wy|.

Proof. The proof is based on the proofs of [8, Proposition 5.5| and [10, Theorem 2.7|.
Let Ai,...,A\n,,» nu € N, be distinct discrete eigenvalues of A such that the sum of
their multiplicities equals M. Since, Ay, ..., \,,,, are discrete eigenvalues, there exist
ai,...,an, € Randby,...,b,,, € R such that the intervals (a;,b;), j € {1,...,num},
are pairwise disjoint, \; € (a;, ;) and [a;, b;]\{\;} C p(A) forall j € {1,. nM}. In
this case Proposition 2.25 implies that the spectral projections Py (a;, bj) converge
in the operator norm to Pa(a;,b;) for w — wy. Hence,

nar Ny npr
Py, <U aj,b; ) ZPAW a;,b;) =X " Palay,by) = PA(U(aj>bj))
j=1 j=1 j=1

in the operator norm. Thus, |73, Satz 2.58] shows that the dimensions of the ranges of

Py, ( U2 (ay, b;)) and Py (U”M (aj, b)) coincide for sufficiently small |w — wpl|. Fur-

thermore, there holds by construction dim(ran PA(U \(aj,b;))) = M. Hence, the
v

dimension of the range of Py, (] o (aj, b 7)) equals M if |w — wp| is small enough. As
M < 00, [66, Proposition 8.11 (iv)] implies (J72) (a;, b;) N 0ess(Ay,) = 0 for sufficiently
small |w — wp|. Hence, all M eigenvalues in U?fl(a], b;) are discrete eigenvalues for
sufficiently small |w — w|. a

Proposition 2.27. Let (Ay)wer be a family of self-adjoint operators in H which
converges for w — wy € L in the norm resolvent sense to the self-adjoint operator A
and assume that K C R is a compact set. Then, there holds the following:

(i) Ifo(A)NK =0, then o(A,) N K =0 for sufficiently small |w — wy.
(i) If Oess(A) N K =0, then oess(Ay) N K =0 for sufficiently small |w — wy.
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Proof. We prove (i) by contraposition; the proof of (ii) follows along the same lines.
Let us assume that there exist sequences (wy,)neny and (A, )nen such that w, X 0o
and \, € 0(A,, )N K for all n € N. Moreover, as K is compact it is no restriction
to assume that (\,),en converges to some A € K. Since A\, € o(A,) for all n € N,
Proposition 2.25 (i) implies A € o(A), which yields A € o(A)NK, i.e. c(A)NK # 0.0

2.6 Invertibility of bounded operators

We provide in this short section results regarding the invertibility of bounded oper-
ators. Throughout this section H denotes a Hilbert space and L(#) is the set of all
bounded operators mapping from H to H.

Proposition 2.28. Let K, T € L(H) and assume T+ € L(H) as well as

HT_lHHHHHICHHHH < 1.

Then, (T +K)™' € L(H) and

7
e T e
= = B [

(T +K

Proof. This is a well-known result which follows for example from [44, Chapter 1V,
Theorem 1.16 and Remark 1.17]. O

Next, we provide a result which is known as Jacobson’s lemma.

Proposition 2.29. Let T,K € L(H). Then, p(KT) \ {0} = p(TK) \ {0} and for
z € p(KT)\ {0} the formulas

(TK — 2)717' =T(KT — z)*l
(TK—2)"'==(T(KT —2)7'K - 1)
are valid.

Proof. The result about the resolvent sets can be found in [57, Proposition 2.1.8].
Furthermore, the formulas can be verified by applying 7/ — z and using the identity
(TK —2)T =T(KT — 2). O

Finally, we present an invertibility result tailored to later applications in this thesis.
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Proposition 2.30. Let A, Ay, K1,Ko, T € L(H), and assume AT =1 + K1 + Ko,
At € L(H) and
1K1+ (Ao — A)AGK,

Then, a bounded right inverse of A is given by

0 < 1. (2.13)

(T — A5 Co) (I + Ky + (Ao — A)VA'K)

In particular, this right inverse of A can be estimated by the expression

HT_‘ASUCQH’H%H ) (214)
L= [y + (Ao = A Ag s,

Proof. By (2.13) we can apply Proposition 2.28 to I 4+ K; + (Ag — A).Ay 'Ky Hence,
(I+ K1+ (A — A)Aglng)fl € L(H) and its norm is bounded by

1
1— [|K1 + (Ao — A) Ay K,

HH—H—['

Next, we calculate the product

1

A(T — A o) (T + Ky + (Ag — A) A, )~
= (I + Ky + Ky — AAG ) (I + K1+ (Ag — A)AFC,)

— (1 + Ky + (Ao — A)VAGIC) (I + Iy + (A — A)AGC)
=1.

1

Thus, (T— AEIICQ) (I+ K1+ (A — A)AEIICQ)_l is a right inverse of A and its norm
can be estimated by (2.14). a



3 The free Dirac operator and perturbed Dirac operators

As mentioned in the introduction, Dirac operators model spin 1/2 particles subject
to an external field which is modelled by a potential. In this chapter we provide
elementary results for Dirac operators with various potentials. We start by dealing
with the free Dirac operator, where the potential is set to zero, in Section 3.1. Then,
we turn to Dirac operators with regular potentials, i.e. potentials which can be
described by bounded operators. Lastly, in Section 3.3, we deal with Dirac operators
with J-shell potentials, which are potentials that are only supported on a (6 — 1)-
dimensional hypersurface in R?.

3.1 The free Dirac operator and associated integral operators

In this section we lay the foundation for the study of Dirac operators. We start
by defining the free Dirac operator. Afterwards, we study potential and boundary
integral operators induced by the kernel of the resolvent of the free Dirac operator.
Let us also mention that this section is based on [14, Section 2.3].

Before we introduce the free Dirac operator we define the so-called Dirac matrices.

Definition 3.1. The Pauli spin matrices are given by

(01 (0 —i (1 0
1=\1 o) 270G o) BT \0 —1)°
With their help the Dirac matrices o, . .., aq, 3 € CNN are defined for 0 = 2 by

aq =01, =0y, [:=03,

and for 6 =3 by

L 0 0 . L IQ 0
Q= (aj O) forj=1,2,3 and pB:= (O _]2),

where I is the 2 x 2-identity matriz. We often make use of the abbreviations

0 0
a~V::Zaj8j and a-x::Zajxj, x:(xl,...,xg)E(CG.
j=1

Jj=1

37
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The Dirac matrices fulfil the useful relations
aja+ gy =205 and oS+ Pa; =0 Vi, le{l,...,0}, (3.1)

where 0, denotes the Kronecker delta. Using the self-adjointness of the Dirac matrices
and (3.1) implies that for z € RY the matrix a-x is self-adjoint and (a-z)? = |z|*Iy.

Now, we are in the position to define the free Dirac operator.

Definition 3.2. Let m € R. Then, the free Dirac operator H is defined by

H = —i(a-V)+mp, dom H = H'(R?; C™).

In the next proposition we summarize important properties of the free Dirac opera-
tor.

Proposition 3.3. The free Dirac operator H is self-adjoint and the following is true:
() o(H) = gess(H) = (=00, =|m[] U [|m], c0).
(ii) Forz € p(H) = C\ (—o0, —|m|]U[|m]|,o0) the resolvent R(z) := (H —2)~" can
be expressed by
R(zJu(x) = | G.(z—yuly)dy, wel*R%CY), zeR’,  (32)
RO

where G, is given for 0 =2 and x € R*\ {0} by

Z_ 2 :
G.(z) = ﬁKl( — V22 — mQ|x|)ﬂ

o |z (3.3)
+ o Eo( — iV~ mlal) (mp + 21)

and for 0 = 3 and x € R\ {0} by

. . a-T ei\/ZQ—m2\x|
G.(r) = (214 +mf + Z(l —ivz? — m2|x|> PE ) = (3.4)

The expressions Ko and K denote the modified Bessel functions of the second
kind of order zero and one, respectively.

(iii) R(z) acts as a bounded operator from H"(R%; CN) to H™+1(R?; CN) for allr € R.

Proof. All statements besides (ii) can be proven in a straight forward manner by using
the Fourier transform; see for instance [18, Section 2| for § = 2 and |71, Theorem
1.1] for § = 3. The formulas for G, can be found in [13, eq. (3.2)], [16, eq. (1.19)] or
71, eq. (1.263)]. O
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Next, we provide helpful estimates for the integral kernel G,.

Proposition 3.4. Let z € p(H) and G, be given by (3.3)~(3.4). Then, there exist
Co1 = Cgi(m,2) >0 and Cga = Cga(m, z) > 0 such that for all x € R?\ {0} and
gk ed{l,...,0}

G.(x

)

|0;G=()

|0k 0;G - ()

Proof. We start by noticing that G, = (—i(a - V) +mp + zIy)g., where

{%%(—W—— meal), 9=2,

< Cgao|! 0 Contl,

Caa|z|PeCenll

|
|
| |7170€70G’2‘$|.

<
<

CGJ ‘LC

gz(l’) = 1 eiVz2-m2|a| =3

in |z| )

for x € R?\{0}. This follows from a direct calculation and from using for the modified
Bessel functions the rule K, = —Kj; see [55, §10.29 (i)]. Next, we introduce for [ € Ny
the set of functions

P = {p € C(R\ {0}) : p(z) = Zajx7f|x|_kj with m € N,a; € C,

j=1
kj € No and 75 = (51, -+, 750) € Ny
such that — 1 < ;1 4+ 4+ 9 — k; < 0}.
Note that for p € P, exists a C' > 0 such that
p(2)] < C(L+2[™) Vo e R\ {0} (3.5)

Now, let A € NY be a multi-index with A\; +---+ Xy = n, n € N. The chain rule, the
product rule and induction show that if # = 2, then there exist functions py; € B,
1 €{0,...,n — 1}, such that for z € R?\ {0}

n—1
Dg.(x) 1= Op, -+ O, 0:(2) = D K" (=i —m2lapai(x),  (3.6)
1=0
and if @ = 3, then there exists a function py € P, such that for z € R3\ {0}
8’\gz(x) = pa(x)e™ 24—mZz| (3.7)

By the well-known rules for the derivatives and the asymptotic expansions of the
modified Bessel functions from [55, §10.25 (ii), §10.27, §10.29 and §10.30 (i)], there
exists an R > 0 such that for all z € R?\ {0} with |z| < R one has

K(k) _in/2 _ 2 <
Ko™ (—ivat = ma])| < {C|x|_k, keN,
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and for |z| > R
‘K(()k)(—i\/z2 —m?[z])| < Ce™™ vatmmilal e N
In particular, there exists a C' > 0 such that for all z € R?\ {0}

1+ |x|—1)e—lm\/22—m2|;t\, k=0,
|+ || F)emVETR g N,

K (VT =] | < {gﬁ

Inserting this and (3.5) into (3.6) and (3.7) yields
|8’\gz(x)‘ < CO(1 + || 20 ImvEE-mial Vo € R\ {0}.
Moreover, using this result and (3.8) for & = 0 yields

G.(2)] < C(1+ 2] ~0)e ™ VZlal
10;,G.()] < C(1 + || 0)e tmV=mm?lel,
0k0;G(w)] < C(1 4 || 0)etm Y= mmlel,
for all x € R? \{0} and j,k € {1,...,0}, where C' = C(m, z) > 0 is a constant which

only depends on m and z. Thus, the estimates of the proposition are valid if one

chooses Cg 2 € (0,Im /22 — m?) and

1L+ |zt JmZT 2
Cgi1= max = e (Imvm?=22=Cas)le| ~ O
2€RO\{0},1e{1-0,—0,—1—6} ||t

Having discussed the free Dirac operator and its resolvent, we define potential and
boundary integral operators with the help of G,. We start with the potential opera-
tor.

Definition 3.5. Let z € p(H), G, be given by (3.3)~(3.4) and ¥ = 90y C R? be
a special C?-surface as in Definition 2.1. Then, we introduce the potential operator

®, : L2(X;CN) — L*(R% CY) by
Bople)i= [ Gulo— o) dolys),  w € L(SICY), w € B,
b
which is well-defined and bounded by Proposition 3.4 and [4, Lemma 2.1].

Next, we study the mapping properties of this operator in detail. Note that these
properties are well known for the case that ¥ is compact; see e.g. [12, Propoisition 4.2]
or [16, Theorem 4.3].
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Proposition 3.6. Let z € p(H) = C\ ((—o0, —|m|] U [|m|,o0)) and let @, be given
by Definition 3.5. Then, the following is true:

(i) For any r € [0, %] the operator @, gives rise to a bounded operator

®,: H'(Z;CN) — H2RI\ 8;CN) = HH2(Q . CV)y @ HHY2(Q_; CV).

(ii) For o € HY?(%;C") one has (—i(a - V) +mpB — zIy)(P.p)x = 0.
(iii) The adjoint ®* : L>(R%;CN) — L*(X;CY) of ®, acts on u € L*(R?;C") as

Pu(rs) = ) Gz(zs —y)uly) dy = tsR(Z)u(zs),  as €L, (3.9)
R
and ®* gives rise to a bounded operator ®* : L>(R?; CN) — HY?(%; CN).

Before we prove the assertion we shortly introduce auxiliary operators and make
some remarks. Although we are not using boundary triples in the proof explicitly, it
is heavily inspired by [16, Theorem 4.3|, where boundary triple techniques were used
to show the assertion in the case that ¥ is compact. To use such techniques, it is
helpful to introduce the bounded operators I'g,I'; : H'(R? \ ¥;CY) — HY?(%; CV)
which are defined by Ty := i(a - v)(t5, — t5) and I'y := 1(¢5 + t5), where v is the
unit outward normal vector field of 3 described in Definition 2.1, and ¢J and ty are
the trace operators from Remark 2.4. Moreover, let

Xu = (—i(a-V)+mBuy & (—i(a-V)+mplu_, domX := H'(R\%;C"). (3.10)

Readers familiar with boundary triples may notice that {L*(%; CN), T, 'y} consti-
tutes a quasi boundary triple for X; cf. [16, Section 4.2]. By Corollary 2.5 the just
introduced operators fulfil for all u,v € H*(RY \ X; C") the equation

(X, 0) p2goony = (U, X0) 2 oovy = (P10, Tov) paony = (Dow, T1v) ooy (3.11)

This shows that X | ker I'y is symmetric. Moreover, H C X | kerI'y. Thus, as H is
self-adjoint, H = X | ker I'y.

Proof of Proposition 3.6. First, Fubini’s theorem shows that the representation of ®%
in (3.9) is valid. Hence, the mapping properties of ¢y, and R(z) prove assertion (iii).

To verify item (i), we note that by (iii) and antiduality ®, has the bounded extension
&, = (&%) : H V(2 CN) = L2(R% CN) = HY(Q,;CY) @ HO(Q_;CN).  (3.12)

Next, we show the statement for r = % If we manage to do that, then the claim for
r € [0, 3) follows from (3.12) and interpolation.
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To prove the claim for r = % we note that with X [ kerI'y = H one can show for

z € p(H) the direct sum decomposition
dom X = dom H+ ker(X — 2) = ker g+ ker(X — z2),
which allows us to define the auxiliary operator
O, = (I | ker(X —2))~". (3.13)

Note that the properties of the trace operator in Proposition 2.3 imply the equality
ranTy = HY2(X;CY) and we also have dom X = H'(R?\ £;CV). Thus, ®, is a
linear operator from H'Y2(3;CV) to HY(R? \ ©;CV). Next, we show that @, is a
restriction of ®,. To see this, we observe for v € L2(R?;CV), ¢ € H'/2(X;C"), and
u=R(Z)v=(H —7%)'v € dom H = ker [y with the help of (3.11) that

((I)zgo, U)LQ(RG;(CN) = (‘I’z% (H - z)u) L2(RE;CN)

= (.0, HU)L?(R@;CN) - (Z‘bz%u)m(w;(cfv)

= (P., XU)B(R@;CN) - (X(I)Z(P7U)L2(R9;(CN)

= —(T1®.0, Tou)2zevy + (TP, Tiw) 2siem)

= (¢, FlR(E)U)Lz(z;cN) = (¢, ((I)z)*v)m(z;cclv)

= (D.p, U)L2(]R9;(CN)‘
Since this is true for all v € L?(R% C"), we conclude fﬁzgp = ®_p; hence EI\DZ is
the restriction of ®, to HY/2(X;CN). In particular, ®,p € ker(X — z) by (3.13),
which yields item (ii). Eventually, we show that this restriction of ®, is bounded
from H'/2(%;CN) to HY(R? \ ©;CN). To see this, we prove that ®, is closed with
respect to these spaces. But this follows from the L?-boundedness of @, and the fact

that H'/2(3;CN) and H'(R?\ X; C") are continuously embedded in L?*(X;C") and
L*(RY; CN), respectively. Thus, the closed graph theorem shows that

O, =0, | HA(2;CN): HY2(x:CN) —» HY(RO\S; CV) = H'(Q; CYY@H' (Q_; CN)
is bounded, which finishes the proof. O

Finally, we define a boundary integral operator associated with the free Dirac oper-
ator.

Definition 3.7. Let 2z € p(H) and ¥ = 9Q+ C R? be a special C?*-surface as in
Definition 2.1. Then, we define operator C, : L*(X; CN) — L*(3;CVN) as the unique
bounded extension of

HY2(%,CN) 5 f s %(t; ), f.
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We prove in Proposition 3.8 that C, is well-defined. We remark that this operator
could also be introduced as a strongly integral operator on 3 with the kernel G,; cf.
for instance [4, Lemma 3.3| or |16, eq. (4.5)]. However, in our case this abstract
definition is more convenient. In particular, we do not have to deal with the existence
of principal value integrals and corresponding difficulties.

Next, we summarize important properties of C,. Similar as in the case of ®,, these
properties are well known in various settings; see [4, Lemma 3.3| and [16, eq. (4.10)
and Theorem 4.3] if ¥ is compact, and [19, Lemma 2.1 and Corollary 2.1] if ¥ is a
plane with a compact perturbation.

Proposition 3.8. Let z € p(H) = C\ ((—o0, —|m|] U [|m|,o0)) and let C, be given
by Definition 3.7. Then, C, is well-defined and the following is true:

(i) For anyr € [—1, 1] the map C. has a bounded extension or restriction (depend-
ing onr)C,: H(3;CN) — H"(%;CV).

(i) For any r € (0,3] and p € H™(S;CY) one has

CZQD = :IZ%(O( : V)SO + t§®z90

Proof. (i) First, it follows from Proposition 3.6 (i) and Definition 3.7 that C, is
a bounded operator in H?(%;CV). Next, we show that the antidual C. of Cs,
which is a bounded map in H~'/?(%;C"), is an extension of C.. To see this, let
@, € HY?(3;CY). We use (3.11), Proposition 3.6 (ii), (3.13), and the definition of
C. to obtain

0= (X, P:9) 2moscny — (Potp, XPoth) Lo (moony
= (Cz%@/J)L?(z;CN) - (@7CE¢)L2(2;CN)
= (o V) pmrr2semy ey — (0 G g2 men) e
= (

(C: = CIP, ) 1/2(miemy w12 (s

where (-, ) H-1/2(5.0V) < /2 (seny denotes the sesquilinear duality product, which is
antilinear in the second argument, on H~1/2(2; CN) x HY/2(3;CV). Hence, C. is an
extension of C, which is bounded in H~'/?(3;CY). By interpolation, we conclude
that C, gives rise to a bounded map in H"(3;CV) for any r € [—%, %], which also
implies that C, can be extended to a bounded operator in L*(3; CY). This extension
is unique since H'/2(%; CV) is dense in L?(X; CV), see Proposition 2.2 (ii), and hence
C.: L*(3;CN) — L*(3; CY) is well-defined.
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(ii) First, for p € HY2(3;CY) Definition 3.7 and the relation (3.13) imply

t; (q)2¢)+ + —ti ((I)ZSO)—

(8:(@0), — () ) + Eo(@u)s
(3.14)

which is the claimed identity for ¢ € H'/2(Z;CN). If r € (0,1) and ¢ € H"(Z; CV),
then (ii) follows from (3.14) by continuity and density; see Proposition 2.2 (ii). O

3.2 Dirac operators with regular potentials

In this brief section we introduce Dirac operators with regular potentials and prove
a corresponding resolvent formula.

Definition 3.9. Let H be the free Dirac operator given by Definition 3.2 and the
operator P : L*(R%; CN) — L*(R%; CY) be bounded and self-adjoint. Then, we define
the self-adjoint operator Hp by

Hp:=H+P,  domHp=domH = H'R’C")c LR’ C").

Next, we provide a Birman-Schwinger principle and a resolvent formula for Hp.
Such principles and formulas are well known in various situations in literature; see
[32, 39, 45, 46]. However, for completeness we provide a short proof. We do this by
proving a Birman-Schwinger principle and a resolvent formula in a general framework
in Lemma 3.10. Afterwards, we apply this lemma to the operator Hp in Proposi-
tion 3.11.

Lemma 3.10. Let G and H be Hilbert spaces, T be an unbounded self-adjoint oper-
ator in H, P = PLPr, where Py : G — H and Pr : H — G are bounded operators
such that P = Py Ppg is self-adjoint, z € p(T) and R(z) :== (T —2)~'. Then, T +P

15 self-adjoint and the following is true:
(i) z€0,(T+P) < —1€0,(PrR(2)PL).
(i) If =1 € p(PrR(2)PL), then z € p(T +P) and

(T+P—2)"=R(2) — R:2)PL(I +PrR(2)Pr) 'PrR(2).
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Proof. The operator T + P is self-adjoint since P is bounded and self-adjoint. Next,
we prove (i). Let z € 0,(T + P). Then, there exists a nonzero v € dom7 such
that (T — z)u+ Pu = 0. Applying R(z) and using P = P Pr gives us the equation
u + R(2)PrPru = 0. This implies in particular f := Pru # 0. Applying Pg yields
[+ PrR(z2)Prf = 0, ie. —1 € 0,(PrR(2)PL). Now, let —1 € 0,(PrR(2)PL).
Then, there exists a nonzero f € G such that f + PrR(2)PLf = 0. We define
u:=R(2)PLf # 0. Then,

(T —2)u+Pu=Prf +PrPrR(2)Prf =0,
implying z € 0,(7 + P). To prove (ii) we assume —1 € p(PrR(z)Pr). Then,

(T +P —2)(R(2) — R(2)Pr(I + PrR(2)Pr) 'PrR(z))
= ((T = 2) + PLPr) (R(2) — R(2)Pr(I + PrR(2)Pr)~ ' PrR(2))
=1 —Pr(I + PrR(2)PL) "PrR(2) + PLPrR(z)
— PLPrR(2)Pr(I + 'PRR(Z)'PL)ipr'R(Z>
=1 —Pr(I +PrR(2)PL) 'PrR(2)
+ Pl + PrR(2)PL)(I + PrR(2)PL) 'PrR(2)
— PLPrR(2)Pr(I + 'PR’R(Z)’PL)iprR(Z>
=1.

Hence, R(z) — R(2)PL(I + PrR(2)PL) 'PrR(z) is a right inverse of 7 + P — z.

One shows in the same way that R(z) — R(2)Pr(I + PrR(2)Pr) "PrR(z) is a left
inverse of 7 + P — z. Thus, the resolvent formula for 7 + P is valid. O

As a consequence of Lemma 3.10, we get the following result for the operator Hp
from Definition 3.9.

Proposition 3.11. Let G be a Hilbert space, P = P Pg, where P, : G — L*(R%,C")
and Pg : L*(R?; CN) — G are bounded operators such that P = Py, Pg is self-adjoint,

z € p(H) and R(z) = (H — z)™" be the resolvent of the free Dirac operator. Then,
Hp = H + P 1s self-adjoint and the following statements hold:

(i) z € 0,(Hp) <= —1€ 0,(PrR(2)PL).
(i) If =1 € p(PrR(z)PyL), then z € p(Hp) and

(Hp —2)™" = R(2) — R(2)Pr(I + PrR(2)P)” PrR(2).
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3.3 Dirac operators with d-shell potentials

Next, we define Dirac operators with d-shell potentials supported on a special %
surface . Such operators are formally given by —i(a - V) + mf + Viy, where
V =V*e WL(Z;CV) is the interaction matrix.

Definition 3.12. Let m € R, ¥ = 00 C RY be a special C?-surface as in Defini-
tion 2.1 and V =V* € WL(X;C"). Then, we define the operator Hys  through

dom Hy,_ = {u e HY(RO\ :CV) 2 i v) (s — t5)u + %(t; +tg)u = o}
Hys u:= (=i(a-V)+mpBluy @ (—i(a- V) +mpu_.

Using the notations introduced below Proposition 3.6 we can write the operator Hy;_
as X [ ker(Ty + V), where Ty = i(a - v)(t5 — t5) and T, = L(¢5 — t5).

The self-adjointness and spectral properties of Hy; 5 have been investigated in numer-
ous papers in various situations; see for instance [4, 5, 8, 9, 13, 16, 18, 19, 24, 28, 56,
59, 60| Interaction matrices having the form V= nln + 75, where i and T are con-
stants in R or sufficiently smooth real-valued functions on 2, are the most prevalent
in literature. They are used to model electrostatic and Lorentz scalar interactions.
In this case an explicit condition for self-adjointness is known; cf. Proposition 3.15.
However, in our general setting self-adjointness is not guaranteed. We start our anal-
ysis by showing that Hy, is a densely defined symmetric operator in Lemma 3.13.
Afterwards, we show in Proposition 3.14 the strong connection between Hy; and

I+ Cz\N/, where C, is the operator introduced in Definition 3.7.

Lemma 3.13. Let V = V* € WL(S;CN). Then, the operator Hgg  is symmetric
and densely defined.

Proof. By [54, Corollary 3.5] the set C5°(Q,; CV)@C(Q_; CY) C dom Hy s is dense
in L2(R% CY). Consequently, the operator Hys is densely defined. Furthermore,
since Hys = X [ ker(I'g + VT4), we obtain with (3.11)

(HV‘SZU” U)L2(]R9;(CN) - (U7HX75EU)L2(R0;CN) = (Flu, FOU)LZ(E;(CN) — (F()’LL, FI’U)LQ(E;CN)
= —(Flu, VPlv)LQ(E;CN) + (Vflu, Flv)LZ(E;(CN)
=0 Vu,v € dom Hy, .

Thus, Hys  is symmetric. O
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Proposition 3.14. Let V = V* € WL(3;CN), z € p(H), R(z) = (H — 2)* be
the resolvent of the free Dirac operator, ®, be defined as in Definition 3.5 and C, be
defined as in Definition 3.7. Then, Hy; is closed and z € ,o(H%Z), if and only if
[+C.V is continuously invertible in HY/?(3; CN). Moreover, in this case the resolvent
formula

(Hps, —2)7" = R(z) = ®.V(I +C.V) 7' @2 (3.15)
applies.

Proof. We start by showing that if Hys is closed and 2 € p(Hyg ), then I + c.V
is continuously invertible in H'/2(3;CY). By Proposition 2.2 (iii) and Proposi-
tion 3.8 (i) V and C, act as bounded operators in H'/2(2; CV), respectively. Hence,
it suffices to show that I+ VC, is continuously invertible in H/2(%; C); then Propo-
sition 2.29 shows that I + C.V is continuously invertible in H/2(3: CY). Moreover,
since I + VC. is a bounded operator in HY/2(2;CY), we only have to prove that
I + VC. is bijective. Let ¢ € HY2(3;CN) such that (I + VC.)¢ = 0. We set
u = ®,1p. Then, Proposition 3.6 (i) implies u € HY(R?\ X;C"). Furthermore,
Proposition 3.6 (ii) yields (—i(a - V) +mf — zIy)ug = 0 and Proposition 3.8 (ii)
gives us

Fou=1 and T'yu=C. (3.16)
Thus, (3.16) leads to N N

and hence u € ker(Hy; — 2). We have ker(Hy, —2) = {0} since z € p(Hy,_). This
implies © = 0 and therefore (3.16) shows ¢» = 0. Now, we turn to the surjectivity.
Let ¢ € HY/2(X;CN). Then, according to Proposition 2.3 (i) there exist functions
we € H'Y(Q4;CV) such that tfwy = #(p € HY?(%;CN). Next, we define
w=w, w_ € HY(RY\ 3;CY) and see

Fow=¢ aswellas T'yw=0. (3.17)
Moreover, let
v:= (Hys, — 2)HX — 2w,

where X is the operator introduced in (3.10). By definition, v € dom Hys C dom X
and (X — 2)(w —v)x = 0, and thus due to (3.13) and the text below there exists
a1 € HY2(3;CV) such that ®,1) = w — v. Hence, we use the relations (3.16) (for
u=&.9), (3.17) and v € dom Hy;_ to obtain

(I4VC.)p =To®,0 + VI1®,0
= To(w — v) + VI (w — )
= Tow + VIw = ©.
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This proves the surjectivity.

Next, let us prove the reverse direction. We assume that [ + CZ‘7 is continuously
invertible in H'/2(3;CY). Then, by Proposition 2.29 I + VC, is also continuously
invertible in H/2(3; CN). We start by showing that ker(Hgy;_ —2) = {0} in this case.
To do so, we assume that u € dom Hy; and (Hys — 2)u = 0. Then, according to
(3.13) and the text below there exists a ¢ € H*/2(3; CV) such that u = ®,¢. Since u
satisfies the boundary conditions, the equation F0u+\7F1u = 0 is valid which implies
by Proposition 3.8 (ii)

To®.1) + VI ®.1p = (I + VC. ) = 0.

Hence, 1) = 0 and in turn also u = 0, which shows ker(Hy,_ — 2) = {0}. Finally, we
show that the expression R(z) — ®,V (I + (3217)*1@; is a right inverse of Hy; — z.
This implies ran (Hy; — 2) = L*(R°7; CY) and (3.15). Moreover, as the right-hand
side of (3.15) is bounded in L?(R% C¥) by Proposition 3.3 (iii) and Proposition 3.6,
this also implies that Hy, is closed and z € p(Hy,, ).

We start by choosing v € L?(R?; C) and setting

u:=R(z)v— 0. V(I +C.V) 'dkw.

Using dom H = H' (R?; CV), Proposition 3.6 (iii) and Proposition 3.8 (ii) (applied
to o = V(I +C, V) 1®%v) yields
VFlu + F()U

= VO — VCV(I +CV) 0w —i(a - v)(—i(a - v))V(I + C.V) 10k

= Voo — V(I +C.V)I+C.V) '

=0.
Hence, u € dom Hy5 . We get with (—i(a - V) +mf — zIy)R(2)v = v and Proposi-
tion 3.6 (ii) that

((Hf/zsg - z)u)i

(—i(a-V)+mp — zIn)uy
(—i(a- V) +mp — zIy)(R(2)v)+
— (=i(a- V) +mB — zIy) (2. V(I + C.V) '),

= V4,

which concludes the proof. O

The previous proposition can be used to show the self-adjointness of Hy,, . For

instance if I + C,V and I 4 C:V are continuously invertible in H*/2(3; CV), then it
follows directly by Lemma 3.13 and Proposition 3.14 that Hy; is self-adjoint.
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For the rest of this section we focus on interaction matrices of the form V = nIn+75
with 77,7 € C}(XZ;R). Properties of such Dirac operators which are important with
respect to this thesis are given in the following proposition.

Proposition 3.15. Let V = ijly + 78 with 7,7 € CL(3;R) and d = 72 — 72, If

inf |d(zs) — 4] > 0,
Ty €Y

then Hys_ is self-adjoint. Moreover, in this case the following is true:

(i) If infypes|d(zs)| > 0, then UHps U = H /a5, where U is the self-adjoint
unitary operator

U:L*R%CY) - L*(R%CY), Uu:=u, @ (—u_).

(i) If d= —4, then Hys  induces confinement, i.e. Hys = H‘i/“ D H‘;, where H‘ifc
are operators acting in L*(Qx; CN) given by

Héui = —i(a- V)ugr + mPu,

domH‘% = {uy € H'(Qy;CY) : (2Iy Fi(a - NW)tEuy = 0} C L*(Qy; CY).

(iii) The operator I + C.V is continuously invertible in H"(3;CN) for all r € [0, 3]
and z € C\ R.

Proof. The self-adjointness of Hy,_ follows from [60, Section 6]. Item (i) and (ii) are
well known and have been shown in numerous settings, see for instance |24, Section 4],
[37, Theorem 2.3 (d)| or [49] for (i), and [5, Theorem 5.5], [16, Section 5.2] or [60,
Example 12| for (ii). Although the proofs do not change in our case, we provide them
for completeness. Let us start with (i). After checking the definitions of U and Hy 5x

one sees that we only have to prove for u € H*(R? \ 3; CV)
Uu € ker (I +X71“1) — u € ker (Iy+ % 1),

where I'y and I’y are the operators introduced above (3.10). Using (3.1), the identity
V(a-v)V = (- v)d and the definition of U yields

ToUu+ VI Uu =0

o ) (s, — B (—u)) + V3 (s + t5(—u)) = 0
—(thuy +tsu) +ia - V)V%(t;qu —tsu_) =0
—4\7%(t§u+ +tgu_)+ di(o - V) (thu, —tgu_) =0
—4VTy +dlou = 0

—4V
Fou + = I'u =0,

[
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which proves (i).

Next, let us consider (ii). In this setting d = —4. Moreover, it suffices to show
that the domains of Hy,; and H‘i/r @ H‘; coincide. Let us start by assuming that

u € dom Hys . It is easy to see that the transmission condition I'ou + VTiu =0 can
be rewritten in the form

(2Ix —i(a - V)V)tfu, = 2Iy +i(a - v)V)tgu_. (3.18)
Multiplying this equation with (21y Fi(a-»)V) and using ((a-v)V)? = dly = —4ly
yields B
421y Fi(a-v)V)tEus = 0.
Hence, uy € domH‘i/E and also u =uy Bu_ € domH‘ifr &) H‘;. Ifue domH‘i; &) H‘;,
then (3.18) is fulfilled since both sides of the equation are zero. Thus, the equation

Fou + YN/Flu = 0 is also valid, and therefore u € dom Hy,, .

It remains to prove (iii). For r = % the assertion follows from Proposition 3.14 since
Hgs s self-adjoint. Next, let us consider the case r € [0,1/2). From the proof
of Proposition 3.8 we know that (Cz [ HY2(3;C"))’, where ’ is used to denote the
antidual operator, is a continuous extension of C, to H~/2(3;CV). Moreover, using
the symmetry of V and the fact that V induces a bounded multiplication operator in

HY2(3; CN) shows that V can also be extended to a bounded multiplication operator
in H=Y/2(%;CY). Therefore,

(I +VC:) T H(S,CY)) =T+ (Co [ HV2(S:CV)(V T H2(S5€Y)) (3.19)

is a continuous extension of I +C,V to H™Y/2(3; CN). Since Hy, is self-adjoint, we
can apply Proposition 3.14 again and obtain that I + 0217 is continuously invertible
in H'/2(3;CN). Thus, according to Proposition 2.29 the operator I + V(s is also
continuously invertible in H'/2(3;CV). Therefore, the operator in (3.19) has the
bounded inverse ((I + Vet ) HYA(S; CM))". Hence, one can use interpolation to
show the assertion for r € [0, 1); cf. Section 2.1 (xiii) and Proposition 2.2 (i). a



4 Norm resolvent convergence of Dirac operators with
general strongly localized potentials

In this chapter, which is based on [14, Section 3|, we find in Theorem 4.15 conditions
for the norm resolvent convergence of Dirac operators with strongly localized poten-
tials. Moreover, we show in Corollary 4.16 that these conditions are fulfilled if the
potential satisfies a certain smallness condition.

Throughout this chapter we assume that ¥ = 9Q. C RY 6 € {2,3}, is a special
C?-surface as in Definition 2.1 and &y, € (0,00) is chosen as in Proposition 2.12.
Moreover, we assume that

g€ L®((~1,1);R)  with /1 g(t)dt = 1 (4.1)

1

and
V=V*eWl(s;CY), (4.2)

which we call the interaction matriz. For e € (0, eu,) we define

Vi(z) = {%V(:Ug)q(ﬁ), x = i(zx,t) € L, (4.3)

0, x &,

where ¢(zx,t) = xx + trv(zy) for (zg,t) € ¥ x R; cf. Definition 2.7. By Proposi-
tion 2.12 the strongly localized potential V. is well-defined. Furthermore, the prop-
erties of ¢ and V imply V. = V* € L=®(R% C¥*V). In this chapter we study the
norm resolvent convergence properties of the self-adjoint operators Hy, = H + V,,
e € (0, egup), which are explicitly given by

Hy. = —i(a-V)+mp+V,, dom Hy, = H'(R?;CY). (4.4)
We do this by finding a suitable resolvent formula in terms of Bochner-integral op-
erators, denoted by A.(z), B-(z) and C.(z), in Section 4.1. Afterwards we introduce
a shift operator which allows us to prove convergence properties of A.(z), B:(z) and
C:(z) in Section 4.3. In Section 4.4 we study the limits of these operators and con-
nect them to the resolvent of a Dirac operator with a d-shell potential supported on
¥ and a rescaled interaction matrix V = V* € WL (3;C¥*N). Lastly, we find in
Section 4.5 a condition for the norm resolvent convergence of Hy, as € — 0.

o1
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4.1 A resolvent formula for Dirac operators with strongly
localized potentials

In this section we find a suitable resolvent formula for Hy,. In order to be able to
apply Proposition 3.11, we need an appropriate factorisation for the potential V.. We
recall that €). was defined in Definition 2.7 and introduce the mappings

T.: L*((—e,e); L*(%;CN)) = LA(Q:CY),  Tf(u(ws,t)) := f(t)(xx),

—1. 72 N 2 2 N -1 (4.5)
7 L5925 CY) = L*((—e,e); L7(3;CY)), Z7 u(t)(zs) = u(t(zs, t)),

and

S.: BY(X) = L*((—¢,e); LA(%;CY)),  S.g(t) := %9(9’ (4.6)

STt LA((—e,8); LA, CY)) — BY(X), ST'g(t) := Veg(et),
(

where B°(X) = L*((—1,1); L>(X;CY)); cf. Section 2.1 (xi). According to Propo-
sition 2.12 and Proposition 2.18 (iii) for any £ € (0, eq,,) these mappings are well-
defined, bounded, invertible, and their inverses have the claimed form; cf. |7, equa-
tions (3.6) and (3.7)]. Moreover, we set u. := 2=, where xq. is the characteristic
function for 2., and define the operators

U.: A(R%CN) — L2(Q,;CY) and US: L*(Q.;CY) — LA(R% CY) (4.7)
acting on u € L?(R? CV) and v € L?(Q; CV) as

usv  in €,

Ui = (uew) | Qo and Urv =
u = (ucu) | an v {O n BY\ 0.

Using these newly introduced operators shows that when viewed as a multiplication
operator V. can be factorised in the following way:

V. = UL.S.VqS T 'U..
This factorisation, defining for z € p(H) and € € (0, &yp) the bounded operators
A(2) == R(2)UIT.S. : B (Z) — L*(R?; C™),
B.(2) := ST I7'U.R(2)UIL.S. : B(X) — B(%), (4.8)
C.(2) == S'T7'U.R(2) : L*(R?;CY) — B(%),
where we used R(z) = (H — 2)~!, and applying Proposition 3.11 for P, = U*Z.S8.Vq
Pr=87'7-'U. and P = P, Pr = V. gives us:

Proposition 4.1. Let q, V and V., € € (0, &), be as in (4.1)~(4.3), z € p(H) and
R(z) = (H — 2)™', where H is the free Dirac operator introduced in Definition 3.2.
Then, Hy. is self-adjoint and the following holds:



4.1 A resolvent formula for Dirac operators with strongly localized potentials 53

(i) z€0,(Hy,) <= —1€0,(B.(2)Vq).
(i) If =1 € p(B:(2)Vq), then z € p(Hy.) and the resolvent formula
(Hy, — 2) ' = R(2) — A(2)Vq(I + B.(2)Vq)'C.(2)

holds.

Having established a resolvent formula for Hy, in terms of the operators A.(z), B.(z)
and C.(z), we find in Proposition 4.2 integral representations of these operators,
which are more convenient than (4.8).

Proposition 4.2. Let z € p(H), G, be the integral kernel of R(z) = (H — 2z)7!
given by (3.3)—(3.4) and W be the Weingarten map defined in Definition 2.11. For
e € (0,e0up) the operators A.(z), B:(2), and C.(z) defined by (4.8) have the integral
representations

1010 = [ [ e s - sty )om)
~det(I —esW(ys)) do(ys) ds,
B0)e) = [ [ Gues +evlrs) - s vl F6) )
~det(I —esW(ys)) do(ys) ds,
Clult)(as) = [ Gulas + etilas) = pyuly) dy

RO

for f € BY(Y), u € L2(R? CY), a.e. z €R?, a.e. t € (—1,1) and o-a.e. x5 € X.

Proof. First, we prove the claim for C.(z). Using (3.2), (4.5) and (4.6) gives us for
ve LR CN), ae. t € (—1,1), and o-a.e. 75 €2

Ce(2)o(t)(ws) = (S 'L U-R(2)v) (1) (zx)
= Ve(U.R(2)v)(xs + ctv(zy))

— /Re G.(xs + etv(zs) — y)v(y) dy.

Next, to show the claim for A.(z) we choose f € B°(X). Applying (3.2), Proposi-
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tion 2.12 (iii), (4.5) and (4.6) yields

(2)f(x) = (R(z)UZLS.f) (x)

/RQGZ ) (UZ.S.1) (y) dy
:/QGZ () (Z.8.1) (y) dy

/ [ 6o s+ sv(05)) 7= (Z.5.0) (s + sv(us)
~det(I — sWi(ys)) do(ys) ds

_ / / ol — ys — SV(yz))%(Saf)(S)(yz) det(T — sW (ys)) do(ys) ds
= [ [ Gt s = sl L () 0m) etl1 = W) o) s
_ / / Gt — o — esv(ye)) £(5)(ys) det(I — 5TV (ys)) do(ys) ds

1J%

for a.e. x € R?, which is the claimed identity. The representation for B.(z) follows
by combining the last two calculations. (|

4.2 The shift operator

We introduce and study a shift operator which turns out to be useful in the conver-
gence analysis of the maps A.(z), B:(z) and C.(z) in (4.8). For this, we first provide
a lemma which later allows us to construct a suitable extension of the normal vector
field v on 3. We mention that this section can be found in a similar form in [14,
Section 3.2].

Lemma 4.3. Let ¥ = 09, C R? be a special C?-surface as in Definition 2.1, ey >
0 be as in Proposition 2.12 and o € CL(X;R™*) for n,k € N. Then o has an
extension 6 € CF(RY; R™*) such that suppo C Q.,,, and o(xs + tv(zy)) = o(xs) for

(z5,t) € 5 x (—ub b)),

Proof. Before we start, recall the maps ¢, ¢;, 7, v and v, introduced in Definition 2.7.
Next, let us choose a function w € C'(R) such that the support of @ is contained in

(—€tub, Etun), 0 <w < 1 and @ = 1 on (—=4>, =ub). Then, we define 0 through

0 40 (4.10)

Etub *

o) = {o(wg)w(t), z=u(rs,t) € O, with (z5,1) € D X (—Eeub, Srub),
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By Proposition 2.12 0 is well-defined. Moreover, it is obvious that o has all the claimed
properties besides the C'-smoothness and the boundedness of the derivatives. Hence,
it remains to show 0 € C}(R? R™*). Since 0 is supported in Q. , it suffices con-
sider 0 only on €., ,. To do so, we fix an z = xyx + tv(zy) = t(zx,t) € Q. with
(x5,t) € X X (—Etub, Etup). According to Definition 2.1 there exists an [ € {1,...p}
such that xs. € W,. Hence, we can find an 2’ € R?"! such that oy, = s4(2') and
therefore x = ¢;(«’,t) . Moreover, since W is open, we can choose a dy > 0 such that
B(xyg,d0) C W;. Thus, the Lipschitz continuity of 4, cf. Proposition 2.9, guarantees
the existence of a d; > 0 such that

s(B(2',61)) C B(zs,00) NS, C W, N CX,
(B(z',01) X (—€tubs Eub)) C (e, and
(0ou)y,s) =o(s4(y))=(s), V(y',s) € B(z',81) X (—€tub, Etup)- (4.11)
Equation (4.11), 0 € C}(Z;R™*) and w € C!(R;R) show that the function
ooy | B(x',61) X (—&ub, Evup)

is C'l-smooth. The Jacobian of ¢; at the point (y/,s) € B(2',81) X (—&tup, Etup) 18

given by
(Du)(y',s) = ((To — sW(a(y)Ti(y') w(y))
with Ty(y') = ((Owsa)(y) ... (Ge—15a)(y/)),

where W (5¢(y')), which is the Weingarten map introduced in Definition 2.11, is ap-
plied column-wise to 7;(y’). Using the coordlnate representation L;(y') of W (s4(y'))
with respect to the basis {0;5(2") : j = 1,. — 1} we obtain

(Du)(y',s) = (Ti(y )(Ie—l - SLz(y’)) v(y))

implying ¢, (B(x
/

(4.12)

and

(Du) ) (Du)f o) = (ot ) OO

_ ((19—1 = s(Lu(y)"NT(y) Ty To—1 = sLi(y')) 0) _

0
In particular, det((Du) (v, s))? = det(lp_1 — sLi(y/'))? det((T;(v'))TTy(y')). Moreover,
note that (T;(y')ITi(y") = My(y') = Ig_1 + VQ(m’)VQ y)T with M; as in the proof
of Proposition 2.12, and hence det((7}(y"))"Ti(y')) = 1 4+ [VG(y')|?. If we combine
this with Proposition 2.12 (ii), then we obtain

|det(Du) (Y, s)| = 1+ [VG(y)|? det(Ig—1 — sLi(y'))
=1+ |VGW)|]?det(I — sW(sq(y)))

>

DO | —
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In particular, (Dy)(y/, s) is invertible and thus the inverse function theorem shows
that 1 is locally around (2',t) a diffeomorphism and therefore 6 = (0 0 ;) o ¢;*!
is C'-smooth around the point z = y(2’,t). This shows that 0 is C'-smooth in
Q... Furthermore, since |det(Dy)(y', s)| > 3 and as (Dy)(y's) can be bounded by
a constant which only depends on ¢; and &y, ((Dy)(y', )™t can also be bounded
by a constant which depends only on (; and ey,,. Hence, by the chain rule and
o € CL(3;C™*) the first order derivatives of 0 are also bounded, which implies

0 € CHRY; C™F). O

Lemma 4.3 shows that the unit normal vector field v of ¥ has an extension in
CHRY R?). We fix such an extension and denote it also by v. Next, we define

for 0 € R the shift operator
: L*(R% CY) — LX(R%; CY
s ARG CY) = (RS CY) 0 )
msu(z) :=u(x +ov(zr)), =R

In the upcoming proposition we study basic properties of 7.

Proposition 4.4. Let Dv be the Jacobian matriz (of the extension) of v, r € [0,1]
and dy € (0, HDZ/HZ;(RQ;R@XQ)). Then, the operators 5, 6 € [—dg,0o], are uniformly
bounded in H"(R%; CN) and for r' € [0, 7] the inequality

H’Té - [|’HT(R9;(CN)4)H7*/(R9;(CN) S C’é‘r_rl (414)
holds for all § € [—dg, 0], where C' > 0 is independent of §.

Proof. Fix § € [—do, 8] and observe first that I + Dv(z) is invertible for all z € R?
and the norm of the inverse is bounded by (1 — |0o|[|DV|| o (mogoxsy) ~'- The same

bound holds for the modulus of the eigenvalues of (I + dDv(z))~! and hence we
conclude

1
det((Iy +d6Dv(x))™ )| < .z eR’ (4.15)
‘ ( 0 )l (1 - |50‘”DVHL°°(R9;R9X0))6

We start by showing the uniform boundedness of 75 for r = 0. Let u € L?(R% CV).
Then, a change of variables and (4.15) lead to

/RG|T5u(:C)\2dx: @““”Wﬂ)l?dw

R R )
_/Re' (@ +ovl) I Ger T, F oD ()] ¢

- /Re|u(93 + dv(x))|?|det 1y + (5D1/(x))|‘det((lg + 5D1/(a:))_1)| dx
1
<

(4.16)

2
u(x)|” dx,
ST o p—"" L
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and it follows that the operators 75, § € [—dg, dg], are uniformly bounded in L?(R?; CV).
To see the uniform boundedness of the operators 75 in H*(R?; CV), let u € Cg°(R?; CV)
and compute in a similar way as above

/RG|D(T5U)($)|2 dr = R9|(Du)(x + 6v(z)) (I + 6 Dv(x))|? dx
(4.17)

1400l Dv|l s o moonss )
o L DlP ) / | Du(z)[? d.
(1 - ’50”|DVHLOO(R6;R0><9)) RY

By density this estimate remains valid for u € H*(RY; C"). Therefore, the uniform
boundedness of the operators 75 in H*(RY; CV) follows from (4.16) and (4.17). Even-
tually, using interpolation one concludes that 75 is uniformly bounded in H"(R%; CY)
for any r € [0, 1].

It remains to prove (4.14). Since we have already shown that 7 is uniformly bounded
in H"(R% CV), the claim in (4.14) holds for r = 1’ € [0,1]. Next, we show (4.14) for
r" =0 and r = 1. With the main theorem of calculus and the chain rule we find for
u € C°(RY; CN)

ITsu(z) — u(z)|? dr = / /0 %u(a: + tv(x))dt *

R

_ /RG
< /R </05](TtDu)(x)]2dt> (/:yu(m)\zdt) da

)
2 2
LI —— / 7Dl oo,

R?

/05 Du(x + tl/(x))u(x)dt‘z dx

5
<18l [ 1Dl poccmo dt
0
2
S C|5|2||u||H1(R9;CN)7
where 7, Du is understood column-wise. By density this estimate is also valid for
u € H%(R‘?;CN) and hence |[|75 — ]||H1(R9;<CN)—>L2(R9;(CN) < Cl6|. It remains to prove
the claim in the case 0 < 7' < r <1 with (+',7) # (0,1). Weset p=r—1r" € (0,1)
and v = ;== € [0,1]. Then,
r=01—-pv+p0 and r=(1-pv+pul
and consequently [54, Theorem B.7| implies

H" (R CY) = [H'(R%CY), HO(R%; CY)] = [HY(R’;CY), L*(R%;CY)]



58 4 Convergence of Dirac operators with general strongly localized potentials

and
H'(R% CY) = [H*(R%; CY), H'(R%;,CY)] .

Applying (xiii) from Section 2.1 yields

H[ - TL;HHT(RG;CN)HHN(RG;CN)

S CHI - T5||[HU RO (CN) Hl(R" (CN)]M—>[H“(RG;CN),LQ(RQ;(CN)]”

< CHI Tél Hv R9 {CN)— Hv (R?;CN) ”[ T§||%1(RG;CN)HL2(R9;(CN)
— O|6|'f‘ T' ,
which is exactly (4.14). This finishes the proof of this proposition. |

We will also need a variant of the shift operator 75 that acts on functions defined
on 4. Since X = 0. fulfils Definition 2.1, we can make use of Stein’s extension
operator E : L*(Q4;CY) — L*(RY CY) given by Proposition 2.6. We then define
the shift operator for functions on €21 by

7'69i = (E(:))x : L*(Qx;CY) — L2(Qy; CY). (4.18)

The following properties of T(SQ * immediately follow from the properties of £ and
Proposition 4.4.

Corollary 4.5. Let Dv be the Jacobian matriz (of the extension) of v, r € [0,1]
and &y € (0, ||DV||Z§O(R9;R9X9)). Then, the operators T(;Qi, d € [=do, 0], are uniformly
bounded in H"(Q+; CN) and for v’ € [0,r] the inequality
Q r
HT(S - IHHT(Qi;(CN)—)HT,(Qi;(CN) < C|6|

holds for all § € [—dg, dg], where C' > 0 is independent of §.

Finally, we show that the map ¢t — T;5u has a useful continuity property.

Proposition 4.6. Let Dv be the Jacobian matriz (of the extension) of v, r € [0, 1],
do € (0, HDVHZ;(RO;RQXQ)), § € [~0g, 0], u € H' (R, CN) and v € H"(Qx; CN). Then,
the functions

fu : (_171> %HT(RQ;CN% t'_>7—t6ua
and

fEO(=1,1) = H'(Qu;CY), b it

are continuous.
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Proof. First, consider u € Cg°(R% CY) and let t,,t € (—1,1) such that ¢, — t as
n — o0o. Then, with dominated convergence one gets

lim f,(t,) = lm u((-) + 6t,v) = u((-) + 6tv) = f.(t) in H' (R CY).

n—o0 n—oo
Since H'(R?;CY) is continuously embedded in H"(R? C"), the assertion follows
for u € C(RYCN). If u € H"(RY CV), then there exists a sequence (u,)nen in
Ce(RY; CY) such that u,, — u in H"(R% C") as n — oco. Applying Proposition 4.4
yields

1ful®) = fun Ol g1 ooy = 1760 (0 = wn)l| e go,evy < Cllte = unll grgoe)

for all n € N and t € (—1,1). Hence, f,,(t) — fu.(t) uniformly with respect to
t e (—1,1) in H"(R% C") as n — oo. Thus, f, is also continuous.

It remains to verify the claim for f*. Let t,,¢ € (—1,1) such that ¢, — ¢ for n — oo.
Using the properties of Stein’s extension operator E and the above observations,
we get that fg,(t,) — feo(t) in H"(R% CY). Moreover, the boundedness of the
restriction mapping gives us that fF(t,) = (7o, Ev). = (fru(tn)), converges to
(feo(t))L = fF(t) in H™(Qx; CN). This shows the continuity of f;. O

4.3 Convergence of A.(z), B.(z) and C.(z)

This section is devoted to the convergence analysis of the operators A.(z), B.(z)
and C.(z) introduced in (4.8) for ¢ — 0, and is based on [14, Section 3.3]. First,
in Proposition 4.8 we study the convergence of C.(z). Then, a duality argument
allows us to investigate the convergence of A.(z) in Proposition 4.9. Eventually, in
Proposition 4.10 we consider the convergence of B.(z).

We choose the number € 450 > 0 such that

. Etub 1
€ < min , , 4.19
ABC = { 4 2||DV||L°°(R9;R9X9) } ( )

where e, is specified in Proposition 2.12. Let W be the Weingarten map associated
with ¥ introduced in Definition 2.11. In our analysis, the multiplication operator
M, : B°(2) — B°(X) acting as

M_f(t) = det (I —teW) f(¢) for a.e. t € (—1,1) (4.20)

turns out to be useful. In the following lemma, which is an immediate consequence
of Proposition 2.12 (ii) and Proposition 2.19, some relevant properties of M. are
stated.
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Lemma 4.7. For any ¢ € (0,e4p¢c) the operator M. is bounded, invertible,

||M€||0—>0 S (1 + 50) and ||M€ - ]||0—>0 S 50'

To formulate the result concerning the convergence of C.(z), we recall that the em-
bedding J is defined by (2.10) and introduce the operator

Co(z) == 3% : L*(R%; CY) — B(%). (4.21)
In fact, the properties of J and ®%, see (2.10) and Proposition 3.6 (iii), imply that
Co(2) gives also rise to a bounded operator from L2(R?; CV) to BY/2(%).

Proposition 4.8. Let z € p(H), R(z) = (H—z)"", 7 be the shift operator in (4.13)
and € € (0,eapc) with eapc satisfying (4.19). Then, for any u € L*(R%,C") the
relation

C.(2)u(t) =ty R(2)u for a.e. t € (—1,1) (4.22)

holds in L?(X;CN) and ran C.(z) C BY2(X). Moreover, the operators C.(z) are
uniformly bounded from L*(R%; CN) to BY*(X) and for any r € (0,3) one has
ICH(2) = Cof) ey g < O (1.23)

Proof. First, we show (4.22) for u € C°(R? CV). By density and continuity, this
implies (4.22) for all u € L2(R?; CV). Recall that R(2) : H*(R%;CY) — H*T(R?; CV)
is bounded for s € R; see Proposition 3.3 (iii). Hence, by the Sobolev embedding
theorem R(z)u is continuous for u € C{°(RY; CV) and the same is true for 7.;R(2)u.
Furthermore, as 7.;R(2)u € H'(R? C") we conclude with Proposition 2.3 (ii) and
Proposition 4.2 for t € (—1,1) and xy, € ¥ that

tso R(2)u(zs) = T R(2)u(zs) = / G, (zs+etv(zs)—y)u(y)dy = C.(2)u(t)(zx).

RO
Hence, (4.22) is true.

Next, we show the inclusion ran C.(z) C BY2(X). Assume that u € L*(R%CV).
Then, by the boundedness of the trace operator ts : H'(R? CV) — HY/2(%; CN), see
Proposition 2.3 (ii), and Proposition 4.6 it follows that the function 57\ . R(2)u is
continuous as a mapping from (—1,1) to H/?(X;CV). In particular, ts7().R(2)u is
measurable as a mapping from (—1,1) to H'/2(3; CV). Using again the boundedness
of the trace operator ty. : H*(R% CV) — H'/2(3;C") and the uniform boundedness
of the shift operator in H'(R? CV), see Proposition 2.3 (ii) and Proposition 4.4,
respectively, we conclude

1

1
2 2 2
/ ||tETEtR(Z)U’HH1/2(E;(CN) dt 5/ C”R(Z)U”Hl(RG;CN) dt < C||u||L2(R9;CN)
-1 -1
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and therefore ts7.).R(z)u € BY/?(X). Moreover, this also shows that C.(z) is uni-
formly bounded from L2(R?; CN) to BY/2(%).

Finally, with Proposition 2.3 (ii), Proposition 4.4 and Cy(z) = JP% = JtsR(z), see

Proposition 3.6 (iii), we have for r € (0,1) and u € L?*(R? C")

IC-(2)u = Co(2)ully = IItsTe() R(2)u — Jts R(z)ul;

1
- / s = DRl om
1
<c / (7 = DRy oy

1
<C [ Rl o, de
—1

1
— 2
<C [ S ulan o

1
S 06172rHUHi2(R9;CN)7

which leads to (4.23). Therefore, all claims are shown. O

Using the convergence of C.(z), it is not difficult to show the convergence of A.(z).
We define the natural candidate for the limit operator by

Ag(2) := @.3°: B(X) — L*(R?; C™). (4.24)
Proposition 4.9. Let z € p(H) and ¢ € (0,eapc) with eapc satisfying (4.19).
Then, for any r € (0, %) one has

14:(2) = Ao(2)llo o uosemy < O/
and, in particular, the operators A.(z) : BY(X) — L*(R% C") are uniformly bounded.

Proof. Let Z., S., and M. be the operators given by (4.5), (4.6), and (4.20), respec-
tively. One verifies by a direct calculation using Proposition 2.12 (iii), (4.5), and
(4.6) that (Z.S.)* = M.S-'Z-'. Using this relation we conclude from (4.8) that

(A()MY) = Mo U(A(2))" = MO (R()UZLS.)
= M *M.S7'T-'U.R(Z) = ST'T7'ULR(Z) = C.(%).
Moreover, (Ao(2))* = (.3)* = JP: = Co(z). Hence, Lemma 4.7 and Proposi-
tion 4.8 yield
[4(2) - AO(Z)HOHLQ(RG;(CN)

= [ Ac(2) M (M = 1) + Ac(2) M = Ao(2) |l pageo,emy

< CE:”CE(2)|’L2(R‘9;CN)~>O + HCE(2> - Co(z)‘|L2(R9;CN)~>O

< 081/277",

(4.25)
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which is the claimed estimate. O

Next, we study the convergence of the operators B.(z). We define the limit operator
By(z) : B(X) — B°(X) which acts on f € B°(X) evaluated for a.e. t € (—1,1) as

1

Bo(2)f(1) = %(a-y) / sign(t — ) f(s) ds + C. /_ Seds @26)

~1
where C, : L*(3;CY) — L?(X; CY) is the operator defined in Definition 3.7. Using
the mapping properties of C, from Proposition 3.8 (i) it follows that By(z) can also
be regarded as a bounded operator in B"(X) for any r € [—%, %] In the following
proposition we show that B.(z) converges to By(z). The proof of this result is more
complicated than the proofs of Proposition 4.8 and Proposition 4.9, and therefore

some of the more technical calculations are shifted to Appendix B.

Proposition 4.10. Let z € p(H) and ¢ € (0,eapc) with capc satisfying (4.19).
Then, the operators Be(z) are uniformly bounded in B°(3) and for any r € (0, 3) one
has

1B=(2) = Bo(2)ll1 /a0 < C=727

Proof. The proof is split into several steps. Let ®, be as in Definition 3.5 and let
T(S? ;- be defined by (4.18). We introduce the auxiliary operators

B.(2) := B.(2)M ' : B'(Z) — B(%), (4.27)

which are, due to the properties of B.(z) and M. in (4.8) and (4.20), bounded and
act on f € B(X) for a.e. t € (—1,1) and o-a.e. zx €3 as

B.(2)f(t)(xs) = /I/EGz(xz +etv(rs) —ys —esv(ys)) f(s)(ys) do(ys) ds. (4.28)

Moreover, we define B
B.(z) : BY*(%) — BY*(%)

acting on f € BY2(X) for a.e. t € (—1,1) as

B0 = [ i@ ) ds+ [ B @) (429)

First, in Step 1 we show that B.(z) is bounded and converges to By(z). Then, in
Step 2 we verify an alternative representation of B.(z). In Step 3 we use Appendix B
to compare B.(z) and B.(z), and show that B.(z) is uniformly bounded in e. In
Step 4 we combine the results from Step 1 to Step 3 to conclude the claims of this
proposition.
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Step 1. First, we note that, due to Definition 2.13 and Proposition 4.6, the func-
tion (—1,1)% 5 (t,5) = O(F(t — 8))7i ) € LIH'(Q;CY), H(Q1;CV)) is mea-
surable, where © is the Heaviside function. Hence, it follows from the text be-
low Definition 2.13 that the integrands in (4.29) are measurable with respect to
(t,s) € (—1,1)%. Moreover, by the mapping properties of ¢, ®, and 7'(9)* in Proposi-
tion 2.3, Proposition 3.6 and Corollary 4.5 respectively, the integrands are bounded by

Cf ) gr/2(seny for (2, s) € (=1, 1)2. In particular, we conclude that for f € BY/2(%)

/ / 1Ot — 8)tgmi ) (22f(5))- + O(s — )t (P.f(s HHmw dtds

is finite. Thus, Fubini’s theorem for Bochner integrals, see Proposition 2.15, yields the
integrability of the integrands in (4.29) with respect to s € (—1,1) for a.e. t € (—1,1)
and the measurability of ¢ — B.(z)f(t). Furthermore, the bound for the integrands
also implies HE;(,z)le/2 < Cllfllyq for f € BY2(%). Hence, B.(z) is well-defined
and uniformly bounded in B'/2(3). We claim that

B:(2) — Bo(z )Hl/QaO < cetr (4.30)

To see this we remark that with Proposition 3.8 (ii) we have the pointwise represen-

tation
t

def@%=/‘%N®J@D_d&+zmﬂﬂéﬁwﬁ+d8

-1

for a.e. t € (—1,1) and f € BY%(2). Thus, r € (0, 1) and direct estimates show

[ 505~ D@t
+/t t5 (75 — 1) (®.f(s))+ds

< [ ([ sty - neearin-|

# 68, - D@se)

HR@V—&uvm=[1

2
dt

LAECY) (4.31)

ds

H7(Z;CN)

2
(s CN)ds> dt.

Employing Proposition 2.3, Proposition 3.6 (i) and Corollary 4.5 gives us for all
s, t € (—1,1)

185 (755 ) = D(@2f ()2

siovy < CEPTN () |z gmen)-
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Plugging this into (4.31) yields
= 2
|B:(2)f — Bo(z)fHO
1 t 1 2
<20 [ ([ U6l ds + [ 176 nmenyds)
-1 —1 t
1
< €020 [ 1) nony ds = I fE
—1

which implies (4.30).
Step 2. We show that the operator B.(z) in (4.29) has the alternative representation

B.()f(t) () = / 1 / G.rn + elt — s)(om) — yo) f(5)(ys) dolys) ds  (4.32)

for f € BY*(%), ae. t € (—1,1) and c-ae. zx € ¥. Let f € BY?(X) and
t,s € (—1,1) be fixed such that ¢ > s. Note that the choice of e, in Proposi-
tion 2.12 implies e4pc < * < %; cf. also Proposition 2.9. Hence, by Corollary 2.10
we have zy + e(t — s)v(zx) € Q_ for all xy, € ¥. Moreover, we conclude from the
representation of @, given in Definition 3.5 and the form of the integral kernel G,
see (3.3)—(3.4), that ®,f(s) is continuous away from Y. Thus, we have for o-a.e.

Ts € X
tori (@2 f(5))—(zx) = (B.f(s)) (w5 + 2(t — s)v(x))

_ / G.(ws + £(t — $)v(ws) — ys) (5)(ys) do(ys).

Analogously, for t < s and c-a.e. xx € X
70 (@.F(5)) 4 (w5) = (@.F(5)) (@5 + o(t — 5)v(s)

_ / G.(ws + £(t — s)v(ws) — ys) f(5)(ys) do(ys).

Combining the previous two equations yields

| i@t o) e ds [ B @r9) s ds

! (4.33)
— /_1 /z G.(zs +e(t — s)v(zs) — ys) f(s)(ys) do(ys) ds.

Moreover, as the integrands on the right-hand side in (4.29) are Bochner integrable
(cf. Step 1), Proposition 2.18 (iii) shows that the pointwise evaluation of the Bochner
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integrals in the definition of B.(z) in (4.29) coincides with (4.33), i.e
Be(2)f(t)(ws) = ( | iy @ren s+ [ e, @ro), ds) (zs)
= [ @) ) ds [ (@5 ) ds

This is exactly the claimed formula in (4.32).

Step 3. By the results in Appendix B the map Es(z) — B.(2) admits an extension to
a bounded operator from B°(X) to B/2(¥) and

| B-(2) — B<( < CeV2(1 + |log(e)) 2. (4.34)

Ho—>1/2

Moreover, we claim that B.(z) is uniformly bounded in B%(X). To see this, observe
first that

Hés(2>|‘1/2—>1/2 < HE (2) — B. () |l1/2=1/2 + HE (2)]l1/2-1/2
< 1B2(2) = Bel2)llo-s12 + I B2l j2-01/2-
Therefore, the estimate (4.34) and the uniform boundedness of B.(z) in BY?(%)

shown in Step 1 imply that Ea(z) is also uniformly bounded in B'/2(X). The same
is true for B.(Z) and hence also the antidual

(B-(2) I BYA(R)) : B*(L) » B7'A(%)

is uniformly bounded. Here, we used that (61/2(2))’ can be identified with B=1/2(%);
see Proposition 2.21 (ii). We claim that (B.(Z) | BY/?(X))" is an extension of B.(z),
that is,

Bo(2)f = (B:(2) | B*(2)f,  feB(®). (4.35)
In fact, the identities B.(z) = B.(z)M:!, (4.8), and (Z.S8.)* = M.S-'Z ', yield for
the adjoint of B.(z) in B(X)

(B.(2))" = (S I\ U.RG) U LS. MY

e ] c (4.36)
= ST'TWU.R(2)UT.S. M. " = B.(2)

and hence Proposition 2.21 (ii) implies for f € BO(E) and g € BY/2(%)

<(§€<5) fBl/Q( fag>B 1/2(E)><81/2
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where (-, -) g-1/2(s7)x1/2(s2) denotes the sesqulhnear duality product; cf. Section 2.1 (iii).

This implies (4.35) and since (B.(%)) and B.(z) are both uniformly bounded in
B~1/2(%) and B'/?(X), respectively, an interpolation argument, see Proposition 2.21 (i)
and Section 2.1 (xiii), leads to the uniform boundedness of B.(z) in B%(X).

Step 4. Using the results from Step 1 to Step & we now complete the proof of
Proposition 4.10. Since B.(z) = B.(z)M., Lemma 4.7 and the uniform boundedness
of B.(z) shown in Step 3 imply the uniform boundedness of B.(z) in B(X), proving
the first claim of this proposition. Moreover, by applying Lemma 4.7, (4.30), (4.34)
and the uniform boundedness of B.(z) in the space B°(X) we obtain

IB=(2) = Bo(2)ll1 /250 = 1 Be(2) Mz = Bo(2)ll1 /540
< 1Ba(2)(Mz = Dlly jpyo + I1Be(2) = Be(2)lly joo + 1 B=(2) = Bo(2)1 20
< 1B(2)(Mz = D)llgyo + 1B=(2) = Be(2)llgs 2 + [B=(2) = Bo(2)ll1 /20
<CO(e+ 51/2( + [log(e)])!/* + £'/27)

< 081/277".

This is the claimed norm estimate and finishes the proof of this proposition. |

4.4 Properties of the limit operators Ay(z), By(z) and Cy(z)

After discussing the convergence properties of A.(z), B.(z) and C.(z), we discuss in
this section the limit operators Ag(z), By(z) and Cy(z). In particular, we give in
Proposition 4.14 conditions under which

(H = 2)7" = Ao(2)Va(I + Bo(2)Vq) ™' Co(2)

is the resolvent of Hy; , where V= ‘N/(V) is a rescaled interaction matrix. This
section contains parts of [14, Section 4] and [15].

To study the expression (H — z)™' — Ay(2)Vq(I + By(2)Vq)1Cy(z) it is essential to
investigate the operator I + By(z)V ¢ and its inverse. This requires some technical
preparations and we first introduce the operator

T:B (%) = B(%),
Tf(t) = %/_ sign(t — s)f(s) ds,

and the function

Q(t) = —% +/ q(s)ds, te[-1,1], (4.37)
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where g € L*((—1,1); R) is the function introduced in (4.1). The function @ satisfies
Q' =g, Q(—1) = —3, and since fjl q(s)ds =1, also Q(1) = —Q(—1) = 3. Moreover,
for r € [0, 1] the map T gives rise to a bounded operator in B"(X) and
By(z) =T(a-v) + JC.J" (4.38)

with J from (2.10).
Lemma 4.11. Let ¢ and V be as in (4.1) and (4.2), let r € [0,3], and assume
cos(%)_1 € WL (X;CN*N). Then, the following is true:

(i) I+T(a-v)Vq is boundedly invertible in B"(X) and its inverse is given by (4.40).

(i) If f €rany, i.e. [ is independent of t € (—1,1), then the equation

(I+T(a-)Vaq) " f(t) = cos (L2 exp(—i(a - v)VQ(t)) f(¢)
holds for a.e. t € (—1,1).

Proof. (i) We show that the operator O defined in (4.40) below is the inverse of

I +T(a-v)Vq. We start by fixing r € [0, 3] and defining the operators

=E:B(%) = H'(%;CY),

[1

(4.40)

We argue that = and O are bounded and that O = (I + T'(a - v)V¢q)~!. First, we
verify that = is well-defined and bounded. Let f € B"(X). Then, the integrand
in (4.39) is measurable as a function from (—1,1) to H"(X;C") since the function
(exp(i(a - )V (Q(-) — %))q(')f(')’w)ﬂr(z;(cl\f) is measurable for all ¢p € H"(3;CN);
see Definition 2.13. In fact, the latter function is the pointwise limit of the sequence
of measurable functions

" ((ita )V (Q) — £) a0, ) e,

t+—>Z o

" Q) = 1) ) ((ila - )V F0:4) o somy
k! ’
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Moreover, as cos( (a';’)v) an Ve WL (3; CV*N) it follows from Proposition 2.2 (iii)
that

IZf e sy

:% COS(%)_%(@ : V)V/ exp(i(a - v)V(Q(s) — 1)) q(s)f(s)ds
1 Hr(S;,CN)
< C’/_1||exp(i(a )V (Q(s) — 3))a(s) f(s)] R

and v,V € WL (3; CV*N) also implies exp(i(a-v)V(Q(s)—1)) € Wi (Z; CV*N) via
the power series of the exponential function. Using ¢ € L>*((—1,1); R) we conclude

IEf [ (zic)

1
< C/_lHeXp((Oé V)V (Q(s) — %)) HW;O(E;CMN)HQHLOO((AJ))”f(S)HHT(Z;CN) ds

A (mev) 8

<c [ 156
<cisl,

This shows that = is well-defined and bounded. Analogously, one can check that O
is well-defined and bounded. Hence, in order to show (i) it suffices to prove

I+ T(a-v)VqQOf =0I+T(a-v)Vq)f=f (4.41)

for all f € B°(X). By Proposition 2.18 (iii) this is true, if for o-a.e. zx, € ¥ the
relation

(L +T(e-)VQ)Of()(xs) = OU + T(-)Vq) f(-)(wx) = f()(2x)

holds a.e. on (—1,1). For f € B°(X) we get from Proposition 2.18 (iii) that the func-
tion (¢, xs) — f(t)(zg) isin L2((—1,1) x X; CY) and thus f(-)(zs) € L*((—1,1); CY)
for o-a.e. zx in X. We fix such an x5, € ¥ and define ¢ := f(-)(zs) € L*((—1,1); CY)
and A := (o - v(zx))V(zx). Then, we have for a.e. t € (—1,1)

(I +T(a-v)Vq)Of(t)(es)

t

= o(t) + exp(—iAQ(t))Ef (vs) — @'A/ exp (1A(Q(s) — Q(1)))q(s)p(s) ds

-1

[ sionte = 9)40(5)(1(6) + exp(-14Q() 1 (as)

1

. (4.42)

N | .

—ia [ (i@ - QNatrplr) dr ) ds

-1
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With a direct calculation we find that

%/_ sign(t — s) Aexp(—iAQ(s))q(s)=f (vs) ds

1

— % </ iAexp(—iAQ(s))q(s)ds — iAexp(—iAQ(s))q(s) dg) =f(zx)

= — exp(—iAQ()ES (25) + 5 (exp(~i4) + exp(i£)) =S (w)
= —exp(—iAQ(t))=f (zs) + cos(4)=f (zs).
Furthermore, integration by parts gives us

3 [ st = aqiona | exp(IA(Q(r) — Q(s)))alr)p(r) dr ds

-1 -1
1

- §A [ G (exn(-i4Qes)) [ expliaQ(atretr) drds
24 [ S eninee) [ ewliaQmaee) is

~ iAexp(~i4Q(1) / exp(iAQ())a(r)e(r) dr

- —A/ exp(iA(Q(r) — 3))a(r)p(r) dr — %A/ sign(t — s)q(s)e(s) ds

-1

— iAexp(—iAQ(t)) / exp(iAQ(r)a(r)p(r) dr

-1

_ %‘A / sign(t — 5)g(s)p(s) ds — cos(2)Ef (wx).

-1
A combination of the last two calculations with (4.42) yields
(I +T(a-v)VqOf(t)(xs) = @(t).

One verifies in a very similar way that O is also the left inverse of I + T'(a - v)Vq.
Consequently, (4.41) is true.

(ii) Let f € rany, that is, f is independent of ¢ € (—1,1). Instead of inserting f in
(4.40) we find it more convenient and easier to verify this claim directly by showing

(I+T(a-v)Vq) cos(%)_ exp(—i(a-v)VQ)f = f.

Similarly as above it suffices to prove

(I+T(a - v)Vaq) cos(5) exp(—i(a - n)VQ) f()(ws) = f()(ws)
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for o-a.e. xy € ¥ a.e. on (—1,1). Thus, we again fix zy, € ¥ and use the same
abbreviations as in the proof of (i). Since here f is constant with respect to t,
v = f(t)(xx) is also independent of t. We then compute

(I+T(a-v)Vg)cos(“5) ™ exp(— (a v)VQ)f(t)(zs)

= cos(A) exp(—1AQ(1))y 5 sign(t — 5)Aq(s) cos(é)_1 exp(—iAQ(s))p ds

cos_é
= cos(%)f1 exp(—1AQ(t))p — (2 ) /_1 sign(t — S)C% exp(—iAQ(s)) dsyp

= cos(4) " exp(—iAQ(t))p

- % (2exp(=i4Q(1)) — exp(i4) — exp(—i4) )¢
=@ = [f(t)(zx)
for a.e. t € (—1,1), which shows (ii). |

In the next lemma we study relations connecting the interaction matrix V' from (4.2)
and the matrix V = V.S with

S = sinc((a'”)v) cos((c“'g)v)_1 (4.43)

2

if COS(%>_1 € WL(%;CV*N). We call S the scaling matriz.

Lemma 4.12. Let z € p(H), ¢ and V be as in (4.1) and (4.2), respectively, assume
cos(%)_1 € WL(Z;CN*N) and set V = VS, where S is the scaling matriz from
(4.43). Then, the following is true:

(i) S, Ve WL (3;CV*N) and, in particular, the multiplication by 1% gives rise to
a bounded operator in H"(3;CN) for r € [0,1].

(i) J*q cos(%)_ exp(—i(a-v)VQ)J =
(iii) (I + Bo(2)Vq)(I +T(a-1v)Vq)™'3 =3J(I + cZV).

Proof. (i) From o - v,V € WL (%; (CN *N) we conclude, using the power series of sinc
and Proposition 2.2 (iv), smc(( ) € WL (3;CV*N) . Furthermore, the assump-
tion cos(“’”%)*1 ewWLl(® ;(CNXN) and Proposition 2.2 (iv) imply S € W1 (3; CNV*¥)
and V = VS € WL(X;C¥*N). Since the multiplication by any B € WL (2; CN*Y)
gives rise to a bounded operator in H"(X; CY) for r € [0, 1], the same is true for 17;
cf. Proposition 2.2 (iii).
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(i) Recall that J is defined by (2.10) and that its adjoint acts as

1
3f= / Sy, feB),

As in the proof of the previous lemma we use the abbreviation A = (a - v)V. Then,
with Proposition 2.18 (iii) we get for ¢ € L*(X; CY)

3 geos(4) " exp(—iAQ)I = / cos(4) " exp(~iAQ(s))a() @) (5) ds

o[

1/2
)71 / exp(—1Ar) dry

1/2

1/2
)_1 /0 2 cos(Ar) dri.

= COS(

B

= COS(

Using the power series of sinc one verifies fol/ 29 cos(Ar) dr = sinc(%) and hence

Jq cos(é)_1 exp(—iAQ)JyY = sinc(4) cos(%)_lw =Sy
for 1 € L*(3; CY). This shows (ii).
(iii) For ¢ € L*(3;CY) item (ii) from the current lemma, (4.38) and Lemma 4.11 (ii)
imply
(I + Bo(2)Va)(I + T(a-v)Ve) 30
W +JICFVeI+T(a-v)Vq) "Iy

=JyY +3JC.3" chos( )V)f exp(—i(a-v)VQ)Jv O
Y+ JC,V Sy
(I +C, V)

2

[
cA? e

Proposition 4.13. Let z € p(H), r € [0,3], q and V' be as in (4.1) and (4.2),
assume cos(%)_l e WL(X;CN*N) and set V = V5. Moreover, assume that

I+ C.V is continuously invertible in H"(3; CN). Then, the operator I + By(2)Vq is
continuously invertible in the space B"(¥) and

(I+T(-v)Vqg) 'JU+C.V) ™" = (I + Bo(2)Vq)™'3. (4.44)

Proof. The operator By(z) is according to the text below (4.26) bounded in B"(X%).
Moreover, as V € WL(Z;CV*N) and ¢ € L>®((—1,1)), V as well as ¢ induce by
Proposition 2.2 (iii) and (2.9) also bounded operators in B"(X). Hence, I 4+ By(2)Vq
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is bounded in B"(X) and therefore it suffices to show that I 4+ By(z)V g is bijective in
B"(%).

Let us start with the injectivity. To do so, we use the representation of By(z) given
by (4.38) and assume

(I+Bo(2)Vq)f=UT+T(a-v)Vq)f +3C.VTIqf =0
for a f € B"(X). Applying the operator (I + T'(ca - v)Vq)™! yields
f+ I +T(a-v)Vq)'3C.VI*qf = 0.
Using Lemma 4.11 (ii) gives us
f+ COS(W)_1 exp(—i(a - v)VQ)IC.VI*qf = 0. (4.45)
By applying J*¢ and Lemma 4.12 (ii) we obtain

Tqf +T% COS(M)_l exp(—i(a - v)VQ)IC,VI*qf

2 (4.46)
= (I + 5C.V)3*qf =0.

Since I + C.V is continuously invertible in H"(3;CY) and V = VS, I + SC.V
is by Proposition 2.29 also continuously invertible in H”(¥;CY). Hence, applying
(I +SC. V)™ to (4.46) yields J*qf = 0 and thus (4.45) shows f = 0.

Next, we show the surjectivity. Let g € B"(X). Weset f, = (I+T(a-v)Vq) (g+T¢),
where

v=—(I+ CZV)_ICZZT*Vq(I +T(a-v)Vq) .
Applying (I 4+ By(2)Vq) =1+ (T'(a-v)+JC.3*)Vq to f, and Lemma 4.12 (iii) yield

(I + Bo(2)VQ)f, =g+ 3C.TVq(l +T(a-v)Vq) g
+ (I 4+ Bo(2)V)(I +T(a-v)Vq) '30
=g+3C.TVqI +T(a-v)Vq) g
+ I +CV)
=9,

which shows that I + By(z)V¢q is continuously invertible in B"(X). Applying the
operators (I + C.,V)™! and (I + By(2)Vq)™! from the left and from the right to
Lemma 4.12 (iii), respectively, yields (4.44). |

Having provided all these preliminary results, we are well-equipped to prove the main
result of this section, which is a resolvent formula for Hy5 in terms of the operators
Ap(z), By(z) and Cp(2).
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Proposition 4.14. Letz € p(H), R(z) = (H—z)"" be the resolvent of the free Dirac
operator, q and V' be as in (4.1) and (4.2), assume (:08(%)71 e WL (3;CV*N)
and set V.= VS. Moreover, assume that I + C,V is continuously invertible in
H'Y2($;CN). Then, I+ By(2)Vq is continuously invertible in B'*(X), Hy,  is
closed, z € p(Hy,s_ ) and the formula
(Hys, — 2) " = R(2) = Ao(2)Va(I + Bo(2)Vq) " Co(2)

holds.
Proof. Since I + CZ\N/ is continuously invertible in H'/2(X;C"), Proposition 3.14
implies that Hy, is closed, z € p(Hy,s ) and

(Hypg, —2) ' = R(z) — ®.V(I +C.V) 'L, (4.47)

Proposition 4.13 and the assumption cos (%)_1 € WL (3;CV*N) show that the

operator I + By(z)Vq is continuously invertible in B'/2(X). Hence, by (4.21), (4.44)
and Lemma 4.11 (ii) we get for v € L*(R%; C¥)

(I + Bo(2)Vq) 'Co(2)v
— ([ +T(a-v)Vg) '3 +C.V) ' div (4.48)
= cos(%)_1 exp(—i(a - )VQ)I(U +C.V) 'dkw.
With Ay(z) = ©.3*, Lemma 4.12 (ii), and V.S = V we conclude
Ao(2)Va(I + By(2)Vq) ' Co(2)v
=o,V3i'q cos(%)_1 exp(—i(a - V)VQ)I(U +C.V) 1o
=3, VS(I+C.V) o
=0,V (I +C.V) ok

Inserting this observation into (4.47) yields the claimed resolvent formula. O

4.5 Convergence conditions for Dirac operators with general
strongly localized potentials

Now, we are in a position to state the first main result of this thesis, which provides
sufficient conditions for the norm resolvent convergence of Hy,.

Theorem 4.15. Let ¢ and V' be as in (4.1) and (4.2), eapc > 0 as in (4.19), V.
be defined by (4.3) and assume that for some z € p(H) the following conditions are
Fulfilled:



74 4 Convergence of Dirac operators with general strongly localized potentials

(i) There exists an econy € (0,€ap5c] such that the inverse (I + B.(z)Vq)™' exists
for e € (0, €cony) and is uniformly bounded in B°(X).

(ii) (:os((o"”)v)_]L € WL (3;CN*N).

2

(iii) The operator I+C.V (V = VS with S from (4.43)) is bijective in HY2(; CN).

Then, the operator Hy, s self-adjoint, z € p(Hgy, ) N p(Hy.) for all € € (0, Econy)
and for any r € (0,3) exists a C > 0 such that

”(HVe - Z)_l - (H%z 1HL2 RO;CN)—L2(RO;CN) = < Cet/*r (4.49)

for all e € (0,econy). In particular, Hy, converges to Hys in the norm resolvent
sense as € — 0.

Proof. Throughout this proof we assume ¢ € (0, £cony). By Proposition 4.14 we have
that I+ By(z)Vq is continuously invertible in B'/2(%), z € p(Hy,_) and

(Hys, — 2)H = (H — 2)7' = Ag(2)Vq(I + Bo(2)Vq) 7 Cy(2).
The assumptions and Proposition 4.1 (ii) guarantee z € p(Hy,) as well as

(Hy, —2) ' = (H —2)' — A.(2)Vq(I + B.(2)Vq) ' C.(2).
Subtracting the above two equations yields

(Hv.—2)"" = (Hyps, —2)7
a(Z)Vq(f + B.(2)Vq) ' Ce(2) + Ao(2)Va(I + Bo(2)Vq) ' Co(2)
A (2)Vq(I + Be(2)Vq) " (Ce(2) — Co(2)) (4.50)
s(Z)VQ( I+ B(2)Vq) ™' = (I+ BO(Z>VQ)_1)OO(Z>

— (A(2) = Ao(2))Va(I + Bo(2)Vq) " Co(2).

In the following we use the uniform boundedness of A.(z) : B°(X) — L*(R% CY)

and (I + B.(2)Vq)™* : B°(X) — B(X); cf. Proposition 4.9 and assumption (i).
Employing this and Proposition 4.8 we see that

[4-Vall + B.(2)Va) ™ (Col) — Cole) | guosepouocy
S CHC€<Z> - CO( )HL2(R9;CN)HO (451)
S 081/277'.
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Since Cy(z) : L*(R?;,CN) — BY2(X) and (I + By(2)Vq)™ : BY2(X) — BY%(X) are
bounded, see (4.21) and Proposition 4.14, we get from Proposition 4.10
[A:(2)Vq (I + Bo(2)Va)™ = (I + Bo(2)Va) ™) Co(2)]| pagocn
< C|(I+B(2)Vg)™ = (I + Bo(2)Vq
< C’H(I + B{_;(z)Vq)_lHO_>0
N(B=(2) = Bol)Valyyooll 2+ BolDVa) o1

)=+ L2(RO:CN)

)_1H1/2—>0
(4.52)

S 051/2—7’"
Eventually, in a similar way as in (4.51), we find with Proposition 4.9 that

H(A5(Z) - Ao(Z))VQ(I + BO(’Z)Vq)_lCO(Z)HL2(R9;(CN)_>L2(R0;CN)
< CJA(2) = Ao(2) g, L2 (o) (4.53)
< 081/277".

Combining (4.51)—(4.53) with (4.50) shows (4.49).

It remains to prove the self-adjointness of Hy; . Let us first consider the case z € R.

In this case (Hy P z)~! is a bounded self-adjoint operator with the dense range
dom Hy, ; cf. Lemma 3.13. Thus,

Hys = ((Hys, — 2) ) 42

is also self-adjoint. Now, let z € C\R. Since (Hy. —z)~! converges in the the operator
norm to (Hy; —2)~", the adjoint resolvent (Hy, —Z)~! converges also in the operator
norm to ((Hys, — 2)7")* . Furthermore, ran (Hys — 2)~" = dom Hy,  is dense in
L*(R% CY) by Lemma 3.13. Hence, it follows from [62, Theorem VIII.22| that there

exists a self-adjoint operator H such that z € p(H) and (H — 2)~" = (Hp, —2)"".
This implies H = Hy s and therefore Hy, s self-adjoint and z € p(Hy ). O

To make the conditions of Theorem 4.15 more tangible, we show in the upcoming
corollary that these conditions are satisfied if [|V[[}1 5.cvxnvy is sufficiently small.

Corollary 4.16. Let ¢ and V be as in (4.1) and (4.2), eapc > 0 as in (4.19), V.
be defined by (4.3) and = € p(H). If |Vl s.cnxw) is sufficiently small, then the
operator Hys is self-adjoint, = € p(Hys )N p(Hy,) for alle € (0,eapc), and for any
r € (0,3) exists a C > 0 such that

-1 -1 1/2—r
H(va —2) = (H\76z —2) ||L2(R9;(CN)—>L2(R9;(CN) < Ce /

for all e € (0,eapc). In particular, Hy, converges to Hy in the norm resolvent
sense as € — 0.
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Proof. Let us shortly check that the conditions of Theorem 4.15 are fulfilled. We
start with (i). By Proposition 2.2 (iii), Proposition 4.10 and the comments below
(2.9) we have

sup || B=(2)Vllg0 < CHqHLOO((—l,l))||VHW010(E;(CNXN) sup || B=(2)[lg0 < 1

e€(0,eaBC) e€(0,eaBC)

if [VI[lo zicnxny is sufficiently small, i.e. (i) of Theorem 4.15 is fulfilled if we set
Econv = €apc and ||V (miCNxNY 1S sufficiently small. For condition (ii) we use the
power series of cos and cosh to estimate

HCOS((a-;)V) . [NHWOlO(E;(CNxN) < COSh<H(a~u)V||w§10(2;chN>) —1.

(a-)V

5 ) is invertible in

In particular, if ||Vl (miCNxNy 1S small enough, then cos(
WL (3;CV*N) and

(av)V\—1 < 1
2 ) Hwolo(E;(CNXN) —= 5 _ COSh<H(a'V)V”WOlO<E;CN><N)) .

Jeos(

2

Now, let us turn to (iii). Using V = V'S, (4.43), the power series of sinc and the
estimate from above we obtain

IV llwa, (miemsoy

. @)Vl senxn,
o0 tl
Slnh( 5 )

< [Vl govem2

[(c)V]| CNx ’
H(a . V)Vnwgo(z;chxN) (2 o COSh( a wglo(z,(cN N)))

Hence,

I1CV N 2 memysmrzmeny < ClC:mamen) s mrzmen 1V lwy sevson

is smaller than one if |[V'[|y1 s.cnxny is sufficiently small. In particular, in this case

I + C.V is continuously invertible in HY/2(X;CN), i.c. (iii) of Theorem 4.15 is also
fulfilled. O



5 An explicit convergence condition for Dirac operators with
strongly localized electrostatic and Lorentz scalar potentials

In Theorem 4.15 we provided conditions, which imply the norm resolvent convergence
of Hy, as ¢ — 0, with Hy_ as in (4.4). Unfortunately, the conditions in Theorem 4.15
and Corollary 4.16 are not explicit and it may be hard to verify them. The aim of
this chapter is to show that under the assumptions

1

q€ L>((—1,1);[0,00)) such that / q(t)dt =1 (5.1)

1

and
V =nly+78 with n,7€ C}HZ;R), (5.2)

one can simplify the three conditions in Theorem 4.15 to the explicit and simple

condition )

sup d(zy) < —

p T d=n-T (5.3)
Ty

We focus on interaction matrices of the form V' = nly+ 7/, which model electrostatic
and Lorentz scalar interactions, as they are the most prevalent interaction matrices
in literature; cf. Section 3.3. In this situation we get with the help of (3.1) the
identity ((a-v)V)? = dIy. Hence, the power series expansions of cos and sinc give
us

cos(%) = cos(\/TE)IN and sinc(%) = sinc(\/?a)fzv- (5.4)

This and (5.3) immediately imply cos(@2Y) ™ ¢ WL (%;CY*N), ie. (i) in Theo-

rem 4.15 is fulfilled. Moreover, in this case the scaling matrix, see (4.43), is given
by
(Y
_ sinc (%2
S = sinc((o";)v) cos((o"g)v) b —( )
Vd
cos (%)

Iy = tanc(‘/Ta)IN, (5.5)

where tanc is the function from item (xx) of Section 2.1, and therefore
V=VS=nly+78 with (7,7)=tanc(¥%)(n, 7).

Thus,

d =7 =72 = 4tan (L)’ (5.6)

and by (5.3)

inf |d(zx) — 4| > 0.

Ty €Y

7
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Now, Proposition 3.15 shows that Hy;  is self-adjoint and that / +C.V is continuously

invertible in H/2(3%;CY) for z € C\ R. In particular, (ii) of Theorem 4.15 is also
fulfilled for z € C\ R. Thus, in order to prove the norm resolvent convergence of Hy,
one only has to guarantee that (i) of Theorem 4.15 is satisfied for z € C\ R, i.e. it
is suffices to show that the inverse of I + B.(z)Vq is uniformly bounded in B°(3).

We proceed in the current chapter as follows: First, we show in Section 5.1 the uni-
form boundedness of (I+B.(2)V¢)~! in B%(X) if ¥ is a rotated CZ-graph. Afterwards,
we use in the proof of the main theorem, Theorem 5.20, a partition of unity to reduce
the general case of a special C?-surface to the case of a rotated CZ-graph. However,
in this case the proof of the norm resolvent convergence follows immediately from
the comments above and Section 5.1. Before we continue, let us mention that this
chapter is based on [15].

5.1 Analysis of [ + B.(z)Vq for rotated C¢-graphs

In this section we show that if ¥ is a rotated Cz-graph and if sup, .y d(zs) < %2,
d =n* — 72, then (i) of Theorem 4.15 is fulfilled, i.e. (I + B.(2)V¢q)™! is uniformly
bounded in BY(X). To prove this result a very careful and deep analysis of I+ B.(2)V¢q
is necessary. We do this by meticulously studying I + B.(z)V¢q in the case where ¥
is a hyperplane and n and 7 are constant in Section 5.1.1. Then, we use a parameter
dependent partition of unity in Section 5.1.2 to transfer the results to the case where

¥ is a rotated C¢-graph and n, 7 € C{(3; R).

Recall the bounded operators B.(z) : BY(X) — B°() and B.(z) : BY2(X) — BY2(%)
from (4.27) and (4.29), respectively. By (B.1) the difference of B.(z) and B.(z) can
be extended to a bounded operator mapping from B°(%) to BY/ 2(3). In particular,
this extension acts also as a bounded operator in B°(X). Thus,

EE(Z> = Es(z) + (B:(2) - Es(z»

can also be extended to a bounded operator in B°(X). We denote this extension also
by B.(z) and according to (4.28), (B.3), (B.15) and (B.16) it has the representation

B.(2)f(t)(as) / 1 / s+ e(t — s)(as) — yo) f(5)(ye) dolys) ds (5.7)

for f € BY(X), a.e. t € (—1,1) and o-a.e. xsx € X. According to Lemma 4.7, (4.27)
and (B.1) we have

1B=(2) = Be(2)lo0 < 1B=(2) = Bo(2)llo0 + 1 B=(2) = Be(2)lloso
<|[B.(2) - s(z)”()al/z + | Bo(2) M — Moo (5:8)
< Ce'2(1+ [log(e)))'? Ve € (0,eapc)
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with e4p¢ defined by (4.19). This leads us to studying B.(z) instead of B.(z).
Next, we transfer this operator, which acts in B°(X), to B°(R?~1). To do so, let
¢ € C3(R%R), k € SO() and

S =S = {k(2,((a") 1 ' € R,

where we used the convention from Section 2.1 (xvi) that (2, {(z’)) is an abbreviation
for (', ((2"))T. Then, we introduce the isomorphism

L L2(E<,,€;CN) — L*(Rh, M), (tenf)() = f(/i(x',g(x'))) (5.9)

Through transforming integrals on X, to integrals on R’~! we get the following
norms for ¢¢ ,, and its inverse:

||LC,I-6||L2(2C CN)L2(RO-1,cN) —  SUp (1 + |VC($,)|2)_1/4>
’ x/€RO-1

(5.10)

||LC_,Ilf”L2(R9*1;(CN)—>L2(EC,,€;(CN) = sup (1+|V¢()H)M™

Note that the definition of H"(X¢.;CY), r € [0,2], see (2.2), implies that ¢, also
acts as an isomorphic operator from H" (X .;CY) to H"(R’~1;CN) for r € [0,2].
Recall that in this case ¢, can also be viewed as a bounded operator from B" (X, )
to B"(R?1) which has the same norm as the operator acting from H" (X .;CV) to
H" (RO~ CN); cf. (2.9).

In the upcoming lines we often use X, in the upper index of various already intro-
duced objects which depended on X. In this way we emphasize that the object with
the upper index depends on ¢ and k.

We introduce for € € (0, 6?%’“0) the operators

D& (2) = 10 BL " (2)i L BU(RYY) — BYROY),

g (5.11)
D§™(2) = 1¢,. By " (Z)Lgi : BY(R) — BYRY).

The results from Proposition 4.10 and (5.8) imply that D$*(2) is uniformly bounded
with respect to ¢ € (0, 5?1%2‘) and for r € (0,1/2) the inequality
K K by WK B SR — —r
||D(<)’ (2) = D (Z)||1/2—>0 = HLC,R(BOC (2) = B (Z))Lc,}eHUQ—m < Ce'? (5.12)

3 3 —

holds for all ¢ € (0, EiCB”‘C). In particular, D$%(z)f converges as ¢ — 0 to D§"(2)f in
BY(R?~1) for f € BY?(R%1). Furthermore, B/2(R?~1) is by Proposition 2.21 (iii) a
dense subset of BY(R?~1). Combining these considerations with the uniform bound-
edness of D¢*(z) in B°(R%~1) shows that for all f € B(R"!)

DS (2)f =8 DS (2)f  in BORYY). (5.13)
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Using (5.7) and (5.9), and setting

Yew K’(_VC7 1)

Ak = Iﬁ;(-7 C()) and Vew =V O Mtk = W (5].4)
yields for f € BY(R?~1) and a.e. (¢,2') € (—1,1) x R~!
1
(] N AN / _ /
DO = [ [ C:laene) — ) el sha@))
VI V)P f(s) () dy ds.
Another useful representation is given by
1
De*(2) f(t) =/ A (2)f(s)ds, feB (Rt e (~1,1), (5.16)
-1

with the operator
de™(2) : L3(S;CY) — LP(%;CY),
E @) = [ Gulorenle!) = 20 + (o) (5.17)
V1T VCW)Pey) dy
P

for & € (2655, 2255)\ {0}. For the interaction strengths ™, 7%x € CL(S¢ i R)
we also define the matrix-valued function

Q%:’: = VECW o %Cu‘i = nEC,K e} %Q,HIN + 7'EC"’€ ¢) %Cyffﬁ' (518)

There holds Q5% = t¢,V>¢1 . in the sense of operators in L*(R?~!; CY).

5.1.1 Hyperplanes and constant interaction strengths

In this section we assume that ¥ = X, ., for a yp € R and a x € SO(f), i.e. ¥ is
an affine (6 — 1)-dimensional hyperplane in R’. We also assume that the interaction
strengths are constant and given by n,7 € R, i.e. n¥w+ =7 € R and 75w~ =7 € R.
This implies that Q¥°" is equal to the constant matrix

Qnr =iy +70 (5.19)

in this case. The main goal of this section is to show that for every compact set

S C R? satisfying
2
max 7 — 7% < W—,
(n,m)es 4
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there exists an ep2 = p12(5) such that ||(/ + Dgo’“(z)QW)_lHo_}O is uniformly
bounded with respect to (e,yo, (1, 7),k) € (0,ep12) X R xS x SO(#); cf. Corol-
lary 5.9. This result plays a major role when we prove the uniform boundedness
of the operators (I + B.(z)Vq)™" in the case that X is a rotated CZ-graph in Sec-
tion 5.1.2.

We proceed in this section as follows: First, we use the Fourier transform to turn
D¥%-"(z) into a decomposable operator with frequency dependent fiber operators; see
Lemma 5.1-Definition 5.3. Then, up to Lemma 5.7, we find and analyse suitable
approximations for the fiber operators for high and low frequencies. Finally, we use
these results to prove the main statements (Proposition 5.8 and Corollary 5.9) of this
section.

Before we start, let us fix some notations. In the current setting the normal vector v
is constant and given by key, where ey is the #-th Euclidean unit vector. Moreover,
the map (v~ see Definition 2.7, is a bijective isomorphism and the Weingarten map
W¥w- is zero in this case. Hence, by revisiting Proposition 2.12 we can set 5?11%)’” to
oo. Thus, (4.19) and the constancy of the unit-vector (and its constant extension to
R?) lets us also set 6AJ0 ~ to infinity. According to (5.14) and (5.15) D¥%"(z) has for
e € (0,00) and f € B°(R%"!) the representation

@) = [ [ Gl -6 s (520

for a.e. (t,2) € (—=1,1) x R~ which shows that D¥*(z) is independent of y, € R.
Furthermore, (5.13) implies that also D§”"(z) is independent of yo. Thus, w.lo.g.
we can set yp = 0. We define the matrices

0
aj:=a-kej, je{l,...,0}, and a-¢ Z a;&;, £ € R (5.21)
as well as
6—1
a ¢ = Z ;&) ¢ eR (5.22)
j=1

for convenience. Similarly to the a-matrices from Definition 3.1, the a-matrices are
self-adjoint, unitary and fulfil the relations

aja +aa; =205 and a;f+pa; =0 Vi le{l,...,0}. (5.23)
Using these rules one easily concludes

(@-€)?=[6Iy and (&/-€)? =PIy V&= (€. &) € R (5.24)

We start by calculating the Fourier transform of the function G,(k(-,€)) for fixed
£ #0; cf. [60, eqs. (44)—(45)] for similar considerations.
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Lemma 5.1. Let 2 € p(H), G, be the integral kernel of (H — z)™' given by (3.3)-
(3.4), £ 0 and F be the Fourier transform in R%~Y from Section 2.1 (xvii). Then,

o ()+mB+zIy . jelfliy/ 22 —m2 =2
FG.nl8)) = ( 22 —m?2 — |-|2 * agshgn(g)) 2,/ (2m)0-1

Proof. Let F, Fi, Fy and Fio be as defined in Section 2.1 (xvii). We start by

considering F1G.(k(+)). Since G.(k(-)) € LY(R?; CV*N) c S'(RY; CNV*N), see Propo-

sition 3.4, the expression F,G.(k(+)) is well-defined in S'(R%; CN*N). Moreover,

F1G.(k(+)) = Fy ' Fi2G,(k(+)). Thus, we calculate F; oG, (k(+)) next. The function

(G, satisfies the equation

(—i(a-V)+mp — zIN)G, =1y,

with § denoting the 0-distribution supported in {0}. Hence, the standard rules for
the Fourier transform, see [63, Chapter IX]|, show

(a- () +mB — 2Iy)FiaG, = ————Iy in S'RSCVN).
(2m)?

Furthermore, G, € L*(R% CNV*N) implies F; G, € Co(R% CV*N); see [63, Theo-
rem IX.7]. Thus, using the properties of o, j € {1,...,60}, and § yields

. B 1 a-E+mpB+ zly 0
(- &+ mpB — zly) (EE T — 2) 2y VE € RY.

Fl,ZGz (f) ==

S

m)
Consequently,

a- (KE)+mp+ zIy

0
(weP +m2— 2y

(F12G.)(KS) =

Additionally, k € SO() gives us

a-&E+mpB+ zly

0
(6 . — ) S VEeR?.  (5.25)

F12G:(k(1)(§) = (F12G2)(KE) =

Next, we determine F, ' F; »G,. We claim that for a.e. (¢,79) € R? the equation

Fy ' FraGL(k()) (€, xp)
B (&’-§/+m5+zIN
A\ feP

holds. We verify (5.26) by applying F» and comparing the result with (5.25). As
the right-hand side of (5.26) decays exponentially for |z4] — oo, we can use the

jelzolin/—m— [P (5.26)

24/ (2m)0-1

-+ &gsign(xg))
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integral representation of the Fourier transform. Hence, simple integration gives us
for g = (glvfe) € Re

1 o 4+mpb+zIy .
Vor S\ e —Jep sign(zo)
' jet(—zogot|zol 22—m2—\5’|2)dx B a-&+mB+zIy
2/2r)7 (g +m2 = 22)/n)

which verifies (5.26). Therefore, F,G,(k(+)) = F5 ' F12G.(xk(+)) can be represented
by the function

) . a-&+mp+zIy jelzolin/z2—m2—[¢'|?
R 5 (¢, xg) — + agsign(zg) )
VR 2 /@

Moreover, since G (k(-,€)) € LY(R?~L; CV*N) for £ # 0, which follows from Proposi-
tion 3.4, this shows that for £ # 0 and ¢ € R?~! the equation

FG(k(,8))(E) 2(k(a',8))e ) da

1
- o /[ ¢
= FiG.(x())(2)

! . ¢! I _ . ‘az 22_m2_‘§/|2
_ (a E+mp+z N—i—agsign(e?))w
NEETE—E 2/@m

holds. O

Proposition 5.2. Let z € p(H), ¢ > 0 and F be the Fourier transform in R~ from
Section 2.1 (xvii). Then, for f € B°(R%~1)

! (a’~§’+mﬁ+zIN

FDU()Ff(1)(€) = / © Eysign(t — 3>)

LA VRt e (5.27)
jelet=9)lin/z2—m2>—|¢'|2
- 5 F)(€) ds

and

o & +mpB+ zly
V= mE— €

+ apsign(t — s))

E)E)
2

FDy"(2)FH f(1)(€) = / 11 ( (5.28)

S

for a.e (t,&) € (—1,1) x R?~1L,
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Proof. We start with the case ¢ > 0. Using (5.20) shows

D () f(t) = / G(s(-,e(t — ))) % £(s) ds

1

for a.e. t € (—1,1) and all f € B°(R"!). Thus, Lemma 5.1 and [63, Theorem 1X.4]
prove the statement for € > 0. It remains to consider the operator Dg’”(z). We start
by defining

Dy"(2) : BY(R?!) — BY(RY),

Dy 0= | @fjgﬁjﬁ ausn(c - ) ) T s

Next, let f € B(R’"!). From (5.27) and the dominated convergence theorem, see
Proposition 2.16, one obtains that FD%(z)F~1f converges for ¢ — 0 to D" (z)f
in B°(R?~1). Thus, the boundedness of F and F~! in L*(R%~1;CY) (and therefore
also in B°(R?71), cf. (2.9)), implies that D%%(2)f converges to ]:*158’5(2)}"]” in
BO(R~1). Moreover, by (5.13) D%*(z)f converges to Dy"(z)f in B°(R’~!). Hence,
DY"(2)f = F~1DY"(2)Ff which proves (5.28). a

The structure of FD%*(z)F ! and F Dg’”(z)}" ~! inspires us to change our viewpoint.
Namely, instead of viewing these operators in B°(R?~!) we consider them as operators
in the isometrically isomorphic space L2(R?!; L2((—1,1);CY)). In the context of
direct integrals the notation [g, , L2((—1,1); CN))d¢’ for this space is also common.
Considered as operators acting in this space FD*(z)F ' and FDy"(z)F~! are
decomposable operators in L*(R%~1; L2((—1,1); CV)) with the following fibers.

Definition 5.3. Letc >0, ¢ € R%"! and 2z € p(H). We define

D.e(z) 1 L2((—1,1);CN) — L*((—-1,1);CY),
1 s~r ¢ I o
@875/(z)f(t) = /1 (a\/zi j;:fjé/g + apsign(t — S))
jelet=9)lin/22—m?—¢']?
' 2

f(s)ds,

and

9075'(2) : L2((_17 1)7 CN) — L2((_17 1)7 CN)u
La g+ mB A+ zly if(s)
Doer(2 t:z/( +&Sint—s) ds.
0 ()S0):= [ (S ()
Remark 5.4. These operators still depend on the rotation matriz k € SO(6) since

the a’s depend on k. As we use these operators only as auxiliary operators in this
section, we omit K.
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Next, we explain the ideas mentioned above Definition 5.3 in a more rigorous way.
Using

BY(R*) = L*((—1,1); L* (R~ CY))
~ L2((=1,1) x R7HCY) ~ LX(R7Y L2((=1,1);CY)),
see Proposition 2.18 (iii), allows us to define the isometric isomorphism
i:BY RO = LR LP((—1,1);CY)),

if(EN () = Ff)(€) forae (€,t) € R x (=1,1).

Thus, by Proposition 5.2 and Definition 5.3 we obtain for ¢ > 0
D27 ()i LR L2((-1,1):C€Y)) — LR L2((—1,1);€Y)),
D2 ()i f(€) = D (2) S (E),

i.e. iDY"(2)i"! is a decomposable operator in the sense of (2.12) which is induced by
the operator-valued function ¢’ — ©. ¢ (z). Hence, Proposition 2.19 lets us transfer
results regarding D, ¢(z) to D2%(z) and vice versa.

(5.20)

Next, we study the operator ©. ¢ (z) in detail. For this purpose, we introduce the
auxiliary operator

Dy 2 L2((=1,1);CY) — L2((—1,1);CY),

1 e—Plt=s| 5.30
(9,0 () = / (& - w' + icpsign(t — s)) 5 f(s)ds, (5.30)

1

for p € [0,00) and w' € R with |w'| = 1. It is easy to check that §,,s is a
self-adjoint Hilbert-Schmidt operator.

Lemma 5.5. Lete >0, ¢ € R\ {0} and = € p(H). Then, there exists a constant
Coi1 > 0 which only depends on m and z such that

[Deer(z) — 330,£’<Z)HL2((71,1);<cN)HL2((71,1);(cN) < Cpae(1+ [€7)),

C’pl,l
HQE,g(z) - 57)|§'|€7€'/|5'|HL2((—1,1);(CN)—>L2((—1,1);(CN) < 1+ |£/|'

Proof. In this proof C' > 0 denotes a constant which may change in-between lines,
but only depends on m and z. We start by estimating the kernel of . ¢/(2) =D ¢/ (2).
We can bound this kernel by

Cl1— 65|tfs|i 22—m2—|¢’|?

< Celt — s/]22 —m? — [¢'?]
< Ce(1+€)).
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Hence, there exists a constant Cp,; > 0 such that
[Dee(z) — 530,5’(Z>||L2((71,1);<cN)%L2((7171);@N) < Cprae(L+[¢]).
Next, we estimate the kernel of D, ¢/(2) — Herje 71| by

E <e‘5‘t_s”5/| — esltele 22_m2_|§'|2>< e | + isign(t — )%))
f

2
1 : TS il¢’|
= | elt—slin/22—m2—|¢’|? roS .
e <a |§’|) (1 V2 —m? — €] (5.31)
€6|t—s|i 22—m2—|¢/|? mﬁ + zly
VE—m? =[P ]

The first term in (5.31) can be estimated for |t — s| < 1 by

C‘e—é\t—SIIE’\ _ gelt=slin/z2—m2—|¢']2

< Celt — s||[€/] + i/2 = m? — €.
R

Mffr — i/ = e 32

<

L+ |€’|

where we used z € p(H) = C\ ((—o0, —|m|] U [|m|,00)) as well as Im/w > 0 for
w e C\ [0,00). For g|t —s| > 1, we get

C‘efe\tfsns’\ — eeltsliv/Fom €| < o€ 4 o tm/Fom ) <

< e 659)

Similarly as we estimated the first term in the case ¢|t — s| < 1, the second term in
(5.31) can be bounded by

ile'
VE—mE—[EF|

2% — m’|

Wz2—m2 €7 +il¢'|
< C < C
DT+l

cli-

N

One also sees that the third term in (5.31) is smaller than +| o1 for a sufficiently large

C Summing up, we have that the kernel of ®. ¢ (2) — $j¢/|c.¢//je| can be bounded by
: +\ l and therefore if Cy,; is chosen sufficiently large, then

C1p11
||©67§’(Z) - ﬁ\i’\&&’/l&’l||L2((71,1);(CN)aL2((—1,1);<CN) — 1+ |E -
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Lemma 5.6. Let p > 0, w' € R™! with |w'| = 1 and q be as in (5.1). Then,

(Va9 /@) C [=3: 7]

Proof. To shorten notation, we set a4 := o' - w’ &= iay. Then,

1 t
ﬁpaw’f(t) = %/t e_p‘t_s|&_f(8) dS—I—%/1 e Plt=sly L F(s)ds

for f € L*((—1,1);CY). Using the rules for the & matrices from (5.23) yields the
orthogonality relation rana; | rana_. Hence, as ¢ > 0 a.e. on (—1,1) by (5.1), we
have for f € L*((—1,1);C")

||\/aﬁpyw’\/af||i2((_1,1);cfv
1t 2
:Z/ Q(t)/t ela_/q(s) f (s dS‘ dt (5.34)

-1

+i/1 q(t)’/_1e " \/_f dsrdt'

-1

We start by estlmatmg the first term on the right-hand side. We define the function
2(t) = —1—i-f s)ds,t € [-1,1]. Then, 2" =¢q, 2(—1) = —1 and 2(1) = 0 since
f—1 q(s)ds = 1. Applylng the Cauchy-Schwarz inequality and Fubini’s theorem gives

dt

i [ aw| [ e G af

i / ZZ: PG a5 f(s) ds| dt
sﬂ}(t)(/t cos(2£<s>>q<s>ds)(/tlmr o) ds)

[\

— % _11 —sin(22(t))q(t) (/tl WIN f(s )|2d8) dt
5 1 (/ —sin(32(0)a() dt>m|&_ﬂs)|2d§
/ a_f(s)]* ds.

The same trick with 2 + 1 instead of £ yields that the second term of the right-
hand side of equation (5.34) can be estimated by 2 j1 |ty f(s)]? ds. These estimates,
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ranca, L rana_ and (5.24) imply

I -
H\/aﬁp,w’\/ainQ((_lyl);(cN) S ﬁ /_1|O{_f(8)|2 + |a+f(8)|2 ds

=L (@ +a)fe)Pds

I
1 1
— 5 [ @ w)sePds
™ J-
4 e
= ;Hf”m((—l,l);cfv)-

Since £, is self-adjoint in L?((—1,1); CV), we obtain o(,/g$,w/q) C [—2,2]. O

T

Having studied the spectrum of /g, ./+/q, we employ this knowledge to study the
bounded invertibility of I + $,.Q, -q. Recall that @, - = nly + 78 for n,7 € R.

Lemma 5.7. Let p > 0, w' € R~ with |w'| = 1, n,7 € R, Q,, = nlx + 78,

d:772_7—27

d2, d>
() Vd2, d>0,
0, d <0,

and q be as in (5.1). Ifd < %2, then c(d) < 1, I+85,., @y +q is continuously invertible
in L?((=1,1); CN) and the norm of the inverse is bounded by the constant

L+ (Inl +I7)2
Corz = Cpa(n,7) 1= Ml (Wl + D= = 1 (539

Proof. The identities $, /@y r = @n—+9pw and @, @y - = dIy, which follow from
(5.23), give us

I— d(\/a'ﬁpﬂﬂ’\/a)2 = (L + V9w Qne VO = V9w Qurv/a)-

Ifd < ’TTZ, then Lemma 5.6 implies 1 € p(d(1/q$,,.71/q)*) and therefore the operator
I + /49,0 Qn.r+/q is also continuously invertible in L2((—1,1); CV) and

-1
H(I + VA Qnr /1) "L2((—1,1);(CN)—>L2((—1,1);(CN)
- || (I B d(\/af)p’w/\/a)2)_l<] - \/afjp,w’Qn,T\/a) "L2((—1,1);(CN)—>L2((—1,1);(CN)

L+ (In[+17)2
- 1 —¢(d)
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Moreover, applying Proposition 2.29 shows that I + $,.,@, g is also continuously
invertible in L?*((—1,1); C") and

H (I + ﬁp,w’@n,r@il "L2((_1,1);(CN)—>L2((—1,1);(CN)

- Hﬁp,w’Qw\/a(I + \/aﬁp:w’Qw\/@fl\/a - [”L2((71,1);CN)%LQ((fl,l);(CN)

L+ (Il + 17D %
< HQHLOO((fl,l))(’m + ‘TDHﬁp,w’HL2((—1,1);<CN)—>L2((—1,1);(CN) 1— c(d) +1

L+ (|| +17])2
(1—c(d)r

< 4lql] poo (1,19 (1] + |7) +1,

where we used Lemma 5.6 (for ¢ = ) to estimate 190,00 L2 1190y 22 ((—1.1):0vy PY
4
= O

g

In the last part of Section 5.1.1 we use our findings to prove a norm estimate for the
operator (I + D%*(2)Q,.q)~".

Proposition 5.8. Let k € SO(0), n,7 € R fulfild = n*— 1% < %2, Qur =nIn+70,
q be asin (5.1) and z € C\ R. Moreover, let

(I + Do (2)Qura) oo} (5.36)

C'p1,3 - Cpl,?;(na T, ’i) =2 maX{Cpl,2a
with Cp1 o = Cpi2(n, T) from Lemma 5.7 and

ept = Ep1 (0,7 4) = (CoraCova (0l + [TDlgll oo (1.1)) ™ (5.37)
with Cp11 from Lemma 5.5. Then,

sup H(I + D?’”(Z)Qn,rq)’lH(Ho < Cpiz < 0.

e€(0,ep1,1)

w2

Proof. We start by arguing that Cp3 < oo. The assumption d < - guarantees
Cpi2 < o00. Moreover, applying Proposition 3.15 (iii) and Proposition 4.13 (for
V = Q,, = nly + 75 = const. and r = 0) shows that  + Bozyo’“(z)QmTq is con-
tinuously invertible in B°(X,, ). Let us shortly explain why Proposition 4.13 is

indeed applicable. We have to show COS(%)_l € WL (2, CV*N) and that

I+C ywé;; is continuously invertible in L?(3,, ; CV), where

Qur = Qyrsine ({24807 ¢os ({0180 -1

(av)Qn,r ) —

In the same way as in (5.4)—(5.6) we get cos(‘“*4=2r) = cos(%g) = const. and

6/2:7,/7 =nly + 70 with (,7) = tanc(%a)(nj). Hence, d < %2 implies cos(\/Tg) £ 0

and therefore 003(%)_1 € WL (3,00 CV*N). Furthermore, we have

d=n*-7%= 4tan(‘/7g)2 <4
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and thus Proposition 3.15 (iii) implies that I + CZE?’O‘”C/Q;TT is continuously invertible
in L*(3,,.+; CY). Hence, the assumptions of Proposition 4.13 are satisfied and its
application is justified. By (5.11) BOEO‘”(Z) is related to Dy™(z) via an isometric
isomorphism and therefore I + D§*"(2)@Q, ,q is continuously invertible in BO(R?~1),
which proves Cp 3 < 0.

According to Lemma 5.5 we have

||©a,§’ (Z)Qn,rq - ~6|§/|€,§’/\§’\Qm’rq||L2((_1,1);(CN)_>L2((_171);(CN)

—1/2
i+ et

el Cua(L+€)

< CPLlHqHLOO((

for ¢ € R%~1\ {0} and all ¢ > 0. Hence, if we set R := 5;1711/2 — 1, the choices of Cy 3,
ep,1 and R yield

-1
||(I+ﬁ|€’|€7€’/\§’IQWQ) "L2((71,1);(CNHL2((71,1);<CN)

[[Dee(2)Qura — Dt 161 Qurt 1211y
~1/2 ~1/2
5pl,1/ C(p1,3 . 8pl,l

Cp1,3<1 + R) - 2 CP1,35;1’1/2 =

1

@)

M) =L2((—1,1);CN)

S C1pl,2

N | —

for 0 # |¢’| > R and ¢ > 0. In particular, Proposition 2.28 shows that

I +D:6(2)Qnrq =1+ Dgrjee e @nrd + Deg (2)Qnrq — Nieriegr e @nrd

is continuously invertible in L?((—1,1); CY) and that the corresponding norm esti-
mate

-1
H ([ + 98,5/(2)627777'(]) HL2((—1,1);(CN)—>L2((—171);(CN)
§ [+ $ierte.6/161@nr @) ™ || 2o 1iev) s r2—1aem
2

Cpl,S

(5.38)

<2 = Upl3

is valid for 0 # [¢/| > R and € > 0.

Having found an estimate for 0 # |[¢'| > R, we aim to find a similar estimate for
0 # |¢'| < R. Again, according to Lemma 5.5 we have

HQ&&’(Z)Q??,TQ - 9076'(Z)Qn,rqnL2((_1,1);CN)_>L2((_171);(CN)
—-1/2
e 1+ €D

< Optallal oo -y (Inl + 17D+ 1E) = e
pl,3
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for ¢ € R“1\ {0} and ¢ > 0. Moreover, Proposition 2.19, (5.29) and (5.36) imply
ess SUPgrepo— || (1 + 9075'(2)QU,TQ)_1||L2((—1,1);(CN)—>L2((—1,1);<CN)

; . C
= + D5 (2)Qur ) Iy o < =5

Hence, as 1+ |¢| < 1+ R = 8;1’11/ ®. we estimate similarly as in the first part of the
proof for € € (0,ep11)

ess supie<p| (1 + 9575/(2)627777(1)71HL2((71,1);(CN)HLQ((fl,l);(CN)
= ess supjey<p| [ + (I + Dogr(2)Qnra) ' (Degr(2) — Do (2)) Q.rd]

-1

-1
(I +D0e(2)@nrq) }|L2((71,1);(CN)HL2((71,1);(CN) (5.39)
1 C, 1 C
< e _ . pl,3 < Cp]3-
Col,3 pll/ (I+R) 2 1 SCp11 2 7
=== Col3 2

Combining (5.38) and (5.39), and applying Proposition 2.19 gives us
(7 + D2 (2)Qn70) |
B max{ess supjes k|| (1 + Deg (2)Qnr@) ™ || 1o Crnierys 12 (110 O
ess supje || (1 + 95’5'<2)Q’777q>71|’L2((*1,1);CN)HL2((*1,1);CN)}

< Chis Ve € (0,ep11)-

Corollary 5.9. Let z € C\ R, ¢q be as in (5.1), S C R? be a compact set and
max(, es17° — 72 < . Then, there ewists an ey = epa(S) > 0 such that
sup H(I + ijo’“(z)Qn,Tq)_lHO_>O < 0.
(&,90,(n,7),6)€(0,ep1,2) XRx S xSO(H)
Proof. Since D¥"(z) = D%(z), see the text below (5.20), the assertion follows
directly from Proposition 5.8 if we can show

su C, ,T,k) < oo and inf € Ty Kk) > 0, 5.40
s ebuzo P T (rrimbxso 1T T ) (5.40)

with Cp13 and €11 as in Proposition 5.8. Note also that as S is bounded, the first
inequality in (5.40) and (5 37) 1mply the second inequality in (5.40). Moreover, the

assumption maxg, yesn® — 7> < = T implies max(, ~es Cpl2(n, 7) < 00, where Cl 5 is
defined by (5.35). Hence, it follows from (5.36) that (5.40) is valid if

sup ||(1+ Dy™(2)Qyra) 7|0 < 00 (5.41)
((n,7),k)ESXSO(H)
By the representation of DJ*(2) in Proposition 5.2 and (5.21), Dg*(2)Q,.~¢ depends

with respect to the operator norm in B°(R’~!) continuously on 7, 7 and . Thus, as
S x SO() is compact, (5.41) is indeed true. O
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5.1.2 General rotated C?-graphs

After treating the case of affine hyperplanes, we turn to the case where ¥ is a rotated
C?-graph. To do so, we fix in this section

¢ CR"LR) and & € SO(RY), (5.42)

and we assume

Y=Y, = {k(@,((2)) : 2’ € RO} (5.43)

Before we resume, let us mention that in the current section we use the upper index
notation introduced above (5.11), cf. (5.14) and (5.18), only for objects which do
not correspond to the fixed rotated graph ¥ = X ,; i.e. we write B.(2), v, n, etc.

. —Sen .
instead of B.“"(z), v¥¢r, n¥r | etc., respectively.

Recall from (5.14) that s . (2') = k(2/, (")) and v . (2') = v(3¢ . (2')) for 2’ € RO,
According to Proposition 2.9 (i) (in the current case we have p = 1, 3¢ = ¢,
Y, =X = X¢,), there exists a C,; > 0 such that for all £ € (—2e4p¢,2c45c) and
! y/ c RG’—I

Cot (|2 = /| + 1) < (@) = s2cn(y) + Evew(@)] < Ca(l2” — o/ | + [E])  (5.44)

with e4pc > 0 from (4.19). Furthermore, combining the estimates from Proposi-
tion 3.4 for G, z € p(H), with (5.44) gives us for all 2/,y' € R~ j € {1,...,0}
and € € (—2e4pc, 26 45¢) the inequalities
_Ce2y_
(Gt ela) = 32,6y + Eu(a'))] < CaaClT (|8 — /| + [E) e en ™7,
€G2, /.
10,6 (200(a’) = 2260(0) + Eveul@))] < CaaCli(la’ —y/| + [E) e a7,
(5.45)
We are going to prove the uniform boundedness of (I + B.(z)Vq)™! in B°(X) with
respect to € € (0, cony) for a suitable econy € (0,245¢]. According to (5.8), (5.10) and
(5.11) this is equivalent to proving the uniform boundedness of (I + D&"(2)Q5%5q) ™"
in BO(RY1).

We start by analysing D$*(z) locally. To proceed, we need to introduce further
notations. For zf, € R/~ we define

Cap (@) 1= C(xp) + (VC(2p), 2" —2p), o' € R (5.46)

Moreover, we define the localization parameter a. := €'/ for ¢ € (0,e45¢). Next, we
introduce a family of auxiliary operators. For this, we choose a C'*°-function w with
0<w<l,w=1onR1\B(0,1) and w = 0 on B(0,1/2). We use this function to cut
out the singular part of the kernel of D% (z); cf. (5.15). More precisely, by analogy
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with (5.16) and (5.17), we define for € € (0,eapc) and € € (—2eapc,2capc) \ {0}
the operators

e (z) : (R, CN) — LY (R CV),

(o) i= | Gelenla) = stenly)) + Evenla) (725 (5.47)
V1V Pyy) dy

and

E.(2) : B°(R*) = BOR’Y), E.(2)f(t) :== /1 elt_g(2)f(s)ds. (5.48)

First, we prove preliminary results for eZ*(z) and dg’“(z). Afterwards, we transfer
these results to the operators F.(z) and D%*(z) in Proposition 5.14.

Lemma 5.10. Let z € p(H), € € (—2eapc,2capc) \ {0}, € € (0,e4pc) as well as
a. = €'/%. Then, the operator X (z) acts as a bounded operator from L?*(R%~!; CN)

to HY(R=1; CN) and

a 1+ [log(e)]
Heé“s (Z)‘|L2(R971;(CN)_>H1(R971;(CN) = C—,

aE
where C > 0 does not depend on € and €. Moreover, for f € L?*(R%~YCYN) the
mapping (—2eapc, 2capc) \ {0} 2 € e (2)f € HY(R CY) is continuous.

Proof. We aim to prove the assertion by applying Lemma C.1. To do so, it is neces-
sary to find suitable estimates for the kernel of eZ°(z) which is for 2/, ' € RO~ given
by

k(@ yf) = G (e (@) = stcn(y') + Eve(2))w (F25) V1 + [VC()%

We notice as G, € C®(R?\ {0}; CV*N) ¢ € CZR’L;R) and w € C°(R7; R), and
as w cuts out the singularity of G, we have k € C} (R~ xR~ CM*V). Furthermore,
using (5.45), 0 <w < 1, suppw C R\ B(0,1/2) and ¢ € CZ(R’~1; R) immediately
gives us for 2’ # ¢ € R%~!

k(' 5] < Cxro-1ymoy2) (G2 (12" =y + &) et

z,/ !

< CXR9*1\3(071/2)( - Y )’x/ - y/|179670|x/7y/|,

€

where ¢ = % with C,; > 0 from (5.44) and Cg from Proposition 3.4. Next, we

estimate the derivatives of k. The [-th derivative, [ € {1,...,0 — 1}, with respect to
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2’ is given by

>

Tk ) = (0,620 (0 = 204 + ()
e >Uy+a«ﬁuﬂUwa:V> T+ VST

+ G2 ((@) = 520 u(y) + Even()) — (3zw)( V1 + VC(y)P

for 2/ # ' € R’ where v[j] denotes the j-th component of a vector v. Applying
(5.45), and the properties of ( and w again lets us estimate

d 2 — _ _ 1
k(@' 9)] < Oxwopona (2 (07 — /| + [B1) e~
l
1 ! /
(| = y/| + &) e )
a/E

]. / /
)(m y/’—0+_‘x/_y/’1—0>efc|x 7y|_

Qa

£

/

< Oxro-1\B(0,1/2) (5o

Thus, if we set k(2') :== Cygo- 1\ B(0, 1/2)(a5)<|z'| 9+i|z’|1*9)efc|zl| for 2/ € R~1\ {0}
we get

k(' 9], Z‘—k‘x Yy ‘S k(' —y) Va' #£y e RN (5.49)

Hence, e%(z) acts by Lemma C.1 as a bounded operator from L?*(R°~';CY) to
HY(R-% CN) and
”egi(Z)‘|L2(R9*1;(CN)ﬁH1(R9*1;(CN) < Okl rgo-ry-

Now, the norm estimate in the assertion follows from
T ! 1—0 L, 1-0\ ,—cl|'| 7./
Bl gy =C [ m“wmm<KV|+;w|)e dz
- €

S C/ 79 Tl 0) fcr,r,972 dr
e/2 as

< C(_ L1t Ilog<ae)|)

Qe Qe
1+ [log(ac)| _ 1+ [log(e)|

a/E o a6

<C

Finally, we prove the continuity. For this, let € € (—2eapc, 2¢apc) \ {0} and (&,,)nen
be a sequence such that &, € (—2e4pc,2eapc) \ {0} for all n € N and €, — €
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as n — oo. Using the dominated convergence theorem and (5.49) shows that for
f e LPR7HCN) e (2)f and die (2)f, | € {1,...,0 — 1}, converge pointwise to
e (z)f and 92 (2)f, I € {1,...,0 — 1}, respectively. Furthermore, the estimate
from (5.49) shows that the functions [e2* (2) f| and |OeZ: (2) f|, I € {1,...,0 — 1}, are
independently of n € N pointwise bounded by the function |f| «k which is by Young’s
inequality square integrable as f € L2(R~!;C¥) and k € L*(R’~!). Hence, applying
the dominated converge theorem again shows that e2°(2)f converges to e2(z)f in
HY(R-L; CM). O

Lemma 5.11. Let zj € R°™', (y be as in (5.46), z € p(H), ¥ € Co(R*"!) and
g€ (_25ABC725ABC) \ {O} Then,

Cut sk
H[dgo (2)7 w]||LQ(RG—l;CN)_)Hl(Refl;(CN) S O”rw”Wolo(Rg*l)(]' + |10g’g||))
where C > 0 does not depend on & and x}, € R~L. Moreover, for f € L*>(R~1;C")
~ C:c’ ok . .
the mapping (—2eapc, 2capc) \ {0} 2 € [d2° (2),¢]f € HY(R?™;CN) is contin-
uous.
Proof. We prove this result in the same vein as the previous lemma, i.e. we estimate
Cz/ P . . . .

the kernel of [d-° (z),7] and its partial derivatives, and apply Lemma C.1. The

Cop o o
kernel of [d-° (2),] is given by

k(:clu yl) = Gz<%C16,n(x/) - %Czé,n(yl> + gVCIG,N(x/))\/l + ’vi{) (Z/’)W"@D@/) - w(xl))
for 2/,y' € R~!. The representations

st (') = (', () + (VC(ah), 2 — ),

 K(=V(7p), 1) — ven(ah), (5.50)

S e

Vi (2) = V((g),
for 2/ € R~! show that k can be simplified to
k(2',y) == Gu(r(2'—y, (V((25), &' —y)) +Eve,(20)) V1 + [V((20) P (DY) ().

Moreover, with (5.50) and k € SO(#) one gets

k(2" =y, (VC(x5), 2" — ') + Evew(p)
= !~y (V) o — ) 2
<l -y P+ HVCHiw(R"*l;Rg*l)) +22.
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In particular, we can choose a Cy, > 0 which does not depend on xj, and € such that

(Cin) " (|2 = ¢/ + [E]) < [8(2" =y, (VC(20), 2" = ) + Eveu(ap)] (5.51)
< Cin(|2" = o/ + [€]).
Then, Proposition 3.4, (5.51), ¢ € C}(R’™!) and ¢ € CZ(R?"; R) yield

K )] < C’ — 3|+ )= Y gy oy o — o
< CHwHWOlO(HW—I)(’x/ _ y/’ + ’g])27967c’\x’7y’\ Vl‘l,y/ c R9717

where ¢ = % with Cg 5 from Proposition 3.4. The I-th derivative, [ € {1,...,0—1},

with respect to 2/ € R~! of k is given by

0
Tkl 1) = (SD0CI (e =/ (VCLah). =) + Fvcalah)
(sl A W) — v))
— Gl — o, (VC(ah), 2" = ) + B () (O (o))
T V.

j=1

where €] denotes the I-th Euclidean unit vector in R~ and (/‘f(ef,alf (;p())))[j] de-
notes the j-th entry of the vector r(e},d;((z)). Using Proposition 3.4, (5.51),
Y € CHR™Y) and ¢ € CZ(R" R) again gives us

< Cll oy (12 = o/ + [E) e ] — |

+ (1 = g+ )~
< C|W\|W30(Re,l)(ya;/ — |+ |gj'|)1*9€*0'\f”’fy’\

d
_k / /
PEUCS

for all 2/,y’ € R%~!, where C' > 0 can be chosen independently of 2, and &. Setting

%(Z/) — C||1/)HW010(R9*1)((|Z,| + |a)2—0 + <|Z/| + ‘a)l—ﬂ)e—cﬂz’\

for 2/ € R leads to

xylZ‘

~(l‘/ . y/) Vl’,, y/ c RO
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Now, Lemma C.1 shows

Cxé)?’{

H[dg (2)7¢}||L2(R9—1;CN)_>H1(R9—1;(CN) S C/ k(zl) dZ/

RO-1

< Ol oy [ ((+ D+ G ) 2ar

S C||1/}||W010(R91)/0 (1 —+ (7" + |g|)—1)6_c’7“ dr
< C”¢||W010(R971)(1 + |log|§]|)

The assertion regarding the continuity can be proven in a similar way as in the
previous lemma. O

Lemma 5.12. Let 2y € R™', ¢ and k be as in (5.42), Gy be as in (5.46), z € p(H),
a. = e'/% and € € (—2eapc, 26ap0) \ {0}. Then, there exists an cg1 = g1 (C) in the
interval (0,eapc] such that for all e € (0,e4.1) the inequality

C;E/ K

”XB(%,SaE) (dg’ﬂ(z) —d:"° (Z>)XB(16,3(1€)

LQ(Refl;(CN)—}LQ(Rgfl;(CN) S CCLE<]. + |10g‘g||)

holds, where C' > 0 does not depend on €, € and xj,.

Proof. We prove this statement by estimating the kernel of the operator

o Cot oK
X8y an) (27 (2) = A= (2)) X Bl a)

and applying Lemma C.1. The mentioned kernel is given by
k(' y) = XB(ey 30.) (27) (Gz(%c,n(w') — st (y') + Even(@)) V1 + V(Y]

Gkl — of (VC() 7 — o))+ Ben(ah) /T T |v<<xa>|2)
: XB(x6,3a5)(y/)

for o' # vy € R“L If ' & B(x),3a.) or y & B(x),3a.), then k(2',3') = 0. Thus,
we assume from now on 2',y’ € B(xz{,3a.). Using Lemma 2.8, Proposition 3.4 and
¢ € C3(RP~1;R) gives us

k(' y) < VO sup }\@Gz(wv)\/lJr V() P[lwr — wol

v€el0,1],57€{1,...0
+ |G (wo) (V1 + [VC(W) 2 = V14 [VC(ap) ) | (5.52)

< C( sup ]wvlfelwl — wol + \woflfa‘xf) - y’])
v€e(0,1]
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with
Wy = V(320 (0") 2 )80 (0)) + (1=0) (50—, (TC ), 0"~y ))+ B0 )
for v € [0,1]. We remark that we were able to apply Lemma 2.8 since w,, # 0 for all
v € [0, 1], which turns out be true in the course of the proof; cf. (5.54). Next, let us
estimate
w1 — wol =205 (2") = 220, (y) + Eveu(a) — ml2" = ¢, (VC(0), 2" = ) — Evn(ap)|

= |k(a" =y, ¢(2") = C(¥))

— k(@' =y (V((20), 2" — ) + Ewem(a) — ven(ap))|

< |K(0,C(2) = C(") = (VC(xo), 2" =y N + [Elvem(a’) — vew(a))l-

As ¢ € CZ(R1R) and x € SO(0), there exists a C¢ > 0 such that

R(=VE(), 1) w(=V((2p),1)
VIHIVCE)P 1+ V()P

Cela’ — xj| < 3Ccac

Ve w(2') = ve ()| =

and

[£(0,¢(2") = C(y') = (VC(x5), 2" — ¢/)]
) = C) = (V{(x0), 2" — o)

= [¢(z
- ‘/01<VC(y’ e — o)) — VC(ah), 2 — o) dt‘

1

< [ e — )+ (-0 )l - v
0

< 3Ccaclz’ — |,

where we used 2,y € B(xj,3a.). Hence, if €41 = €4,1(¢) > 0 is chosen sufficiently

small, then for all a. € (0, eéﬁ) the inequality

|wi = wo| < 3Ccac(|’ =y +[E]) <
2C, 1

holds with C,; > 0 from (5.44). Therefore, we can use (5.44) to estimate |w,],
v € [0, 1], from below by

(I = y'] + [€]) (5.53)

[wy| = [vwy + (1 = v)wo| = [wi + (1 —v)(wo — wy)| > |wi| — |wy — wo

/ / ]‘ / / . 1 I (554>
(1" =91+ 1) = g’ =91+ ) = (1 = /| + 2D,

>

1
CL,I
Thus, by plugging (5.53) and (5.54) into (5.52), the kernel k£ can be estimated for
a. = e¥/% with e € (0,24.1) by
0, 2’ & B(xy,3a.) or y' & B(x,3a.),
Cac(|a' —y/| + &), o' € B(af,3a.) and y' € B(x, 3ac).

k(2" y)| < {
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Applying Lemma C.1 yields

Cz/ K

HXB(%,S%) (dgn(z) —d:° (Z))XB(xg,saE)

L2 (Refl;(cN)_)LZ(Refl;(cN)

<Co [ ()4 )
B(0,6ac)
6ac
< C’ag/ (r+ |§])1_9r9_2 dr L
0

6ac

< Ca, / (r+ [2) " dr
0

< Cau(1 + Jlogl2]]).

Corollary 5.13. Let zf, € R, ¢ and k be as in (5.42), (y be as in (5.46), ¥ be
as in (5.43), n,7 € Cy (X;R), Q5% be as in (5.18), z € p(H), € € (0,€4:1) with €41
chosen as in the previous lemma, a. = €'/% and & € (—2eapc, 2¢apc) \ {0}. Then,

X Bap 300 (A2 (2) Q535
Cat oK .
o dg ’ (Z>Q7%:T($6))XB(JJ6,3(15)
where C' > 0 does not depend on e, € and x,.

Proof. The previous lemma and Q3% € Cj (R~ CV*N) yield

LQ(Rg_l;CN)—)LZ(Rg_l;(CN) S Cai(l + Hog’gH)?

P o Cot ok .
HXB($6,3%) (dg (Z)Qg:'r - dé' 0 (Z)Q%:T (x6)>XB(16,3aE)
< HXB(xbﬁas)dén(z)(Q%’; - Q%Zi(xﬁ))XB(xg,gag)

LQ(RG_I;CN)—)LQ(RG_l;CN)

L2(RO-1;CN)— L2 (RO-1,CN)
+ HXB(wE),?)as)(dén(Z) - dg%ﬁ(z))XB(w’073aa)lei(xf))HL2(R9—1;CN)—>L2(R9—1;CN)
< O (1" (2o, 2o vy + ae(1+ [loglE1)).
where C' > 0 does not depend on ¢, € and x;. Moreover, (5.17), (5.44), (5.45) and
¢ € C2(R%;R) let us estimate the kernel & of d2"(z) by
E )] < O |+ B 21 vl yf € RO

2 > 0 with €, ; from (5.44) and Cg > from Proposition 3.4, and therefore

Lemma C.1 implies

12" @ ago-0m)sp2mo-s0m) < C/ (12 + [E)!Pem= a2’

RO-1

c
where ¢ = =

< C’/ (r+ ) e e 2 dr
0

< C(1 + [loglef]),
which yields the assertion. O
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Now, we can transfer the results for d2"(z) and % (z) from Lemma 5.10, Lemma 5.11
and Corollary 5.13 to the operators D$*(z) and E.(z) via their representations in
(5.16) and (5.48), respectively. We obtain the following statement.

Proposition 5.14. Let 2y € R, ¢ and k be as in (5.42), & be as in (5.43), (yy
be as in (5.46), n,7 € CL(E;R), QC" be as in (5.18), z € p(H), ¥ € CLHR),
€ € (0,e41) with egr1 chosen as in Lemma 5.12 and a. = el/6 . Then, the operators
E.(2) and [DS*(2),9] act as bounded operators from B°(R°~1) to BYR’~') and

1+ |log(e
By < 0T LB
Cot 5k
D" ()0l < U -1+ Nog(E).

HXB(;EO 3a.) (DC”( )Q ﬁ(Z)Q%’,i(%))XB(zg,?)ae)

where C' > 0 does not depend on x{, and €.

0—0 — < CGE( |10g(5)’)7

Cz/ g . CI/ Al .
Proof. First, we consider [D.° (z),¢] . We start by showing that [D.° (z),] is
well-defined as an operator from B°(R%~1) to BY(R?1). Let f € B°(R°"!) and set

CI/ K .
g=1[D:" (2),¢]f. It follows from (5.16) that g has the representation
1
Cx/ %
o) = [ @ te L.
-1

Since [da(f 8)( 2), 1] has the continuity property from Lemma 5.11 and f € B°(R?~1),

the text below Definition 2.13 implies that the function
CI/ R
<_17 1) X (_L 1) > (ta S) = [dg(ffs)(z)aw]f(s) € Hl(Reils CN)

is measurable. According to Lemma 5.11 we have

/11 (/11 ||[d2§?’z>(z),w]f(s)llHl(Rg%N) ds>2 dt

1 1 9
< ol oy [ ([ 0 ot = DI o sicmy ds) e

-1 -1

(5.55)

This expression can be estimated with the Cauchy-Schwarz inequality and Fubini’s
theorem by

1 1
Ol oy / 1 / (14 logle(t = )] ds

1
- / (5 Noglelt = DS eremsdt

2 9 pl
<l oy ([ 1+ Doglelas)” [ 1706) oy ds
< C (¢l go-ny (1 + og()D 1 £1lo)*



5.1 Analysis of I + B.(z)Vq for rotated C?-graphs 101

In particular, applying the Cauchy-Schwarz inequality again gives us
I
J I ORI O Y

1 1 Cap 9
< ﬁ\/ [ WA O o oy ) < o

Cpt 5k
Thus, (2.8) and Fubini’s theorem, see Proposition 2.15, shows that g = [D:° (2),¢]f

is well-defined and measurable as a function from (—1,1) to H'(R?~1; C"). Moreover,
(5.55) and (5.56) also give us the norm estimate as

1
2 2
91 = | ) e

< [ ([ WS oy 85)

1 1

< (Il oy (1 + Nog@D1 1)

The proof for E.(z) can be done in exactly the same way. Moreover,

K K Cafy o K
XBah300) (DS (2)Q5% — D= (2)Q55 (%)) X (a0

is a well-defined operator in B°(R%"!). So in this case it is sufficient to show the

norm estimate, which can be proven in the same way as the norm estimate for

D" (2), . 0

As the last part of our local analysis we state a result concerning the inverse of

Cato#o .. . .
I+D." (2)Q% 5 (xf)q for xj € R~!. This is an important result since these operators

play an essential role when constructing the inverse of I + Dg”“(z)Q%ﬁq.

Proposition 5.15. Let ¢ and r be as in (5.42), 3 be as in (5.43), Cu be as in (5.46),
n, 7€ CHER), d=n*— 12 satisfy

7T2

sup d(ws) < =,
Ty €Y 4

q be as in (5.1), Q5% be as in (5.18) and z € C\ R. Then, there exists an ego > 0

Gyt 5k ) )
such that the operators (I+D:"° (2)Q55(x)q) ™" are uniformly bounded in B°(R®~")
with respect to € € (0,e42) and z, € RIL.
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Proof. Note that

Q5(xh) = n(sec (@) In + T (52, (20)) B = Quoee ()7 (e n ()

for 2, € R%~1; cf. (5.18) and (5.19) and the text below (5.43). Moreover, for every
x) € RO the set ¥¢, « is an affine hyperplane in RY and therefore there exists a

o(ah) € R and a 7(z)) € SO(9) such that
Yo, n= {/{(x',(’%(x')) (2 e R}
o
= R(zg) (R x {go(x0)}) = Sttt

Hence, we get from (5.9), (5.10) and (5.11)

(5.57)

Gy o
H(I+DE ’ (Z>Q$7:T($0) 1H0a0

EC /5
% »
(I+B: ™ (2)Qnoee i) reemta)D oo

[
H([ + B yO(%)H(IO)( )Qn(%@i(x{)))ﬁ(%g,m(%))q)ilHO%O
H(I + Dyo(ro) R(@o) ( )Qn(zg,,g(z{))),T(%g,n(%))Q)_l||0—>0'

K

K

Now, the result follows from applying Corollary 5.9 (for S = ran (7, 7)) if one chooses
Egr2 = Epi2(ran (n, 7)) > 0, where €, 2 was introduced in Corollary 5.9. O

Inspired by the local principle in [60, Proposition 5], see also [59, 61], we construct
partitions of unity which allow us to globalize the established local results. We start
by choosing a partition of unity (@), ezo-1 for R~! with uniformly bounded deriva-
tives which satisfies supp ¢,y C B(n/, 1) for n’ € Z°~1. Moreover, let (J,),cz0-1 be a
sequence of functions with uniformly bounded derivatives which fulfils 0 < ¥,, <1,
Yy = 1 on B(n',2) and suppd,, C B(n',3) for n’ € Z°~1. According to Proposi-
tion A.2 such sequences exist. By defining for a € (0, (s4p¢)"/%) and n/ € Z~! the
functions ¢% () = ¢n(-/a) and 9%,(-) = J,y(-/a) we obtain similar sequences; in par-
ticular (4% ),scze—1 is a partition of unity for R?~! with scaled supports. Furthermore,
there exists a C' > 0 which does not depend on a such that

C
sup  max{|[¢y [lwy @e-1), [y lwy @e-1)} < o (5.58)

n/€79-1

cf. Corollary A.3. Before we use these essential observations in the proof of Propo-
sition 5.17 to construct the right inverse of I + D$"(z )6277 "q, we state a helpful
preliminary lemma.

Lemma 5.16. Let z € p(H), € € (0,e45¢) and a. = €'/5. Then,

(1= IR E=(2)h = (1 — 957) DE"(2) 0.
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Proof. We prove this lemma by showing that the difference of the integral kernels of
(1 —9%)E.(2)¢% and (1 — 9% )D"(2)¢% is zero. According to (5.15), (5.47) and
(5.48) this difference is given by

(1= 957 (2") (w(52) = 1) i (v)

€

F G (e n(7') = 220 (Y) + €t — s)ven(a)) V1 + [VC(Y)I?

(5.59)

for all 2’y € R~ and t,s € (—1,1). If ¢ ¢ B(a.n’,a.) for an n’ € R~ then
= ¢ B(n',1) D supp ¢,y and therefore

6 () = w (L) =0.

Furthermore, if 2’ € B(a.n',2a.), then 5_; € B(n/,2) and hence as J,, = 1 on B(n',2)
we have

1— 9% (2) =1 —du(2) = 0.
These two observations show that if y' ¢ B(a.n',a.) or 2’ € B(a.n’, 2a.), then (5.59)
vanishes. Thus, it remains to consider the case y' € B(a.n',a.) and 2’ ¢ B(a.n',2a.).

However, this implies |2’ — ¢/| > a.. In this case we use w =1 on R~ \ B(0, 1), see
the text above (5.47), to obtain

This shows that (5.59) vanishes for all 2/,y’ € R~! and t,s € (—1,1). O

Proposition 5.17. Let ¢ and x be as in (5.42), ¥ be as in (5.43), n,7 € CH(E; R),

d=n?— 712 satisfy
2

sup d(zy) < W—, (5.60)
Ty €Y 4
q be as in (5.1), Q% be as in (5.18) and z € C\R. Then, there exists an eg 3 in the
interval (0,eapc], with eapc > 0 chosen according to (4.19), such that the operator
I+ Dg’“(z)ngiq has a right inverse which is uniformly bounded in B°(R%~') with
respect to € € (0, g 3).

Proof. The proof is split into four steps. In Step 1 we define a first approximation
for the right inverse of I+ D" (2)Q5%q denoted by R.. Moreover, in this step we also
show that R, is uniformly bounded in B°(R?~!) with respect to e. Then, in Step 2
we calculate (I + D&"(2)Q5%q) Re. Afterwards, we find in Step 3 that the product
(I + DS“(Z)Q%:?Q)RE equals I + K, + L., where K, and L, fulfil the inequalities

1 + |log(e)|

2
=

Kl <€ and || Lcflg o < Cac(l + [log(e)))- (5.61)
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Based on these observations we use Proposition 2.30 in Step 4 to prove the assertion.

Step 1. We define for € € (0, min{eapc, gr2}) With e4pc and €42 chosen as in (4.19)
and Proposition 5.15, respectively, a. = £/ and n’ € Z~!

Ruo:= (I + D& (2)Q5" (an')q) ™"

with (o = (o as in (5.46) for x5 = a.n’. These operators are uniformly bounded
in BY(R-1) with respect to n’ € Z7! and ¢ € (0, min{eapc,ee2}) according to
Proposition 5.15. Therefore, Proposition C.3 (see also (v) in Section 2.1) shows that

R.: B°(R*") = B (R""),
st.
Z 19% ¢Zf Rn’,aﬂ?li

n/€z9-1

is well-defined and uniformly bounded by

| Rellgyo < 1197 sup H (I + D:¢ Sacn’ (z)Qf]i’:(aEn’)q)’IHO_}O <C, (5.62)

n/€79-1

where C' > 0 does not depend on e. Furthermore, since 95 ¢ = ¢ by construction,

we have R, = Zf;/ezg_l O Ry 0%
Step 2. Applying I + D" (2)Q5%q to R. yields

st.

(I + D (2)QS5q)Re = > (I + DS (2)Q55q) 6% R 0%
n/c70-1
st.
= D 951+ DE(2)Q55q) 0% R 9%
neZe—l
+ Z — 0%) DE(2) Q5 g R 03
n/c70-1

Moreover, using Lemma 5.16 gives us

st.

(I + D&"(2)Q%%q)R Z 9% (I + D™ (2)Q55q) 9% Ry 9%

c70-1

+ Z (1= 9%) B(2)Q556% Ry 0%
n'€z8-1
st.

= Y 0N+ DE(2)Q5%q — E(2)Q55q) 85 Ry %

n/€Zf-1

E. (Z) ngiqu
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Writing DS (2)Q5%qd; as

e (2)Q A aen)ads + (DEN(2)Q5E — D" (2)Q5 aen')) gy
= ¢fiDa“”/’n(z)@%ji(agn/)q + [DE (), O 1Q5 " (an')q
+ (DEA(2)Q57 = D" (2) Q5 aen')) adry

and introducing the operators Ly . := (D& (2)Q5% — Soem "(2)Q55 (aen’) ) q¢% and
Ca n/ K Ae K Qe
Ko = (D" (2), 4] Qy 5 (aen') g — E=(2)Q5radly; y1eld8

(I + D™ (2)Q57a) Re

st.

Ae Qe Casn/v“ K aes
> 056 (1 + D (2)Q5 % (an ) q) Ry 05

n/ezf9-1
st.
5.63
+ Z 19?; (Kn/75 + Ln’,e)Rn’,aﬁ?; + Ee(z)Qg:iqR ( )
n/€zf-1

st.
=T+ Y 0%5(Kue+ Lye) R 0% + B(2)Q55qRe,

nlezefl

where
st.

Z 0% )% = Z 0% 9% = Z o

n/eze 1 neze 1 neZe 1

was used.

Step 3. We start this step by setting

st.
K.i= > %Ky Ry 0% + B(2)Q55q R,

n/€z9-1

st.
- a a
L= Y 0%Ly Ry 5.

n'ezf—1

Then, (5.63) shows (I + D&"(2)Q5%q)R. = I + K. + L.. Since R. and D¢"(z) are
uniformly bounded in B°(RY~1), see Step 1 and the text above (5.12), respectively,
this implies that also K. + L. is uniformly bounded in B°(R?~1). Moreover, Propo-
sition C.3, Proposition 5.14, Proposition 5.15, (5.62) and Q%% € Cy (R~ CV*N)
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imply

st.
ell0—=1 > n/ An! edln! eV
K. | <H S 0% K R 05
0—1

+ 1| E-(2)Q5 5 Re |

0—1
n/€79-1
C Qo
< o sup || K e R elloyy + || Eo(2)@Q niTqR‘SHO—)l
e n'ezf-1
O Ca n!/ K Qa, K K Qa,
<o sup [DF(), 0105 e — EL)QS00 -+ 1) Bl
e n'€Z%—=
C agn Ag
< — sup (I1DE (@), 0l + 1B o) + 1 Bl
Qe pregb—1
1+ |log(e 1
< Oy il oy + - +1)
Qe n'c790-1
< Cl + |log(e)| (3 n 1)
Qg Qg
< Cl + |10g(5)|'

2
ag

Similarly, we estimate L. with Proposition C.3, Proposition 5.14 and Proposition
5.15 by

st.
IEelloso = || D2 0 LRt

n/€z9-1

0—0

st.
§ : a a
- H 197; XB(aen/ﬁas)Ln’,eRn’,eﬁn7

n/€79-1

<C sup ||XB(a€n ,3ae) Ly 5||0—>0
neze 1

0—0

=C sup ||XB(aww 30.) (D" (2) Q5% — e’ "(2)Q5 5 (a:n')) 8% llo—so

n/€Z9-1

=C sup ||X3<asnf,3a5)(Dﬁ’“(Z)Q%;’i— ae" ()Q ( ,>)QXB(a5n’,3a5)¢?;”0—>O

nlezefl

< Ca.(1+ |log(e)]).
This shows that (5.61) is valid and hence completes Step 3.

Step 4. Revisiting the considerations from the beginning of the current chapter
shows that for V = nly + 78, n,7 € C}(Z;R) fulfilling (5.60), the following holds:
cos(—(o";)v)_1 € WL (3;CVxN),

S

V= Vsinc((o";)v) cos((o";)v)_1 =7ly +7B8 with (7,7) = tanc(%

4 (n,7),
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and d = 72 — 72 fulfils inf,_cx|d(xs) — 4] > 0. Thus, by Proposition 3.15 (iii) and
Proposition 4.13 the operator I + By(z)Vq is continuously invertible in B°(%) and
BY%(S). Hence, (5.9) and (5.11) imply that also I + Dg"(2)QS%q is continuously
invertible in B°(R?~1) and BY/2(R?~'). Applying Proposition 2.30 (for the choices
A =1+ D(2)Q55q, Ao = I—l—Dé’”(z)QC’,’jq, T =R, K1 =0, Ky = K.+ L.) shows

7 7
that if the operator norm of

L. := (D§"(2) = D& (2)Q55a(I + D™ (2)Q5 %)™ (K. + Le)

n

(= K1+ (A — A)A'KC)
is bounded by %, then I + Dg’”(z)Q%’;q has a right inverse which is bounded by

2HR€ — (I + D(C)ﬁ(Z)Q%’,iq)_l(Ke + La)HO—m'

In particular, as K, + L. and R. are uniformly bounded in B°(R%~!), this would yield
the assertion. Using the estimates for L. and K. from Step 3 as well as (5.12) and
the text above it, we obtain for a fixed r € (0, ¢)

1Zellg < (D5 (2) = DE*(2)Q55a(I + D§™(2)Q55a) ™ K|
+ [[(D§™(2) = DE"(2)Qxa(l + D5 (2)Q55a) ™ Lel g
<D () - DE*(N@SEall,
’ H(I + Dgﬁ(z)Qg’,iQ)_l||1/2—>1/2||K5||0—>1/2
+ (D" (2) = DE"(2) @5l
AN+ D5 (2)Q550) ™ gyl Lelloso
< (D" () = DE ()@l o
T+ DR ™ oy ol KNl
+ (D5 (2) = D™(2)) @5l
NI+ D5 (2)Q550) ™ o-yoll Lelloso

<o (L0001 4 og(e)))

=C(1 + [log(e))(e"/°7" +€¥%) < O(1 + [log(e) )/

This shows that if we choose €43 > 0 sufficiently small, then ||Z5H0 Lo < 3 forall
€€ (0,eg3)- O

Finally, we are able to state the main result of Section 5.1 in the following proposi-
tion.
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Proposition 5.18. Let ¥ be a rotated C?-graph as described in the beginning of
Section 5.1.2, 2 € C\ R, q and V =nly + 7 be as in (5.1) and (5.2), d =n* — 72
fulfil

71.2

sup d(zy) < —
TyEY 4

and z € C\R. Then, there exists an econy € (0,€apc], witheapc > 0 chosen according
0 (4.19), such that I + B.(2)Vq has an inverse which is uniformly bounded in B°(X)
with respect to € € (0, Econy)-

Proof. From the previous proposition, (5.10), (5.11) and (5.18) we directly get that
the operator I+ B.(z)Vq has a right inverse which is uniformly bounded with respect
to € € (0,e4,3). Using (5.8) shows that then I 4+ B.(2)V ¢ has a right inverse which
is uniformly bounded for € € (0, €cony) if cony > 0 is chosen small enough. Moreover,
since z € C \ R, Proposition 4.1 (i) implies that I + B.(z)V ¢ has also a left inverse
which yields that I 4+ B.(z)Vq is invertible and its inverse is uniformly bounded. O

5.2 Main results

In this section we state and prove the main results of this chapter. After dealing
with the cases where X is a hyperplane in Section 5.1.1 and a rotated graph of a
CZfunction in Section 5.1.2, we return to our general assumption that ¥ C R? is
a special C%-surface as in Definition 2.1. We start by providing a useful lemma
regarding Dirac operators with d-shell potentials.

Lemma 5.19. Let O;,05 C RY be open sets such that tAhez'r lz\oundam‘es S1 = 004,
Sy = 00, are special C*-surfaces as in Definition 2.1, Vi = V;* € WL (S; CV*N),
Vo = V5 € WL(Sy; CVN), o € Cp(R%) and Hy, 55, Hys,, be Dirac operators with
0-shell potentials as in Definition 3.12. Moreover, assume that there exists an open
set O C R? such that suppy C O and O1 N O = O, N O, andVl = V2 o-a.e on
S1NO(= S2N0). Then, Hy, 5. ¢ = Hy,5 ¢, where ¢ is viewed as an multiplication
1 2
operator in L*(R%; CN), and for u € dom Hy,so 0 J € {1,2}, one hasu € dom Hy. s ¢
J J
and
90H\7jésju = H‘7j5sj ou+i(a- Vo)u.

Proof. In this proof we use the notations O, , = O; and O; _ = R?\ O; for j € {1,2}.

Moreover, v; denotes the unit normal vector field on \S; pointing outwards of O; ;.

Now, let us start by showing Hp s ¢ = Hg ;. . To do so, let u € dom Hyp 5 .
105, 205, 1051

Then, u € dom Hyp,;  C HY(R?\ S;). In particular, (¢pu) | O;+ € H(O;4;C").
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Furthermore, (pu) | Og+ € H'(Og4;CY) since supp ¢ C O and Oy +NO = Oy NO.
Thus, we can apply the trace operator to (¢u) [ Oz 4+ and obtain

~

. _ V: _
(ila - o)t — t5,) + 5 (8, +15,) ) ou

{(i(a . 1/2)(t‘§2 —tg )+ %(t§2 + th))gou on S, NO,

0 on S\ O,
(i(a ) (ES —tg,) + %(tg1 + tgl))gou on S;NO,

_{0 01151\0,

where we used pu € dom Hy, 5, supp ¢ C O and SN O = S;N 0. Hence, up fulfils
1
the boundary condition
| e Ve
(z(a ) V2)(t52 - tsg) + ?(tSQ + tsz)>90u =0,
i.e. pu € dom Hy,5 . This shows dom Hy; 5 ¢ C dom Hy, ;. The reverse inclusion
2 1 2
can be proven in the same way. Moreover, for u € dom Hy, 5o ¢ = dom Hy, 5 ¢ the
1 2
equality
Ho

Vids, 0 else,

ou = {(—i(a -V)+mB)(pu) | O NO in 0L NO,

0 else,

_ {(—i(a -V)+mpB)(pu) [ O NO in Oy NO,

= H\72552 pu

is valid, showing Hy,; ¢ = Hy,s. ¢. With similar arguments as above one proves
1 2
pu € dom H‘A/jés_, j € {1,2}, for u € dom H‘A/jgs_. Moreover, the product rule gives
J J

us for u € dom Hg.
VJ(SSJ'

goH‘A/jéSju = Hf/j&sj ou+i(a- Vo)u. O

The upcoming theorem, which is one of the main results of this thesis, shows that
for electrostatic and Lorentz scalar interactions, i.e. V =nly + 78, n,7 € CL(Z;R),
the simple condition

’/T2

sup d(zy) < —, d=n*—1° (5.64)
Ty EX 4

guarantees the norm resolvent convergence of Hy, for ¢ — 0.
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Theorem 5.20. Let q be as in (5.1), V = nly + 78 with n,7 € CL(Z;R) satisfy

(5.64), V. be defined by (4.3) and z € C\ R. Moreover, set V. = nly + 70 with

(n,7) = tanc(‘/Ta)(n,T) where d = n* — 12,

and there ezists an €cony > 0 such that for any r € (0, %) exists a C' > 0 such that

Then, the operator Hyg  is self-adjoint

||(HV5 N Z)—l N (H‘7 : < 061/2—7"

-1
5y Z) HLQ(Rf?;(CN)—w?(R@;CN
for all € € (0,econy). In particular, Hy, converges to Hys  in the norm resolvent
sense as € — 0.

Proof. First, we observe that (5.64), 7,7 € CL(3:R) and d = 72 — 72 = 4tan(*/73)2
imply B

inf —4

Jnf |d(zz) — 4] >0
and thus Hy; is self-adjoint by Proposition 3.15. Moreover, we note that if X is a
rotated CZ-graph, then the assertion follows directly from Theorem 4.15, the text in
the beginning of Chapter 5 and Proposition 5.18.

In the general setting ¥ C RY is a special C?-surface as in Definition 2.1. The
surface X is in this case a subset of | JI_, ¥; with X, = {ri(2/, {(2')) : 2’ € R~} for
l€{l,...,p}. Thus, we prove the general case by reducing it to the case of rotated
Cp-graphs. However, V is only defined on ¥ and therefore in general only on parts
of ¥y, 1 € {1,...,p}. Hence, we define suitable extensions of V' to ¥; in the following
way: Let ‘7, 7, T be the C}l-extensions of V, 7 and 7 defined by (4.10). Moreover,
we set Vj =V 'Y, =01 S, =7 Y and d; :==n} — 1 for [ € {1,...,p}.
Then, these functions also satisfy

7T2

sup di(zyx,) < Vie{l,...,p} (5.65)

Tz, €3 4

by construction as d = n? — 72 satisfies (5.64).

In order to be able to reduce the general case, we choose the Cl-partition of unity
D1y, Pp € CLHRY) for Qe from Corollary A.5, which fulfils supp o NY C W,
where Wy, ..., W, is the open cover of ¥ from Definition 2.1. Moreover, let for
£ € (0,e4up) Qe be the tubular neighbourhood of ¥; and V. be defined analogously
to VZ in (4.3). We claim that Q. Nsupp @, = Q.; Nsupp @, for all € € (0, e4y,) and
[ € {1,...p}. Indeed, if x € Q. Nsupp ¢, then there exists (zg,t) € ¥ X (—¢,¢)
such that © = xy +tr(zs). The equation 0 # ¢;(x) = @(zs)w(t), see Corollary A.5,
implies zy; € suppp, NE C W, NE =W, N, Thus, zy € ¥; and v(zy) = y(zy).
Consequently, x = xx + ty(zx) € Q. Nsupp ¢, and additionally

Ve(z) = V(mz)@ = Vl(m)@ =Vi(v).
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The reverse inclusion can be shown in exactly the same way. This implies in particular
Viepi=Veg forl € {1,...,p} and € € (0, erup). Hence, we get for [ € {1,...,p} and
e € (0,&¢yp) the identity

Hy, piu = Hy.ppu Vu € dom Hy, = dom Hy, = H'(R?; C™),

where Hy, . = H +V,. and Hy, = H + V. with H being the free Dirac operator; cf.
(4.4) and Definition 3.2. Additionally to @y, .., ®,, we introduce @41 :=1=> 7 | .
The fact that @y, ..., , is a partition of unity for QstTub shows that for all € € (0, #4®)
V.@pi1 = 0 and thus Hy, @y u = Hp,qu for u € HY(R?; CV). These observations,
setting Hy,,,. = H and applying the product rule yields for I € {1,...,p + 1},
e € (0,%42) and u € dom Hy, = H'(R% C")

@lHVEU = Hvaalu + Z(Oé : V@DU = H\/lﬁ@lu + Z(Oé . V(,/O\l) (566)

Next, we construct a resolvent for Hy, in terms of the operators Hy; .. We use (5.66)
to get for u € dom Hy, and z € C\ R

p+l
(Do, =)&) (v, = 2)u
=1
p+1
= Z Hy,. — 2)"'(Hy;,, — 2)pru +i(Hy,, — 2)" (- VE)u
= (5.67)
=" G ti(Hy, —2) (o V@)

=1
p+1

= (1+ Y iy, = 2) o V@) Ju
=1
In particular, if [Im z| > S0 o - Vo[ oo (mo.cvxy, then
p+1

I+ i(Hy, —2) o V@)

is continuously invertible in L2(R%; CV) and

(Hy, — 2) (I + Z i(Hy,. — 2)" (- v@))_l (Z(HVLE - z)-@) (5.68)

for all ¢ € (0,%4%). Next, we find a similar resolvent formula for the resolvent
of Hys. . Again, it is important to establish relations between Hys and Hy, .
l
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Here, V = tanc(‘/Ta)V, v, = tanc(@)vl, [l € {1,...,p}, Hys is defined as in
Definition 3.12 and Hys is defined in the same way as Hy,  (with % instead of
l

Y and V] instead of V). Furthermore, we set ‘Z,H = 0 and X,y = X. In this case

70105 coincides with the free Dirac operator H. Note that we already know from
p+1

the comments at the beginning of the proof that (5.64) and (5.65) imply that Hy;_
and Hys 1 € {1,...,p}, are self-adjoint in L*(RY; CN). Moreover, Lemma 5.19
l

shows that if u € dom Hy,_, then Qu € dom HV’zé:l and
Pillysu= Hys Qruti(a-Vou = Hys G +i(a-Vo)u (5.69)

for all I € {1,...,p+ 1}. Using (5.69) one argues with the same steps as in (5.67)
that for u € dom Hys5 and z € C\ R

p+1 p+1

(Do, =270 (Hys, = 2w = (14X ilHyy, — )7 (@ V@) Ju.
=1 1=1
Hence, if [Im z| > Zf;l o - V@HLOO(RQ;CNW), then I+Zf;1 i(Hle —2) Ha- V)
is continuously invertible in L?(R%; CV) and

p+1

(Hys, — 2)7t = (I + p_i’i(Hmzl —2) Ya- V@,))_1<Z(H‘Z§El — z)*l@). (5.70)

Thus, if |[Tmz| > 37 la- V@ Loo(ro,cv <y, then the assertion follows from com-
paring (5.68) and (5.70) with one another, and the case of the rotated CZ-graph.
Moreover, we can get rid of the assumption [Im z| > S5 || - Vol oo mo,cvxvy by

applying the resolvent identity

(Hyy, —w) ™' = (Hy, —w) ™" = (I 4+ (w — 2)(Hpg, —w) ™)
. ((Hf/&z —2)' = (Hy, — z)_l)(I + (w—2)(Hy, —w)™") Vz,w € C\R.

This completes the proof of Theorem 5.20. (|

In the next theorem we add a magnetic term to V' and show that then Hy, also
converges to a Dirac operator with d-shell potential with electrostatic and Lorentz
scalar interactions. However, in the following theorem the rescaling of the interaction
strengths is different.

Theorem 5.21. Let g be as in (5.1), V =nly + 70 + m(a - v) with n,7 € CH(Z; R)
and the unit normal vector v on ¥, d = n* — 72 satisfy

71'2

xszuepz d(zs) < T and mlgnefE |d(zx)| > 0,
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V. be defined by (4.3) and z € C\ R. Moreover, set

o —2 _
(1n,7) = —\/Etan(‘/Tg) (n,7)

and V = nin + 75. Then, the operator Hyjs s self-adjoint and there exists an
Econy > 0 such that for any r € (0, %) exists a C > 0 such that

(. = )7 = (1 < et

—2)7|
dx; L2(RO;CN)—L2(RO;CN)
for all e € (0,econy). In particular, Hy, converges to H%E i the norm resolvent
sense as € — 0.

Proof. We start by calculating

o o AP -7 4
d=n%2_72= = . 5.71
DT T Gtan () tan (L) o7

Thus, the assumptions regarding d imply that the inf, ex|d(xs) — 4| > 0 and hence
Hys  is self-adjoint according to Proposition 3.15.

For the remaining proof we use an idea from [24, Section 8|. This idea makes use
of the fact stated in Proposition 3.15 (i) that the two Dirac operators Hys and
H_ AV i)y ATC unitarily equivalent. More precisely, Hys = UH_ AT ) 5. U, where U
is the self-adjoint unitary multiplication operator in L?(R?; C) which is induced by
the function w = xq, — xo_. If we set F':==nly + 73 and F := tanc(\/—a)F, we get

2
in the current setting
~ -2
V=—"—"7—F

Vi ()
and by (5.71)

—4~ 2tan vd ~
7\/: %F:t&mc(%&)ﬁ’:ﬁ’.

In particular,
UHps U = Hy, .

Note also that Theorem 5.20 shows that Hp, , where F. is analogously defined as V.
in (4.3) with F' instead of V, converges to H s, I the norm resolvent sense. In this
proof we find unitary multiplication operators W, such that

WXHp W, = Hy,

and W, — U for ¢ — 0 in a suitable sense. Furthermore, using the convergence prop-
erties of these operators and Hp. we show that Hy, converges in the norm resolvent
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sense to Hys . Having explained the ideas, we start the main part of the proof by
defining for € € (0, g¢yp) the function

1 z €0y \ Q,
w, : R — C, we(x) = i [ ats) s p=xy+tu(zs) € Q.
—1, r e\ Q.

This function is well-defined according to Proposition 2.12. Moreover, f_ll q(s)ds =1
shows that w, is continuous. We define W, to be the unitary multiplication operator
in L*(R% CY) induced by w.. Next, we show w. € WL(R’). To do so, let us fix
= t(zg,t) € Q. and ' € R~ such that sq(2') = xx for al € {1,...,p}. This
implies © = (2, t) with ¢; from Definition 2.7. In the proof of Lemma 4.3 we showed
that ¢ : R~! x R — RY is locally around (2/,t) a diffeomorphism. Moreover, using

w, o (2, t) = e J45 ats) 4% the chain rule and formula (4.12) for (Dy;)(2/,t) yields

T

Vw(r) = (((DLZ)(:U’,t))’l) V(we o ) (2, t)

) E t/e
_ ( N ‘ ]/l<q;/) )Z'/qu(a)eiwf_/l q(s)dsee
; t
— () T ),

where ey is the #-th Euclidean unit vector in R?. Hence,

ot
Vw.(x) = ’/(f’fz)#wa(w), r=(xx,t) € L,
07 T ¢ Qg,

and w. € WL (R). These considerations, o- = w, € WL (R’), and the definition of
V. in (4.3) show dom W*Hp. W, = dom Hy, = H'(R?; C") and

W:HpW. = Hp. —iw.(a-Vw,) = Hy;

cf. [24, Section 8, below the proof of Theorem 2.6]. We note that w. converges
pointwise to w = xq, — Xo_ and therefore W, converges in the strong sense to the
operator U. In addition, for € € (0, &) the estimate

1 = U)ullaory < 2Culimgosery Yu€ HHEAS) (572

€

is also valid. We postpone the verification of this fact to the end of the proof. More-
over, (Hps —2)~" also acts as a bounded operator from L*(R%; CV) to H'(R”\X; CV).
Indeed, one can show this by using dom Hz; € H'(R?\ X;CV), see Definition 3.12,
the boundedness of (Hz;_ —2)~" acting as an operator in L*(R? C"), the continuous
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embedding of HY(R? \ 3;CY) in L?(R? CV) and the closed graph theorem. Thus,
(5.72) gives us for € € (0, e4yp)

H(W: —U)(H5 ) < Ce'l?.

bs Z>71HL2(R9;<CNHL2(R9;<CN

This observation, the norm resolvent convergence of Hp. (see Theorem 5.20) and

the fact that U and W, are unitary operators let us estimate for € € (0, econy) (With

Econy > 0 from Theorem 5.20)

[(Hy. = 2)" = (Hys, — Z)_lHL%RG;CN)-@?(RG;CN)
= WX (Hp, — 2)"'We = U(Hps, — 2) 7 Ul 2o vy r2me o)
< ”W;((HFE —2)7 - (Hféz - Z)_l)WEHL?(RG;CNHLQ(RG;CN)
(W2 = U)(Hps, - Z)_lwaHL2(R9;¢:N)—>L2(R9;@N)
+ HU(HFJE =) (We - U>HL2(]R9;(CN)—>L2(]R9;(CN)

- H(HFs -2 - (Hﬁéz - Z)il”LQ(RQ;(CN)%LQ(R";(CN)

+][(wz - U)(Hps, — z)_lHL?(R@;CNHH(RG;CN)
+ [|(Hpsy — 2) 7 (W = U)HLQ(R‘);(CN)—&?(RG;(CN)

- H(HF -2 - <Hﬁéz - Z)_l||L2(R9;CN)—>L2(R9;(CN)
+|[(wz — U)(Hps, — 2)71HL%RG;CNHL?(R@;CN)
(e U)(Hps,, — 2)71HLQ(R";(CN)HLQ(RG;CN)'

< Ol o o1/

; Cel/2r

where 7 € (0, 1). Hence, it only remains to prove (5.72).
We start by choosing u = uy @ u_ with ux € C5°(Qx; CY) and get for £ € (0, gyp)
IOV = Ol em = [ 160 = 0 0) + xo () u(o)f d
<4 | |u(z)]*d.

Qe

Moreover, by Corollary 2.10 (where we use e, < €,) and Proposition 2.12 we obtain

(z)* dx SC’/_6 /E]u(xg + tv(zy))|? do(xy) dt

lu
Qe

:og( /_ 01 /E s (w5, + tev(as))|? do(as) dt
+/01/2|u(atg—i—tau(a:g))\2da(xg)dt).
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Next, we estimate the term ffl Jslui(zs + tev(zs))|? do(xs) dt. Note that the smooth-
ness of w implies that for t € (—1,0) the function

Y3 xy = uy(os + tev(zy))

coincides with the trace of the function 7., " u, where 7.~

duced in (4.18) (for 6 = et). Thus,

is the shift operator intro-

/_(1/Z|U+(xz+teu(xz))’2 da(xE)dt:/_i/2|t27—§+u(1’2)’2 dor () dt.

Now, Proposition 2.3 and Corollary 4.5 let us estimate this term in the following
way:

0 0
/ /‘tzTg+U+<l’Z)‘2dO’<l’E) dt:/ HtETngu+“%2(E;(:N) dt
—1Js 1
0
Q
S/' ||t2T5t+u+H§{1/2(E;Cz\J) dt
1

0
Q
<C [ 1w, om
< Cllus 3o, cm)-

Therefore,

0
| fstas + e P dotas) de < Cllucl, o

in the same way one gets

1
/0 /E|u_(;vz + tv(zg)) | do(vx) dt < C|]u_\|§{1(ﬂ_;(czv).

This implies (5.72) for u € C3°(Q4; CN) @ C5°(2_; CV), which is a dense subspace
of HY(R?\ X;CN) = HY(Q;CN) @ HY(Q_;CN); see e.g. [54, Chapter 3|. Hence,
(5.72) is valid. a

An immediate consequence of the two previous theorems is the following corollary.

Corollary 5.22. Letq be asin (5.1), V = fin+78 with 1,7 € CH(XZ;R), d = * — 72
satisfy either

sup |d(zx)| <4 or inf |d(zg)| > 4,
Ty €Y TnEX
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and z € C\ R. Moreover, let the interaction strengths n,7 € C{(3;R) be given by

Qarctan(%‘i) ~ o~ 7
TOL T)a Sup:cgEE|d(IE)| < 47
(7]77—) = —2arctan | 2= ~
T\/&(ﬁu ?)7 inf$262|d(x2)’ > 47
_ {an +78, S, es|d(ws)] < 4,

NIy + 78+ m(a-v), inf,.ex|ld(zy)| >4,

and V. be defined by (4.3). Then, the operator Hys  is self-adjoint and there exists

an Econy > 0 such that for any r € (0, %) exists a C > 0 such that

|(Hy, —2)~" = (Hy < Qe

-2
s L2(R?;CN)—L2(R?;CN)
for all ¢ € (0,econv). In particular, Hy, converges to HWE in the norm resolvent
sense as € — 0.

Proof. By definition, we have

) -
dif 7 = 4arctan ()", supmez]ﬁi(:cg)\ < 4, -
4arctan(

&5

)’ infyges|d(zs)] > 4.

Hence, as arctan(t)? < ’lr—z for t € [0,1) and ¢ € iR, the inequality sup,_cy d(rs) < ”72

holds in both cases. Thus, if |d(zx)| < 4, then the assertion follows from Theo-
rem 5.20 and inf,.cx|d(zx)| > 4, then the assertion is a consequence of Theorem 5.21.

Corollary 5.22 is particularly interesting in the case that 7,7 € R. Then, the condi-
tions of Corollary 5.22 reduce to d = 77? — 72 # +4. The two excluded cases d = —4
and d = 4 are called the confinement case and the critical case, respectively; cf. the
discussion below (1.3). We show in Corollary 7.5 that by an additional scaling of the
strongly localized potentials one can also approximate Dirac operators with J-shell
potentials in the confinement case and therefore all Dirac operators with d-shell po-
tentials and noncritical electrostatic and Lorentz scalar interaction strengths can be
approximated in the norm resolvent sense by Dirac operators with strongly localized
potentials. Moreover, we provide a counterexample in Theorem 6.1 in the critical
case.






6 Counterexamples

In Theorem 5.20 we showed that for V = nly +76, n,7 € C}(Z;R), d = n* — 72, the
condition
2
sup d(zy) < —
Ty EX 4

guarantees that Hy, converges in the norm resolvent sense for € — 0 to Hys  with

V= nly + 76, where (1,7) = tanc(‘[)(n, 7). In this chapter we show that this
condition is optimal by providing counterexamples in the case of constant interac-
tion strengths, i.e. 7,7 E R As already mentioned in the introduction, we have to
consider the case d = 1? —72 = 4, which is the so-called critical case, _and d #+ 4, sep-
arately. From Proposition 3.15 we know that Hy,;  is self-adjoint if d # 4. However,

if d # 4, then Proposition 3.15 is not applicable and Hy; is generally not self-
adjoint. Thus, in the latter case it is not meaningful to ask the question whether Hy,
converges in the norm resolvent sense to Hy 5s . However, under certain assumptions
regarding ¥, the operator Hy;s is essentlally self—adpmt The first counterexample
given in Theorem 6.1 deals Wlth this situation. In particular, we show the followmg
If ¥ is a compact and smooth hypersurface, d > = = and d =4 (ie. d= (2k + 1)27r

k € Np), then Hy, does not converge in the norm resolvent sense to the closure
of Hys, . Afterwards, we consider the case where ¥ is an affine hyperplane in R’
and find out that in this situation o(Hy,) = R if 5,7 € R are chosen such that
d=n*>—-1%> ™ and € > 0 is sufficiently small. Furthermore, by combining this

1
result with known spectral properties of Hys_  we show in Corollary 6.6 that if X is

an affine hyperplane, d > ==, d # (2k + 1)?7? for k € Ny and d # 4, then Hy, does
not converge to Hy; in the norm resolvent sense. Finally, we transfer this result
in Theorem 6.7 to the case where ¥ is a special C?-surface which contains a flat
part. The mentioned counterexamples are particularly interesting since it is known
in various situations which are included in the counterexamples that Hy, converges

in the strong resolvent sense to Hyy ; see [18, Theorem 7.2], [24, Theorem 2.6] and
[74, Theorem 2.1].

Theorem 6.1. Let ¥ C RY be a compact C*°-smooth hypersurface, q be as in (4.1),
V =nly +718 withn,7 € R, d = n*> — 7% > %2 such that d # (2k + 1)*x% for
k € Nq is fulfilled and V. be deﬁned by (4 3). Moreover, let V. = nly + 7 with

(n,7) = tanc(‘[)(n, T) and d = n? = 4. Then, Hy,_ is not self-adjoint but
essentially self-adjoint. Furthermore, HVE does not converge in the morm resolvent
sense to the closure of Hys  for e — 0.

119
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Proof. The claims regarding the (essential) self-adjointness follow from [13, Theo-
rem 4.11] for = 2 and from [19, Theorem 3.1 (ii)] for § = 3. Thus, it only remains
to prove the non-convergence statement. By Proposition 2.24 we can w.l.o.g. assume
m > 0. If ¥ is compact, then supp V. C ). is compact. Hence, according to [54,
Theorem 3.27 (ii)| V. induces a compact operator from H'(R? CV) to L*(R%; CV).
Moreover, we know from Proposition 3.3 (iii) that (H — 2)~! is bounded acting as an
operator from L2(R? CN) to H'(R% CV). In turn, the resolvent difference

(H—2)7" = (Hy, = 2)" = (Hy, = 2) ' Ve(H = 2)™

is compact in L?(R? CV), which shows gess(Hy.) = 0ess(H) = (—00, —m] U [m, 00).
Equipped with this preliminary observation, we now prove the claim about the non-
convergence by contradiction. We assume that Hy,. converges in the norm resolvent
sense to Hys  for e — 0. Then, Proposition 2.25 (ii) yields

Oess(Hys, ) = (—00, =m] U [m, 00).

Furthermore, [13, Theorem 1.2 and Theorem 1.3| and [20] give us —%m € Oess(Hys,)-

However, in the current case 772 — 72 = 4 and therefore —%m € (—m, m) which leads
to a contradiction. a

Next, we consider the case ¥ = k(R?™ x {yo}) = %, » with £ € SO(0) and y, € R,
i.e. ¥ is an affine hyperplane in R’. Moreover, we assume V = nly + 73 with
n,7 € R such that d = 7> — 72 > . We show in Theorem 6.5 that under this set of
assumptions o(Hy,) = R for € > 0 sufficiently small. In Corollary 6.6 we utilize this
knowledge to show that in this situation Hy, does not converge in the norm resolvent
sense to Hys, .

We start by applying the coordinate transformation Z(z) = xTx —yeq, where z € RY
and ey is the 0-th Euclidean unit vector in R’ to Hy,. This transformation turns the
operator Hy, into the unitarily equivalent Dirac operator

Hy.u(%) = Hy.u(3(z))
= —ia - Vyu(z(x)) + mPu(z(z)) + Ve(x)u(z(x))
= —ia - Vzu(T) + mpu(z) + Ve(z)u(z), T =1a(z) € R’
for u € dom Hy, = Hy, = H'(R?;CY), where & = (@, ... dp) is defined as in (5.21),
ie. o= (aq,...,0a9) with oy = a - kej, j € {1,--- 0}, where e; is the j-th Euclidean

unit vector. Furthermore, for 7 = (7, 79) = Z(z) € R’ we get

T = KT + yokeg = K(T',y0) + Tyrey, where (T, yo) € ¥ and rey L 3.
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In particular, combining this observation with the definition of V. in (4.3), and in-
troducing ¢ as the zero extension of ¢ to R with ¢ € L>*°((—1,1);R) as in (4.1), we
obtain

V.(z) = V@ for T = (¥, 74) = T(z) € RY. (6.1)

Hence,

dom Hy, = H'(R’; CV),
. N B B gy , (62
Hy.u(Z) = —ia - Vzu(T) + mpPu(T) + VTeu(x), T = (7,79 € R".

Applying the Fourier transform with respect to the first § — 1 variables, which is
denoted by F; and defined in Section 2.1 (xvii), and identifying L?(R?; C") with
the Bochner space L?(R%~1; L2(R; CY)), see Proposition 2.18 (iii), we get similarly
as in [18, eq. (2.3) and the text below| that flﬁve}"l_l is unitarily equivalent to the
decomposable operator in L2(R?~!; L2(R; CY)) which is induced by the mapping

R 3¢ Hy o
with
o~ /_~~i a(E) i, N
vaygl = f ZOégd~ +m6+ V_€ y dom HVE,ﬁ’ =H (R,(C )7 (63)
Zg
for ¢ € R%~1; cf. Proposition 2.20. The notation &' - & was introduced in (5.22). By

Proposition 2.20 we can analyse the spectrum of Hy,. by studying the spectrum of
Hy, ¢ for ¢ € R%7!. Next, we introduce the operators

~ . d
HO,&’ =a 5/ — ’iOé@dT + mﬁ, dom HO,&’ = H1<R7 (CN>,
Lo

Vi LA(R;CY) — L*((—1,1);CY), Viu(Zg) := —=u(edy),

B

and

\/Lgu(ii)’ ’559’ <g,

Vi LA((—1,1);CY) — L*(R;CM), Viu(Tg) = B
0, || > €.

Then,
Hvagl = Hovf/ —|— VEVQVE

Let us start analysing Hy, ¢ by studying the operator Hy ¢ . Thereby, we proceed in
a similar way as in [18, Section 2|. Applying the (one-dimensional) Fourier transform
shows that Hj ¢ is unitarily equivalent to the matrix multiplication operator induced
by the matrix-valued function

Mg : R — CVN, Mei(&9) = a - (€,8) +mp.



122 6 Counterexamples

This implies that the operator Hy is self-adjoint. The spectrum of Hy e is given
by the closure of the image of the eigenvalue curves corresponding to Mg/; see [36,
Proposition 1. Using the rules for the Dirac matrices from (5.23) one concludes

(Mg (80))* = (I€']° + &5 +m?*) Iy

for & = (¢,&) € R’. Moreover, by the structure of the Dirac matrices, Mg (&)
cannot be a multiple of Iy if & # 0 or m # 0; cf. Definition 3.1 and (5.21) . Thus,
the eigenvalues of M (&) are given by £4/]¢'|? + £2 + m?, and hence the spectrum
of Hyg is given by (—oo, —+/|&'|2 + m?] U [\/|€'|* + m?,00). Applying the rules for
the Dirac matrices again yields

d2
Ho = (- Al m?) Iy, dom Hig = H(R; CY).
It is well known that

il— 2_m2_|¢/|2
OO’Lel't s|y/z2—m2—|¢’|

(Hg,é’ — 27 () = / (s)ds, fe L*R,CY), teR;

N T

see for instance |66, eq. (8.7)]. Note also that we switched from the variable Zy to t
for convenience. The resolvent representation of Hg’g, implies

(Hog —2)7' f(t) = (Hog + 2)(Hge — 2*) 7 f(1)
:/OO (&’-f’—l—mﬁ—l—z[N
—eo /2R —m? — [P

for f € L?(R;C") and ¢t € R. Using Lemma 3.10 (i) one obtains that z € p(Hy¢) is
in the point spectrum of Hy, ¢ if and only if

. il— 22 (g2
ze’lt s|y/z2—m?2—|¢’|

2

+ apsign(t — s)> f(s)ds

—1€0,(D.e(2)Vq) with D.¢(2) =Vi(Hoe — z)’IVLE. (6.4)

The operator D¢ (z) : L*((—1,1); CY) — L*((—1,1); C") has the explicit represen-
tation

~6is\t—s| 22—m2—|¢'|?

1~ ¢ I o
0.¢0) = [ (° wi fﬂ”jf_*é,';v +sign(t - 5))

for g € L?((—=1,1); CY) and t € (—1,1). Recall that this operator was already derived
in a different way in Section 5.1.1; c¢f. Lemma 5.1, Proposition 5.2 and Definition 5.3.
In the following lemma we compare this operator with the operator $g¢//je|(2) which
was defined in (5.30) and which is for ¢ € Rt \ {0}, g € L?((—1,1);C") and
t € (—1,1) given by

g(s)ds

!/

1
_ ~ . 1
Puceralt) = [ (357 -+ idusien(t = 9)) 30(5) ds
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Lemma 6.2. Lete >0, 0#¢ € R and z € (—|m|,|m|). Then,

190,611 = Deer(2) || L2 (1,107 L2((-1,1),0)
< \/N(éle m? + |2 +

2|m| N m? )
& 212

Proof. Similarly as in Lemma 5.5, we prove the result by estimating the difference
of the kernels of both operators. This difference is given by

o gl( Z~|§/|6is\t—s| z2—m2—§’2> i(mﬁ—i—z[N)eia‘t_S' 22—m2—|¢’|2
21¢| \/Z2_m2_ EE 2\/z2—m2— EE (6.5)

(6% ; /
+ Z'Eesign(t — 5)(1 — eiEltmshy=2mma—ley

Before we estimate the individual terms of this sum, we mention that for a unitary
self-adjoint matrix A € CV*¥ the Frobenius-norm is given by

A2 = tr(AAY) = tr(Iy) = N.

This applies in particular to &’ - %, ay, f and Iy. Hence, the third term in (6.5) is
bounded by

VNI elt—sly/Z=m— P

<eVNy/m?+ €2 — 22 < eVNy/m2 + €2,

where we used z € (—|m/|,|m|) and |t — s| < 2. The second term in (6.5) can be
estimated by

VN(m[+]2))  _ VNIm|
2/|E+m2 =22~ ¢

Finally, we estimate the first term in (6.5) by

VE(VEP T =2 [¢])
+
2/ + m? =22
\/N(mz _ 22)
VI +m? = 2(VIEP +m? — 22+ [¢])
V' Nm?
Al

_VN‘l _ elt—sly/PmmP e P
2

<eVNy/m? + g2+

< eVNy/m2 +[¢)? +

where we used again z € (—|m|,|m|) and |t —s| < 2. Combining these results
shows that the kernel of $o¢/j¢//(2) — D ¢/(2) can be estimated by the expression
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\/N(25\/m2 +1¢12 + E?' + 4|€,|2) This estimate and the Schur test, see [44, Chap-

ter 111, Example 2.4|, yield

190,711 = Deer(2) || L2 (1,007 = L2((—1,1)0)
2

1
s/ W(% m2+|€/|2+‘ L m )dt

1 & 202
_ - 2|m| m?2
= VN (4ev/m? £ TP + 357 + 377

(|

Lemma 6.3. Let q be as in (4.1), V = nly + 78 with n,7 € R, d=n?> — 72 > 0,
and & € R\ {0}. Then, the (nonzero) eigenvalues of $oe eV q are given by

_ _2Vd
A = (2]3_‘_1 keZ.

PT’OOf. Let A € C \ {O} and g € L2<<_1, 1)7 CN) such that .60’51/‘5/‘ng = )\g’ i.e.
! 1
/ e e
-1

Differentiating both sides gives us
iV qg = \g'. (6.6)

Hence, ¢(t) = exp(%VQ(t))v for a v € CV\ {0}, Where (@ is the primitive function
of ¢ chosen in such a way that Q(1) = —Q(—1) = 2; cf. (4.37). Note that the
equation $o ¢ /jeV qg = Ag implies

1 a !
23
o) +a(-1) = [ Te=Vats)g(s)ds
&/ 5/ 1 i&g . (67)
@l Zag/ TVq(s) exp(22VQ(t))v ds.
Calculating the integral on the right-hand side leads to
~r ¢l ~r el
g(1) + g(—1) = 2cos(52V)v = 2a’§/’ Qg sin(aGV) 0’2/’)\ Vsine (52 2V )v.
Noticing (@pV)? = (ag(nin + 73))? = dIy yields
vay, - &€ Vi
cos(L)v = (nIn + 783)sinc(¥E)v.

21¢'[A
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Thus, v # 0 implies
0= det(COS(g)IN 2‘5/‘)\(77[N + TB)SIHC(L,\E))'

Now, using the rules from (5.23) and (5.24) shows that this is equivalent to

0= det((COS(“f)IN o5 (NI + 7B)sine(¥1))
- B(cos () In — gigix (nly + 7)sine(
)y = 55 (nly + 7B8)sinc (%))
- (cos(3) I + gigix (01w +73)sine (3
(#)6)

:det<(cos( )2 4/\28111(: 2/\

= <cos(\/a)2 —sm(\/a)2> det(3) = (COS(\[) —sin(

2 2X

SIS

))

))8)

SIS

= det < (cos (

SS
SIS

)
SIS

)2)N(_1)N/2

and therefore \ = Ghir = =\, for k € Z.

2k:+1

Finally, let us shortly argue that every Ay, k € Z, is an eigenvalue of $o ¢ /1e/Vq.
Taking the the same steps as before in the reverse direction one can construct a
nonzero smooth function g € L?((—1,1); C) which fulfils (6.6) and (6.7) for A = \;.
Integrating (6.6) over the intervals (—1,t) and (t, 1), subtracting these two integrals
and applying (6.7) gives us

/ iagV q(s)g(s)ds — /t iagVq(s)g(s)ds = M ((g(t) — g(=1)) — (9(1) — g(t)))

-1

1 o /
£
2900~ [ “EVatslg(s)ds
1 1¢
Hence, dividing by two and rearranging the terms leads to o /jeVqg = Arg; ie.
Ak is an eigenvalue of g ¢ /e V. O

Lemma 6.4. Let q be as in (5.1), V = nly + 78 withn,7 € R, d =n*> — 7% > %2
and Hy, ¢, & € RO, be defined by (6.3). Then, there exists an eeex > 0 such that
for all e € (0,ccex) and z € (=|m|, |m|) exists a & , with z € o,(Hy. ¢ ).

Proof. Since n*—1% > %2 > 0, we have sign(n) = sign(n+7) = sign(n—7). Moreover,
q > 0 a.e. by assumption (5.1). Therefore, V¢ can be rewritten as sign(n)D? with
D = \/qdiag(+/|n + T|In/2, \/|n — T|In/2). Hence, the eigenvalues of . ¢ (2)Vq and
sign(n) DD, ¢ (2)D, & € R~ coincide. Now, (6.4) shows that in order to verify the
assertion, we have to prove that there exists an e¢e, > 0 such that for all € € (0, £¢ex)
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and 2 € (—|m|,|m|) exists a &, with 1 € o,(—sign(n)DD.¢ (2)D). Before we
proceed with the proof, we introduce two useful functions. Let S(L?*((—1,1);CY))
be the space of all self-adjoint and compact operators on L?*((—1,1); CV) equipped
with the operator norm topology. Note that D, ¢ (2) and ¢ ¢/je/ are Hilbert-Schmidt
operators, since their kernels are bounded, which implies

sign (1) DD.¢ (2) D, sign(n) Do e e D € S(L*((=1,1);CY)).

The mapping
Ao S(LA((—1,1);CY) = R

which maps a compact self-adjoint operator to its biggest nonnegative element of the
spectrum is continuous; see [33, Lemma 3.10]. Furthermore, we define for a fixed
& e R\ {0}, and 2 € C\ R and € > 0 the continuous function

e,z (Oa OO) — S(LQ((_L 1); CN))? = —sign(n)D@wE()(z)D.

Our goal is to find r € (0,00) such that \g o . .(r) = 1, as this implies that z is
an eigenvalue of the operator Hy, ¢ . Since Proposition 2.29 shows that the spectra
of —sign(n)D$oerjer(2)D and —Ho e /je(nly + 75)q coincide, Lemma 6.3 implies
o(—sign(n)DHo e e D) = %& > 1. Moreover, as )¢ is continuous, there exists a
§ > 0 such that for all A € S(L?((—1,1);C")) with

14+ sign(m) D 9o /11 Dll a1 1yemys 2 raneny <0

also A\g(A) > 1. According to Lemma 6.2 there exist £eex > 0 and rex > 0 such that
for all € € (0,e.x) and all z € (—|m|, |m|)

26,2 (Teex) + sign(m) DSo.er /11 Dl 21 1y0v) 22 ayevy < O

implying Ao © fre 2 (Teex) > 1 for all € € (0,ecex) and all z € (—|m|, |m[). Moreover,
it is easy to see that for fixed € € (0, £cex) and z € (—|m/|, |m|) the operator p. .(r)
converges for » — oo in the operator norm to zero. Therefore, also Ag o . () con-
verges for 7 — 00 to zero. Let us summarize, for € € (0, eeex) and z € (—|m/|, |m|) the
function A\go fi. , is continuous, Ago pe »(Teex) > 1 and Ago g (1) % (). Hence, there
exists an 7. . € (Teex, 00) such that Ao o 1. .(7-.) = 1 and therefore z € 0,(Hy, . .¢1)-
Setting &, . := r. . concludes the proof. a

Theorem 6.5. Let ¥ = k(R x {yo}), i.e. 3 is an affine hyperplane, q as in (5.1),
V =nly +78 withn, 7 €R, d =n*>—-12> %2 and V. be defined by (4.3). Then,
there exists an €cox > 0 such that o(Hy.) = R for all € € (0, &cex)-

Proof. Let e.ex > 0 be chosen as in Lemma 6.4. We claim that in this case for all z € R
and & € (0, £cex) exists a &, € R such that z € o(Hy, ¢ ). If z € (=|m], [m]), then
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this follows from Lemma 6.4. Now, let us assume that z € (—oo, —|m|] U [|m], 00).
The difference ~( )
a\z
Hy, o — Hoo = VT

is a compactly supported L*-function and therefore induces by [54, Theorem 3.27 (ii)]
a compact operator from H'(R; CY) = dom Hy o to L?*(R; C"). Moreover, the graph
norm of Hy is equivalent to the H'(R; C")-norm and hence V is relatively compact
with respect to the operator Hy . Thus, [44, Chapter IV, Theorem 5.35] implies

(=00, =[m[] U [lm], 00) = 0 (Ho0) = ess(Hoo) = Oess(Hv.0) C 0(Hy. 0).

Hence, the claim that for all ¢ € (0,ecx) and all z € R exists a & such that
z € 0(Hy. g ) is valid.

We finish the proof by showing that z € o(Hy, ¢ _) for a fixed & , implies 2z € o(Hy,).
The assertion follows from Proposition 2.20 and the text above (6.3) if we can show
that for all 6 > 0 exists a 75 > 0 such that (z — d,2 + 0) No(Hy,e) # 0 for all

¢ € B(&.,7s). We assume that our claim is not true. In this case there exists a
n—oo

' > 0 and a sequence (), )nen such that &, — &, and (z—0',2+0")No(Hy, e ) =0
for all n € N. Note that for w € C\ R holds
-1 -1
[(Hv.g. —w)™ = (Hv.g, = w) | famem) o ra@em

= ||(HV€7§Q,Z - w)*lbi’ ' (57/1 - éé,z)(HVs, [ w)71HL2(R;CN)*>L2(R;(CN)

1 n—oo

< = =0
— (Imw)2 |§n és,z )
i.e. Hy, ¢ converges in the norm resolvent sense to Hy, ¢ . Moreover,
(Z—5I,Z+5/)HU(HVS7§4L):@, TLGN,
and Proposition 2.25 (i) imply the contradiction (z — ¢, 24+ ) No(Hy, e ) =0. O
Using Theorem 6.5 leads us to the second counterexample concerning the norm re-

solvent convergence of Hy. .

Corollary 6.6. Let the assumptions of Theorem 6.5 be satisfied and assume ad-
ditionally d # (2k + 1)?x* for k € Ny. Moreover, let (1,7) = tanc(‘@)(nﬁ),
d = n? —72 # 4 and V= nln + 76. Then, Hy. does not converge in the norm
resolvent sense to Hy,  fore — 0.

Proof. By Proposition 2.24 it is no restriction to assume m > 0. We prove this
corollary by contradiction. Thus, we assume that Hy, converges in the norm resolvent
sense to Hy, . Then, Theorem 6.5 and Proposition 2.25 (i) imply o(Hys ) = R.
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However, this is not the case according to [18, Theorem 6.2 (c)] (f = 2), where
Hys  was defined and studied via direct integral methods, and [19, Theorem 4.1]
(6 = 3). Note that these two references only consider ¥ = {0} x R and ¥ = R? x {0},
respectively. However, by a suitable rotation and translation one can transform
Hys  to a Dirac operator with a d-shell potential supported on {0} x R or R? x {0},
respectively, and a different set of Dirac matrices; cf. |60, Proposition 4] and (6.2).
The exact form of the Dirac matrices does not influence the spectrum and therefore
the results from [18, 19] are also valid for the case ¥ = k(R%~! x {yo}). a

Having established a counterexample for the case where ¥ is an affine hyperplane,
we consider the case where Y is a special C%-surface containing a flat part in the next
theorem.

Theorem 6.7. Let ¥ C R? be a special C?-surface as in Definition 2.1 and assume
additionally that there exist k € SO(0), yo € R, § > 0 and =, € R~ such that
Y D k(B(xy,0) x {yo}), i-e. ¥ contains a flat part. Moreover, let q be as in (5.1),
V=nly+18 withn, T €R,d=n*>—-7%> %2 such that d # (2k + 1)*72 for k € Ny,
V. be defined by (4.3), (1,7) = tanc(\/?g)(nm), d=72—7244 and V = ijly + 78.
Then, Hy, does not converge in the norm resolvent sense to Hyy_

Proof. We prove this theorem by contradiction. Thus, we assume that Hy, converges
in the norm resolvent sense to Hy, and proceed as follows: In Step 1 we compare

the two operators Hy, and H yvoun where V2" is defined as V. in (4.3) with X
substituted by %,, . = &(R°~ 1 X {vo}). Then, in Step 2, we construct a resolvent
formula for H Yo in terms of (Hy, — 2)~!. Finally, in Step 3, we use this formula
to show that H yPuoe CONVErges to Hys ~ for e — 0; this contradicts Corollary 6.6.

Yo-rx

Step 1. As in (6.1) we can represent VEEyO’”, e € (0,00), by

a(Ze
ngo’”(x) = VM for x € R? and T = (7, Tp) = k72 — yoey, (6.8)
€
where ¢ is the zero extension ¢ to R and ¢4 is the 6-th Euclidean unit vector. Next,

we compare V. and nyo’”. To guarantee the well-definedness of V. we assume
e € (0, egup) With ¢y > 0 as in Proposition 2.12. Let

T e K“(B<x675) X (yO — Etubs Yo + €tub))-

Then, © = k(2',y0) + Tokeg for a vector T = (7',T9) € B(x(,0) X (—Etubs Etup). In
particular, through defining zy, := k(2/, yo) we get xy € k(B(z(,d) X {yo}) C ¥ and
that v(xx) = key is the corresponding normal vector at this point. Hence, by setting
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= Zp € (—Etub, Etup ), We have = zy + tv(zy) € Q. ., and by (4.3) and (6.8)

o(2)

‘/E(I) — V e |§9’ <eg,
0, |zg| > e,
_ Vq(g?) _ VEEyO’H(x),

implying

Vo I 6(B(xg,8) X (Yo — Etubs Yo + Etub))

S ) (6.9)
= ‘/5 o f K'<B(x07 6) X (yO — Etuby Yo + 5tub))'

In particular, if u € L*(R% CV) and suppu C x(B(zf,d) X (Yo — Etubs Yo + Etup) ), then
Vow = Vo " u and if uw € H'(R?;CY), then also Hy.u = H, s,.u.

Step 2. Based on Step I we construct a resolvent for A Vo in terms of (Hy, —z)~!

in this step. We start by constructing a partition of umty for the strip

R(RI x (o — S0,y + 532) ).

To do so, let (¢2,),sezo-1 with fixed a € (0, max{1,2}) be the partition of unity for
R?~! from Corollary A.3 (for n = 6 — 1). Moreover, let (9%, )eze—1 be also chosen as
in Corollary A.3. These sequences possess the following properties:

supp ¢%, C B(an’,a), supp?¥%, C B(an’,3a) and ¢2,9%, = ¢, for all n' € Z°7".

Moreover, the W1-norms of ¢¢ and ¥ are uniformly bounded with respect to
n' € Z°~*. Now, we choose a function ¢ € C5°(R) such that 0 < 9 <1, o =1 on
(yo — =k, yo + 5““3) and supp ¢ C (yo — %42, 9o + %4®), and define for n’ € 751

o= (0 @p) (1 () —yoes) aswellas = (I @ 0(3)) (K" () — yoes)-

Then, (Y% )uezo-1 is a partition of unity for k(R x (yo — &, yo + 2u2)), the

inclusions

supp P C k(B(an',a) x (yo — 5=, yo + 2)),
supp s, C /{(B(cm’, 3a) X (Yo — Etub, Yo + gtub))a

hold and ¥%¢% = ¢, for all n’ € Z°~!. Now, let the unitary translation operator 7,
n' € Z°1, which translates the argument of a function parallel to ¥,, ., be given by

T : LA(R%CY) — LARY%,CY),  Tou(z) = u(z + k(an’ — x{,0)).
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As T,/ translates the argument of a function parallel to X, ., we see with the help
of (6.8) that V20" commutes with T,. Hence, also H 2y commutes with 7.

Moreover, for all n’ € Z°~1 and u € L?(R?; CV) the inclusions

supp T u C /@(B(xg, a) X (yo — =, yo + €tT‘lb)),
supp Tycmu C k(B(x(), 3a) X (Yo — Etub, Yo + Etub) ),

are valid. These considerations and (6.9) show that we have for all n’ € Z%~! and
u € HY(R"L; CV)

H_syonshu =T H sy Towshu =T Hy. Tys®u. (6.10)
Ve n Ve n

We define ¢ :=1-3" , ., 9% . By definition ¢ = 0 on £ (R?™" x (yo — S, yo 4 Sub)).

1 1
Consequently, Hyu = Hvazyo,nwu for w € H'(R?™1;CV) and € € (0, =u2).

Next, we introduce for a fixed z € C\ R and for € € (0, *4*) the two series

st.
Rey = (H—2)""0+ Y yuT (Hy, — 2) T,

n/€79-1

st.
Hepi=(H—2) i V) + D 0T (Hy, = 2)  Ti(a Vi),

b
nleza—l

We claim that both Z. ; and Z. , are well-defined acting as operators in L*(R?; CV).
Setting A,y = ¢% T, (Hy, — 2)"'Tyc% and using the properties of 1, and ¥,
shows that for every n € Z°! exist at most 7°~! indices n’ € Z°°! such that
A Ay # 0 and A:L().Anf # 0. Hence, Lemma C.2 implies that the family of operators

(A)prego = (W8T (Hy, — 2) 1 Tw6% ) ezo—1 is strongly summable and therefore

st.
> LT Hy, — 2) Tt

n/€79-1
is well-defined and its norm is bounded by

C sup ||YuT, ' (Hy, — 2) " Ty

n/€Z79-1

L2(RY;CN)—L2(RY;CN)

< C sup HTJI(HVE —2) ',

n’€z9-1

= CH(HVE — Z

L2(RY;CN)—L2(R?;CNV)

-1
) HLZ(Re;CN)—)L2(R9;(CN)'

Thus, ., is bounded by

C(H(H - Z)_l||L2(]R9;(CN)—>L2(]R9;<CN) + | (Hv, — z)_lHL2(R9;¢:N)—>L2(R9;CN)>'
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Similar arguments and the fact that the derivatives of ¢?, are uniformly bounded with
respect to n’ € Z%~1 show that Z. 5 is well-defined and bounded by the same expres-
sion. Moreover, by choosing Im z big enough (independent of £) we can guarantee
|2z 2| L2rosovy— L2 o cny < 5 and hence I + Z. is boundedly invertible. Next, we
show that (I + %.2) '%., is the inverse of H‘iyo’” — z. We do this by determining
(I + @572)’1%&1([{%&;0,,{ — 2)u for u € HY(RY; CV). The product rule gives us

swH zp et =H synspu+i(a-Vep)u and  vHu= Hiu+i(a- Vi)u.

Combining this observation with (6.10) yields

<]+=%e,2)_1e@571(Hvzyo,n —2)u
— (1 + %) ((H = 2) " 0(H, e = 2)u

st.

+ Z Ve T (Hy, — z)*lTn/gfL”/(HVszyo,ﬁ — z)u)

nIEZO—l

= (I o) (H = 2)7 (H e — )0

st.
+ > TN Hy, = 2) M T (H s — )i

n/€79-1

+ Z (H —2)i(a - VY)u

n/€79-1

st.
+ Y YT (Hy, = ) i Vi u)
n/eZf9-1
= (I %)™ ((H = 2)7 (H = 2)pu
st.
+ Z V& T (Hy, — 2) T T (Hy, — 2)Tustu + %&2u>

nIEZO—l

st.
= (I + ‘@872)_1 (’QZ)U + Z ¢Z/§Z/u + %572U>

77/62971

= (I +%572)71([ -+ %E;)u =Uu.

(6.11)

Hence, (I + %-2)"'%. 1 is indeed the inverse of H‘iyo’” —z
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Step 3. Similarly as we defined Z.; and Z. », we also introduce

st.
Foy = (H—2)""p+ Y 0uT, (Hps, —2) T,

n/€Zo-1

Koz = (H — 2) i(a- Vob) + Z VT —2) Myi(a - V6%).

n/€79-1

Applying Lemma C.2 shows on the one hand that these operators are bounded by

(H(i¥'_'z)ilHlﬁ(RQCN)Aﬂﬁ(R%CN)<+ ,izy J‘jw Hys,, _'Z>717%4|L%RHﬂ%ﬁ;ﬂﬁ(R%@N))
- C(H(H o Z)_l||L2(]R9;(CN)—>L2(R9;(CN) + ||(H‘752 o Z)_lHLQ(RG;(CN)—)LQ(]RQ;(CN)>

and on the other hand that the differences %Z. s — %y and Z. 1 — %1 are bounded
by

e—0

C|| (Hv. —2)~" - (Hys, —2)” — 0.

) 1HL2(]R9;(CN)—>L2(R0;CN)
Hence, (Hvszyo,ﬁ —2) V= (I 4 R.2) ' %#.1 converges to (I + Xos) %01 in the op-
erator norm. It remains to prove (I + %o2) ' %o, = (H%Eyw — z)~1. We start by
noticing that Hf/ézyw also commutes with T,,, n’ € Z!, since T, translates the
argument of a function only along ¥, . and V' is constant. According to Lemma 5.19
u € dom Hmzyw (or equivalently T,yu = u((-) + x(an’ — z{,0)) € dom H%Eyo,m for a

n' € Z°7") implies Tutu = o ((-) +k(an’ — zf, 0))u((-) + K(an’ — z(, 0)) € dom Hyy

and

a _ -1y a _ —1lgry_ a
H‘752y0 St = T, HVézyO NTn/gn,u =T, Hys Tusyu,

a o _ a . . a
gn,H%Eyoyﬁu = HVézyo,fn’u +i(a - Ve )u.

Using these observations one shows (Hys  —2)7" = (I +%2) %o, in the same
Yo K
way as in (6.11). a



7 Consequences of the approximation results

In this chapter we present various consequences of the approximation results shown
in Chapter 4 and Chapter 5. In particular, in Section 7.1, we show a scheme to
approximate Dirac operators with d-shell potentials that induce confinement; cf. [65]
for the one-dimensional counterpart. Furthermore, in Section 7.2, we transfer results
from Dirac operators with d-shell potentials to Dirac operators with strongly localized
potentials to study their discrete and essential spectrum.

7.1 Approximation of Dirac operators with J-shell potentials
that induce confinement

In Corollary 5.22 we saw that all Dirac operators with J-shell potentials and inter-
action matrices of the form V = 5jly + 78, 1,7 € CL(X;R), with d = 7% — 72,
satisfying

sup |d(zs)| <4 or inf |d(zs)| > 4

TnED TxnEY
can be approximated by Dirac operators with strongly localized potentials. However,
this excludes the case where d = 7> — 72 = —4. According to Proposition 3.15 (ii)
this is a particular interesting case as it induces confinement, i.e. the operator Hy;_
splits into the orthogonal sum H; &) H‘; with

domH‘i/[ — {uy € H'(Qu;CN) : 21y Tila - v)V)tEus = 0} € L2(Qy; CY),

H‘%ui = —i(a - V)us +mpPus,

which means on a physical level that ¥ becomes impermeable for a particle. This
raises the question whether there is also a way to approximate such Dirac operators by
Dirac operators with strongly localized potentials. Inspired by the rescaling formula
in (5.6) one would have to choose V = nly + 78 with d = n? — 7> = —c0 as the
interaction matrix in_the approximating operators to obtain a Dirac operator with
d-shell potential and d = 72 —72 = —4 in the limit. We rigorously realize this idea by
choosing e-dependent interaction strengths 7. and 7. such that n? — 72 =8 0. The
same approach was used in [65, Chapter 3] when dealing with the one-dimensional
case.

133
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We begin by explaining the setting. We choose ¢ as in (5.1), V' = nly + 75 with
n,7 € C}(E;R) and assume that V. is defined as in (4.3). Moreover, we set d = n*—72,
assume
sup d(zx) <0 and sign(r) = const., (7.1)
Ty EX
and fix a continuous function f : (0,e¢m) — (0,00), with gy > 0 from Proposi-
tion 2.12, which satisfies the condition

lim f(¢) = oo and  lim fe)te? =0 (7.2)
e—>

e—0

for an r € (0, %) We also introduce the e-depend interaction strengths

(e, 7) = f()(n,7) and de =2 =72 = f(e)’d. (7.3)

Then, f(e)V = n.Iy+7.5. Now, we are interested in the norm resolvent convergence
of the operator Hy.yy.. Note that for a fixed ey € (0,etun) Hy(sy)v. converges by
Theorem 5.20 in the norm resolvent sense to Hy 5x for ¢ — 0 with

€0

V., = tanc(\/E)f(so)V.

2

Our goal is to prove that the limit of Hy)y. is the operator Hys. with

V =1lim V. = lim tanc(@)f(e)‘/

e—0 e—0

S

L Ztan(f(ag ) 22
—Eeve TN T

Consequently, V = Iy +73 with (7], 7) = ﬁ(n, 7) and therefore d = 72—72 = —4,

i.e. H%E induces confinement.

We start by proving several preparatory statements.

Lemma 7.1. Let g be as in (5.1), V =nly + 78 with n,7 € CL(X;R) satisfy (7.1),
V. be defined by (4.3), f(e) be the function from (7.2) and z € C\ R. Moreover,
let V. = tanc(¥&)f(e)V, V = ﬁv and dins = inf, e /|d(zs)| > 0, where

2
d=mn*—1712andd. = f(¢)*d. Then, Hy s and Hys  are self-adjoint and there exists
an €cont.1 € (0, €eun) such that

- h - din
|(Hys, = 2)7" = (Hyp, = 2) 1||L2(R0;(CN)HL2(R9;(CN) < Of(g)e /1)

for all e € (0, Econt1)-
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Proof. The interaction strengths corresponding to the interaction matrix \N/E are given
by (e, 7:) = tanc(‘/Q‘TE)(ng,Ta). Using (1., 7.) = f(¢)(n,7) and d(zx) < 0, xx € 3,
yields

Cl(xz) = ﬁe(x2)2 - ’ﬁ(xz)
_ 4tan<M>2

= —4tanh <f(€) dlws) > i

2

2

2

< —4 tanh(f(e) %)
<0

for all zyx, € 3. Moreover, by construction d = —4. Thus, Proposition 3.14 implies
that both H\Zéz and H\76: are self-adjoint, and that I 4+ C,V. as well as [ + C,V are

continuously invertible in H'/2(%; CV). Moreover, the resolvent formulas
(Hyyy —2) "t = (H = 2) ' = 0.V +C.V.) e,
(Hpsy —2) ' =(H—2)"' = ®.V(I +C.V) 'L,

hold by Proposition 3.14. Thus, the difference of the resolvents is given by

V(I +CV) T+ V(I +C.V) D

- . . . . 7.4
=0, (V-V)U+CV) 'O+ 0. V.(I+C.V) " = (I+C.V.) )L (74)

Simple calculations show

V. = tanc(‘/ﬁ)f(s)V = QM]C(E)V
e 2 - \/d_g
Ji
_ ptanh(f(e) 5 )f(g)vztanh(f(g)\@')?.

fe)V/ld

Thus, applying Proposition 2.2 (iv) and (v) yields

IVa=Vllwy envxvy < Cf tanh(f(e)\/T_) — wrIVIwy sovxa

< Clltanh(f(£)3) = Ulwz (@dsn.con |V 1Al lwz ) IV Iwo o,
< C||tanh(f(€)3) — LWL (dgur.00)-

The expression |[tanh (f(¢); is smaller than

5) N 1||W;o<<dmf,oo>>

f(e)

[tanh (f(e)5) = 1l oo ((durio0)) + TH tanh’(f(€)3) || 2o (.00 -
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Next, we estimate the two summands separately. We start with the first one. For
t € (ding, 00) the inequality

[tanh(f(e)L) — 1] = —— < 27/ < 27/ E)dint

is valid. Hence, || tanh(f(€)3) — 1]l zoo((dnr,00)) < 2€&%nr. For the second term we
obtain

1 i o
tanld (F&)5)| = cormap S ¢ 70 <O VEE (dur 00)

Consequently, || tanh(f()3) — Llw (.00 < f(€)e™/E%at and, in turn,
IV = Vww menxny < Cf()e™/dnt,

In particular, if econg1 € (0, €tup) is small enough, then Proposition 2.2 (iii) and
Proposition 3.8 (i) give us for ¢ € (0, €cont.1)

(I + sz)il”H1/2(E;(CN)HH1/2(Z;(CN)
' HCZG/E - V)HHl/Q(E;CN)%Hl/z(E;CN) < C“‘/E - V"Wolo(E;CN) < %

Moreover, Proposition 2.28 yields for I + sz/g =]+ CZ‘~/ + C'z(\N/8 — ‘7)

11+ Vo) Hlmeasenysmeseyy <200 +CV) Hmesensmesey. (75)

Using the estimates from above, Proposition 3.6 (i) and (7.4) yield

[(Hypsy, — 2)7 = (Hy. — 2) leosov)—r2@o oy
< Do (Ve = V(I + C V) T 08| aqmoeomy o raqosen)
+ BV (T +CV) ™ = (T +C.Vo) ™) @8 | paqosemys 2rosen)
< |V - ‘N/ngo(z;chm
I+ €)= (1 + CT) vieny s maeny
< Of(e)e e
I+ CTY T = Y+ ) sy sinameny
< O(f(e)e /@bt 4 V. - ‘N/ngo(z;cNXN))
< Cf(e)e 1,

which completes the proof. O
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Lemma 7.2. Let q be as in (5.1), V =nly + 78 with n,7 € CH(3;R) satisfy (7.1),
f(e) be as in (7.2), ccont1 be as in the previous lemma, z € C\ R, and By(z) and
Co(z) be the operators from (4.26) and (4.21). Then,

Hf Vq ] + BO( )f(g)VQ)_lcO(Z)HL2(R6;CN)_>1/2 = Cf(g)
||f Vq I + BO(Z>f<€>VQ)_ICO(Z)||L2(R9;(CN)_>O < Cf(5>7

for all e € (0, econt1)-

Proof. The proof of both results is very similar. Thus, we only verify the first norm
estimate. We give some remarks on how to show the second result at the end of
the proof. By Proposition 3.15 (iii), Proposition 4.13 and Lemma 7.1, the operator
I + By(2)f(g)Vq is continuously invertible in B/2(¥) and from (4.48) we get

F(EVaq(I + Bo(2)f(e)Vq) ' Col(z)
fle)Vgeos ((a-v) S

WY exp(—i(a - v) f(E)VQ)I(I +C.V.) e,

with V. from Lemma 7.1 and Q(t) = —2 1+ f t)dt for t € (—1,1); see (4.37).
We know from Proposition 3.6 that &% acts as a bounded operator from L2?(R?; CV)
to HY2(3;CY). Moreover, from the proof of the previous lemma, see (7.5), we

also know that ||(1 +C.V.) ™! | 1/2(s,08) s mr1/2(s,ovy is uniformly bounded with respect
to € € (0,econt1). Hence, using the boundedness of J acting as an operator from
HY2(2;CN) to BY2(%), see (2.10), Proposition 2.2 (iii) and Proposition 2.19 gives
us
[f(e)Va(I + Bo(z )f<5)VQ)_1CO(Z>HL2 ROCN)—1/2
< CHf e)Vqcos ((Q'V)M) exp(— <O‘ v)f(e VQ)H1/2a1/2

=Cf(e )esssupte ~1,1) ||Vq t) cos (( ) (7.6)
(—i(a- f(€ V)| 1.2 (S:CN)—s H1/2(S;CN)

(

(—

- exp
o- ) )V)_l

(0 ) FEVQD) [y e

< Cf(e)esssupe(—1 1) Hcos(

- exp

Next, we fix t € (—1,1). The identity ((a-v)V)?* = dIx = —|d|Ix and f(g) > 0 lead
to

cos ((a- V)f(z)v)_l exp(—i(o-v)f(e )VQ( )
cosh(f \/WQ + (a

v) gz sinh(f(e)y/1d1Q(t) (7.7)
cosh(f <>£>
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Applying Proposition 2.2 (v) and using v € C}(Z;R?) € WL (2;R?) lets us estimate

cosh(f(e)v/[d]Q(t)) + (o~ v) 7z sinh(f(£)/]dIQ(¢) H
cosh(f(e )\/Tm) WL (3;CNxN)
cosh(f \/WQ H . sinh(f(s)\/WQ(t)) H
> COSh(f( )\/ﬁ WL (S;CN*N) COSh(f(é‘)\/Tm) WL (Z;CNXN)
cosh((-)Q(?)) (7.8)
< CHf \/W” H( cosh(3) ’ WL (0.00))
sinh((+)Q(t))
cosh(3) ngo((o,oo))>
cosh(()Q(t)) sinh((-)Q(t))
= Of(e)( cosh(3) ngo((o,oo)) cosh(3) HW;O((QOO)))

Furthermore, |Q(t)| < 5 for t € (—1,1) since ¢ > 0 a.e. and f_ll q(s)ds =1 by (5.1).

Thus,

cosh((-)Q(t)) H sinh((-)Q(t)) H
cosh(3) WL ((0,00)) cosh(3) WL, ((0,00))
Hence, using (7.7) and plugging (7.8) into (7.6) yields the first inequality of the claim.

< Q.

Now, we shortly comment on how to prove the second inequality. According to
Proposition 3.15 (iii) and Proposition 4.13, I+ By(z) f(¢)V ¢ is continuously invertible
in B°(X). Moreover, the same formula for f(£)Vq(I + By(2)f(e)Vq) 'Co(z) is valid.
Since one deals with the BY(X) case now, one may estimate the norm of this expression
by

£ -1
Cf(e)ess supye -y ||cos (@ - ) 2E0) ™ exp(ila - 1) FEV Q|| ewen
which, in turn, can be estimated with the help of (7.7) by Cf(e). a

Lemma 7.3. Let q be as in (5.1), V = nly + 70 with n,7 € C}(3;R) satisfy (7.1),
f(e) be asin (7.2), z € C\R, B.(2) be as in (4.8) and assume msign(r) > 0. Then,
there exists an conta € (0,€45c), where eapc > 0 is chosen as in (4.19), such that
(I + B.(2)f(e)Vq)™! is continuously invertible in B°(2) and

1£()Va(I + B(2)f(e)Vg) oo < Cfle)?
for all € € (0, cont2)-

Proof. We start by mentioning 0 € p(H) = C\ ((—o0, —|m|] U [|m|,0)) as m # 0.
Thus, the operator B.(0) = B.(0)M:!, ¢ € (0,e4p5¢), with M. from (4.20), which
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was introduced in (4.27), is well-defined and because of (4.36) also self-adjoint in
B°(X). Now, let us explain the strategy of the proof. We split the proof into three
steps. In Step 1 we show the estimate

|(f(£)' 8 + sign(7) DB.(0)D) ||y < f(e) Ve € (0,20,50), (7.9)

where
D = /qdiag(\/|n + T|Inj2, /|1 — T|Iny2)-

In Step 2, we use Step 1 and V¢ = sign(7)DSD, which is valid since ¢ > 0 a.e
and d(zy) = n(zs)? — 7(zx)? < 0 for all sz € ¥ by assumption, to show that the
expression ||f(5)Vq(I+B(E(O)f(e)‘/q)*lHO_>0 is bounded by C'f(¢). Lastly, in Step 3,
we perform the change from 0 to z in order to prove (7.9).

Step 1. We begin by calculating the square

(f(e)7' B +sign(7)DB.(0)D)* = f(e) I + f(e) 'sign(7) D(8B-(0) + B.(0)8)D
+ (DB.(0)D)>.

It is clear that (DB.(0)D)? is a nonnegative operator. We claim that the operator
sign(7)D(5B:(0) + B.(0)5)D is also nonnegative. Using (4.8) and (4.27) yields

BB.(0) + B(0)8 = S-'Z'U.(BR(0) + R(0)B)U; LS. M.

with R(0) being the inverse of the free Dirac operator H. Moreover, from Defini-
tion 3.2 one easily concludes

BR(0)+R(0)8 = R(0)HBR(0)+R(0)8 = R(0)3(—H+2mB)R(0)+R(0)8 = 2mR(0)*.
Consequently, we get with (4.8) and (4.25)
ﬁéa(o) + éa(o)ﬁ = 2m06(0) (Ca(o))*

Therefore, the assumption msign(r) > 0 guarantees that sign(r) D(5B:(0)+B.(0)5) D
is a nonnegative operator in B(X). Thus, the norm of (f(¢)~!8 + sign(7) D B.(0) D)2
is bounded by f(¢)2. Furthermore, since f(£)™3 + sign(7)DB.(0)D is self-adjoint,
we also have

1(/(e)~" B+sign(r) DB-(0)D) ]|,
= (H(f(e)‘lﬁ +sign(T)Déa(O)D)_QHO_m)1/2 < f(e)

proving (7.9).
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Step 2. Next, we choose econto € (0,e4p¢) sufficiently small such that

~ » 1
”D(BE(O) o BE(O))DHO—m = HDBE<O)(M5 - I>D||0—>O < T(g)

for all € € (0, £conf,2). This is possible according to Lemma 4.7 and Proposition 4.10.
Then, by Proposition 2.28 the operator f(¢)™'3 + sign(7)DB.(0)D is also continu-
ously invertible in B°(X) and the estimate

|(f(e)7"8 + sign(m)DB.(0)D)"|| .,
. I f(g)—iﬁ+sign(T)D§5(0)D)—1HM _
T 1 —||(f(e)7' B +sign(T) DB(0) D)1 |, lIsign(r) D(B:(0) — B=(0))Dllo0
f(e)
< 22(2) =2f(c) Ve € (0, Econt2)

is valid. Therefore, I + f(g)sign(7)B8DB.(0)D = f(£)B(f()~ B +sign(r)3DB.(0)D)
is also continuously invertible in B%(X) and its inverse is uniformly bounded by 2.
Hence, by Proposition 2.29 and V¢ = sign(7)DSD the operator I + B.(0)f(e)Vq is
also continuously invertible in B°(%) and

| £(e)VaI+B-(0)f(&)Va) ||,
= ||f(e)D(I + f(e)sign(r)BDB:(0)D) 'sign(r)8D|| ,_, (7.10)
< Cfl(e)

for all € € (0, €cont2)-

Step 3. In this step we perform the change from 0 to z € C \ R. We start with the
following observation

B.(2) — B.(0) = ST 'U.(R(2) — R(0))U’Z.S.
= 2ST'T'ULR(2)R(O)UML.S. = 2C.(2)A(0),

where we used R(z) — R(0) = zR(z)R(0) and (4.8). Next, we calculate

(I + B(2)f(e)Va)(I + B(0) f(e)Vg) ™
= (I 4 (B=(0) + 2C:(2) A:(0)) f (¢
=1+ 2C.(2)A:(0)f(e)Va(I + B:(0)f(e)Va) ™" (7.11)
=1+ 2(Cc(2) — Co(2)A=(0)f(e)Va(I + B=(0)f(e)Vg) ™"
+2Co(2)A=(0) f(e)Va(I + B-(0) f(e)Vg)™

W)+ B (O)J”(&T)V(z)*1



7.1 Approximation in the confinement case 141

Now, we aim to apply Proposition 2.30 for

A:=1+ B.(2)f(e)Vqg,

Ao =1+ Bo(2)f(e)Vq,

T = +B0)f(e)Va) ™,

K1 = 2(C(2) = Co(2)A(0) f(e)Vq(I + B=(0) f(e)Vig) ",
Ky 1= 2C4(2)A=(0) f(e)Va(I + B(0) f(e)Vg) ™"

Rewriting (7.11) in terms of these newly defined operators yields AT = I + K1 + Ks.
Moreover, we can estimate K, and (Ay — A)A; 'K, with Proposition 4.8, Proposi-
tion 4.9, Proposition 4.10 and (7.10) by

1K flo—o = [[2(C=(2) — Co(2))A:(0)) f(£)Va(I + B:(0)f(£)Vg) ™ [lo—o
< Cf(e)C:(2) — Co(2) | 2mocvy—oll A (O) loo L2 o)
< Cf(g)el/Q—r

and

1(Ao — A)A; Kallo-so
= [|2(Bo(2) — B-(2)) f(e)Va(I + Bo(2) f(e)Vg) ™
- Co(2)A(0) f(e)Va(I + B-(0) f(2)Va) ™ oo
< Cf(e)||B:(2) = Bo(2)]l1/20
NFEVaT + Bo( V) ol oy ol A-0) ooy
< Cf(e)Pel />

for € € (0,€conf2) 8 Econta 18 chosen such that econro € (0,e45¢). In particular, since
f(e)ie/* — 0 for € — 0, see (7.2), we have |1 + (Ag — A) Ay Kallomo < 2 for
all € € (0, cont2) if €cont2 € (0,e45¢) is sufficiently small. In turn, Proposition 2.30
implies that I + B.(z)f(¢)Vq has the bounded right inverse

1

(T = AG'C) (1 + Ky + (Ao — A)AF'KS)

which is its unique inverse according to Proposition 4.1 (i). Hence, Proposition 2.28,
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Proposition 4.9, Lemma 7.2 and (7.10) yield

1f()Va(l + B-(2)Va) " oo < IF VAT = A3 Ks) g0
N+ K+ (Ao — AATK)
1f )V a(T — Ay ' Kao)llg
L= K (A — A)ATK o
<2/ f(E)Va(T — A K)o
=2||f(e)Va(I + B:(0)f(e)Vq)™
—2f(e)Va(I + Bo(2) f(e)Vq) ' Co(2)A=(0) f(e)Vq(I + B(0) f(e)V) |,
< C(l + |2l f(e) V(I + Bo(Z)f(é)VQ)‘lCo(Z)Aa(O)||(H0>
N FE@Vall + B(0)f(€)Va) oo
< C'<1 + || eVl + BO(Z)f<E)VQ>_1CO(2)HLZ(RO;CN)_m)

@V + B:(0)f(e)Va) ™ oo

< C(L+ f(e)f(e)
<C

fe)*.

After providing all these preliminary results, we are ready to prove the main theorem
of Section 7.1.

Theorem 7.4. Let q be as in (5.1), V =nly+78 withn, 7 € C}(Z;R) satisfy (7.1),
V2 be defined by (4.3), f(e) be as in (7.2) (withr € (0,1/2)), dint be as in Lemma 7.1
and z € C\ R. Moreover, set V = ﬁv, where d = n?> — 72. Then, the operator

Vdl

Hys  is self-adjoint and there exists an econs > 0 and a C' > 0 such that
>

H (Hf(e)Vs _Z)_l - (Hf/(sz _Z)_l ||L2(RG;CN)_)L2(R9;CN) < C(f(5)4€1/2_r+f(5)e_dinff(6))

for all € € (0,€cont). In particular, Hyyy. converges to Hys in the norm resolvent
sense as € — 0.

Proof. Before we start, let us mention that we can w.l.o.g. assume sign(7)m > 0
according to Proposition 2.24. Let ccont := min{ccont1, Econf2} With ceonr1 > 0 and
Econt2 > 0 from Lemma 7.1 and Lemma 7.3, respectively. According to Lemma 7.1
Hy,s  is self-adjoint and it suffices to show

[(Hep. = 2)7" = (Hy.s, — Z)_lHL2(R9;(CN)—>L2(R0;CN) < Of(e)te'*,
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where V. tanc(‘g)f( )W with d. = > — 72 as in (7.3). Similarly as in the

proof of Theorem 4.15, applying Proposition 4.8, Proposition 4.9, Proposition 4.10,
Lemma 7.2 and Lemma 7.3 lets us estimate
H<Hf(€)Vs - Z) ! (H\Zég 71HL2(R6;CN)*>L2(RG;(CN)
< A FEVa + Ba(2)f(€)Va) (Co(2) — Col2) | aquoncyopzquocy)
+[[A(2) f(e)Va(I + B(2) f(e)Vg) ™!
(Bo(2) = Bo()F(EVall + Bo() F(€)V )™ Col) ey aoicm
F1(A(2) — A()FEVall + Bo(2) f()Va) ™ Col2) | aqaocoyspzqaocy
< C2 (| VI + Bo(2) (V) oo

q(
+[If(e)Va(l + B(2)f(e)Vq) oo
N f(e)Va(I + Bo(2)f(e)Vq) ™ Co(2) || 2roseny— e
)f(e
)+

+1FEVall + Bo(2)f )V a) " Co(2) | aaoen) )

< CeVP(f(e)* + fe)' + f(e))
< CeV f(e)!

for all € € (0, econt)- O

We are now in a position to answer the question posed in the beginning of the current
section, namely, whether there is a way to approximate a given Dirac operator with ¢-
shell potential which induces confinement by Dirac operators with strongly localized
potentials.

Corollary 7.5. Let q be as in (5.1), V= Iy + 78 with 1,7 € CH(3;R) satisfy
d=1n*—7%=—4 and sign(7) = const., f(e) be as in (7.2) (with r € (0,1/2)) and
z € C\R. Moreover, set V.=V for a v € C}(Z;R) with inf, cxv(xs) > 0, and

let V. be defined by (4.3) and di be as in Lemma 7.1. Then, the operator Hf/éz 18
self-adjoint and there exists an €cont > 0 and a C > 0 such that

(H e, —2) 7 = (Hirs, = 2) 7| ooy s ooy < C(FE)1E2 7+ f(e)e il @)

for all € € (0,econf). In particular, Hyyy. converges to Hys in the norm resolvent
sense as € — 0.

Proof. The conditions in (7.1) are fulfilled by definition. Moreover, using d=—4
and d = n? — 72 = Vv}(? — 72) = v%d yields

2 2 ~ ~
V= —uvV =
V| or/|d|

Therefore, the assertion follows from Theorem 7.4. O
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7.2 Spectra of Dirac operators with strongly localized
potentials

In this section we investigate the discrete and essential spectrum of Hy,. Since many
spectral results depend on the parameter m € R, we write in this section H(m),
Hys (m)and Hy,(m) instead of H, Hys and Hy,, see Definition 3.2, Definition 3.12
and (4.4), to emphasize the m-dependence of these operators.

We start by presenting results for the case that X is bounded. The resolvent difference
of Hy.(m) = H(m) + V. and H(m) is for z € p(H(m)) N p(Hy.(m)) given by

(H(m) —2)~" = (Hy.(m) — 2)~" = (Hy.(m) — 2)7'Ve(H(m) — 2)".

In the case that X is bounded, 2., see Definition 2.7, is also bounded. Thus, V,
is compactly supported and, in turn, induces a compact operator from H'(R? C")
to L2(RY; CN); cf. |54, Theorem 3.27 (ii)]. Moreover, (H(m) — 2)~! is a bounded
operator from L2(R% CY) to H'(RY C"); see Proposition 3.3 (iii). Thus, also the
resolvent difference is compact for z € p(H(m)) N p(Hy.(m)). Therefore,

Oess(Hy.(m)) = 0ess(H) = o(H) = (—00, —|m|] U [|m], o0)

and ogisc(Hy.(m)) C (—=|m|,|m|). Next, we focus on special cases which allow us to
make more precise statements concerning the discrete spectrum. Here, we are par-
ticularly interested in cases which guarantee the existence of discrete eigenvalues.

Proposition 7.6. Let § = 3, ¥ C R3 be the boundary of a bounded C*-smooth
domain, m € R, V = 71, with 7 € R and Hy_(m) be as in the beginning of Section 7.2.
Then, the following holds:

(i) If rm > 0 and § € (0,|m]), then ogsc(Hy.(m)) N [—=|m|+ 0,|m| — 0] = O for
e > 0 sufficiently small.

(ii) If 7 # 0 and M € N, then there exists for sufficiently large —sign(7)m > 0 an
em > 0 such that for all € € (0,¢,,) the operator Hy.(m) has at least M discrete
etgenvalues counted with multiplicities.

Proof. If V- =714, then d = —7% < 0 and therefore it follows from Theorem 5.20 that
Hy.(m) converges for e — 0 to Hy;_(m) in the norm resolvent sense, where V' = 73
with

Vd
2

|7l
\/72)7' = 2tanh( 2 )T = 2tanh(%).

)T:tanc( 3 |7_|

T= tanc(

Having established the convergence of Hy. (m) we are able to prove (i) and (ii).
We start with (i). If 7m > 0, then also 7m > 0 and hence according to |37,
Proposition 3.6 b)] the discrete spectrum of Hys (m) is empty. Moreover, since
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¥ is bounded we have oess(Hy, (m)) = (—oo, —|m|] U [|m], 00) and thus by Proposi-
tion 2.25 (ii) o(Hy;, (M) = Oess(Hys (m)) = (=00, —[m|] U [lm], o0). Consequently,
Proposition 2.27 (i) implies

odise(Hy.(m)) N [=|m| + 6, |m| = 6] = o(Hy.(m)) N [=|m| + 6, |m| = 6] = 0

for € > 0 sufficiently small.

Next, we consider (ii). We obtain from [37, Theorem 2.3 (e) and Corollary 4.4|
that Hys (m) has at least M discrete eigenvalues (counted with multiplicities) for
sufficiently large —sign(7)m = —sign(7)m > 0. Now, applying Proposition 2.26
yields assertion (ii). O

After considering purely Lorentz scalar interaction strengths in Proposition 7.6, we
consider purely electrostatic interaction strengths in the next statement.

Proposition 7.7. Let § = 3, ¥ C R? be the unit sphere, m = 1, V. = nly with

n € (—%,5). Then, there holds the following:

(i) If In| < 2arctan(v/5 —2) and 6 € (0,1), then ogise(Hy, (1)) N[~1+6,1 -8 =0
for e > 0 sufficiently small.

(i) If |n| > 2arctan(v/5 — 2), then ogisc(Hy. (1)) # 0 for ¢ > 0 sufficiently small.

Proof. The assumption n € (—7, 5) implies d = n? < %2 and therefore Theorem 5.20

guarantees that Hy. (1) converges for ¢ — 0 to Hy, (1) in the norm resolvent sense,
where V = nly with

[l
)n = tanc<\/277_2)77 = 2ta‘r717(| 2 )77 = 2tan(Z).

If |n| < 2arctan(v/5 — 2), then |7j| < 2v/5 — 4 and hence [6, Theorem 1.1 and
Lemma 5.2 (iii)| show that the discrete spectrum of Hy;; (1) is empty. Now, the same
arguments as in the proof of Proposition 7.6 (i) yield assertion (i). If the inequality
In| > 2arctan(v/5 — 2) holds, then 7] > 2v/5 — 4 and thus oaisc(Hiyg, (1)) # 0 by [5,
(4.35)—(4.36) and the text below|. Consequently, Proposition 2.26 implies (ii). O

oS

n= tanc(

Next, we consider the case where Y is unbounded. In particular, we assume that > is
a non-self-intersecting C'*°-smooth curve in R? which coincides outside of a compact
set with a broken line with opening angle 2w, w € (0, %), which is given by

I, = {r(cos(w),sin(w)) : r > 0} U {r(cos(w), — sin(w)) : r > 0}.

In this setting the discrete eigenvalues of Hy; (m) were studied in [10, Section 2.4].
In the upcoming two statements we use Theorem 5.20 to transfer these results from
Hgs (m)to Hy.(m). This allows us to provide conditions under which Hy, (m) admits
discrete eigenvalues.
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Proposition 7.8. Let 6 = 2 and X be a non-self-intersecting C*°-curve which co-
incides outside of a compact set with T, for a w € (0,%), a <0, n =7 = 2% and

V =V(m)=nly+ 76 for m > 0. Then, the following holds:

(i) Ifo € (0,mirs ) then oess(Hy, (m))N[—m+4, mm2+a§ 8] = 0 for sufficiently
small € > 0.

(ii) If m > 0 is sufficiently large, then there exists an €, > 0 such that for
e € (0,en,) the discrete spectrum of Hy.(m) is not empty.
Proof. Under the assumptions of this proposition we have d = n?> — 72 = ;—22 — W =
and therefore (7,7) = tanc(‘[)(n, 7) = (n,7). Thus, Theorem 5.20 implies that
Hy.(m) converges for € — 0 to Hys.(m) in the norm resolvent sense. Moreover, |10,
Theorem 2.3 (ii) (c¢)] and rescaling the results from [10, Theorem 2.7] yields

ess(Hy sy, (m)) = (—o00, m] U [m2=5% 00)

m2+a2 )
and oqisc(Hyvs, (m)) # 0 for sufficiently large m > 0, respectively. Combining these
results with Proposition 2.27 and Proposition 2.26 concludes the proof of (i) and (ii),
respectively. O

Proposition 7.9. Let 6 = 2 and X be_a non-self-intersecting C*°-curve which co-
incides outside of a compact set with T, for a w € (0,5), 7 < 0, V = 78 and
7 = 2tanh(7/2). Moreover, assume that Tm < 0. Then, the following holds:

(i) If 6 € (0,|m|4=2), then ces(Hy.(m)) N [—|m 4+T2 + 6, |m 4+T2 — 0] =0 for

4472
sufficiently small € > 0.

(ii) For every M € N exists an wys € (0,5) and an ey > 0 such that for e € (0,exr)
the operator Hy,(m) has at least M discrete eigenvalues with multiplicities taken
mlo account.

Proof. If V' = 7114, then it follows from Theorem 5.20 that Hy, (m) converges for e — 0
to Hys (m) in the norm resolvent sense, where V =78 with7 = 2tanh(Z) € (—2,2).
This also shows that the assumption 7m < 0 implies 7m < 0. Hence, according to
[10, Corollary 2.5] the essential spectrum of Hy, (m) is given by

Oess(Hy,(m)) = (—00, —

;2 7;2
= U llml 55, 00)
and therefore Proposition 2.27 (ii) implies assertion (i). By [10, Theorem 2.8 and
[37, Theorem 2.3 (e)] there exists an wyr € (0, 5) such that Hys (m) has at least M
discrete eigenvalues. Thus, assertion (ii) follows from Proposmon 2.26 O
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We conclude this section by considering the case where the interaction matrix has
the form f(e)V with V. =nly + 78, 1,7 € R, such that d = n* — 72 < 0 and f is the
monotonically decreasing function from (7.2). Recall that in this case the conditions
of Theorem 7.4 are met and therefore the operator Hy)y.(m) converges in the norm

- . e __2 . . . .
resolvent sense to Hys (m) with V _\/EV’ which is a Dirac operator that induces

confinement; cf. Section 7.1.

Proposition 7.10. Let § = 3, ¥ C R? be the boundary of a bounded C*-smooth
domain, V = nl; + 78 with n,7 € R fulfil d = n* — 7> < 0 and m # 0. Then, the
following holds:

(i) If mT >0 and ¢ € (0,|m]), then oqisc(H ey, (m)) N [—|m| + 0, |m| — 0] =0 for
sufficiently small € > 0.

(ii) If n = 0 and M € N, then for sufficiently large —sign(t)m > 0 exists an
€m > 0 such that for e € (0,&,,) the operator Hyyy.(m) has at least M discrete
etgenvalues counted with multiplicities.

Proof. According to Theorem 7.4 Hjy(yy.(m) converges for ¢ — 0 to Hys (m) in

the norm resolvent sense with V' = 5l + 73, where (7,7) = ﬁ(nﬂ'). Hence,

if 7 > 0, then 7 > 0 and therefore [11, Proposition 2.2] implies that the discrete
spectrum of Hy, is empty if m > 0. Thus, for m > 0 assertion (i) follows from
Proposition 2.27; cf. the proof of Proposition 7.6 (i) for a analogous more detailed
proof. It remains to consider the case m < 0. The anticommutation rules from
(3.1) imply Hyeyv.(m) = —BH_jiyv.(—m)S and thus this case can be reduced to
the case m > 0. Now, let us consider (ii). Under the set of assumptions in (ii),
[3, Corollary 1.15] and [37, Remark 2.1, Theorem 2.3 (e)] imply that Hg, (m) has
at least M discrete eigenvalues for sufficiently large —sign(7)m. Consequently, (ii)
follows from Proposition 2.26. O






8 Convergence of Dirac operators with semilocal potentials

In this chapter we approximate Dirac operators with d-shell potentials by Dirac oper-
ators with so-called semilocal potentials. Before we define these semilocal potentials,
we motivate their definition by results regarding one-dimensional Dirac operators.

Recall that g denotes the d-potential supported in the point {0}. Furthermore, let
h € L>(R;R) N L (R;R) with [, h(z)dz = 1 and h. := h() for ¢ > 0. Then,
the multiplication operator induced by h. and the projection operator defined by
u — he(u, he)r2m) converge to d§y viewed as operators from C§°(R) to (Cg°(R))’,

i.e.

lim gy (heu, v)op® = (@) (dou, v)op®
= u(0)v(0)

= lim (g @)y (he W)op® @) (he v)ogm

- ll_r)r(l) (CSO(R))I<h5(u7 h’E)LQ(]R), 'U)CSO(R)

for all u,v € C§°(R). Similarly as in the multidimensional case, H + Vh. converges
to Hygs in the norm (or strong) resolvent sense for V = V* € C?*2; see [40, 41,
42, 67, 72| and Section 1.2. Surprisingly, it was shown in [34, Section 4] and [67]
that H + Vh.(-, he)L2(r) converges to Hysy, in the norm resolvent sense, i.e. for these
kinds of nonlocal potentials there is no rescaling necessary. In [35] this idea was
picked up and used as an inspiration for the two and three-dimensional setting. In
the mentioned paper they considered (generalizations of) Dirac operators of the type
H 4 ¢.V (-, qe) r2(re), where V = V* € CN*V and

Tq(L = t Q.
qa(x) ._ sq(5)7 Z Ty + V(IE) € )
0, x ¢ Q,

with ¢ as in (4.1). It turns out that this family of operators converges to the operator
which is formally given by H + Vis ceore)(dx, )csome) and can be realized as an
unperturbed Dirac operator on 2, U€2_ and via nonlocal transmission conditions on
Y, i.e. transmission conditions which involve the integral over ¥; see also [33]. Hence,
on the one hand no renormalization of V' is necessary but on the other hand the limit
operator is not the operator Hy;., which is the operator we aim to approximate.
This leads us to the definition of so-called semilocal potentials. They behave locally

149
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with respect to the surface ¥ and nonlocally with respect to the normal direction of
Y and allow us to approximate Hys,, without any rescaling.

Let us recall our general setting from the beginning of Chapter 4. Let ¥ = Q. C R?
be a special C?-surface as in Definition 2.1, €. and ¢ be as in Definition 2.7, and
Etub € (0,00) be chosen as in Proposition 2.12. Moreover, recall from (4.1) and (4.2)
that ¢ € L>((—1,1);R) with [' ¢(t)dt = 1 and V = V* € WL(3;CY). In this
setting we define for £ € (0, equp)

V. L*(R% CN) — LA(RY%CY),
Lg()V(s) [1 ule(ws, 9))a(s) 51)
Vou(z) = ~det(I — seW(xyx))ds, x=i(xx,t) € ), .
0, x ¢ Q..

Note that the expression det(I — seW (zyx)), which is defined below Definition 2.11
and stems from the usage of the tubular coordinates (zy,t), plays a secondary role as
it converges to one for ¢ — 0; see Proposition 2.12. However, the term is necessary
to guarantee the self-adjointness of V..

8.1 General interactions

In this section we consider Hy, = H + V. for general V = V* € WL (Z;CVN). Tt
turns out that we can represent the resolvent of Hy, in a similar way as the resolvent
of Hy, in Proposition 4.1. This allows us to transfer the convergence results from the
local to the semilocal case.

We use the operators J, Z., S., U. and M., see (2.10), (4.5)—(4.7) and (4.20), to
express Vu for u € L*(R%; CY) and = = (x5, t) € Q. by

Vou(z) = 1q(ﬁ)‘/(xg)/ u(t(zs,es))q(s) det(I — seW (xx)) ds

1

~ L)) /_ o(s) (M8 T Vo) (5) () ds

1
= —a(8) (V¥ M8 'L V) ()
1
= L3V M T ) (2 ()
= L (28 asT T U ()

NG
= (UIZ.8.q3VI qM.S I UL (2).
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For u € L?(R? CN) and z ¢ Q. we trivially have

Vou(z) =0 = (UXL.S.q3V I ¢M.S' I Uu) ().

Thus,

Ve = UL.S.q3V3"qM:S: "I U,
This representation implies that V. is a bounded operator in L*(R?, C") and with
the help of (Z.8.)* = M.S-'Z7 ", see the lines above (4.25), one gets that V; is self-
adjoint. Hence, similarly as in Section 4.1, we define for z € p(H), R(z) = (H — z)~*
and € € (0, &¢up)

A(2) == R(2)UL.S.q3 : L*(%;CY) — L*(R%; CY),
B.(2) == 3" qM. S\ T U.R(2)USL.S.q3 : L*(%;CN) — L*(%;CN),
(2) == J M. ST UR(2) - LA(RY CY) — LA(2; CN).

By definition, the identities

é(2> = Aet(Z)QSy %(2) = 3*qM€Ba(Z)Q37 %(Z) = 3*qMEC€(2)7
are valid, where A.(z), B.(z) and C.(z) are the operators from (4.8). Applying
Proposition 3.11 for P, = UXZ.S.q3V, Pr = J*q¢M.S-'Z-'U. and V. = P, Py yields
the following proposition.

Proposition 8.1. Let ¢ and V be as in (4.1) and (4.2), V, be defined by (8.1) for
e € (0,ewmp), 2 € p(H) and R(2) = (H — 2)~!', where H is the free Dirac operator
introduced in Definition 3.2. Then, Hy, is self-adjoint and the following holds:

(i) z€o0,(Hy) <= —1¢€ Jp(BE_(Z)V).
(i) If =1 € p(VB(2)), then z € p(Hy.) and

(Hy, — 2)' = R(z) - A (2)V (I + B.(2)V)'C.(2).

Proposition 8.1 shows that the resolvent of Hy, has a similar structure as the resolvent
of Hy,; cf. Proposition 4.1 (ii). Moreover, the operators A.(z), B.(2) and C.(z) are
strongly connected to the operators A.(z), B.(z) and C.(z), respectively. We use
this connection to transfer the convergence results from the local operators to the
semilocal operators. Before we do so, we introduce the limit operators

Ao(z) == @, : L*(%;CN) — LA(R%; CY),
By(z) :=C, : L*(%;CY) — L*(x;CV),
Co(2) = @z : L*(R%CN) — L*(;CV).
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Proposition 8.2. Let z € p(H) and € € (0,e4p5¢c) with eapc given by (4.19). Then,

the families of operators (A=(z))ee(0capc)s (Be(2))ec0eanc) and (Ce(2))ee0eanc) are
uniformly bounded and for r € (0,1/2) holds

||é(2) - @(Z)HLQ(HW;(CN)—)LQ(E;(CN) S 051/2_T7
||&(Z) - &(z)||H1/2(E;(CN)—>L2(E;(CN) S 061/2_T7
||%(Z> - @<2)||L2(Z;CN)—>L2(R9;(CN) S Cgl/Q_T'

Furthermore, the operators C.(z), € € (0,eapc), are also well-defined acting as op-
erators from L*(R% CN) to HY/?(X;CN) and the corresponding operator norms are
uniformly bounded.

Proof. The assertions are direct consequences of Lemma 4.7, Proposition 4.8, Propo-
sition 4.9 and Proposition 4.10 if

Ao(z) = Ao(2)qd,  Bo(z) = J"¢Bo(2)qT, Co(z) = I q¢Co(2). (8.2)

According to (4.24) we have Ag(z) = ¢.J*. Hence, Ag(2)qJ = ®.3"¢J. Furthermore,
[1 q(t)dt =1, (2.10) and (2.11) give us for ¢ € L*(Z;CN)
1 1
aaw= [ aw@ond = [ awdo=. (8.3

1 -1
which shows Ay(z)qJ = ®, = Ag(z). Moreover, (4.21) and (8.3) also imply
JqCo(2) = J"q3®3 = & = Co(2).
The representation for By(z) in (4.38) and (8.3) yield
J"aBo(2)qd = I qT (o - v)gT + J"¢3IC:3"¢T = I"¢T (e - v)qJ + C..

Thus, it remains to show J*¢7T(« - v)¢J = 0. This follows from
1 i
aat(a g = [ ) [ st - s)a- vl ds i
-1 -1

- /1 /1 sign(t — s)q(t)q(s) dsdt%(a-y)qp —0 Wy L2(n V).
O

Having stated these preliminary results, which were essentially consequences of Sec-
tion 4.3, we are able to present the main theorem of this section, which states condi-
tions under which Hy, converges to Hys, in the norm resolvent sense.
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Theorem 8.3. Let g and V' be as in (4.1) and (4.2), eapc > 0 be as in (4.19) and
assume that for some z € p(H) the following conditions are fulfilled:

(i) There exists an econv € (0,€apc] such that (I+B.(2)Vq) ™" exists fore € (0, Econv)
and is uniformly bounded in L?(2; CV).

(ii) The operator I + C,V is bijective in HY/2(X;CN).

Then, the operator Hys,, is self-adjoint, z € p(Hys,) N p(Hy,) for all € € (0, cony)
and for any r € (0, %) exists a C' > 0 such that
H(HE —2)7 = (Hysy — Z)_l||L2(]R9;(CN)—>L2(R9;(CN) < el

for e € (0,econy). In particular, Hy. converges to Hys,. in the norm resolvent sense
as € — 0.

Proof. Since I+C.V is continuously invertible in H'/2(3; CV), it follows from Propo-
sition 3.14 that Hy;, — 2 is invertible and

(Hys, —2) ' = R(z) —®. V(I +C.V) 0L
= R(2) = Ao(2)V(I + Bo(2)V) ' Co(2).

The rest of the proof can be shown in exactly the same way as Theorem 4.15 by
applying Proposition 8.1, Proposition 8.2 and using the spaces H"(3;C") instead
the spaces B"(%). O

8.2 An explicit condition for electrostatic and Lorentz scalar
interactions

Similarly as in Chapter 5, we find an explicit convergence condition for the norm
resolvent, convergence of Hy, if V = nly 4+ 73 with 7,7 € C}(X;R) in this section.
Our goal is to show that the conditions (5.1) and

sup d(xy) <4, d=n*—1% (8.4)

Ty €Y

guarantees norm resolvent convergence. If (8.4) holds, then Proposition 3.15 (iii)
shows that (ii) of Theorem 8.3 is fulfilled for = € C\ R. Thus, we only have to
consider (i) of Theorem 8.3. We proceed as follows: We show that if ¥ is a rotated
C3-graph, then the operator (I + VB.(z))™' exists and is uniformly bounded in
L*(3; CN) with respect to . Then, (ii) of Theorem 8.3 is fulfilled and therefore Hy,
converges in the norm resolvent sense to Hys,, for ¢ — 0. If ¥ is a special C?-surface
as in Definition 2.1 one uses again a partition of unity to prove the main result of
this section which is Theorem 8.9.
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Recall from Section 5.1.2 that if ¥ is a a rotated C?-graph, then there exists a function
¢ € C2(R%R) and a rotation matrix x € SO(RY) such that

Y =3, ={r@, ()2 € R},

As in Section 8.1, we make extensive use of the results known from the case of local
potentials; cf. Section 5.1. Thereby, we use the following notation: If O is one of the
operators introduced in (5.11) or (5.48), which act as bounded operators in BY(R%~1),
then we define the semilocal version of O through

0 =J°q0q3 : L*(R*™H,CY) — LARHCY). (8.5)

If O also acts as a bounded operator from B’ (R’~!) to B" (R’~!) with r, 7' € [0, 1],
then the properties of J and ¢ immediately imply

100l i (ssemy o ey < 2l e (1,1 Ol (8.6)

We aim to prove that (I + B.(z)V)~! is uniformly bounded in L*(3; CV) if ¢ is suffi-
ciently small. We show this in the same way as we proved the uniform boundedness
of (I + B:(2)Vq)™! in Section 5.1. As almost all the steps are identical, with the
sole exception of Proposition 8.5, we keep this section as short as possible and refer
to Section 5.1 for details. To shorten notation and to emphasize the connection to
Section 5.1 we also write ||-||,—, instead of |||
section.

Hr(RO-1,CN)— g+’ (RO-1,cNy 11 the current

Proposition 8.4. Let xj € R, ¢ and k be as in (5.42), C;y be as in (5.46), q be as

in (4.1), n,7 € Cp(B;R), Q5% be as in (5.18), z € p(H), v € C3(R™), £ € (0,£4:1)

with €41 chosen as in Lemma 5.12 and a. = gl/s,

Gyt 5k
[D.° (2),%] act as bounded operators from L*(R?~1; CN) to HY(R’~Y,CY) and

Then, the operators E.(z) and

1+ |log(e
()l < 0T BN

¢

D" (2), 9]y 1 < Cllblly mosy (1 + [log())),

K K Capy ot K
||XB(956’3CL€) (i(Z)Q%:T —D:° (Z)Q%:T(:L‘IO))XB(mé,E}CLE)

where C' > 0 does not depend on xj and €.

o0 < Ca-(1+ [log(e))),

Proof. The statement follows from Proposition 5.14 and (8.6). a

In Proposition 8.5 we show that (1 + Dgxé’ﬁ(z)Q%:'j(:pf)))*l is uniformly bounded with
respect to ¢ and zj, € R’~!. This is the only proposition in the current section where
we apply a different proof strategy than in the analogous local statement given by
Proposition 5.15 in Section 5.1.
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Proposition 8.5. Let x) € R/ ¢ and k be as in (5.42), Cayy be as in (5.46), q be as
n(5.1), 0,7 € C4(E;R), d = n* =77 satisfy (8.4), Q5% be as in (5.18) and z € C\R.

Cpt K
Then, there exists an g1 > 0 such that the operators (I + D" (2)QS5(xg)) ™" are
uniformly bounded with respect to € € (0,e4.1) and zj € RO~

Proof. Let us first assume that (,; = yo € R. Then, we get from (8.5), the comments
below (5.20) and Proposition 5.2 for & € R~?

o & +mp+zIy

Yo,r -1 n_ 0,k -1 /
(FDX" () FLE) = (FD2"(2) FH )(€) = WEETEaTE w(¢,e),
where w( = zf f q(t 6‘5 (t=s)lin/22=m>=I¢'1* s qt and & - ¢ is defined as in

(5.22). Hence the operator

sz)’n —1 "R (]
I + fDE—(Z)‘/—: Qn:‘r(x0>
is a matrix multiplication operator induced by the matrix-valued function

a & 4+mp+zly
N

R o€ o Iy + w(€',e)Q57 ().

We define the function

R* x R"™" x (0,00) 5 (7,7, ¢)

. . o ow(€e)? . w(Ee)

= (.78 e) =14 (7 = T) =+ (772+Tm>\/m'
Now, using the rules from (5.23) and Q3% (z() = 1(s¢c.x(2()) Iy + (32 x(2()) 5 yields

a4+ mp+zIy
N

(I = (lren@h) Iy = 7oz
= pn(o2 (). 7(o2(21)). €', ) .

Hence,if p(1( o (a9)). 7(2%e(a9)). €.€) # 0. then Ly + ZEI (€', )55 (xf)

is invertible and by applying (5.24), n,7 € CZ(3;R) and ¢ € CZ(R%~1;R) we are able
to estimate

‘<IN+§¢'§£Z§:E{§ W€ Q)

(1x + (€', 2) (o2 e () I + T<%<,n<we>>6>)

) §’+m6—zIN

NETE )

‘ C
= PG (@), T (@), € )|
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where C' > 0 does not depend on &', z{, k and €. Moreover, there exists an €41 > 0
such that

Pint = inf p(1,7,¢,€)| > 0. (8.7)

(,7)€ran (n,7),&' €RI~1 e€(0,6r,1)
We postpone the proof of (8.7) to the end of the proof . This estimate and Proposi-
tion 2.19 imply that for € € (0,e41) the operator [+ D¥rQ5r(xg) is invertible and

the norm of its inverse is bounded by - " which does not depend on &, z(, yo and
£. Thus, the assertion is true if Cx =y € R. If this is not the case, then as e %

is an affine hyperplane in RY there exists an o(z)) € R and a &(z}) € SO() Such
that 3¢ , « = X)) ; cf (5.57). Hence, one gets in the same way as in the proof
o

of Proposition 5. 15

Capy ot K — ),R(x — C
(7 + D Q5 (x0)) oy = I(1 + DEREFEDIQEn(h)) 1||9_>Q§p_'

It remains to prove (8.7). We start by introducing

Apax = max __ 7° =72 and @(& = z/ / e elt=slIE gg dt.

(m,7)€ran (n,7)

Then, (8.4) implies dpa. < 4. Moreover, |w(£',€)] < 1 and @(£',€)? < 0 since ¢ > 0
a.e. on (—1,1) by (5.1). Thus,

2 W(€,,€>2‘ : dmax
AN SR AN IS _ max )
L+ (72 = 7)) _mm{l . ,1}>0 (8.8)
for all ¢ € R“! & > 0 and (7,7) € ran(n,7). Furthermore, (5.32), (5.33) and
g€ L®((—1,1)) yield
C
w /,6 —w <
€)= 56,9 <

for all ¢ € R’~! and £ > 0. Thus, since ran (1, 7) is bounded and |w(¢’, €)| < 1, there
exists an R > 0 such that for all [¢'| > R, ¢ > 0 and (7),7) € ran (5, 7)

&)t —w(¢e)? / min 1—%,1}
S22 w(€ e)? —w(¢,e) (Pt w(,e) - { 2 |
(7 ) 1 (7 )\/z e ;
This and (8.8) imply for all |¢'| > R, ¢ > 0 and (1,7) € ran (n, 7)
~(¢! 2
p(,7,& )| > ‘1 N ?2)@‘
/ 2 ~(c! 2 Yy
_ (72 — 72 w(',e)? —w(e) L (P4 7m w(f,e)
‘(77 ) 4 (0 )\/zZ—mQ—\f’P
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ie.
min{1 - des, 1}
__inf 0,7,¢,e)] > > 0. (8.9)
(7,7)€ran (1,7),)€'|> R,e>0 2
t)dt =1 to get

Thus, it remains to consider the case |¢'| < R. We use f

e i =|[ [ aw

|Et s)|e z2_m2—|§’|2 . 1) dsdt‘ S CSR v|€/’ S R,

where C' > 0 does only depend on ¢, z and m. Hence
‘ (7,7, €, ¢) (1 T, gzt Tm) )‘ < CeR (8.10)
yTHG - - ~ .
o N
for all [¢'| < R, e > 0and (7,7) € ran (n, 7). Next, we show
2 _ ~2 YIS
inf O ek P Ul L) (8.11)
(77)€ran (,7),¢'|<R 4 V22 —m? — ¢
Since B(0, R) x ran (n, 7) is compact, it suffices to show
/\2 /\2 . fA~ o~
-7 i(Nz+7m) e |y
1-— — V(n,7) €ran(n,7), || < R.
T e V) € |
d =12 —72 yields

|¢'|? and setting d = 7)

Squaring the equation, multiplying with z* —
22) £ P42 MR m? V(7 7) € ran (1, 7), €] < R. (8.12)

~

d
(1-5) (e +m?—
By the solution formula for quadratic equations, this is equivalent to

e ) (@0 = D ) 7o

(1-9)2 + 72
B i U | e LU L B e e |
(1—9)°+7°
i (L= (1 - D2+ (R + m2) — 7o
(1—92+n°
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for all |¢'| < R and (7,7) € ran (n, 7). Using the identity (1 — —) +7?=(1+ %)2 + 72
shows that the right-hand side of the above inequality equals

—iEm £ (L= Dy (1 D2 4 R + m?) - 72m?

(1+9)2 472

i (1= D1+ D2+ P+ (1 + D
(1+9)2 472 '

Thus, the expression in the square root is nonnegative and therefore the right-hand
side in (8.13) is a real. Moreover, z is assumed to be in C\ R. Hence, (8.13) is valid,
and therefore also (8.12) and (8.11) are true. Consequently, according to (8.10) we
can choose €41 > 0 sufficiently small such that
n? — 72 i(Nz +7m)
n,7,¢& e >h T -7, 40 ‘—
p(,7,¢ €)= 1 TR |op
-T2 N i(nz +7m)
T ler
‘1 727 i(fjz+7m)
4 \/z2—m2—\5’\2

CeR

> inf ‘1—
(m,7)€ran (n,7),|¢'| <R

‘—C’z—:R

inf G 2 cran ) e[ <R

>

- 2
for all |{'| < R, € € (0,e4,1) and (7,7) € ran (n, 7). Combined with (8.9) this gives
us (8.7), which completes the proof. a

>0

In the next statements we use similarly as in Section 5.1.2 the functions ¢¢, and ¢,
where a € (0,00) and n’ € Z%~1 from Corollary A.3. They allow us to construct
a uniformly bounded right inverse of I + Dg”(z)Qgi with the help of the operators

Cz/ K ey
(I 4+ D" (2)Q5%(x)) ™", oy € R cf. the text between Proposition 5.15 and
Lemma 5.16.

Lemma 8.6. Let z € p(H), ¢ € (0,c¢uw) and a. = /5. Then,

(1= %) E.(2)6%5 = (1 — 0%) D" ().

Proof. This follows from Lemma 5.16 and the fact that J and J* commute with 975
and ¢7;. O

Proposition 8.7. Let ¢ and k be as in (5.42), q be as in (5.1), n,7 € CLH(Z;R),
d = n* — 72 satisfy (8.4), Q4% be defined by (5.18) and z € C\ R. Then, there
exists an g2 € (0,€apc], with eapc > 0 chosen according to (4.19), such that
I+ DS D" (2) )QC ® has a right inverse which is uniformly bounded in L*(R°~%; CN) with
respect to € € (0 Egr2)-
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Proof. We define for € € (0, min{eapc, €gr1}) With €41 chosen as in Proposition 8.5

. L2(R9—1;(CN> N L2(R9—1;(CN)7

=Y 6% R 0%,

n' €L

| [

with a. = e¥/% and R, := (I + D: Saen’ ( )Q< acn "))~!. The equality 93¢ = ¢%,
implies Re = ) cz0-1 Uy Oy Ry 2075 and therefore Proposition 8.5 and Corollary C.4
show that R. is well-defined and uniformly bounded by

| Re || <11%7' sup HI+D“E" ()Q “(azn

nEZQ 1

<C,

—1
0—0 Ho—m
where C' > 0 does not depend on . In the exact same way as in the Steps 1-3 of
Proposition 5.17 one shows with the help of Proposition 8.4, Proposition 8.5 and
Lemma 8.6 that

(I + D" (2)Qy)Re = I + Ko + Le, (8.14)

where K. acts as a bounded operator from L*(R~*; CY) to H'(R’~!;C") and the
norm estimates

1+ [log(e)]

01 S 2
CLE

1Al and [ Lefl, ) < Cac(1 + |log(e))

Moreover, (8.14) shows that the operator K+ L. is uniformly bounded in L*(R?~*; CV)
with respect to € € (0, min{eapc, €gr1}). According to Proposition 3.15 (iii) the op-
erator I +C.V = I + By(2)V (with V' = nly + 7f) is continuously invertible in
L2(3;CN) and HY?(%;CN). Thus, by (5.11), (5.18), (8.2) and (8.5) the operator
(I + D§"(2)Q5%)~" is continuously invertible in L2(R?~!;CN) and HY2(R?-1;CN).
Using this observation as well as the properties of L. and K. one proves the assertion
of the proposition in the same way as in Step 4 of Proposition 5.17. O

Proposition 8.8. Let ¥ be a is C¢-graph as described in the beginning of Sec-
tion 5.1.2, q be as in (5.1), V = nly + 78 with n,7 € CH(3Z;R) satisfy (8.4) and
z € C\R. Then, there exists an econv € (0,€apc], with eapc > 0 from (4.19), such
that I + B.(2)V has a inverse which is uniformly bounded in L*(X;CN) with respect
to e € (0, Econv)-

Proof. The statement can be proven in the same way as Proposition 5.18. O

Finally, we are able to provide the main theorem of this section.
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Theorem 8.9. Let X be a special C*-boundary as in Definition 2.1, q be as in (5.1),
V =nly + 76 with n,7 € C}(3;R) satisfy (8.4) and z € C\ R. Then, the operator
Hys,, is self-adjoint and there exists an €cony > 0 such that for any r € (0, %) exists
a C' >0 such that

||(H£ - 2)71 o (HV52 - Z)ilHL2(R9;(CN)4)L2(R0;(CN) S 051/27T

for e € (0,econy)- In particular, Hy, converges to Hys, in the norm resolvent sense
as e — 0.

Proof. In the case that ¥ is a rotated C?-graph the assertion follows from Theo-
rem 8.3, the text below (8.4) and Proposition 8.8. In the general case one can use
the C'-partition of unity @, ...,$, from Corollary A.5 and the same strategy as in
the proof of Theorem 5.20 in order to prove the assertion. We remark that in the
current semilocal case the choice of the partition of unity is crucial since the property
Gi(zs) = @i(x) for © = ax + tv(wyg) with (zx,t) € ¥ x (—=b k) which the C'-
partition of unity from Corollary A.5 possesses, guarantees that V. and @; commute
for e € (0,%4®). Making use of this property allows one to prove formula (5.66) in
the semilocal case in a very similar manner, which, in turn, ensures that the proof

strategy from Theorem 5.20 is successful. (|



Appendix A. Partitions of unity

In this chapter, which contains results from [15], we construct various useful partitions
of unity. Similarly as in [54, Chapter 3|, we define a partition of unity as follows.

Definition A.1. We call a sequence of functions (v;)jes, where J is a countable
(finite or infinite) index set and p; € C*(R"), n € N, (p; € C*(R"), k,n € N) for
all 7 € J, a partition (C*-partition) of unity for a set S C R™ if the following three
conditions are met:

(i) ¢j(x) >0 forx e R™ and j € J.

(i) Everyxz € R™ has a neighbourhood that intersects supp ¢; for only finitely many
j’s.

(iii) > ey pi(x) =1 forallz € S.

Moreover, if (W;) e is an open cover of S and supp p; C W; for all j € J, then we
call (p;)jes a partition (C*-partition) of unity for S subordinate to the open cover

(Wj)jer-

In this thesis we often use partitions of unity in settings where derivatives are in-
volved; cf. Section 8.1 and the proofs of Proposition 5.17, Theorem 5.20 and The-
orem 6.7. Thus, it is important to construct partitions of unity with uniformly
bounded derivatives. We show in several situations that such a choice is possible,
starting with the case S = R", n € {1,2,3}.

Proposition A.2. Letn € {1,2,3}. Then, there exists a partition of unity (¢;),eczn
for R™ subordinate to the open cover (B(j,1));ezn of R" and a sequence of smooth
functions (U;)jen which have the following properties:

(1) supjezn max{||¢;lyys gnys 19l ey} < 00
(11) suppd; C B(4,3), 0<9; <1 and ¥; =1 on B(j,2) for all j € Z".

Proof. Note that since 0 € {1,2, 3}, the family (B(j,7/8)),ez» is also an open cover
of R". We start by choosing a function ¢ € C*°(R™) such that 0 < ¢ < 1, ¢ =1

on B(0,7/8) and supp¢ C B(0,1). Furthermore, we set ¢; := ¢(- — j) for j € Z".
Then, 0 < ¢; <1, ¢; = 1 on B(j,7/8) and supp ¢; C B(j,1). Next, we fix a bijection
Z N = Z" and set ¢za) = ¢z and ¢zq) = (1 — ¢zq)) - (1 — Pza-1))Pzq)
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for i € N\ {1}. Then, supp ¢; C supp 55]-, 0< aj < 1 for j € Z" and one gets via

induction for [ € N
! !
POLECESE | (e
k=1

k=1

This implies >0 ¢j(x) = Y12, ¢zpy(x) = 1 for » € R". Thus, (¢;)jezn is a
partition of unity for R subordinate to (B(j, 1)) ezn.

Furthermore, let [ € N, w € {1,...,n} and x € R". We estimate

-1

9wz ()] =|0u(@z (@) [T (1 = Gz09(2))

-1
=3 bz0@)@ubzim (@) T (1= dz(@)
k=1 r=1,r#k

<D |oubzm@] = Y [Oubzm (@)

k=1,0€ B(Z(k),1)
<2[0w|l 100 ()

where we used that z € R™ can be contained in at most 2" balls of the type B(j,1)
with j € Z". This shows that the derivatives of the ¢;’s are uniformly bounded

by 2" |0y ). Next, we construct the sequence (¥;)jezn. To do so, we choose
¥ € C*°(R"™) such that 0 <9 < 1,0 =1 on B(0,2) and suppd C B(0,3). Then, we
define ¥; := (- — j). The constructed sequence has the claimed properties. O

A useful consequence of this proposition is the following corollary.

Corollary A.3. Let n € {1,2,3} and b > 0. Then, for all a € (0,b) exists a
partition of unity (¢3)jezn for R™ subordinate to the open cover (B(ja,a))jezn of R"
and a sequence of smooth functions (19 )jezn which have the following properties:

(i) sup,ezn maX{||¢?|’W§O(R“)’ ||19-?||W(}O(Rn)} < £, where C > 0 does not depend on
€ (0,b).

(ii) supp ¥ C B(ja,3a), 0 <9} <1 and 9§ =1 on B(ja,2) for all j € Z".

Proof. Define ¢% := ¢;(-) and 9% := 9¢() for j € Z". Then, all the claims follow
directly from Proposition A.4. O

Next, we also find suitable partitions of unity for special C?-surfaces defined in Def-
inition 2.1.
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Proposition A.4. Let ¥ C R?, 0 € {2,3}, be a special C*-surface as in Defini-
tion 2.1 and Wy,..., W, be the corresponding open cover of X. Then, there ex-
ists a partition of unity 1, ..., € C°(R?) for ¥ subordinate to the open cover
Wi,...,W, of 8. Moreover, there exist functions x1,...,Xx, € C(R%) such that

supp x; C Wy and pix; = ¢ for alll € {1,...,p}.

Proof. According to [69, Appendix 1, Lemma 1.2 and Lemma 1.3] there exists a
sequence (z,)pey C R, M € N, 0 < § < =2, with ey from Definition 2.1, and
a sequence of real-valued C'*°-functions (¢, )nen such that (B(z,,0))men is an open
cover of R?) (¢,)nen is a partition of unity for RY, supp ¢, C B(z,,9) for all n € N,
every point x € R is contained in at most M of the sets B(x,, ), and the derivatives
(of any order) of the functions ¢, are uniformly bounded. Next, we define the set
Y :={z, : B(x,,20)NY # (}. Note that for all z,, € Y there exists anl € {1,...,p}
such that B(z,,20) C W,. In fact, as B(x,,25)N3 # ), there exists ys. € B(x,,20)N%
and thus, Definition 2.1 implies B(ys,ex) C W, for an ! € {1,...,p}. Hence, for any

y € B(x,,20) one has
ly—ys| < |y —xn| + |z, —ys| <46 <ey,

which shows B(z,,2§) C W,. Define the sets I} := {n : z, € Y, B(z,,2J) C Wi}
and I, := {n : z, € Y,B(x,,20) C W), B(x,,20) ¢ Wi,k € {1,...,1 — 1}} for
[ €{2,...,p}. Then, it is not difficult to see that

@lzz¢n O

nel;

is a partition of unity having the claimed properties. Moreover, the construction
of v, 1 € {1,...,p}, also implies supp ¢, + B(0,6) C W;. Thus, |54, Theorem 3.6]
guarantees the existence of the functions xi,...,x, € C°(R?) with suppy; € W,
and @ x; = ¢ for L € {1,...,p}.

Corollary A.5. Let ¥ C RY, 0 € {2, 3}, be a special C*-surface as in Definition 2.1,
Wh,...,W, be the corresponding open cover of 3, €}, be as in Definition 2.7 and
Ewub > 0 be chosen as in Proposition 2.12. Then, there exists a C*-partition of unity

D1y, Pp € CLR?) for Qewn and a function w € CHR) with 0 < @ < 1 such that
)

ol(zs + tr(zy)) = oi(xs)w(t) for (xs,t) € X X (—E4ub, Etub), SUPP @1 N C W, and
supp @, C ., for alll € {1,...,p}.

Proof. Let @1, ..., ¢, € C°(R?) be the partition of unity from Proposition A.4 and
define for [ € {1,...,p} the function @; as the extension of ¢; | 3 given by Lemma 4.3.
Then, the functions @, ..., $, have the claimed properties because of the way they
are constructed in Lemma 4.3. O
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Before we start with the proof of (4.34), let us mention that this section can be found
in [14, Appendix B|. Let us shortly recall the problem setting. Let z € p(H) and

B.(2) : BY(Z) — B%X) and B.(z) : BY?(X) — BY?(%) be the operators defined
by (4.27) and (4.29), respectively. In this chapter we prove (4.34), i.e. we show that
B.(z) — B(2) can be extended to a bounded operator from B°() to BY/2(2) and
that N

1B(2) = B(2)llo-1/2 < C<'(1 + [log(e)])'/? (B.1)
for some C' > 0, which is used in (4.34) in Step 3 in the proof of Proposition 4.10.
With (4.28) and (4.32) one obtains for f € BY/2(%)

(éa( ) — B.(2) )(xx) /_1/ ry — ys +etv(xyg) — esv(ys))
— G (s —ys +e(t — s)v(r2))) f(5)(ys) do(ys) ds

(B.2)

for a.e. t € (—1,1) and for o-a.e. zx € X, where G, is the integral kernel of
R, = (H—2)"% cf. (3.3)-(3.4). Thus, in order to show (B.1), we proceed as follows:
We prove in Proposition B.2 that for fixed ¢t # s € (—1,1) the operator formally
acting on ¢ € L*(3;CV) as

brse(2)Y(xy) = /E(Gz(xg — ys + etv(zs) — esv(ys))
— Gy —ys +e(t — s)v(zx))) Y (ys) do(ys),

(B.3)

ry € X, gives rise to a bounded operator from L?(3;CN) to HY/2(Z;CV) and we
prove an estimate for its operator norm. Then, we show in Lemma B.3 that the map
(s,t) = by s-(2) is measurable and use (B.2) to transfer the results from b, s.(2) to

B.(z) — B.(2).

In the following, we always assume € € (0,e4pc) With eapc > 0 satisfying (4.19).
Recall that e¢,, and ¢, are the numbers that are specified in Proposition 2.12 and
Proposition 2.9, respectively. Since ey, < €,, see the proof of Proposition 2.12; we
conclude from (4.19) that eapc < %. We define for t # s € (—=1,1) and z5,ys € ¥

AG,(zs,ys, t, s) == G,(zs — ys + etv(zs) — esv(ys))

Gl —yp 4t —sley). Y
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Moreover, we introduce for ¢ # s € (—1,1) and zy,ys € X the quantities

20(Ts, ys, t,8) == oy — ys + etv(zy) —esv(ys) = t(zy, et) — t(ys, €5),
z1(rs,ys,t,s) = xs —ys +e(t — s)u(rs) = u(rs, e(t — s)) — u(ys, 0),
zu(Ts, Ys, b, 8) = p2o(Ts, ys, t, s) + (1 — pzi(zs, ys, t, 5)

= v(xs, pet + (1 — ple(t — s)) — u(ys, pes)  for p e (0,1),
L(zs,ys,t,s) == |xs —ys| + |e(t — )|

Then7 AGZ(‘rE7 Ys, t, 8) = GZ(Z()('IZb Ys, t? S)) - GZ(Zl (be Ys, t? S)) It follows from
Proposition 2.9 (ii) that for u € [0, 1] the inequalities

CLTQIL(I'Zayfbtv S) S |zu<x2ay2at78)| S CL,QL(IZatht:S) (B5)

hold. To shorten notation we also set

~ Cep
CL,2

C:

>0 (B.6)

with C¢ o from Proposition 3.4. Furthermore, until Lemma B.3 we fix t # s € (—1,1)
and hence omit the arguments ¢, s in the functions L, AG., 2y, 2, and z;.

Lemma B.1. Let G, be the integral kernel of R, in (3.3)=(3.4), AG, as in (B.4),
le{l,...,p}, and 54 as in (2.1). Then, the following is true:

(i) There exists C > 0 which does not depend on e, t, and s such that
|AGZ('IE7 y2)| S CEL(x27 yz)l_ee—CL(Iz,yz)

for all zs,ys € 2.

(ii) There exists C' > 0 which does not depend on ¢, t, and s such that

d

de’ AG. ('), ys)| < CeL(sq(z), ys) Pemcllal@)ys)
Lk

forallk € {1,...,0 —1}, ys € X, and 2’ € 35, '(2).

Proof. Before we prove (i) and (ii), we show a useful estimate of the difference
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20(2x,ys) — 21(rx, ys). Since eape < %, it follows from Proposition 2.9 (ii) that

|z0(7s, ys)—21 (25, ys)| = |etv(rs) — esv(ys) — et — s)v(zs)|
= ¢ls||v(zs) — v(ys)|
€
< leapcv(xs) — eapcv(ys)|
EABC
< ﬂxz-—yzY+|$2-F€ABCV($E)——yz-—EABc¢(yzﬂ)
£ABC (B.7)
€
= (lzs — ys| + [e(xs, ac) — Lys, €asc)])
E€ABC
14+C,
< ’2d$2'—y2’
EABC
14+C,
< i ’25L($2,y2)
EABC

for all zx,ys € 3.

(i) Applying Lemma 2.8, Proposition 3.4, (B.5) and (B.7) yields

|AG (75, y5)| = |G.(20(25,y5)) — G.(21(75, ys))

for all zg,ys € 3,

not depend on ¢, ¢,

|
<C sup lasz(Zu(xz, ys))l|zo(ws, ys) — 21(zs, ys)|
pel0,1],5€{1,... .0}

S O sup |8sz(Zu<anyZ))|EL(x27yZ)
nelo,1],57e{1,... .0}

< C sup |Zu($27yz)‘70@70@’2|Z“(x2’y2)|5L($27Z/E)
pnel0,1]

< CeL(as,ys)' lemckr=us)

where ¢ is defined in (B.6) and C' > 0 is a constant which does
and s. Hence, the claim in (i) is shown.
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ii) For k € {1,...,0 — 1}, yx € &, and 2’ € 31 (X) we compute
I

%AGZ(%Z(JTI)WZ) = diz (G2(20(5a(a"), ys)) — Go(21(3a(2'), ys)))

0

(9,6.) o0 (x). ) o (o) )

<

M%H

(0/62) (102, y5) o (2 oale!). )

Mx,

((9;G2)(20(a(2"), y=)) — (@Gz)(zl(%z(iv’),yz)))dx% (20(3a(2"), y=)) ]

<.
Il

+ —
M%

(0;G )(21(%1(3?'),92))% (20(5a(2'), ys) — 21(a(2"), ys)) 7]

1 k

Mx

((9,G2)(z0(a(2"), yw)) = (9;G-) (21 Gal@'), yw))) < ;C(Zo(%z(x’),yz))[j]

<.
Il

M%H

es(aszle(m(x'),yz>>d4;l;€<w<x'>>m,

+

[y

j=

where the convention v;(z') = v(s(2’)) was used in the last step. To estimate the
second sum we use (B.5), Proposition 3.4 and ¢; € CZ(R?~*;C") and obtain

2 50, ). 1) e (1

< Ce {SUPQ}’(ajGZ)(Zl(%l<x/)ayE))’||DVZHL°°(R9‘1;R9X(9*1))
7e{1,...,

For the remaining part given by

> (9,62 (20 (ala’), yg)) = (9;G2) (21 (za(a), yz)))%(zo(%z(x’), ys))lil  (B8)

J=1 k

we proceed in the same way as in the proof of (i). Using Lemma 2.8 as well as
¢ € C}(R"5R) one can show that the absolute value of the expression in (B.8) is
bounded by the term

C sup 10,0;G.(2,(3a(2"), y=))|eL(sa(2"), ys),

nelo,1],n,je{1,...,0}
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which, in turn, is according to Proposition 3.4 and (B.5) also bounded by

CsL(%l(x'),yg)_ge_CL(”l(“’J)’yE). O

To estimate the operator norm of b, .(z) in Proposition B.2 below we make use of
a partition of unity ¢1,..., ¢, for ¥ subordinate to Wy, ..., W, with the additional
property that the derivatives are uniformly bounded; the existence of such a partition
of unity is shown in Proposition A.4.

Proposition B.2. Let t # s € (—1,1) and ¢ € (0,e4pc). Then, (B.3) gives rise
to a bounded operator b ,.(2) : L>(3;CN) — HY2(X;CN) and there exists a C > 0
which does not depend on €, t, and s such that

1

m. (B.g)

1/2
Hbt,s,s(z)HL2(2;<CN)_>H1/2(2;<CN) < 0(5(1 + | log(elt — SD\))

Proof. We split this proof into four steps. In Step I we verify the preliminary estimate

. 141 t— =1—40
sup /L(iUE,yE)]e_CL(xE’yE) dO'(yz) § C{ 1’_ | Og(d S|)’, ] 6 ) (Bl())
b

€Y T J = -0

which will be used in Step 2 and Step 3 to obtain bounds for b; s .(z) viewed as an op-
erator from L?(3;CY) to L?(X; CY) and from L?(%; CV) to HY(X; CY), respectively.
Finally, we conclude with an interpolation argument (B.9) in Step 4.

Step 1. Let xy, € ¥ and j € {1 — 0, —6}. Recall that ¥ satisfies Definition 2.1 and
let @1,...,p, € C°(R?) be the partition of unity from Proposition A.4. Using the
definition of the boundary integral, we can write

/L(l‘g, yz)je*CL(Iz,yz) da(yg)
s
p .
= Z/ L(ws, s6(y) Y e M=, (e, (y) /1 + [V Gy dy'-
Hence, 0 < ¢, < 1, ¢, € CZ(R"1;R), and »,1(X) C R! yield

/L(xg,yg)jeCL(IE’yz)da(yg) < C max }/ L(acg,%n(y'))je’CL(”’”"(y/)) dy
2 Py JRO-1

ne{l,...,

< C max / I L(xs, 3, (y) ) e~ L @=m ) gy
p} JRO-1
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where C' > 0 does not depend on xy, t, s, and €. Next, let n € {1,...,p} and fix
z], € R’ such that |zy — »,(2},)| = mingcgo-1|zs — 3¢,(y')|. With this choice we
obtain for all 3/ € R%~!

1 1
SR PACARA OS]
1
< 5 (o5 = 50y)| + s = ()

< los = s (y)]-
This implies for any 3 € R%~!

cL(zy, »,(y)) = c(|a:2 — s, (Y| + et — s|) > —|z), —y'| + celt — s].

N O

Moreover, a — a’e™®, a > 0, j € {1 — 6, —0}, is a monotonically decreasing function
C

and therefore we get with p(z],,y’) := §|z;, — /|

/ CjL(:BZv yz)je—CL(acE,yg) da(yz)
b
< (C max / (p(x;wy’) + celt — S|)J'€*p(x;,y’)fceltfs\ dy'
p} JRO-1
< [T+ celt = slpere g
0

< C/ (p + celt — s|)7H02e7rmeelt=sl g
0

o0

— C pj+97267p dp
celt—s|

SC{1TW%@H—MN j=1-0,
m: J = _0)

where C' > 0 does not depend on xy, t, s, and . This proves (B.10).

Step 2. In this step we verify the estimate

[be,s.c (2)¥ | p2mieny < Ce(l + [log(elt = s)DlWllzaseny, ¥ € L*(S;CY). (B.11)

In fact, with the help of the Cauchy-Schwarz inequality, Lemma B.1 (i), and (B.10)
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we obtain for ¢ € L?(3;CV) and zx € &
brac2)o(os)* = | [ AG.(os,vs)0lus) dolus)]
< [1AG. (sl dots) [ 1AG-(os, 1)l tos) P dor(s)
<o / L(zs, ys)'"e~Hem%) do(ys) (B.12)
[ L) ) o)
< Ce*(1+ |log(e]t — s)|) /2 L(zs, ys)' e L= 2) |y (ys) | do(ys).
Now, Fubini’s theorem and (B.10) show
[ cEitas) dotas)
< C(1 + [log(elt — s))) /E /z L(zs, ys)' e M= 2) |y (ys) | do(ys) do(zs)
= €21+ log(elt = s | [ Llas,s)! e 400 doas) o) do(s)
< €21+ foglelt = sDI)* [ ol dous).

which yields (B.11).
Step 3. Next, we prove the estimate

1bes.c ()Pl mery < O ’H¢HL2 mev), ¥ € L*(5;CY), (B.13)

Let v € L*(3;CN) and sq(2') = zx € ¥ with 2/ € R"!. By Proposition A.4 the
function ¢; and its derivatives are bounded. Thus, with ©; := ¢; 0 35 we have

2 (Bt ea) |

2

< 2B) o (e 0) ) +2| (57510 o))
d

< (| 7 (rac )Gl )] + Irac()toala))).

Using the dominated convergence theorem and the properties of AG, stated in
Lemma B.1 one obtains

d , d
Jag e (W ata) = |

s dx),

-(sa(2"), ys) Y (ys) do(ys).
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Hence, we get with the Cauchy-Schwarz inequality, Lemma B.1 (ii), 5, = 34(2’), and
(B.10)

d L
| (e (D) (@)

— | [ 7 AG-Gala') ys) ) ()
k b k
< [ |5 AG-tala) s dotye) [ |5 MG Gata!) )] ) it

< 052/ L(J/‘E’?Jz)fgeid(mz’yz) do(ys)
>

‘ 2

[ Bl ) o) do()
e " [ Dlas ) e e ) P o).
According to (B.12) we can estimate
bne(a)loale D < Ce(Ltfog(ele = s [ Do, )~ He () doys),
where 5, = 3q(2). Moreover, 1+ [log(a)] < C% for a € (0,2 4p¢) yields

|b1,5,e(2) (a(a")) P < CL/L(myz)l‘ee““mz’yg)W(yz)|2da(yz)-
it —s] Js

Thus,

2 /
dx

/ )| da] (Sﬁz s (x ))bt,s,e(zm)(x/)
/w(z) /E(L(’W')’ y2)' ™+ Lia(a’), y2) ™)

e~ HAlD ) ) (ys) 2 do(ys) da’
= O|t:9| /%l1(2)/Z(L(%z(x’),yz)1“9+L(%l(;c’),yz)—9)
=G0 [y (ys)[? do(ys) /1 F [V G (@) da’
<O /E/SL(”Z(“””')’ y)' ™0 Liws, ys) ™)e 05 [y do(ye)do ().

It—SI

Therefore, Fubini’s theorem, (B.10) and using 1 + [log(a)| < C2 for a € (0,2e45¢)
again yield

/71(2)’% (@z(%z(x/))bt,s,e(z)w) (2') 2 1

2
da’ < CWWHL%E;@V)‘
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This estimate, the definition of the norm in H'(X%;C"), see (2.2), and (B.11) imply
(B.13).

Step 4. By Proposition 2.2 (i), we have H'/?(%;CV) = [L2(3Z;CN), HY(Z; €V o
and using that also L*(3;CV) = [L*(X;CY), L*(X;CY)]; /2 we conclude from the
bounds (B.11) and (B.13) together with (xiii) from Section 2.1 that

t,s,e LQ(Z;(CN)*)HI/Q(Z;CN)
16,5, (2)l

1/2 1/2
< Cbrsc(2) | orsiony oz gsiem s (N s omy s sy

1/2 1
< C(s(l + | log(elt — 3|)|)) / .]t — |12

This completes the proof of Proposition B.2. O
Lemma B.3. Let e € (0,eapc). Then, the operator-valued function

F:(=1,1)% = L(LA(Z;CV), HY?(s;CN)),

bise(z), ift#s,
Pt s) = {Ot ift=s

18 measurable.

Proof. 1t suffices to prove that (F(-, )¢, w)Hl/z(E;(CN) is measurable on (—1,1)? for all
@ € L2(3;CN) and o € HY2(3; CN); cf. Definition 2.13. For this, we prove that the
function (F(-, )@, V) ja2(meny is continuous on O := (=1,1)*\ {(t,t) : t € (=1,1)}.
Let (t,s) € O be fixed and let us consider the case ¢ > s. We choose a sequence
((tn, Sn))nen in O which converges to (¢,s). It is no restriction to assume that

%(tn —Sp) >t—5> %(tn — 8,,) holds for all n € N. Then,

L('Iththnv S’n) = |l’2 - ?/Z| + E|tn - Snl < |'IE - ?/Z| + 2€|t - S| S 2L(x27y29t7 S)

and in a similar way

_ 2\1-¢ _
L(anyEatnasn)l 0 S <_) L(xZayEvta S)l 9'

3
Moreover, as |t, — s,| > 0= |t —s| — |t —s| > |t — s| — 2, one has

ech(wg,yg,tn,sn) < e*C(|£C27y2H>€|t78|)+ZCE S eQCEAgcech(IE,yz,t,S).

Combining Lemma B.1 (i) with the latter three displayed formulas yields the existence
of a constant C' > 0 which is independent of xs, ys,t, s, t,, S,, and € such that
IAG. (25, Ys, tn, 50)| < CeL(s, ys, tn, $,)' 70 e HEmwmtnsn)

B.14
S CEL((EE,yE’t’ 8)1*06*611(;[2’3;2,)&78). ( )
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We claim that (by, s, (2)¢)nen converges weakly to by, -(2)¢ in L*(3;CV). Let the
function v € L?(%; CV) be fixed. Then,

((btn,sn,g(z) - bt,syg(z))gp, 7)L2(2;(CN)
= /E/E <(AGZ(IEE, ys, th, Sn) - AGZ(I‘z, s, t, S))gp(yz)7 ’y(l‘z)> dU(yz) dO‘(xz).

The integrand on the right-hand side converges pointwise almost everywhere to
zero, as n — oo. Moreover, (B.14) shows that the integrand is bounded by

M (zs,ys)|e(ys)||v(zs)| with
M(x27 yZ) = OéL(Z‘E, UYs, t, S)I_QQ_CL(xzvyzﬂf,S)'

Applying the Cauchy-Schwarz inequality twice, Fubini’s theorem, and the symmetry
relation M (zx,ys) = M (ys, zx) yields

</z . M (zs, ys)le(ys)|ly(rs)] do(ys) dO'(xE>> 2

S/E(/E M(xz,yz)|90(yz)|dU(y2)>2d0($2)||7||i2(z;<cN)
< / / M(ws, ys) | (ys)[* do(ys) / M(xs, ys) do(ys) do(es) |22 mex)

2
2 2
<C((sup [ Mrtos,us)dos)) TelEsmen ol

1‘262 >

Furthermore, with (B.10) we see that

sup / M (zx,ys) do(ys) < Ce(1 + |log(elt — s])|) < oo.
TyEX JY

Hence, ((bt,5,.2(2) = brs,e(2))9,7) 2movy — 0 for n — oo by applying the domi-

nated convergence theorem. Since v € L?(X;CY) was arbitrary, we conclude that

(bt 5. (2)P)nen converges weakly to by . (2)p in L*(3; CN).

Next, we show that (b, s, (2)¢)nen converges weakly to b;s.(2)¢ in the space
HY 2(%;CN), which shows the claimed continuity. For this, we note that Propo-
sition B.2 and 2(t, — s,) > t — s > 0 imply that (b;, s, (2)¢)nen is a bounded
sequence in H 1/2 2(3;CY). Let us assume that (b, s, (2)@)nen does not converge
weakly to by s (2 )gp in H'/2(3;CY). Then, the H'/2-boundedness implies that there
exists a weakly convergent subsequence (b, s, «(2)9)ken Which converges to some
¢ € H'Y2(3;CN) with ¢ # by.(2)p. However, in this case (b, s, <(2)@)ren
would also converge weakly to ¢’ in L?(X3;CY) which contradicts the first part of
the proof. Hence, (b, ., -(2)¢)nen converges weakly to by, ()¢ in HY/?(3; CV) and
therefore, ((b,,,s5,.(2)%, %) grij2(zionyJnen converges to (byse(2)9, V) yijo(s,eny for all
Y € HY?(3; CN). O
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After all these preliminary considerations we are prepared to prove (4.34).

Proof of (4.34). Let f € B°(X) be fixed. Using Proposition B.2, the Cauchy-Schwarz
inequality, and Fubini’s theorem we obtain

2
/1 (/ ||bts€ ||H1/2 CM) dS) dt
2
1
< C/_1 </_1( (1+ |log(elt — 8D|))1/2m”‘f<s)HLQ(Z;(CN) d3> dt

1 1
1/2 1
gc/1 / (e(1 + | og(elt — s))) Y Tt

1

/_ (=(1 + [log(elt — s\)|))1/2ﬁHf(s)Hiz(E;CN) ds> dt

1

<C sup </ (5(1+|10g(5|t—8|)|))1/2m )/”f ||Lzch)ds

56(7171) -1
< Ce(1+ |log(e)]) | f1I5,

where we used that for € > 0 sufficiently small one has

1
1/2 1
sup )/ (5(1 + | log(e|t — 3\)|)) —|t Y dt
—1

se(—1,1

2 179 1
g/_ (5(1+ \log(a\T’)D) / |7 [1/2 dr

2
2
1
< Ce'2(1 + [log(e)])'/ /2(1 + |10g(|7|)\)1/2W dr
< CeM?(1 + [log(e)]) /2.
Combined with Lemma B.3, (2.8) and Proposition 2.15 this shows that the Bochner
integral f_ll bise(2)f(s)ds € HY?(X;CN) exists for a.e. ¢t € (—1,1) and that the

function t > [*, by, -(2)f(s)ds € H'/?(2; CN) is measurable. Hence, the mapping
B.(z) : B°(X) — BY3(%),
! (B.15)
B0) = [ biael2)f(5)ds,

1
is well-defined, bounded, and ||B.(2)]|,_,, , < Ce'/?(1 + [log(¢)['/?). By (B.2), (B.3),
and Proposition 2.18 (iii) we also have

1

(B(2) = B(2))f () = / brsc(2)f(s) ds = Be(2) () (B.16)

1
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for all f € BY/2(X). Therefore, B.(z) — B(z) can be extended to a bounded operator
from B°(X) to BY2(X) and (4.34) is true. |



Appendix C. Additional results for Section 5.1.2 and
Section 8.2

In this chapter, which is based on [15], we provide results which are used in Sec-
tion 5.1.2 and Section 8.2. We begin by stating a fitting version of the Schur test.

Lemma C.1. Let k be a measurable function in R~' x R~ with values in CN*N

and k € LY(R?™Y) such that
k(x',y)| < k(a' —) for ae. 2,y € RO~

Then, k induces an integral operator K : L*(R%~1L;CN) — L*RY~L CN), which is
bounded by ||k|| 1 ge-1y. Moreover, if k € C*(R?~! x R?~1; CNV*N) and

d ~
Z‘—,k(w',y’)‘ < k(2 —y) forae. 2’y € R/
— dz;

then the induced operator K also acts as bounded operator from L?*(R°~%;,CN) to
HY(R-1 CN) and the corresponding operator norm is bounded by C|| k|| 12 ro-1y, where
C > 0 does not depend on k or k.

Proof. The first assertion is an immediate consequence of the Schur test; see for
instance [44, Chapter III, Example 2.4]|. Next, let us prove the second assertion. We
start by choosing g € C5°(R~1:; CV). Our assumptions and dominated convergence
show that in this case, Kg is differentiable and

Ak = [ ks

Hence, applying the Schur test shows

||Kg||H1(]R9*1;(CN) < CHkHLl(R‘)*l) ||g||L2(R9*1;(CN)'

The fact that C5°(R%~1; CV) is dense in L2(R~%; CV), see [54, the text above eq. (3.22)],
the completeness of H!(R%~!; C") and the L2-continuity of K imply that the estimate
is also valid for g € L%(R~%; CV). O

Our next goal is to use the functions ¥%,, n’ € Z, from Corollary A.3 (for n = 6—1) to
construct operators based on a uniformly bounded sequence of operators. We start
by providing a useful variant of the Cotlar-Stein lemma.

177
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Lemma C.2. Let H and G be Hilbert spaces, let (Ay)pezo—1 be a family of uniformly
bounded operators acting from H to G. Moreover, assume that there exists a number
M € N such that for every n' € Z°~! exist at most M indices m' € Z°~' such that
Af A and A A%, are nonzero operators. Then, the family (A )ezo—1 is strongly
summable (in the sense of (v) of Section 2.1) and for A =32 _,41 Ay the estimate

[Allyg <M sup [[Awllg
n/€z9-1

is valid.

Proof. Our assumptions guarantee

* 1/2
sup Y A Al < M sup (| Al g,

nleze—l m’EZG*1 nleze—l
sup D ML Awlli e <M sup (Al g
n/ezf-1 m'ezf—1 n'ezf—1

Hence, the assertions follow from the Cotlar-Stein lemma; see [38, Lemma 18.6.5].01

Proposition C.3. Let a € (0,b) for a b > 0, (9%),eczo-1 be the sequence from
Corollary A.3 (form =60 — 1) and (Ap)pezo—1 be a sequence of uniformly bounded
operators in B°(R?~1). Then,

st.
A= > 0% A0

n/eze—l

is a well-defined operator in B°(R%=Y) which is bounded by 11°~Y sup,,czo-1 | Awllg_s0-
Moreover, if (Ap)pezo—1 is also a family of uniformly bounded operators acting from
BY(R?~Y) to BYRY™1), then A also acts as a bounded operator from B°(R°~1) to
BYRY) and ||Allg,, < Ssuppego [|Awllg_,, where C > 0 does not depend on
a € (0,b).

Proof. Let us start by proving the assertions where we consider A and A,,, n’ € Z%7!,
as operators acting from B°(R%!) to BO(R’"!). We set A, := 9% A4,9%. Since
a fixed ball B(an’,3a) overlaps with at most 11°~! balls of the type B(am/’,3a),
m/ € Z97!, there exist for every n’ € Z%~1 at most M = 11! indices m’ € Z~! such
that A, A%, # 0 and A%, A, # 0. Moreover, for all n’ € Z°~! we have

||An’||o_>0 < ||19;’ZL/||0—>0”A”/||O—)OHQ9$L,”O—)O < ”An’Ho_)o‘

Thus, by Lemma C.2 the assertions where A and A,,, n’ € Z°~!, are considered as
bounded operators from B°(R’~!) to BY(R?~1) are true. Next, we assume that A,
n' € 7971, act as uniformly bounded operators from B°(R?~1) to BY(R’~!). Using
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again the fact that a fixed ball B(an’,3a) overlaps with at most 11°~! balls of the
type B(am’,3a), m' € Z°7!, shows that there exist for every n’ € Z°~! at most
M = 11°7! indices m’ € Z°~! such that A, A% # 0 and A%' A, # 0, where the
expressions A,,>*! and A,,**! denote the adjoint operators of A,, and A, respec-
tively, considered as operators mapping from B°(R?7!) to B'(R%"!). Furthermore,
applying Corollary A.3 gives us for all n’ € Z%~!

HAR/HO~>1 < ”192/“1~>1HA71/H0~>1|’7'9?L"|0~>0
< 19l [ An o
< Cll9% lw o1y 1 Aw o1

C
< EHAn’Ho_n

<%)a
a

”/HOHT

Applying Lemma C.2 again concludes the proof. O

As a corollary we obtain a result for series of operators in L?(R%~%; CV).

Corollary C.4. Let a € (0,b) for a b >0, (Up)ezo-1 be the sequence from Corol-
lary A.3 (forn = 0—1) and (Aw),ezo—1 be a sequence of uniformly bounded operators
in L2(R%~Y; CN). Then,

st.
A= )" 05 A0
n/c70-1
is a well-defined operator in L*(R°~Y; CN) which is bounded by

1% sup [ A |’LQ(R@—l;CN)ﬁLQ(RQ—l;(CN)'
n'ez9-1

Moreover, if (Ap)pezo—1 s also a family of uniformly bounded operators acting

from LR~ CN) to HY (R~ CY), then A also acts as a bounded operator from
LA(R-L,CN) to HY(R?-,CN) and

c
HAHLQ(Re’l;CN)—)Hl(RQ’l;CN) S Enlezlg—l ||ﬂ||L2(R9*1;CN)—>H1(R9*1;<CN)’

where C' > 0 does not depend on a € (0,b).

Proof. With the help of the operators J and J* defined in (2.10) and (2.11) (for
O = (—1,1)), respectively, we are able to write

i 19%/&192:3*( > 79;‘3/&314”/3*)192,)3.

n/ezf-1 n'eZf~1
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Here, we used J*J = 2/ and the fact that ¥¢, commutes with J and J*, if one
considers 92, once as a multiplication operator in B°(R~!) (or B(R?~!)) and once
as a multiplication operator in L2(R?~1;C") (or H'(R?~1;C¥)). Thus, the result
follows from applying Proposition C.3 to (A, )pyezo-1 = (%Jﬂ:j*)n/ezﬂ—l and

||J||L2 RO-1,CN)— =13 ||0—>L2 RO-1,CN)

H‘jHHl (RO-1,CN)— || ||1—>H1 (RO-1,CN) - \/5
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