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Abstract

The present thesis is devoted to the approximation of Dirac operators with δ-shell po-
tentials supported on the boundary of a two or three-dimensional C2-domain. These
singular potentials are used as idealized replacements for potentials which are strongly
localized in a neighbourhood of the support of the δ-shell potential and they often
simplify the spectral analysis. To justify the usage of such potentials it is essential
to prove that Dirac operators with δ-shell potentials can be approximated by Dirac
operators with strongly localized potentials in a way which transfers the spectral
properties. The most important contribution of this thesis is the establishment of
conditions for the convergence of Dirac operators with strongly localized potentials in
the norm resolvent sense. This type of convergence implies that the spectrum of the
Dirac operator with δ-shell potential can be completely characterized by the spectra
of the approximating operators and vice versa. In the special case of electrostatic
and Lorentz scalar δ-shell potentials an explicit convergence condition is provided.
Furthermore, counterexamples which imply the sharpness of this condition are also
presented.

Zusammenfassung

Das Ziel dieser Dissertation ist es, Dirac Operatoren mit δ-Potentialen, welche auf
dem Rand eines zwei- oder dreidimensionalen C2-Gebietes definiert sind, zu appro-
ximieren. Derartige δ-Potentiale werden als Idealisierung von regulären Potentialen
gesehen, welche stark in der Umgebung des Trägers des δ-Potentials lokalisert sind.
Um eine Verwendung von solchen Potentialen rechtzufertigen, muss gezeigt werden,
dass Dirac Operatoren mit δ-Potentialen durch Dirac Operatoren mit stark loka-
lisierten Potentialen auf eine Weise angenähert werden können, welche auch spek-
trale Eigenschaften überträgt. Der wichtigste Beitrag dieser Arbeit zur aktuellen
Forschung ist die Angabe von Bedingungen für die Konvergenz im Normresolventen-
sinn. Konvergenz in diesem Sinn impliziert, dass das Spektrum des Dirac Operators
mit δ-Potential vollständig durch die Spektren der approximierenden Operatoren
charakterisiert werden kann und umgekehrt dasselbe gilt. Für den Spezialfall von
elektrostatischen und Lorentz-skalaren δ-Potentialen wird eine explizite Konvergenz-
bedinung angegeben. Durch passende Gegenbeispiele wird zusätzlich gezeigt, dass
die Bedingung auch scharf ist.
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1 Introduction

1.1 Description of the problem

Differential operators coupled with singular potentials are frequently used in math-
ematical physics. Such singular potentials model regular potentials which have very
large values in the vicinity of a set of measure zero and small values everywhere else.
In contrast to regular potentials, they cannot be represented by functions and have
to be described by distributions. Nonetheless, the spectral analysis of differential
operators with singular potentials often simplifies substantially and may even reduce
to an explicitly solvable problem.

To justify the replacement of regular potentials by singular potentials, approximation
results are necessary, i.e. if H is a differential operator and S is a singular potential,
one has to show thatH+S can be approximated byH+Vε as ε→ 0 in a suitable sense,
where (Vε)ε>0 is a family of regular potentials which converges in the distributional
sense to S. Here, “suitable sense” means in particular that the convergence should
relate the spectra as well as the associated spectral projections ofH+S andH+Vε. In
the context of self-adjoint unbounded operators, appropriate notions of convergence
are the strong resolvent convergence and the norm resolvent convergence, which
means that (H + Vε − i)−1 converges to (H + S − i)−1 as ε→ 0 in the strong sense
or in the operator norm, respectively.

In this thesis we focus on the approximation of Dirac operators with δ-shell potentials.
We start by explaining Dirac operators. They were introduced by Paul Dirac in 1929
and are used to describe spin 1/2 particles in a quantum mechanical framework.
Moreover, in contrast to Schrödinger operators, they also comply with the theory of
relativity. The free Dirac operator without any potential has the following form in
natural units:

H = −i
θ∑
j=1

αj∂j +mβ, domH = H1(Rθ;CN) ⊂ L2(Rθ;CN). (1.1)

Here, θ ∈ {1, 2, 3} denotes the space dimension, m ∈ R describes the mass of a
particle and α1, . . . , αθ, β ∈ CN×N , N = 2

⌈
θ
2

⌉
, are the Dirac matrices introduced in

Definition 3.1 for θ ∈ {2, 3}. For θ ∈ {1, 2} one has αj = σj, j ∈ {1, . . . , θ}, and

3



4 1 Introduction

β = σ3, with the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Adding a symmetric matrix-valued potential S to H allows one to also model the
influence of external fields, e.g. electrostatic, Lorentz scalar or magnetic fields. In
this thesis we are interested in the case S = V δΣ, where δΣ is the singular δ-shell
potential supported on a C2-smooth hypersurface Σ ⊂ Rθ and V is a symmetric
matrix-valued function on Σ. If V = ηIN + τβ + λi(α · ν)β + ω(α · ν), where ν
is the unit normal vector on Σ and α · ν =

∑θ
j=1 αjνj, we call the scalar functions

η, τ , λ and ω the electrostatic, Lorentz scalar, anomalous magnetic and magnetic
interaction strengths, respectively.
The main aim of this thesis is to study the norm resolvent convergence of the oper-
ators HVε = H + Vε, where (Vε)ε>0 is a family of regular potentials which converges
for ε→ 0 in the distributional sense to V δΣ.

1.2 State of the art

For Schrödinger operators, which are the nonrelativistic counterparts of Dirac opera-
tors, the literature regarding such approximation results is extensive. It is well-known
that in the one-dimensional setting, where Σ is either a single point or a countable
set of points, Schrödinger operators with δ-potentials can be approximated in the
norm resolvent sense by Schrödinger operators with strongly localized potentials; see
for instance [1] and the references therein. In two and three dimensions this problem
was also considered for various choices of Σ; see [2, 30, 31, 58, 68]. Furthermore, in [7]
norm resolvent convergence was proven for a general class of C2-smooth hypersurfaces
in the multidimensional setting.

Approximation problems for one-dimensional Dirac operators with Σ = {0} were first
considered in 1989 by Šeba in [67]. He investigated Dirac operators with potentials of
the form Vε = V hε, where V = ηI2, η ∈ R, or V = τβ, τ ∈ R, and (hε)ε>0 is a suitable
family of functions converging for ε→ 0 in the distributional sense to δ0, which is the
δ-potential supported in {0}. In this setting he was able to show that HVε converges
in the norm resolvent sense to the operator HṼ δ0

. Here, Ṽ = η̃I2 or Ṽ = τ̃β, where
η̃ and τ̃ are rescaled interaction strengths which depend nonlinearly on η and τ ,
respectively. This rescaling does not appear in the case of Schrödinger operators
and had already been observed a few years prior in various physics papers, see e.g.
[22, 52, 53], when comparing the solutions of the Dirac eigenvalue equation with δ-
potentials and strongly localized potentials. Furthermore, Šeba and the authors of
[52, 53] related this phenomenon to Klein’s paradox. In the nineties Hughes showed
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in [40, 41, 42] that HV hε converges in the strong resolvent sense to HṼ δ0
for self-

adjoint matrices V ∈ C2×2. Moreover, she was also able to find an explicit formula
for the rescaling of V to Ṽ ; cf. [42, Theorem 1 and Theorem 2]. In our terminology
this formula is given by

Ṽ = 2α1 sin
(α1V

2

)
cos
(α1V

2

)−1

(1.2)

provided that cos
(
α1V

2

)
is an invertible matrix. Finally, in 2020, Tušek extended in

[72] the works of Šeba and Hughes by proving norm resolvent convergence in the one-
dimensional setting for a large class of self-adjoint interaction matrices V ∈ C2×2.

In the multidimensional setting the literature is less complete than in the one-
dimensional case and so far there only exist results on strong resolvent convergence.
In this setting one defines based on a matrix-valued function V given on Σ, for ε > 0
a potential Vε which is supported in an ε-neighbourhood of Σ and converges for ε→ 0
in the distributional sense to V δΣ. In 2018 Mas and Pizzichillo considered this prob-
lem in three dimensions in [51], where Σ was assumed to be a compact C2-surface.
Inspired by the methods used in [7] for the approximation of Schrödinger operators
with δ-shell potentials, they were able to show strong resolvent convergence in the
case of purely electrostatic and purely Lorentz scalar interactions, if the interaction
strengths satisfy a nonexplicit smallness condition. Moreover, they observed a sim-
ilar rescaling of V to Ṽ as known from the one-dimensional counterpart. For the
special case where Σ is the sphere, the same authors considered the convergence of
the eigenvalues in [50]. Recently, the two-dimensional case with Σ being a smooth
closed curve was considered for the first time in [24] by Cassano, Lotoreichik, Mas
and Tušek. In this paper the authors established strong resolvent convergence of
HVε to HṼ δΣ

for interaction matrices of the type V = ηIN + τβ + λi(α · ν)β with-
out any smallness assumption. Behrndt, Holzmann and Tušek showed an analogous
statement in the case where Σ is a straight line in [18]. Furthermore, in [74], Zreik
transferred the methods from [24] to the three-dimensional setting and showed that
HVε converges in the strong resolvent sense to HṼ δΣ

for combinations of electrostatic
and Lorentz scalar interaction strengths.

A different approach to approximate Dirac operators with δ-shell potentials, which
goes back to [23, 67], is via so-called nonlocal potentials; see also [34]. In one dimen-
sion such potentials are given by Vε = (·, hε)L2(R)V hε and they also converge in the
distributional sense to V δ0. However, in contrast to the classical strongly localized
potentials, HVε converges in the norm resolvent sense to HV δ0 , i.e. no rescaling of
the interaction matrix is necessary. Tušek and Heriban took up this idea in [35] and
considered the norm resolvent convergence of Dirac operators with such potentials
in the multidimensional case. It turned out that in the mentioned case no rescaling
is necessary either, but in contrast to the one-dimensional case, the limit operator is



6 1 Introduction

not a Dirac operator with a local δ-shell potential but rather a Dirac operator with
a so-called nonlocal δ-shell potential.

1.3 Rigorous definition of various objects

Before we state and discuss the main results of this thesis, let us fix some necessary
notations. We assume that Ω+ ⊂ Rθ, θ ∈ {2, 3}, is a possibly unbounded C2-smooth
domain (according to Definition 2.1) and we set Σ := ∂Ω+ and Ω− := Rθ \ Ω+.
Moreover, we denote the unit outward normal vector field of Ω+ by ν. For a function
u : Rθ → CN we write u± := u � Ω± and we denote the Dirichlet trace operator
by t±Σ : H1(Ω±;CN) → H1/2(Σ;CN), where Hs are the L2-based Sobolev spaces.
Recall that α1, . . . , αθ, β ∈ CN×N are the Dirac matrices defined in Definition 3.1.
To shorten notation, we make use of the abbreviations

α · ∇ :=
θ∑
j=1

αj∂j and α · x :=
θ∑
j=1

αjxj, x = (x1, . . . , xθ) ∈ Cθ.

For m ∈ R and Ṽ ∈ L∞(Σ;CN×N) such that Ṽ = Ṽ ∗, i.e. Ṽ (xΣ) = (Ṽ (xΣ))∗ for a.e.
xΣ ∈ Σ, we introduce the operator

HṼ δΣ
u := (−i(α · ∇) +mβ)u+ ⊕ (−i(α · ∇) +mβ)u−,

domHṼ δΣ
:=

{
u ∈ H1(Ω+;CN)⊕H1(Ω−;CN) :

i(α · ν)(t+
Σu+ − t−Σu−) +

Ṽ

2
(t+

Σu+ + t−Σu−) = 0

}
⊂ L2(Rθ;CN).

(1.3)

This is a rigorous realization of the formal operator

H + Ṽ δΣ = −i(α · ∇) +mβ + Ṽ δΣ,

which was studied under various assumptions on Ṽ and the interaction support Σ
in [4, 5, 8, 9, 13, 16, 18, 19, 24, 59, 60]. The operator exhibits different behaviours
depending on the properties of Ṽ . To illustrate this fact, let us consider Ṽ = η̃IN+τ̃β
with η̃, τ̃ ∈ R. It is well-known that HṼ δΣ

is self-adjoint if d̃ = η̃ 2 − τ̃ 2 6= 4. This
case is referred to as the noncritical case. In the critical case, i.e. d̃ = 4, HṼ δΣ

is
not closed and only essentially self-adjoint; see [12, 13, 19, 56]. Not only this, by
[12, 13, 17, 18, 19, 20] the spectral properties also change drastically in the critical
case. We conclude the discussion of HṼ δΣ

by mentioning that if d̃ = η̃ 2 − τ̃ 2 = −4,
then HṼ δΣ

splits into the orthogonal sum of two operators acting in L2(Ω+;CN) and
L2(Ω−;CN); cf. Proposition 3.15 (ii). This implies that the particle described by
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HṼ δΣ
cannot cross Σ and thus stays confined either in Ω+ or in Ω−. Hence, we say

that HṼ δΣ
induces confinement in this case.

It is the main goal of the present thesis to show that HṼ δΣ
can be approximated in

the norm resolvent sense by Dirac operators with strongly localized potentials. To
introduce the latter operators, we define the map

ι : Σ× R→ Rθ, ι(xΣ, t) := xΣ + tν(xΣ), (xΣ, t) ∈ Σ× R,

and for ε ∈ (0,∞) we set Ωε := ι(Σ×(−ε, ε)), which is the so-called tubular neighbour-
hood of Σ. Furthermore, for εtub > 0 sufficiently small the map ι � Σ× (−εtub, εtub)
is injective; cf. Proposition 2.12. To define the above mentioned strongly localized
potentials, we choose

q ∈ L∞((−1, 1);R) with
∫ 1

−1

q(s) ds = 1

and
V ∈ W 1

∞(Σ;CN×N) such that V = V ∗,

whereW 1
∞ denotes the first order L∞-based Sobolev space. Since ι � R×(−εtub, εtub)

is injective, we can define for ε ∈ (0, εtub)

Vε(x) :=

{
1
ε
V (xΣ)q

(
t
ε

)
, x = ι(xΣ, t) ∈ Ωε,

0, x /∈ Ωε,
(1.4)

and for m ∈ R and ε ∈ (0, εtub) the operator

HVεu := −i(α · ∇)u+mβu+ Vεu, domHVε := H1(Rθ;CN).

Note thatHVε = H+Vε is self-adjoint in L2(Rθ;CN) as Vε = V ∗ε ∈ L∞(Rθ;CN×N) and
the free Dirac operatorH from (1.1) is self-adjoint; cf. Proposition 3.3. Moreover, the
sequence Vε converges to V δΣ as ε→ 0 in the sense of distributions by construction.

Recall from Section 1.2 that the expected limit operator is not HV δΣ but rather HṼ δΣ
,

where V has been rescaled to Ṽ . Provided that cos
( (α·ν)V

2

)−1 ∈ W 1
∞(Σ;CN×N), the

rescaling is given by

Ṽ = 2(α · ν) sin
( (α·ν)V

2

)
cos
( (α·ν)V

2

)−1
, (1.5)

where analytic functions of matrices are defined via the corresponding power series;
cf. (1.2) for the one-dimensional counterpart of this formula. If η, τ ∈ W 1

∞(Σ;R) and
V = ηIN + τβ, then the rescaling can be simplified to

Ṽ =
2 tan

(√
d

2

)
√
d

V, d = η2 − τ 2.
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In particular,

Ṽ = η̃IN + τ̃β with (η̃, τ̃) =
2 tan

(√
d

2

)
√
d

(η, τ) (1.6)

in this special case, which is prevalent in literature; see [18, 24, 74] for analogous
rescalings.

1.4 New results and structure of this thesis

Having established some necessary notations in Section 1.3, we are now in the position
to discuss the main new contributions of this thesis. The results, which are partially
included in the preprints [14, 15], are presented in a manner that also elucidates
the structure of this dissertation. After the preliminary Chapters 2–3, we find in
Chapter 4 abstract conditions which guarantee the norm resolvent convergence of
HVε to HṼ δΣ

for ε → 0, where Vε is the strongly localized potential based on the
interaction matrix V from (1.4) and Ṽ = Ṽ (V ) is the rescaled interaction matrix
given by (1.5); see Theorem 4.15. In Corollary 4.16 we apply this theorem and show
that if ‖V ‖W 1

∞(Σ;CN×N ) is sufficiently small, then the operator HṼ δΣ
is self-adjoint and

HVε converges in the norm resolvent sense to HṼ δΣ
for ε→ 0. Theorem 4.15 extends

the current literature in the following three aspects:

(i) Instead of strong resolvent convergence, we prove the norm resolvent conver-
gence of the approximating family, which has not been established in the multi-
dimensional situation so far. This type of convergence ensures that the spectrum
of the limit operator HṼ δΣ

can be completely characterized by the spectra of
the approximating operators and it also implies the convergence of the related
spectral projections.

(ii) Instead of bounded curves in R2 or bounded surfaces in R3, we treat a general
class of bounded and unbounded interaction supports Σ which we call special
C2-surfaces. This class of surfaces can be described by finitely many rotated
graphs of C2-functions with bounded derivatives; see Definition 2.1. In partic-
ular, this class includes graphs of C2-functions with bounded derivatives and
boundaries of bounded C2-domains.

(iii) Instead of considering only electrostatic, Lorentz scalar, and anomalous mag-
netic interactions (which can be described by three real-valued functions), we
allow general symmetric 2 × 2 or 4 × 4 matrix-valued functions as interaction
strengths in dimensions two or three, respectively, and provide an explicit for-
mula for rescaling when passing to the limit.
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The key idea for the improvement from strong resolvent convergence to norm re-
solvent convergence mentioned in (i) is the following: We factorize the resolvent
differences of the free Dirac operator and Dirac operators with strongly localized
potentials and instead of viewing the individual factors as operators in L2-spaces, we
study their convergence properties as operators between various (Bochner-)Sobolev
spaces.

In Chapter 5 we focus on interaction matrices having the form V = ηIN + τβ with
η, τ ∈ C1

b (Σ;R), where C1
b (Σ;R) is the set of all real-valued bounded C1-smooth

functions on Σ which have bounded first derivatives. The interaction strengths η
and τ are used to model electrostatic and Lorentz scalar interactions, respectively,
and they are the most common interaction types in the literature of Dirac operators
with δ-shell potentials; see for instance [4, 9, 13, 19, 60]. In this setting we prove
in Theorem 5.20 that the abstract conditions from Theorem 4.15 for norm resolvent
convergence simplify to the explicit condition

sup
xΣ∈Σ

d(xΣ) <
π2

4
, d = η2 − τ 2. (1.7)

Inspired by the last paragraph of [24, Section 8] we then add a strongly localized
magnetic potential to HVε ; more precisely, we choose V = ηIN + τβ + π(α · ν).
It turns out that in this case HVε also converges in the norm resolvent sense; see
Theorem 5.21. However, by the specific choice of π as the magnetic interaction
strength, the magnetic term disappears when rescaling. Hence, we end up with a
limit operator HṼ δΣ

which is again a Dirac operator with δ-shell potential and only
electrostatic and Lorentz scalar interactions, where the rescaling of η and τ is different
than in the case V = ηIN +τβ. Using this result and Theorem 5.20 we can formulate
Corollary 5.22, which states that every Dirac operator with a given δ-shell potential
Ṽ δΣ, Ṽ = η̃IN + τ̃β, η̃, τ̃ ∈ C1

b (Σ;R), and d̃ = η̃ 2 − τ̃ 2 fulfilling

sup
xΣ∈Σ

|d̃(xΣ)| < 4 or inf
xΣ∈Σ

|d̃(xΣ)| > 4 (1.8)

can be approximated by a sequence of Dirac operators with strongly localized poten-
tials. In the case of constant interaction strengths this is particularly interesting, as
it implies that every Dirac operator with a δ-shell potential and constant electrostatic
and Lorentz scalar interaction strengths satisfying |d̃| 6= 4 can be approximated in
the norm resolvent sense by Dirac operators with strongly localized potentials.

In Chapter 6 we show that the condition (1.7) is in fact optimal. We do this by
providing suitable counterexamples. To discuss the counterexamples in more detail
we assume V = ηIN + τβ with η, τ ∈ R. By (1.6) we have

d̃ = η̃ 2 − τ̃ 2 = 4 tan
(√

d
2

)
.
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We distinguish between the critical (d̃ = 4) and the noncritical (d̃ 6= 4) case. Note
that if d < π2

4
, i.e. (1.7) is fulfilled, then d̃ < 4 and hence Ṽ is noncritical. Now, let

us assume that d ≥ π2

4
, i.e. (1.7) is not fulfilled. If d̃ = 4, then HṼ δΣ

is not closed
and only essentially self-adjoint. Hence, HVε cannot converge in the norm resolvent
sense to HṼ δΣ

. Moreover, as also the spectral properties change in the critical case,
we are able to show in Theorem 6.1 that HVε does not even converge to the closure
of HṼ δΣ

in the norm resolvent sense if Σ is compact and C∞-smooth. Furthermore,
if d ≥ π2

4
and d̃ 6= 4 we show in Theorem 6.7 that HVε does not converge to HṼ δΣ

in the norm resolvent sense under the geometric assumption that Σ contains a flat
part.

Chapter 7 is split into two parts. In the first part we approximate Dirac opera-
tors which induce confinement and in the second part we present various spectral
implications of the approximation results. Let us start by explaining the first part
in more detail. From (1.8) we conclude that the confinement case, i.e. d̃ = −4, is
not included in our approximation results. To approximate Dirac operators with δ-
shell potentials that induce confinement, we use the following approach: We choose
V = ηIN + τβ with η, τ ∈ C1

b (Σ;R) such that supxΣ∈Σ d(xΣ) < 0. Moreover, we
assume that f : (0, εtub) → (0,∞) is a suitable scaling function with f(ε) → ∞ for
ε→ 0; the exact conditions are given in (7.2). Then, Theorem 7.4 states that Hf(ε)Vε

converges in the norm resolvent sense to HṼ δΣ
, where

Ṽ = η̃IN + τ̃β (η̃, τ̃) =
2√
|d|

(η, τ).

This immediately shows that d̃ = η̃ 2 − τ̃ 2 = −4, i.e. Ṽ induces indeed confinement.
After considering the approximation of Dirac operators with δ-shell potentials which
induce confinement, we deal in Section 7.2 with the discrete and essential spectrum
of HVε . In particular, we find conditions which guarantee the existence of discrete
eigenvalues in various situations.

Finally, in Chapter 8, we introduce so-called semilocal potentials. Recall from Sec-
tion 1.2 that one can use nonlocal potentials to approximate Dirac operators with
δ-shell potentials without any rescaling in the one-dimensional setting. As already
mentioned, this approach does not work for θ ∈ {2, 3}. This leads us to the definition
of semilocal potentials which allow approximations of Dirac operators with δ-shell
potentials supported on Σ without any rescaling. For V = V ∗ ∈ W 1

∞(Σ,CN×N),
q ∈ L∞((−1, 1);R) with

∫ 1

−1
q(t) dt = 1 and ε ∈ (0, εtub) we define

Vε : L2(Rθ;CN)→ L2(Rθ;CN),

(Vεu)(x) :=


1
ε
V (xΣ)q

(
t
ε

) ∫ 1

−1
u(ι(xΣ, εs))q(s)

· det(I − sεW (xΣ)) ds, x = ι(xΣ, t) ∈ Ωε,

0, x /∈ Ωε.
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Here W denotes the Weingarten map associated with Σ and plays only a secondary
role since it is scaled with ε. We call such potentials semilocal since they behave
nonlocally with respect to the variable t in the normal direction of Σ and locally
with respect to the variable xΣ ∈ Σ. Similarly as in the local setting, however
without any rescaling, we are able to show the norm resolvent convergence of HVε

to HV δΣ for general interaction matrices under abstract conditions; see Theorem 8.3.
For interaction matrices of the form V = ηIN + τβ, η, τ ∈ C1

b (Σ;R), we show in
Theorem 8.9 that the simple condition

sup
xΣ∈Σ

d(xΣ) < 4, d = η2 − τ 2,

guarantees the norm resolvent convergence.

Before concluding the introduction, it should be mentioned that in the process of
writing this thesis, the language tool DeepL was consulted for stylistic and grammat-
ical improvements concerning the English language.





2 Preliminaries

In this chapter we provide necessary preliminary results. We start by introducing
various notations and conventions in Section 2.1. Then, we define in Section 2.2 spe-
cial C2-surfaces which are roughly speaking subsets of unions of rotated C2

b -graphs.
These surfaces are important because we consider δ-shell potentials and integral oper-
ators on such surfaces in the main parts of this thesis; cf. Section 3.1 and Section 3.3.
After introducing and constructing Sobolev spaces on these special C2-surfaces, we
study tubular neighbourhoods of such surfaces in Section 2.3. In Section 2.4 we
provide elementary definitions and results for Bochner spaces, which turn out to be
very useful in the Chapters 4–7, where we consider functions with values on Sobolev
spaces on special C2-surfaces. In Section 2.5 we deal with the norm resolvent con-
vergence of unbounded self-adjoint operators and its spectral implications. Finally,
in Section 2.6, we collect conditions for the invertibility of bounded operators, which
is crucial for handling resolvent formulas.

2.1 Notations

In this section we provide a list with frequently used notations and conventions
throughout this thesis.

(i) By θ ∈ {2, 3} we denote the space dimension and we set N = 2 for θ = 2 and
N = 4 for θ = 3.

(ii) The symbol Ω+ denotes an open subset of Rθ such that its boundary Σ is a
special C2-surface as in Definition 2.1. In this case we set Ω− := Rθ \ Ω+ and
if u is a function defined on Rθ, then we define u± := u � Ω±.

(iii) For a topological vector space X the expression X ′ denotes its dual space; i.e.
the space of all continuous linear functionals defined on X . Moreover, for x ∈ X
and x′ ∈ X ′ we introduce the bilinear duality product

X ′〈x′, x〉X := x′(x).

If the space X is equipped with a continuous antilinear conjugation operation
X 3 x→ x ∈ X fulfilling x = x for all x ∈ X , then we introduce the sesquilinear
duality product

〈x′, x〉X ′×X := X ′〈x′, x〉X .

13
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Furthermore, if Y is also a topological vector space with a continuous antilinear
conjugation operation and A is a linear bounded operator mapping from X to
Y , then the antidual operator A′ : Y ′ → X ′ (which is again linear and bounded)
is defined by the relationship

〈y′,Ax〉Y ′×Y = 〈A′y′, x〉X ′×X ∀x ∈ X , y′ ∈ Y ′.

(iv) Let H and G be Hilbert spaces and A be a linear operator mapping from H to
G. The domain, kernel and range of A are denoted by domA, kerA and ranA,
respectively. The norm and the scalar product (which is antilinear with respect
to the second argument) in H are expressed by ‖·‖H and (·, ·)H. If A is bounded
and everywhere defined, then we write ‖A‖H→G for its operator norm. If H = G
and A is closed, then the resolvent set, the spectrum and the point spectrum
of A are denoted by ρ(A), σ(A) and σp(A), respectively. Furthermore, if the
domain of A is dense in H, then the adjoint of A is denoted by A∗ and if
A = A∗, then σess(A) and σdisc(A) are the essential and discrete spectrum of
A.

(v) Let H and G be Hilbert spaces, J be a countable index set, Aj, j ∈ J, and A be
bounded linear operators mapping from H to G. If for every u ∈ H and δ > 0
exists a finite index set Jδ,u ⊂ J such that

∥∥∑
j∈J ′ Aju−Au

∥∥
H < δ for all finite

index sets J ′ with J ′ ⊃ Jδ,u, then we say that the family (Aj)j∈J is strongly
summable and set

∑st.
j∈J Aj := A. Furthermore, if H̃ and G̃ are also Hilbert

spaces and B : G → G̃ and C : H̃ → H are bounded linear operators, then the
family (BAjC)j∈J is strongly summable and

∑st.
j∈J BAjC = B

(∑st.
j∈J Aj

)
C.

(vi) The expression [·, ·] denotes the commutator of two operators.

(vii) To denote sets of functions, we use symbols having the structure S(A;B), where
S reflects the properties of the functions and A and B denote the domain and
codomain of the functions, respectively. For example L2(Rθ;CN), C1(Σ;R),
W 1(R;CN×N), etc. Moreover, if S(A) is not specified otherwise, then we set
S(A) := S(A;C). For example L∞((−1, 1)) := L∞((−1, 1);C).

(viii) If n ∈ N and U ⊂ Rn is open, then Hr(U) and W r
∞(U) denote the L2- and L∞-

based Sobolev spaces of order r, respectively; cf. [54, Chaper 3]. Moreover, if
Σ is the boundary of a C2-domain, then Hr(Σ) and W r

∞(Σ) are Sobolev spaces
on the boundary Σ; cf. Section 2.2. Vector and matrix-valued Sobolev spaces
are defined in the natural way, i.e. component-wise.

(ix) If k, n ∈ N and U ⊂ Rn is an open set, then we write Ck
b (U) for the space

which contains all f ∈ Ck(U) such that f and all partial derivatives of f up
to order k are bounded. Moreover, we set C∞b (U) =

⋂∞
k=1C

k
b (U). If Σ is a

C2-smooth hypersurface and k ≤ 2, then the space Ck
b (Σ) is defined via local



2.1 Notations 15

coordinates. The corresponding spaces of vector and matrix-valued functions
are defined component-wise.

(x) If n ∈ N and U ⊂ Rn is open, then C∞0 (U) denotes the set of all compactly
supported C∞-functions on U . Furthermore, the set C∞0 (U) contains all C∞-
functions on U which have an extension to a function in C∞0 (Rn). Again,
the corresponding spaces of vector and matrix-valued functions are defined
component-wise.

(xi) The usual L2((−1, 1))-based Bochner space of H-valued functions is denoted by
L2((−1, 1);H); cf. Section 2.4. For H = Hr(S;CN), where S is either equal to
Σ or equal to Rθ−1, we write Br(S) instead of L2((−1, 1);Hr(S;CN)). We also
write ‖·‖r for the norm in Br(S). In a similar way, we define

‖·‖r→r′ := ‖·‖Br(S)→Br′ (S),

‖·‖r→H := ‖·‖Br(S)→H,

‖·‖H→r′ := ‖·‖H→Br′ (S).

(xii) If (O,A , λ) denotes a measure space, and f : O → C is an integrable function,
then

∫
O
f(t) dλ(t) denotes the integral of f . In the case that λ is the Lebesgue

measure we simplify this notation to
∫

O
f(t) dt.

(xiii) Following [54, Appendix B], we call (H0,H1) a compatible pair, if H0 and H1

are two Hilbert spaces which are continuously embedded in a bigger Hausdorff
topological vector space. In this situation, one can construct with the K-method
(or various other methods, see [25, 26, 43, 54], which yield the same spaces with
equivalent norms) a family of Hilbert spaces [H0,H1]τ , τ ∈ (0, 1), such that
H0 ∩ H1 ⊂ [H0,H1]τ ⊂ H0 + H1 for all τ ∈ (0, 1). Assume that (G0,G1) is
another compatible pair of Hilbert spaces. Then, for two bounded operators
A0 : H0 → G0 and A1 : H1 → G1 such that A0u = A1u for all u ∈ H0 ∩ H1,
there exists by [54, Theorem B.2] a unique bounded linear operator

Aτ : [H0,H1]τ → [G0,G1]τ

such that A0u = A1u = Aτu for all u ∈ H0 ∩ H1. Moreover, its norm can be
estimated by

‖Aτ‖[H0,H1]τ→[G0,G1]τ ≤ ‖A0‖1−τ
H0→G0

‖A1‖τH1→G1
.

(xiv) The application of a holomorphic function to a matrix (or a matrix-valued
function) A is defined via the associated power series, whenever it converges.
This implies for two holomorphic functions f, g that f(A)g(A) = (fg)(A).



16 2 Preliminaries

(xv) The symbol |·| is used for the absolute value, the Euclidean vector norm or the
Frobenius norm of a number, a vector or a matrix, respectively. We write 〈·, ·〉
for the Euclidean scalar product in Cn, n ∈ N, which is antilinear in the second
argument.

(xvi) For v = (v1, . . . , vn)T ∈ Cn, n ∈ N, we simply write v = (v1, . . . , vn). Similarly,
we use the notation v = (v′, vn) for the vector v = (v′T , vn)T with v′ ∈ Cn−1

and vn ∈ C. Moreover, we set v[j] = vj for j ∈ {1, . . . , n}. Analogously, if
A ∈ Cn×n, then A[j, k], j, k ∈ {1, . . . , n}, denotes the (j, k)-th entry of the
matrix A.

(xvii) The expression F denotes the Fourier transform in Rθ−1. Moreover, F1 and
F2 denote the partial Fourier transforms in Rθ with respect to the first θ − 1
variables and the θ-th variable, respectively. These transforms are given for
ψ ∈ S(Rθ−1) and u ∈ S(Rθ) by

Fψ(ξ′) =
1√

(2π)θ−1

∫
Rθ−1

ψ(x′)e−i〈x
′,ξ′〉dx′, ξ′ ∈ Rθ−1,

F1u(ξ) =
1√

(2π)θ−1

∫
Rθ−1

u(x′, ξθ)e
−i〈x′,ξ′〉dx′, ξ = (ξ′, ξθ) ∈ Rθ,

F2u(ξ) =
1√
2π

∫
R
u(ξ′, xθ)e

−ixθξθdxθ, ξ = (ξ′, ξθ) ∈ Rθ,

and can be uniquely extended to continuous operators in S ′(Rθ−1) and S ′(Rθ),
where S denotes the space of tempered distributions; cf. [63, Chapter IX].
Moreover, the application of the Fourier transform to vector and matrix-valued
functions or distributions is defined component-wise. The complete Fourier
transform in Rθ is given by F1,2 := F1F2 = F2F1.

(xviii) The letter C > 0 always denotes a generic constant which may change in-
between lines.

(xix) The branch of the square root is fixed by Im
√
w > 0 for w ∈ C \ [0,∞).

(xx) The tangens cardinalis tanc : C \ {nπ + π
2

: n ∈ Z} → C is defined by

tanc(w) :=

{
tan(w)
w

, w ∈ C \
(
{0} ∪ {nπ + π

2
: n ∈ Z}

)
,

1, w = 0.

For x ∈ R \ {0} the equation tanc(ix) = tanh(x)
x

is valid.

(xxi) The expression SO(θ) denotes the rotation matrices in Rθ×θ, i.e. the real θ × θ
orthogonal matrices which have determinant one.
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2.2 Special C2-surfaces and corresponding Sobolev spaces

We introduce and study in this section, which is based on [14, Section 2.1], so-
called special C2-surfaces in Rθ. Moreover, by a partition of unity and suitable
parametrizations we are able to define Sobolev spaces on such surfaces.

Definition 2.1. Let Ω+ ⊂ Rθ, θ ∈ {2, 3}, be an open set and Σ := ∂Ω+. Then,
we call Σ a special C2-surface if there exist open sets W1, . . . ,Wp ⊂ Rθ, mappings
ζ1, . . . , ζp ∈ C2

b (Rθ−1;R), rotation matrices κ1, . . . , κp ∈ SO(θ), and an εΣ > 0 such
that the following is true:

(i) Σ ⊂
⋃p
l=1Wl.

(ii) If x ∈ ∂Ω+ = Σ, then there exists l ∈ {1, . . . , p} such that B(x, εΣ) ⊂ Wl.

(iii) Wl ∩ Ω+ = Wl ∩ Ωl, where Ωl = {κl
(
x′, xθ

)
: xθ < ζl(x

′), (x′, xθ) ∈ Rθ}, for
l ∈ {1, . . . , p}.

Furthermore, in this case we define the sets Σl := ∂Ωl = {κl(x′, ζl(x′)) : x′ ∈ Rθ−1}
and Ω− := Rθ \Ω+, denote the unit normal vector field at Σ that is pointing outwards
of Ω+ by ν and use the expression σ for the (θ − 1)-dimensional Hausdorff measure
restricted to Σ.

One can check easily that compact C2-hypersurfaces and C2
b -graphs are special C2-

surfaces. This class is essentially the intersection of the hypersurfaces described
by [70, Chapter VI, Section 3.3] and [7, Definition 2.1 and Hypothesis 2.3]. The
assumptions in [70] guarantee us on the one hand the existence of suitable trace and
extension theorems, see Proposition 2.3 and Proposition 2.6, and on the other hand
the assumptions in [7] imply that the ε-tubular neighbourhood can be identified with
the set Σ× (−ε, ε); see Proposition 2.12. Both are essential in the later parts of this
thesis.

Next, we introduce Sobolev spaces on special C2-surfaces. We recall that Sobolev
spaces on open sets are defined as in [54, Chapter 3]. To transfer the definitions
to Σ, we choose the partition of unity ϕ1, . . . , ϕp ∈ C∞b (Rθ) for Σ subordinate to
W1, . . . ,Wp from Proposition A.4. We define for l ∈ {1, . . . , p}

κl : Rθ−1 → Σl, κl(x′) := κl(x
′, ζl(x

′)), (2.1)

and for ψ ∈ L2(Σ;CN) we write

ψΣl(x
′) :=

{
ϕl(κl(x′))ψ(κl(x′)), κl(x′) ∈ Σ,

0, κl(x′) /∈ Σ.
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Then, ψΣl ∈ L2(Rθ−1;CN) and ψ(xΣ) =
∑p

l=1,xΣ∈Σl
ψΣl(κ

−1
l (xΣ)) for xΣ ∈ Σ. As

usual, we introduce for r ∈ [0, 2]

Hr(Σ;CN) :=
{
ψ ∈ L2(Σ;CN) : ψΣl ∈ Hr(Rθ−1;CN) for all l = 1, . . . , p

}
(2.2)

and endow this space with the scalar product

〈φ, ψ〉Hr(Σ;CN ) =

p∑
l=1

〈φΣl , ψΣl〉Hr(Rθ−1;CN ), φ, ψ ∈ Hr(Σ;CN).

Sobolev spaces Hr(Σ;CN) with r ∈ [−2, 0) are defined by duality. Furthermore,
setting Ul := κ−1

l (Σ ∩Wl) allows us to define for V ∈ {C;CN×N} and k ∈ {1, 2} the
Sobolev space

W k
∞(Σ;V) :=

{
F ∈ L∞(Σ;V) : (F ◦ κl) � Ul ∈ W k

∞(Ul;V) for all l = 1, . . . , p
}

and equip it with the norm

‖F‖Wk
∞(Σ;V) := max

l∈{1,...,p}
‖(F ◦ κl) � Ul‖Wk

∞(Ul;V), F ∈ W k
∞(Σ;V).

Since the Sobolev spaces on Σ are defined via Sobolev spaces on open sets, one can
check that Hr(Σ;CN) is a Hilbert space and W k

∞(Σ;V) is a Banach space. We state
useful properties of the just introduced Sobolev spaces on Σ in the next proposition.

Proposition 2.2. Let V ∈ {C,CN×N}, Σ ⊂ Rθ be a special C2-surface as in Defi-
nition 2.1, k ∈ {1, 2} and r, r1, r2 ∈ [−2, 2]. Then, the following statements hold:

(i) If r = (1− τ)r1 + τr2, then Hr(Σ;CN) = [Hr1(Σ;CN), Hr2(Σ;CN)]τ .

(ii) If 0 ≤ r1 ≤ r2, then Hr2(Σ;CN) is densely contained in Hr1(Σ;CN).

(iii) If |r| ≤ k, ψ ∈ Hr(Σ;CN) and F ∈ W k
∞(Σ;V), then Fψ ∈ Hr(Σ;CN) and

‖Fψ‖Hr(Σ;CN ) ≤ C‖F‖Wk
∞(Σ;V)‖ψ‖Hr(Σ;CN ),

where C > 0 does not depend on ψ and F .

(iv) If F,G ∈ W k
∞(Σ;V), then FG ∈ W k

∞(Σ;V) and

‖FG‖Wk
∞(Σ;V) ≤ C‖F‖Wk

∞(Σ;V) ‖G‖Wk
∞(Σ;V),

where C > 0 does not depend on F and G.

(v) If I ⊂ R is an open interval, F ∈ C1
b (I;V), G ∈ W 1

∞(Σ) and G(Σ) ⊂ I, then
F ◦G ∈ W 1

∞(Σ;V) and

‖F ◦G‖W 1
∞(Σ;V) ≤ C‖F‖W 1

∞(I;V)‖G‖W 1
∞(Σ),

where C > 0 does not depend on F and G.
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Proof. We start by showing (i). This can be found in [54, Theorem B.11] for the
case that Σ is compact. The proof in [54] works as follows. First, the case of graphs
is considered and then a partition of unity ϕ1, . . . , ϕp ∈ C∞0 (Rθ) for Σ subordinate
to W1, . . . ,Wp and functions χ1, . . . , χp ∈ C∞0 (Rθ) which fulfil suppχl ⊂ Wl and
φlχl = ϕl for l ∈ {1, . . . , p} are used to transfer the results to compact hypersurfaces.
However, the proof does not change if the functions ϕ1, . . . , ϕp and χ1, . . . , χp are
assumed to be in C∞b (Rθ) instead of C∞0 (Rθ) and hence Proposition A.4 shows that
(i) is also valid if Σ is a special C2-surface.

Next, let us consider (ii). By [54, the lines above eq. (3.22)] Hr1(Rθ−1;CN) is densely
contained in Hr2(Rθ−1;CN). Using this knowledge and the definition of Hr(Σ;CN)
in (2.2) via the partition of unity ϕ1, . . . ϕp from Proposition A.4 one concludes that
also Hr2(Σ;CN) is densely contained in Hr1(Σ;CN).

To prove (iii), we first assume that r is a nonnegative integer, then by applying the
product rule for weak derivatives, see [29, Section 4.2.2], we get

‖Fψ‖2
Hr(Σ;CN ) =

p∑
l=1

‖(F ◦ κl)ψΣl‖2
Hr(Ul;CN )

≤ C

p∑
l=1

‖F ◦ κl‖2
Wk
∞(Ul;V)‖ψΣl‖2

Hr(Ul;CN )

≤ C‖F‖2
Wk
∞(Σ;V)

p∑
l=1

‖ψΣl‖2
Hr(Rθ−1;CN )

= C‖F‖2
Wk
∞(Σ;V)‖ψ‖

2
Hr(Σ;CN ).

If r ∈ [0, k], then the result follows by interpolation from (i) and Section 2.1 (xiii).
If r ∈ [−k, 0), then Fψ is defined by (anti-)duality via

〈Fψ, γ〉Hr(Σ;CN )×H−r(Σ;CN ) := 〈ψ, F ∗γ〉Hr(Σ;CN )×H−r(Σ;CN ) ∀γ ∈ H−r(Σ;CN).

Thus, the result is a consequence of the case where r is positive.

Items (iv) and (v) follow from the definition of W k
∞(Σ;V) via Sobolev spaces on

open sets and the product rule and chain rule for weak derivatives; see again [29,
Section 4.2.2].

Next, we formulate a suitable trace theorem for special C2-surfaces.

Proposition 2.3. Let Σ = ∂Ω± ⊂ Rθ, θ ∈ {2, 3}, be a special C2-surface as in
Definition 2.1 and r ∈ (1

2
, 5

2
). Then, the following is true:
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(i) There exists a unique bounded and surjective operator

t±Σ : Hr(Ω±;CN)→ Hr−1/2(Σ;CN)

such that t±Σu = u � Σ for all u ∈ Hr(Ω±;CN) ∩ C(Ω±;CN).

(ii) There exists a unique bounded and surjective operator

tΣ : Hr(Rθ;CN)→ Hr−1/2(Σ;CN)

such that tΣu = u � Σ for all u ∈ Hr(Rθ;CN) ∩ C(Rθ;CN).

Proof. Item (i) follows from [21, Theorem 8.7] and [48, Theorem 2]. Moreover, defin-
ing tΣu := t+

Σu+ for u ∈ H1(R;CN) shows that there exists a bounded surjective
operator satisfying tΣu = u � Σ for u ∈ Hr(Rθ;CN)∩C(Rθ;CN). The operator tΣ is
unique since the set Hr(Rθ;CN) ∩ C(Rθ;CN) is dense Hr(Rθ;CN); see for instance
[54, the text above eq. (3.22)]. Thus, also (ii) is true.

Remark 2.4. For u ∈ Hr(Rθ \ Σ;CN) = Hr(Ω+;CN) ⊕ Hr(Ω−;CN) we define
t±Σu := t±Σu±, where u± := u � Ω±.

Corollary 2.5. Let Σ = ∂Ω± ⊂ Rθ be a special C2-surface as in Definition 2.1,
ν be the unit normal vector field pointing outwards of Ω+, f, g ∈ H1(Ω±;CN) and
j ∈ {1, . . . , θ}. Then,

(∂jf, g)L2(Ω±;CN ) + (f, ∂jg)L2(Ω±;CN ) = ±(ν[j]t±Σf, t
±
Σg)L2(Σ;CN ),

where ν[j] denotes the j-th component of ν.

Proof. If f, g ∈ C∞0 (Ω±;CN), then the statement is a consequence of the divergence
theorem. The divergence theorem for Lipschitz domains with compact boundaries is
given by [54, Theorem 3.34]. However, as f, g ∈ C∞0 (Ω±;CN), i.e. they have com-
pactly supported C∞-extensions to Rθ, the divergence theorem for compact bound-
aries is also applicable in our setting. According to [54, the text below (3.23)]
C∞0 (Ω±;CN) is dense in H1(Ω±;CN). Thus, the result follows from the continuity of
the trace operator.

Under our geometric assumptions we not only have a suitable trace theorem, addition-
ally, according to the upcoming proposition there also exists an extension operator
extending functions from Hr(Ω±;CN) to functions in Hr(Rθ;CN).

Proposition 2.6. Let Σ = ∂Ω± ⊂ Rθ be a special C2-surface as in Definition 2.1.
Then, there exists a bounded extension operator (called Stein’s extension operator)
E± : L2(Ω±;CN) → L2(Rθ;CN) which satisfies (Eu±) � Ω± = u± for all functions
u ∈ L2(Ω±;CN) and also acts as a bounded operator from Hr(Ω±;CN) to Hr(Rθ;CN)
for all r ≥ 0.
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Proof. If r ∈ N0, then the proof follows from [70, Chapter VI, Section 3.1, Theorem 5]
since Ω± satisfies the conditions in [70, Chapter VI, Section 3.3]. If r /∈ N0, then
interpolation, see [54, Theorem B.7 and Theorem B.8] and Section 2.1 (xiii), yields
the claim.

2.3 Tubular neighbourhoods of special C2-surfaces

In this section, which contains parts of [14, Section 2.1 and Appendix A], we study
tubular neighbourhoods of Σ. This is important, as we define in (4.3) so-called
strongly localized potentials on such sets.

Definition 2.7. Let Σ ⊂ Rθ be a special C2-surface, ν, Σl and Ωl be as in Defini-
tion 2.1, and κl be defined by (2.1). Then, we set

ι : Σ× R→ Rθ, ι(xΣ, t) := xΣ + tν(xΣ),

and for ε > 0 we call Ωε := ι(Σ × (−ε, ε)) the (ε-)tubular neighbourhood of Σ.
Moreover, we define for l ∈ {1, . . . , p} the function

ιl : Rθ−1 × R→ Rθ, ιl(x
′, t) := κl(x′) + tνl(κl(x′)),

where νl denotes the unit normal vector field on Σl pointing outwards of Ωl.

Note that ι(κl(x′), t) = ιl(x
′, t) for all x′ ∈ κ−1

l (Σ), t ∈ R and l ∈ {1, . . . , p}, and

νl(κl(x′)) =
κl(−∇ζl(x′), 1)√

1 + |∇ζl(x′)|2
∀x′ ∈ Rθ−1,

with ζl from Definition 2.1. From now on we write νl(x′) instead of νl(κl(x′)) for
x′ ∈ Rθ−1 in order to simplify notation.

Before we study the maps ι and ιl in detail, we provide a useful variant of the mean
value theorem for vector and matrix-valued functions.

Lemma 2.8. Let k, l, n ∈ N, U ⊂ Rn be an open set and A ∈ C1
b (U ;Ck×l). If

x, y ∈ U and the line segment connecting x and y is contained in U , then

|A(x)− A(y)| ≤ sup
µ∈[0,1]

( n∑
j=1

|(∂jA)(x+ µ(y − x))|2
)1/2

|x− y|

≤
√
n sup
µ∈[0,1],j∈{1,...,n}

|(∂jA)(x+ µ(y − x))||x− y|.

In particular, if U = Rn and l = 1, then

|A(x)− A(y)| ≤ ‖DA‖L∞(Rn;Ck×n)|x− y| ∀x, y ∈ Rn.
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Proof. Recall that |·| denotes, depending on the argument, the absolute value, the
Euclidean vector norm, or the Frobenius matrix norm. The fundamental theorem of
calculus and the Cauchy-Schwarz inequality lead to

|A(x)− A(y)| =
∣∣∣∣∫ 1

0

n∑
j=1

(∂jA)(x+ µ(y − x)) (x− y)[j] dµ

∣∣∣∣
≤
∫ 1

0

n∑
j=1

|(∂jA)(x+ µ(y − x))||(x− y)[j]| dµ

≤ sup
µ∈[0,1]

n∑
j=1

|(∂jA)(x+ µ(y − x))||(x− y)[j]|

≤ sup
µ∈[0,1]

( n∑
j=1

|(∂jA)(x+ µ(y − x))|2
)1/2

|x− y|

≤
√
n sup
µ∈[0,1],j∈{1,...,n}

|(∂jA)(x+ µ(y − x))||x− y|.

The estimate for the special case U = Rn and l = 1 is an immediate consequence of
the above estimate.

Proposition 2.9. Let Σ ⊂ Rθ be a special C2-surface as in Definition 2.1, and let
ι and ιl, l ∈ {1, . . . , p}, be as in Definition 2.7. Then, there exists an ει > 0 and
constants Cι,1, Cι,2 > 0 such that the following holds:

(i) For all x′, y′ ∈ Rθ−1, t, s ∈ (−ει, ει) and l ∈ {1, . . . , p} we have

C−1
ι,1

(
|x′ − y′|+ |t− s|

)
≤ |ιl(x′, t)− ιl(y′, s)| ≤ Cι,1

(
|x′ − y′|+ |t− s|

)
.

(ii) For all xΣ, yΣ ∈ Σ and t, s ∈ (−ει, ει) we have

C−1
ι,2

(
|xΣ − yΣ|+ |t− s|

)
≤ |ι(xΣ, t)− ι(yΣ, s)| ≤ Cι,2

(
|xΣ − yΣ|+ |t− s|

)
.

Proof. (i) Let x′, y′ ∈ Rθ−1 and t, s ∈ (−ει, ει) be fixed, where ει > 0 is, at the
moment, a fixed number. Using Definition 2.7, Lemma 2.8, κl(x′) = κl(x

′, ζl(x
′))

and κl(y′) = κl(y
′, ζl(y

′)) we find

|ιl(x′, t)− ιl(y′, s)| ≤ |κl(x′)− κl(y′)|+ |tνl(x′)− sνl(y′)|
≤ |κl(x′)− κl(y′)|+ |t||νl(x′)− νl(y′)|+ |t− s|
≤ |x′ − y′|+ |ζl(x′)− ζl(y′)|+ ει|νl(x′)− νl(y′)|+ |t− s|
≤ |x′ − y′|+ ‖∇ζl‖L∞(Rθ−1;Rθ−1)|x

′ − y′|
+ ει‖Dνl‖L∞(Rθ−1;Rθ×(θ−1))|x

′ − y′|+ |t− s|
≤
(
1 + ‖∇ζl‖L∞(Rθ−1;Rθ−1) + ει‖Dνl‖L∞(Rθ−1;Rθ×(θ−1))

)(
|x′ − y′|+ |t− s|

)
.
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Now, the second estimate in (i) follows if we fix 0 < ει ≤ 1 and choose

Cι,1 ≥ 1 + max
l∈{1,...,p}

(
‖∇ζl‖L∞(Rθ−1;Rθ−1) + ‖Dνl‖L∞(Rθ−1;Rθ×(θ−1))

)
,

which is finite since we assumed in Definition 2.1 that ζl ∈ C2
b (Rθ−1;R), l ∈ {1, . . . , p}.

Next, we prove the first inequality in (i). We start by rewriting

|ιl(x′, t)− ιl(y′, s)|2 = |κl(x′)− κl(y′)|2

+ 2〈κl(x′)− κl(y′), tνl(x′)− sνl(y′)〉+ |tνl(x′)− sνl(y′)|2.
(2.3)

We estimate all three terms on the right-hand side separately. For the first one, we
find with κl(x′) = κl(x

′, ζl(x
′)), κl(y′) = κl(y

′, ζl(y
′)), and as κl ∈ SO(θ) that

|κl(x′)− κl(y′)|2 = |x′ − y′|2 + |ζl(x′)− ζl(y′)|2 ≥ |x′ − y′|2. (2.4)

Next, we consider the second term on the right-hand side of (2.3). We start by
observing

I :=
∣∣〈κl(x′)− κl(y′), tνl(x′)〉

∣∣
=

∣∣∣∣∣ 1√
1 + |∇ζl(x′)|2

〈
κl

(
x′ − y′

ζl(x
′)− ζl(y′)

)
, tκl

(
−∇ζl(x′)

1

)〉∣∣∣∣∣
=

∣∣∣∣∣t〈x′ − y′,−∇ζl(x′)〉+ ζl(x
′)− ζl(y′)√

1 + |∇ζl(x′)|2

∣∣∣∣∣.
The mean value theorem shows ζl(x′) − ζl(y

′) = 〈x′ − y′,∇ζl(x′ + µ(y′ − x′))〉 for
some µ ∈ [0, 1]. Using Lemma 2.8 the above expression can be further estimated by

I ≤ sup
µ∈[0,1]

∣∣∣∣∣t〈x′ − y′,∇ζl(x′)−∇ζl(x′ + µ(y′ − x′))〉√
1 + |∇ζl(x′)|2

∣∣∣∣∣
≤ sup

µ∈[0,1]

ει|x′ − y′||µ(y′ − x′)|‖D∇ζl‖L∞(Rθ−1;R(θ−1)×(θ−1))

≤ ει|x′ − y′|2‖D∇ζl‖L∞(Rθ−1;R(θ−1)×(θ−1)).

Similarly, one has

|〈κl(x′)− κl(y′), sνl(y′)〉| ≤ ει|x′ − y′|2‖D∇ζl‖L∞(Rθ−1;R(θ−1)×(θ−1)),

and thus

2〈κl(x′)− κl(y′), tνl(x′)− sνl(y′)〉
≥ −4ει|x′ − y′|2‖D∇ζl‖L∞(Rθ−1;R(θ−1)×(θ−1)).

(2.5)
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To estimate the third term on the right-hand side in (2.3), we use Lemma 2.8 as well
as (a− b)2 ≥ 1

2
a2 − b2 for a, b > 0 and calculate

|tνl(x′)− sνl(y′)|2 = |(t− s)νl(x′)− s(νl(y′)− νl(x′))|2

≥
(
|t− s| − |s(νl(y′)− νl(x′))|

)2

≥ 1

2
|t− s|2 − s2|νl(y′)− νl(x′)|2

≥ 1

2
|t− s|2 − ε2

ι |x′ − y′|2‖Dνl‖
2
L∞(Rθ−1;Rθ×(θ−1)).

(2.6)

By plugging (2.4)–(2.6) into (2.3) we obtain

|ιl(x′, t)− ιl(y′, s)|2 ≥
1

2
|t− s|2

+ |x′ − y′|2
(

1− 4ει‖D∇ζl‖L∞(Rθ−1;R(θ−1)×(θ−1)) − ε
2
ι‖Dνl‖

2
L∞(Rθ−1;Rθ×(θ−1))

)
.

As before we conclude from ζl ∈ C2
b (Rθ−1;R) that for ει > 0 sufficiently small and

Cι,1 > 0 sufficiently large the first inequality in (i) is also fulfilled.

(ii) We fix xΣ, yΣ ∈ Σ and t, s ∈ (−ει, ει). Let us first assume that xΣ, yΣ ∈ Σl

for some l ∈ {1, . . . , p}. Then, there exist x′, y′ ∈ Rθ−1 such that xΣ = κl(x′) and
yΣ = κl(y′), and therefore ι(xΣ, t) = ιl(x

′, t) and ι(yΣ, s) = ιl(y
′, s). In this case we

see
|xΣ − yΣ| =

√
|x′ − y′|2 + |ζl(x′)− ζl(y′)|2

and therefore combining

|x′ − y′| ≤ |xΣ − yΣ| ≤ |x′ − y′|
√

1 + ‖∇ζl‖2
L∞(Rθ−1;Rθ−1)

with (i) yields (ii). It remains to consider the case where xΣ, yΣ ∈ Σ and there is
no l ∈ {1, . . . , p} such that xΣ, yΣ ∈ Σl. Then, (ii) and (iii) from Definition 2.1
imply |xΣ − yΣ| ≥ εΣ, where εΣ is the number specified in Definition 2.1. We choose
ει ≤ εΣ/6. Then, |xΣ − yΣ| ≥ 6ει, |tν(xΣ)− sν(yΣ)| ≤ 2ει and |t− s| ≤ 2ει yield

|ι(xΣ, t)− ι(yΣ, s)| ≤ |xΣ − yΣ|+ 2ει ≤
4

3
|xΣ − yΣ| ≤

4

3
(|xΣ − yΣ|+ |t− s|)

and

1

2

(
|xΣ − yΣ|+ |t− s|

)
≤ |xΣ − yΣ|

2
+ ει =

|xΣ − yΣ|
2

+ 3ει − 2ει

≤ |xΣ − yΣ| − 2ει ≤ |ι(xΣ, t)− ι(yΣ, s)|,

which imply (ii) also in this case.
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Eventually, we state a useful consequence of Proposition 2.9.

Corollary 2.10. Let Σ = ∂Ω± ⊂ Rθ be a special C2-surface as in Definition 2.1 and
let ει be as in Proposition 2.9. Then, the following holds:

(i) For any xΣ ∈ Σ and t ∈ (0, ει) one has xΣ + tν(xΣ) ∈ Ω−.

(ii) For any xΣ ∈ Σ and t ∈ (−ει, 0) one has xΣ + tν(xΣ) ∈ Ω+.

Proof. We only show item (i), the proof of assertion (ii) follows along the same lines.
We verify the claim by an indirect proof. Assume that there are xΣ ∈ Σ and t ∈ (0, ει)
such that xΣ + tν(xΣ) /∈ Ω−. Since ν is pointing outwards of Ω+, we have for small
µ > 0 that xΣ+µtν(xΣ) ∈ Ω−. By continuity, this implies that there exists µ0 ∈ (0, 1]
such that xΣ +µ0tν(xΣ) ∈ Σ. However, we obtain from Proposition 2.9 for all yΣ ∈ Σ
with a constant Cι,2 > 0 the inequality

|xΣ + µ0tν(xΣ)− yΣ| ≥ C−1
ι,2 µ0t > 0;

this is a contradiction.

Proposition 2.9 shows that ι is a bi-Lipschitz mapping on Σ×(−ει, ει). In particular,
ι is injective on Σ× (−ει, ει) and thus ι � Σ× (−ει, ει) is a bijection between Ωει and
Σ× (−ει, ει). In Proposition 2.12 we show that we can also identify Lebesgue spaces
on these sets with one another. Before we do so, let us introduce the Weingarten
map (or shape operator) on Σ.

Definition 2.11. Let Σ ⊂ Rθ be a special C2-surface as in Definition 2.1 and denote
for xΣ = κl(x′) ∈ Σ, l ∈ {1, . . . , p}, the tangent hyperplane of Σ in the point xΣ by
the symbol TxΣ

= span {∂jκl(x′) : j = 1, . . . , θ − 1}. The Weingarten map is the
linear operator W (xΣ) : TxΣ

→ TxΣ
defined by

W (xΣ)∂jκl(x′) = −∂jν(κl(x′)), j ∈ {1, . . . , θ − 1}.

Using the chain rule and |ν(xΣ)| = 1 it is easy to show that W (xΣ) is well-defined,
i.e. it is independent of the parametrization κl and −∂jν(κl(x′)) ∈ TxΣ

; see also [47,
Lemma 3.9].
Furthermore, we denote the matrix representation of W (xΣ) corresponding to the
basis {∂jκl(x′) : j = 1, . . . , θ − 1} of TxΣ

by Ll(x′). Then, the eigenvalues of W (xΣ)
and Ll(x′) coincide and therefore the expression

det(I − tW (xΣ)) := det(Iθ−1 − tLl(x′)), t ∈ R,

is well-defined. In the next proposition we state important properties of ι and W ,
and identify L1(Ωε) with L1(Σ× (−ε, ε)).
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Proposition 2.12. Let Σ ⊂ Rθ be a special C2-surface as in Definition 2.1 and let
ι be as in Definition 2.7. Then, there exists an εtub ∈ (0, ει) such that the following
is true:

(i) ι � Σ× (−εtub, εtub) is injective.

(ii) There exists a C > 0 such that |1− det(I − εW (xΣ))| ≤ Cε < 1/2 for all
xΣ ∈ Σ and ε ∈ (−εtub, εtub).

(iii) For ε ∈ (0, εtub) one has u ◦ (ι � Σ× (−ε, ε)) ∈ L1(Σ × (−ε, ε)) if and only if
u ∈ L1(Ωε) and in this case∫

Ωε

u(y) dy =

∫ ε

−ε

∫
Σ

u(yΣ + sν(yΣ)) det(I − sW (yΣ)) dσ(yΣ) ds.

Proof. Let ει be the number specified in Proposition 2.9 and let εtub ∈ (0, ει). Then,
by Proposition 2.9 (ii) there exists Cι,2 > 0 such that

|ι(xΣ, t)− ι(yΣ, s)| ≥ C−1
ι,2 (|xΣ − yΣ|+ |t− s|), (xΣ, t), (yΣ, s) ∈ Σ× (−εtub, εtub).

Hence, ι � Σ× (−εtub, εtub) is injective, i.e. item (i) is true.

Next, we show assertion (ii). For this, we first define for l ∈ {1, . . . , p} and x′ ∈ Rθ−1

the matrices
Ml(x

′) :=
(
〈∂jκl(x′), ∂kκl(x′)〉

)
j,k∈{1,...,θ−1},

Hl(x
′) :=

(
〈∂jκl(x′),−∂kνl(x′)〉

)
j,k∈{1,...,θ−1}.

Then, we have for x′ ∈ Rθ−1 such that κl(x′) = xΣ ∈ Σ and j, k ∈ {1, . . . , θ − 1}

Hl(x
′)[j, k] = 〈∂jκl(x′),W (xΣ)∂kκl(x′)〉

=
θ−1∑
n=1

〈∂jκl(x′), Ll(x′)[n, k]∂nκl(x′)〉

=
θ−1∑
n=1

Ml(x
′)[j, n]Ll(x

′)[n, k]

= (Ml(x
′)Ll(x

′))[j, k].

Moreover, using the definition of κl(x′) one concludesMl(x
′) = Iθ−1+∇ζl(x′)∇ζl(x′)T .

The inverse of Ml(x
′) is given by Iθ−1 − (1 + |∇ζ(x′)|2)−1∇ζl(x′)∇ζl(x′)T . Hence,

Ll(x
′) =

(
Iθ−1 − (1 + |∇ζl(x′)|2)−1∇ζl(x′)∇ζl(x′)T

)
Hl(x

′). (2.7)

Now, recall that det(I − εW (xΣ)) = det(Iθ−1 − εLl(x′)) for xΣ = κl(x′) ∈ Σ. Ex-
pressing the determinant as the product of the eigenvalues one verifies the equation
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1−det(Iθ−1−εLl(x′)) = εPl(ε), where Pl is a polynomial in ε with coefficients depend-
ing continuously on the entries of Ll(x′). Since ζl ∈ C2

b (Rθ−1;R) by Definition 2.1,
equation (2.7) and the definition of Hl(x

′) imply supl∈{1,...,p},x′∈κ−1
l (Σ)|Ll(x′)| < ∞.

This shows that (ii) holds if εtub > 0 is chosen sufficiently small.

Finally, the claim in (iii) follows from [7, Proposition 2.6] since (i), (ii), and Propo-
sition 2.9 (i) show that Σ satisfying Definition 2.1 also fulfils [7, Hypothesis 2.3].

2.4 Bochner spaces

Bochner spaces play an essential role in this dissertation. They allow us to consider
a certain class of integral operators, which are classically viewed as operators acting
in L2(Σ× (−1, 1);CN), cf. [51, Section 3], as operators acting in the Bochner space
L2((−1, 1);L2(Σ;CN)). Moreover, by considering restrictions and extensions of these
operators to L2((−1, 1);Hr(Σ;CN)) we can also incorporate Sobolev regularity in
our analysis. With this motivation in mind, we study Bochner spaces and operators
acting in Bochner spaces in the current section, which is an extended version of [14,
Section 2.2] and is based on [43, Chapter 1].

In this section we always assume thatH and G are separable Hilbert spaces, (O,A , λ)
and (P,B, µ) are measure spaces with σ-finite measures, and L(H,G) is the set of
bounded linear operators from H to G. Let us start by defining measurability for
functions with values in Hilbert spaces.

Definition 2.13. We call f : O → H (weakly) measurable if for all ϕ ∈ H the map-
ping O 3 t 7→ (f(t), ϕ)H is measurable with respect to the measure λ. Furthermore,
we call F : O → L(H,G) measurable if O 3 t 7→ F (t)h is measurable for all h ∈ H.

Recall that a function f : O → H is (strongly) measurable if f is λ-a.e. the pointwise
limit of simple functions, and that in the present situation both notions of measurabil-
ity coincide due to Pettis theorem; see [43, Theorem 1.1.20]. Moreover, if f : O → H
and F : O → L(H,G) are measurable, then the function O 3 t 7→ F (t)f(t) ∈ G is
measurable; see [43, Proposition 1.1.28].

Definition 2.14. We call a function f : O → H simple if there exist n ∈ N,
ψ1, . . . , ψn ∈ H and λ-measurable sets A1, . . . ,An ⊂ O with finite measure such
that f =

∑n
l=1 χAlψl, where χAl denotes the characteristic function of the set Al,

l ∈ {1, . . . , n}. In this case the Bochner integral of f is given by∫
O

f(t) dλ(t) :=
n∑
l=1

λ(Al)ψl.
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Moreover, we call a measurable function f : O → H Bochner integrable if there exists
a sequence of simple functions (fk)k∈N such that

lim
k→∞

∫
O

‖f − fk‖H = 0.

In this case the sequence (
∫

O
fk(s) ds)k∈N converges and we define the integral of f

(which does not depend on the particular choice of the sequence (fk)k∈N) by∫
O

f(t) dλ(t) := lim
k→∞

∫
O

fk(t) dλ(t).

By [43, Proposition 1.2.2] we have the following useful characterisation of Bochner
integrability:

f is Bochner integrable ⇐⇒ f is measurable and
∫

O

‖f(t)‖ dλ(t) <∞. (2.8)

Furthermore, it follows directly from the definition of the Bochner integral, that if
M ∈ L(H,G) and f : O → H is integrable, then Mf : O → G, t 7→ Mf(t), is
integrable and there holds M

∫
O
f(t) dλ(t) =

∫
O
Mf(t) dλ(t).

Many of the classical results from integration theory have natural extensions to the
Bochner integration theory. Prominent examples of these extensions are Fubini’s
theorem and the dominated convergence theorem for Bochner integrals. They read
as follows:

Proposition 2.15 (Fubini’s theorem, [43, Proposition 1.2.7]). Let f : O ×P → H
be a Bochner-integrable function. Then, the following statements hold:

(i) The function t 7→ f(t, s) is Bochner integrable for µ-a.e. s ∈P.

(ii) The function s 7→ f(t, s) is Bochner integrable for λ-a.e. t ∈ O.

(iii) The functions t 7→
∫

P
f(t, s) dµ(s) and s 7→

∫
O
f(t, s) dλ(t) are Bochner inte-

grable and ∫
O×P

f(t, s) dλ(t)dµ(s) =

∫
P

(∫
O

f(t, s) dλ(t)
)
dµ(s)

=

∫
O

(∫
P

f(t, s) dµ(s)
)
dλ(t).

Proposition 2.16 (Dominated convergence theorem, [43, Proposition 1.2.5]). Let
the functions fn : O → H, n ∈ N, be Bochner integrable. If a function f : O → H as
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well as a nonnegative integrable function g : O → R such that limn→∞ fn = f λ-a.e.
and ‖fn‖H ≤ g λ-a.e. exist, then f is Bochner integrable and we have

lim
n→∞

∫
O

‖f(t)− fn(t)‖H dλ(t) = 0.

In particular,

lim
n→∞

∫
O

fn(t) dλ(t) =

∫
O

f(t) dλ(t).

Having stated these fundamental results regarding the Bochner integral, we turn to
the definition of Bochner L2-spaces.

Definition 2.17. We define L2(O;H) as the space which contains all (equivalence
classes of) λ-measurable functions f : O → H such that∫

O

‖f(t)‖2
H dλ(t) <∞.

Furthermore, we equip this space with the scalar product∫
O

(f(t), g(t))H dλ(t), f, g ∈ L2(O;H).

It is not difficult to show that L2(O;H) is a Hilbert space; cf. [43, the comments
below Definition 1.2.15]. The space L2(O;H) inherits many properties from H. In
this dissertation we are particularly interested in duality results, interpolation results,
and in the case that H itself is a L2-space, i.e. H = L2(P;G). We summarize such
results in the upcoming proposition.

Proposition 2.18. Suppose that L2(O;H) and L2(O;G) are Bochner spaces. Then,
the following holds:

(i) Functionals defined by

L2(O;H) 3 g 7→
∫

O
H′〈f(t), g(t)〉H dλ(t), f ∈ L2(O;H′),

induce an isometric isomorphism between L2(O;H′) and the dual of L2(O;H),
i.e.

L2(O;H)′ ' L2(O;H′).

(ii) If G is a Hilbert space such that (H,G) is a compatible pair, cf. Section 2.1 (xiii),
then also (L2(O;H), L2(O;G)) is a compatible pair and

L2(O; [H,G]τ ) =
[
L2(O;H), L2(O;G)

]
τ
, τ ∈ (0, 1),

with equivalent norms.



30 2 Preliminaries

(iii) Let H = L2(P;G). In this case the identification of F ∈ L2(O×P;G) with the
function f : t 7→ F (t, ·) induces an isometric isomorphism between the spaces
L2(O×P;G) and L2(O;H). Furthermore, if f : O 7→ H is Bochner integrable,
then (∫

O

f(t) dλ(t)

)
(s) =

∫
O

f(t)(s) dλ(t) for µ-a.e. s ∈P.

Proof. The assertions (i), (ii) and (iii) follow from [43, Corollary 1.3.13 and Theorem
1.3.21], [43, Theorem 2.2.6 and Corollary C.4.2] and [43, Proposition 1.2.24 and
Proposition 1.2.25], respectively.

After providing elementary statements about Bochner spaces, we turn to operators
in these spaces. We start by introducing the most simple and natural classes of
operators. Let Q ∈ L∞(O) and A ∈ L(H,G). In this case we define

MQ : L2(O;H)→ L2(O;H), (MQf)(t) := Q(t)f(t),

MA : L2(O;H)→ L2(O;G), (MAf)(t) := A(f(t)).
(2.9)

Note that the norms ‖MQ‖L2(O;H)→L2(O;H) and ‖MA‖L2(O;H)→L2(O;G) are equal to
‖Q‖L∞(O) and ‖A‖H→H, respectively. Moreover, from now on we identify MQ and
MA with Q and A. In the case that O is bounded the embedding

J : H → L2(O;H), (Jϕ)(t) := ϕ, (2.10)

and its adjoint

J∗ : L2(O;H)→ H, J∗f =

∫
O
f(t) dt (2.11)

are well-defined and bounded. After introducing these simple operators, we turn to
so-called decomposable operators. To do so, let us assume that

M ∈ L∞(O;L(H,G)) :=
{
F : O → L(H,G)λ-measurable : ‖F‖H→G ∈ L

∞(O)
}
.

Then, we define the operatorM : L2(O;H)→ L2(O;G) through

(Mf)(t) := M(t)f(t) for t ∈ O and f ∈ L2(O;H). (2.12)

Such operators are generalizations of multiplication operators and are usually con-
sidered in the context of direct integrals, see for instance [27] or [64, Section XIII.16],
where the operators M(t), t ∈ O, are called the fibers ofM. Similarly to before, we
often identifyM withM . Next, we summarize the main properties of these operators
in the following proposition.
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Proposition 2.19. Let M ∈ L∞(O;L(H,G)) and M be defined by (2.12). Then,
M is a well-defined bounded operator and its norm equals ess supt∈O‖M(t)‖H→G.
Moreover,M is continuously invertible if and only if M(t) is continuously invertible
for λ-a.e. t ∈ O and M−1 ∈ L∞(O;L(G,H)). In this case there holds for every
g ∈ L2(O;G) the equality (M−1g)(t) = (M(t))−1g(t) for λ-a.e. t ∈ O.

Proof. The proof follows from [27, Lemma 1.2 and Lemma 1.3].

Next, we consider operators induced by functions with values in the space of (un-
bounded) self-adjoint operators.

Proposition 2.20 ([64, Theorem XIII.85]). Let A be a function mapping from O
into the space of (unbounded) self-adjoint operators in H, such that (A + i)−1 is
measurable. Moreover, let the operator A acting in L2(O;H) be defined by

domA :=
{
f ∈ L2(O;H) : f(t) ∈ domA(t) for λ-a.e. t ∈ O and the function

defined by t 7→ A(t)f(t) is in L2(O;H)
}
,

(Af)(t) := A(t)f(t) for λ-a.e.t ∈ O and f ∈ domA.

Then, the operator A is self-adjoint and z ∈ σ(A) if and only if for all δ > 0 the set
{t ∈ O : σ(A(t)) ∩ (z − δ, z + δ) 6= ∅} has positive measure.

As already mentioned in the beginning of this section we are particularly interested
in the setting where L2(O;H) = L2((−1, 1);Hr(S;CN)), i.e. O = (−1, 1), A is
the corresponding σ-algebra of Lebesgue measurable sets on (−1, 1), λ is the clas-
sical Lebesgue measure and H = Hr(S;CN), r ∈ [−2, 2], where S is either Rθ−1 or
S ⊂ Rθ is a special C2-surface as in Definition 2.1. In order to shorten notation,
we set Br(S) := L2((−1, 1, );Hr(S;CN)) and use the conventions for the norm from
Section 2.1 (xi) in this setting. We summarize important properties of these spaces
in the following proposition.

Proposition 2.21. Let S = Rθ−1 or S ⊂ Rθ be a special C2-surface as in Defini-
tion 2.1. Then, the following is true:

(i) If τ ∈ (0, 1), r1, r2 ∈ [−2, 2] and r = (1− τ)r1 + τr2, then

Br(S) =
[
Br1(S),Br2(S)

]
τ

and the corresponding norms are equivalent.

(ii) For r ∈ [0, 2] there exists an isometric isomorphism between the dual space of
Br(S) and B−r(S), i.e.

Br(S)′ ' B−r(S).
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(iii) If 0 ≤ r1 ≤ r2 ≤ 2, then Br2(S) is densely contained in Br1(S).

Proof. Item (i) and (ii) follow from Proposition 2.18, the definition of Hr(Σ;CN)
in Section 2.2 and Proposition 2.2. It remains to prove (iii). We already know
from Proposition 2.2 (ii) that Hr2(S;CN) is densely contained in Hr1(S;CN) if S
is a special C2-surface. If S = Rθ−1, then this is well known and can be found for
example in [54, the text above eq. (3.22)]. Now, let f ∈ Br1(S) and δ > 0. Then,
according to [43, Lemma 1.2.19], there exists a simple function fδ =

∑n
l=1 χAlψl with

ψ1, . . . , ψn ∈ Hr1(S;CN) and measurable sets A1, . . . ,An with finite measure such
that ‖f − fδ‖r1 <

δ
2
. Moreover, we can choose ψ̃l ∈ Hr2(S;CN), l ∈ {1, . . . , n}, such

that
‖ψl − ψ̃l‖Hr1 (S;CN ) <

1

2nδ‖χAl‖L2(−1,1)

.

Thus, f̃δ =
∑n

l=1 χAlψ̃l ∈ Br2(S) and

‖f − f̃δ‖r1 ≤ ‖f − fδ‖r1 + ‖f̃δ − fδ‖r1

≤ δ

2
+

n∑
l=1

‖(ψ̃l − ψl)χAl‖r1

=
δ

2
+

n∑
l=1

‖ψl − ψ̃l‖Hr1 (S;CN )‖χAl‖L2((−1,1))

< δ,

which finishes the proof.

2.5 Norm resolvent convergence

In this section we study the convergence of unbounded self-adjoint operators via the
concept of norm resolvent convergence. Throughout this section we assume that
I ⊂ R and H is a Hilbert space.

Definition 2.22. Let (Aω)ω∈I be a family of self-adjoint operators in H, ω0 ∈ I
and A be a self-adjoint operator in H. Then, we say that (Aω)ω∈I (or simply Aω)
converges for ω → ω0 in the norm resolvent sense to A if for all z ∈ C \ R∥∥(Aω − z)−1 − (A− z)−1

∥∥
H→H → 0 for ω → ω0.

We start by stating a classical result which shows that Aω converges in the norm
resolvent sense to A if (Aω− z0)−1 converges to (A− z0)−1 for only one z0 ∈ ρ(A).
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Proposition 2.23. Let (Aω)ω∈I be a family of self-adjoint operators in H, ω0 ∈ I
and A be a self-adjoint operator in H. Moreover, assume that there exists a z0 ∈ C
such that z0 ∈ ρ(A) ∩ ρ(Aω) if |ω − ω0| is sufficiently small and∥∥(Aω − z0)−1 − (A− z0)−1

∥∥
H→H → 0 for ω → ω0.

Then, Aω converges for ω → ω0 in the norm resolvent sense to A.

Proof. The statement follows from [73, Satz 9.20 a)].

Next, we show that norm resolvent convergence is invariant with respect to bounded
self-adjoint perturbations.

Proposition 2.24. Let (Aω)ω∈I be a family of self-adjoint operators in H which
converges for ω → ω0 ∈ I in the norm resolvent sense to the self-adjoint operator A,
K be a bounded self-adjoint operator in H and z ∈ C \ R. Then,∥∥(Aω+K − z)−1 − (A+K − z)−1

∥∥
H→H

≤
(
1 + |Im z|−1‖K‖H→H

)2∥∥(Aω − z)−1 − (A− z)−1
∥∥
H→H ∀ω ∈ I.

In particular, Aω +K converges for ω → ω0 in the norm resolvent sense to A+K.

Proof. Let z ∈ C \ R. Then,

(Aω +K − z)−1 − (A+K − z)−1

=
(
I − (A+K − z)−1K

)(
(Aω − z)−1 − (A− z)−1

)(
I −K(Aω +K − z)−1)

and therefore∥∥(Aω +K − z)−1 − (A+K − z)−1
∥∥
H→H

≤
(
1 + |Im z|−1‖K‖H→H

)2∥∥(Aω − z)−1 − (A− z)−1
∥∥
H→H

converges to zero for ω → ω0.

In the next proposition we summarize important spectral implications of the norm
resolvent convergence.

Proposition 2.25. Let (Aω)ω∈I be a family of self-adjoint operators in H which
converges for ω → ω0 ∈ I in the norm resolvent sense to the self-adjoint operator A.
Then, there holds the following:

(i) limω→ω0 σ(Aω) = σ(A) is valid; this notation means on the one hand that the
limit of every convergent sequence (λn)n∈N with λn ∈ σ(Aωn) for a ωn ∈ I and
ωn

n→∞→ ω0 is in σ(A). On the other hand this means also that every λ ∈ σ(A)
is the limit of such a sequence.
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(ii) limω→ω0 σess(Aω) = σess(A) in the same sense as described in (i).

(iii) If a, b ∈ ρ(A) with a < b, then a, b ∈ ρ(Aω) for |ω − ω0| sufficiently small and
there holds

‖PAω(a, b)− PA(a, b)‖H→H → 0 for ω → ω0,

where PAω and PA denote the spectral measures of Aω and A, respectively.

Proof. See [73, Satz 9.24].

Next, we present two consequences of the previous proposition.

Proposition 2.26. Let (Aω)ω∈I be a family of self-adjoint operators in H which
converges for ω → ω0 ∈ I in the norm resolvent sense to the self-adjoint operator A
and assume that A has at least M ∈ N discrete eigenvalues counted with multiplic-
ity. Then, Aω has also at least M discrete eigenvalues counted with multiplicity for
sufficiently small |ω − ω0|.

Proof. The proof is based on the proofs of [8, Proposition 5.5] and [10, Theorem 2.7].
Let λ1, . . . , λnM , nM ∈ N, be distinct discrete eigenvalues of A such that the sum of
their multiplicities equals M . Since, λ1, . . . , λnM , are discrete eigenvalues, there exist
a1, . . . , anM ∈ R and b1, . . . , bnM ∈ R such that the intervals (aj, bj), j ∈ {1, . . . , nM},
are pairwise disjoint, λj ∈ (aj, bj) and [aj, bj]\{λj} ⊂ ρ(A) for all j ∈ {1, . . . , nM}. In
this case Proposition 2.25 implies that the spectral projections PAω(aj, bj) converge
in the operator norm to PA(aj, bj) for ω → ω0. Hence,

PAω

(nM⋃
j=1

(aj, bj)
)

=

nM∑
j=1

PAω(aj, bj)
ω→ω0−→

nM∑
j=1

PA(aj, bj) = PA

(nM⋃
j=1

(aj, bj)
)

in the operator norm. Thus, [73, Satz 2.58] shows that the dimensions of the ranges of
PAω

(⋃nM
j=1(aj, bj)

)
and PA

(⋃nM
j=1(aj, bj)

)
coincide for sufficiently small |ω− ω0|. Fur-

thermore, there holds by construction dim
(
ranPA

(⋃nM
j=1(aj, bj)

))
= M . Hence, the

dimension of the range of PAω
(⋃nM

j=1(aj, bj)
)
equalsM if |ω − ω0| is small enough. As

M <∞, [66, Proposition 8.11 (iv)] implies
⋃nM
j=1(aj, bj)∩σess(Aω) = ∅ for sufficiently

small |ω − ω0|. Hence, all M eigenvalues in
⋃nM
j=1(aj, bj) are discrete eigenvalues for

sufficiently small |ω − ω0|.

Proposition 2.27. Let (Aω)ω∈I be a family of self-adjoint operators in H which
converges for ω → ω0 ∈ I in the norm resolvent sense to the self-adjoint operator A
and assume that K ⊂ R is a compact set. Then, there holds the following:

(i) If σ(A) ∩K = ∅, then σ(Aω) ∩K = ∅ for sufficiently small |ω − ω0|.

(ii) If σess(A) ∩K = ∅, then σess(Aω) ∩K = ∅ for sufficiently small |ω − ω0|.
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Proof. We prove (i) by contraposition; the proof of (ii) follows along the same lines.
Let us assume that there exist sequences (ωn)n∈N and (λn)n∈N such that ωn

n→∞−→ ω0

and λn ∈ σ(Aωn) ∩K for all n ∈ N. Moreover, as K is compact it is no restriction
to assume that (λn)n∈N converges to some λ ∈ K. Since λn ∈ σ(An) for all n ∈ N,
Proposition 2.25 (i) implies λ ∈ σ(A), which yields λ ∈ σ(A)∩K, i.e. σ(A)∩K 6= ∅.

2.6 Invertibility of bounded operators

We provide in this short section results regarding the invertibility of bounded oper-
ators. Throughout this section H denotes a Hilbert space and L(H) is the set of all
bounded operators mapping from H to H.

Proposition 2.28. Let K, T ∈ L(H) and assume T −1 ∈ L(H) as well as∥∥T −1
∥∥
H→H‖K‖H→H < 1.

Then, (T +K)−1 ∈ L(H) and

∥∥(T +K)−1
∥∥
H→H ≤

∥∥T −1
∥∥
H→H

1−
∥∥T −1

∥∥
H→H‖K‖H→H

.

Proof. This is a well-known result which follows for example from [44, Chapter IV,
Theorem 1.16 and Remark 1.17].

Next, we provide a result which is known as Jacobson’s lemma.

Proposition 2.29. Let T ,K ∈ L(H). Then, ρ(KT ) \ {0} = ρ(T K) \ {0} and for
z ∈ ρ(KT ) \ {0} the formulas

(T K − z)−1T = T (KT − z)−1

(T K − z)−1 =
1

z

(
T (KT − z)−1K − I

)
are valid.

Proof. The result about the resolvent sets can be found in [57, Proposition 2.1.8].
Furthermore, the formulas can be verified by applying T K− z and using the identity
(T K − z)T = T (KT − z).

Finally, we present an invertibility result tailored to later applications in this thesis.
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Proposition 2.30. Let A,A0,K1,K2, T ∈ L(H), and assume AT = I + K1 + K2,
A−1

0 ∈ L(H) and ∥∥K1 + (A0 −A)A−1
0 K2

∥∥
H→H < 1. (2.13)

Then, a bounded right inverse of A is given by(
T − A−1

0 K2

)(
I +K1 + (A0 −A)A−1

0 K2

)−1
.

In particular, this right inverse of A can be estimated by the expression∥∥T − A−1
0 K2

∥∥
H→H

1−
∥∥K1 + (A0 −A)A−1

0 K2

∥∥
H→H

. (2.14)

Proof. By (2.13) we can apply Proposition 2.28 to I +K1 + (A0−A)A−1
0 K2. Hence,(

I +K1 + (A0 −A)A−1
0 K2

)−1 ∈ L(H) and its norm is bounded by

1

1−
∥∥K1 + (A0 −A)A−1

0 K2

∥∥
H→H

.

Next, we calculate the product

A
(
T − A−1

0 K2

)(
I +K1 + (A0 −A)A−1

0 K2

)−1

=
(
I +K1 +K2 −AA−1

0 K2

)(
I +K1 + (A0 −A)A−1

0 K2

)−1

=
(
I +K1 + (A0 −A)A−1

0 K2

)(
I +K1 + (A0 −A)A−1

0 K2

)−1

= I.

Thus,
(
T −A−1

0 K2

)(
I+K1 + (A0−A)A−1

0 K2

)−1 is a right inverse of A and its norm
can be estimated by (2.14).



3 The free Dirac operator and perturbed Dirac operators

As mentioned in the introduction, Dirac operators model spin 1/2 particles subject
to an external field which is modelled by a potential. In this chapter we provide
elementary results for Dirac operators with various potentials. We start by dealing
with the free Dirac operator, where the potential is set to zero, in Section 3.1. Then,
we turn to Dirac operators with regular potentials, i.e. potentials which can be
described by bounded operators. Lastly, in Section 3.3, we deal with Dirac operators
with δ-shell potentials, which are potentials that are only supported on a (θ − 1)-
dimensional hypersurface in Rθ.

3.1 The free Dirac operator and associated integral operators

In this section we lay the foundation for the study of Dirac operators. We start
by defining the free Dirac operator. Afterwards, we study potential and boundary
integral operators induced by the kernel of the resolvent of the free Dirac operator.
Let us also mention that this section is based on [14, Section 2.3].

Before we introduce the free Dirac operator we define the so-called Dirac matrices.

Definition 3.1. The Pauli spin matrices are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

With their help the Dirac matrices α1, . . . , αθ, β ∈ CN×N are defined for θ = 2 by

α1 := σ1, α2 := σ2, β := σ3,

and for θ = 3 by

αj :=

(
0 σj
σj 0

)
for j = 1, 2, 3 and β :=

(
I2 0
0 −I2

)
,

where I2 is the 2× 2-identity matrix. We often make use of the abbreviations

α · ∇ :=
θ∑
j=1

αj∂j and α · x :=
θ∑
j=1

αjxj, x = (x1, . . . , xθ) ∈ Cθ.

37
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The Dirac matrices fulfil the useful relations

αjαl + αlαj = 2δjl and αjβ + βαj = 0 ∀j, l ∈ {1, . . . , θ}, (3.1)

where δjl denotes the Kronecker delta. Using the self-adjointness of the Dirac matrices
and (3.1) implies that for x ∈ Rθ the matrix α·x is self-adjoint and (α·x)2 = |x|2IN .

Now, we are in the position to define the free Dirac operator.

Definition 3.2. Let m ∈ R. Then, the free Dirac operator H is defined by

H = −i(α · ∇) +mβ, domH = H1(Rθ;CN).

In the next proposition we summarize important properties of the free Dirac opera-
tor.

Proposition 3.3. The free Dirac operator H is self-adjoint and the following is true:

(i) σ(H) = σess(H) = (−∞,−|m|] ∪ [|m|,∞).

(ii) For z ∈ ρ(H) = C \ (−∞,−|m|]∪ [|m|,∞) the resolvent R(z) := (H − z)−1 can
be expressed by

R(z)u(x) =

∫
Rθ
Gz(x− y)u(y) dy, u ∈ L2(Rθ;CN), x ∈ Rθ, (3.2)

where Gz is given for θ = 2 and x ∈ R2 \ {0} by

Gz(x) =

√
z2 −m2

2π
K1

(
− i
√
z2 −m2|x|

)α · x
|x|

+
1

2π
K0

(
− i
√
z2 −m2|x|

)
(mβ + zI2)

(3.3)

and for θ = 3 and x ∈ R3 \ {0} by

Gz(x) =

(
zI4 +mβ + i

(
1− i

√
z2 −m2|x|

)α · x
|x|2

)
ei
√
z2−m2|x|

4π|x|
. (3.4)

The expressions K0 and K1 denote the modified Bessel functions of the second
kind of order zero and one, respectively.

(iii) R(z) acts as a bounded operator from Hr(Rθ;CN) to Hr+1(Rθ;CN) for all r ∈ R.

Proof. All statements besides (ii) can be proven in a straight forward manner by using
the Fourier transform; see for instance [18, Section 2] for θ = 2 and [71, Theorem
1.1] for θ = 3. The formulas for Gz can be found in [13, eq. (3.2)], [16, eq. (1.19)] or
[71, eq. (1.263)].
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Next, we provide helpful estimates for the integral kernel Gz.

Proposition 3.4. Let z ∈ ρ(H) and Gz be given by (3.3)–(3.4). Then, there exist
CG,1 = CG,1(m, z) > 0 and CG,2 = CG,2(m, z) > 0 such that for all x ∈ Rθ \ {0} and
j, k ∈ {1, . . . , θ}

|Gz(x)| ≤ CG,1|x|1−θe−CG,2|x|,
|∂jGz(x)| ≤ CG,1|x|−θe−CG,2|x|,
|∂k∂jGz(x)| ≤ CG,1|x|−1−θe−CG,2|x|.

Proof. We start by noticing that Gz = (−i(α · ∇) +mβ + zIN)gz, where

gz(x) =

{
1

2π
K0(−i

√
z2 −m2|x|), θ = 2,

1
4π

ei
√
z2−m2|x|

|x| , θ = 3,

for x ∈ Rθ\{0}. This follows from a direct calculation and from using for the modified
Bessel functions the ruleK ′0 = −K1; see [55, §10.29 (i)]. Next, we introduce for l ∈ N0

the set of functions

Pl :=
{
p ∈ C(Rθ \ {0}) : p(x) =

m∑
j=1

ajx
γj |x|−kj with m ∈ N, aj ∈ C,

kj ∈ N0 and γj = (γj,1, . . . , γj,θ) ∈ Nθ
0

such that − l ≤ γj,1 + · · ·+ γj,θ − kj ≤ 0
}
.

Note that for p ∈ Pl exists a C > 0 such that

|p(x)| ≤ C(1 + |x|−l) ∀x ∈ Rθ \ {0}. (3.5)

Now, let λ ∈ Nθ
0 be a multi-index with λ1 + · · ·+ λθ = n, n ∈ N. The chain rule, the

product rule and induction show that if θ = 2, then there exist functions pλ,l ∈ Pl,
l ∈ {0, . . . , n− 1}, such that for x ∈ R2 \ {0}

∂λgz(x) := ∂λ1 · · · ∂λngz(x) =
n−1∑
l=0

K
(n−l)
0 (−i

√
z2 −m2|x|)pλ,l(x), (3.6)

and if θ = 3, then there exists a function pλ ∈ Pn+1 such that for x ∈ R3 \ {0}

∂λgz(x) = pλ(x)ei
√
z2−m2|x|. (3.7)

By the well-known rules for the derivatives and the asymptotic expansions of the
modified Bessel functions from [55, §10.25 (ii), §10.27, §10.29 and §10.30 (i)], there
exists an R > 0 such that for all x ∈ R2 \ {0} with |x| ≤ R one has

∣∣K(k)
0

(
−i
√
z2 −m2|x|

)∣∣ ≤ {C|log|x||, k = 0,

C|x|−k, k ∈ N,
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and for |x| > R ∣∣K(k)
0

(
−i
√
z2 −m2|x|

)∣∣ ≤ Ce−Im
√
z2−m2|x|, k ∈ N0.

In particular, there exists a C > 0 such that for all x ∈ R2 \ {0}

∣∣K(k)
0

(
−i
√
z2 −m2|x|

)∣∣ ≤ {C(1 + |x|−1)e−Im
√
z2−m2|x|, k = 0,

C(1 + |x|−k)e−Im
√
z2−m2|x|, k ∈ N.

(3.8)

Inserting this and (3.5) into (3.6) and (3.7) yields∣∣∂λgz(x)
∣∣ ≤ C(1 + |x|−n+(2−θ))e−Im

√
z2−m2|x| ∀x ∈ Rθ \ {0}.

Moreover, using this result and (3.8) for k = 0 yields

|Gz(x)| ≤ C(1 + |x|1−θ)e−Im
√
z2−m2|x|,

|∂jGz(x)| ≤ C(1 + |x|−θ)e−Im
√
z2−m2|x|,

|∂k∂jGz(x)| ≤ C(1 + |x|−1−θ)e−Im
√
z2−m2|x|,

for all x ∈ Rθ \ {0} and j, k ∈ {1, . . . , θ}, where C = C(m, z) > 0 is a constant which
only depends on m and z. Thus, the estimates of the proposition are valid if one
chooses CG,2 ∈ (0, Im

√
z2 −m2) and

CG,1 = max
x∈Rθ\{0},l∈{1−θ,−θ,−1−θ}

C
1 + |x|l

|x|l
e−(Im

√
m2−z2−CG,2)|x| <∞.

Having discussed the free Dirac operator and its resolvent, we define potential and
boundary integral operators with the help of Gz. We start with the potential opera-
tor.

Definition 3.5. Let z ∈ ρ(H), Gz be given by (3.3)–(3.4) and Σ = ∂Ω± ⊂ Rθ be
a special C2-surface as in Definition 2.1. Then, we introduce the potential operator
Φz : L2(Σ;CN)→ L2(Rθ;CN) by

Φzϕ(x) :=

∫
Σ

Gz(x− yΣ)ϕ(yΣ) dσ(yΣ), ϕ ∈ L2(Σ;CN), x ∈ Rθ,

which is well-defined and bounded by Proposition 3.4 and [4, Lemma 2.1].

Next, we study the mapping properties of this operator in detail. Note that these
properties are well known for the case that Σ is compact; see e.g. [12, Propoisition 4.2]
or [16, Theorem 4.3].
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Proposition 3.6. Let z ∈ ρ(H) = C \ ((−∞,−|m|] ∪ [|m|,∞)) and let Φz be given
by Definition 3.5. Then, the following is true:

(i) For any r ∈ [0, 1
2
] the operator Φz gives rise to a bounded operator

Φz : Hr(Σ;CN)→ Hr+1/2(Rθ \ Σ;CN) = Hr+1/2(Ω+;CN)⊕Hr+1/2(Ω−;CN).

(ii) For ϕ ∈ H1/2(Σ;CN) one has (−i(α · ∇) +mβ − zIN)(Φzϕ)± = 0.

(iii) The adjoint Φ∗z : L2(Rθ;CN)→ L2(Σ;CN) of Φz acts on u ∈ L2(Rθ;CN) as

Φ∗zu(xΣ) =

∫
Rθ
Gz(xΣ − y)u(y) dy = tΣR(z)u(xΣ), xΣ ∈ Σ, (3.9)

and Φ∗z gives rise to a bounded operator Φ∗z : L2(Rθ;CN)→ H1/2(Σ;CN).

Before we prove the assertion we shortly introduce auxiliary operators and make
some remarks. Although we are not using boundary triples in the proof explicitly, it
is heavily inspired by [16, Theorem 4.3], where boundary triple techniques were used
to show the assertion in the case that Σ is compact. To use such techniques, it is
helpful to introduce the bounded operators Γ0,Γ1 : H1(Rθ \ Σ;CN) → H1/2(Σ;CN)
which are defined by Γ0 := i(α · ν)(t+

Σ − t−Σ) and Γ1 := 1
2
(t+

Σ + t−Σ), where ν is the
unit outward normal vector field of Σ described in Definition 2.1, and t+

Σ and t−Σ are
the trace operators from Remark 2.4. Moreover, let

Xu := (−i(α·∇)+mβ)u+⊕(−i(α·∇)+mβ)u−, domX := H1(Rθ\Σ;CN). (3.10)

Readers familiar with boundary triples may notice that {L2(Σ;CN),Γ0,Γ1} consti-
tutes a quasi boundary triple for X; cf. [16, Section 4.2]. By Corollary 2.5 the just
introduced operators fulfil for all u, v ∈ H1(Rθ \ Σ;CN) the equation

(Xu, v)L2(Rθ;CN ) − (u,Xv)L2(Rθ;CN ) = (Γ1u,Γ0v)L2(Σ;CN ) − (Γ0u,Γ1v)L2(Σ;CN ). (3.11)

This shows that X � ker Γ0 is symmetric. Moreover, H ⊂ X � ker Γ0. Thus, as H is
self-adjoint, H = X � ker Γ0.

Proof of Proposition 3.6. First, Fubini’s theorem shows that the representation of Φ∗z
in (3.9) is valid. Hence, the mapping properties of tΣ and R(z) prove assertion (iii).

To verify item (i), we note that by (iii) and antiduality Φz has the bounded extension

Φ̃z := (Φ∗z)
′ : H−1/2(Σ;CN)→ L2(Rθ;CN) = H0(Ω+;CN)⊕H0(Ω−;CN). (3.12)

Next, we show the statement for r = 1
2
. If we manage to do that, then the claim for

r ∈ [0, 1
2
) follows from (3.12) and interpolation.
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To prove the claim for r = 1
2
we note that with X � ker Γ0 = H one can show for

z ∈ ρ(H) the direct sum decomposition

domX = domH+̇ ker(X − z) = ker Γ0+̇ ker(X − z),

which allows us to define the auxiliary operator

Φ̂z := (Γ0 � ker(X − z))−1. (3.13)

Note that the properties of the trace operator in Proposition 2.3 imply the equality
ranΓ0 = H1/2(Σ;CN) and we also have domX = H1(Rθ \ Σ;CN). Thus, Φ̂z is a
linear operator from H1/2(Σ;CN) to H1(Rθ \ Σ;CN). Next, we show that Φ̂z is a
restriction of Φz. To see this, we observe for v ∈ L2(Rθ;CN), ϕ ∈ H1/2(Σ;CN), and
u = R(z)v = (H − z)−1v ∈ domH = ker Γ0 with the help of (3.11) that

(Φ̂zϕ, v)L2(Rθ;CN ) =
(
Φ̂zϕ, (H − z)u

)
L2(Rθ;CN )

= (Φ̂zϕ,Hu)L2(Rθ;CN ) − (zΦ̂zϕ, u)L2(Rθ;CN )

= (Φ̂zϕ,Xu)L2(Rθ;CN ) − (XΦ̂zϕ, u)L2(Rθ;CN )

= −(Γ1Φ̂zϕ,Γ0u)L2(Σ;CN ) + (Γ0Φ̂zϕ,Γ1u)L2(Σ;CN )

= (ϕ,Γ1R(z)v)L2(Σ;CN ) = (ϕ, (Φz)
∗v)L2(Σ;CN )

= (Φzϕ, v)L2(Rθ;CN ).

Since this is true for all v ∈ L2(Rθ;CN), we conclude Φ̂zϕ = Φzϕ; hence Φ̂z is
the restriction of Φz to H1/2(Σ;CN). In particular, Φzϕ ∈ ker(X − z) by (3.13),
which yields item (ii). Eventually, we show that this restriction of Φz is bounded
from H1/2(Σ;CN) to H1(Rθ \ Σ;CN). To see this, we prove that Φ̂z is closed with
respect to these spaces. But this follows from the L2-boundedness of Φz and the fact
that H1/2(Σ;CN) and H1(Rθ \ Σ;CN) are continuously embedded in L2(Σ;CN) and
L2(Rθ;CN), respectively. Thus, the closed graph theorem shows that

Φ̂z = Φz � H
1/2(Σ;CN) : H1/2(Σ;CN)→ H1(Rθ\Σ;CN) = H1(Ω+;CN)⊕H1(Ω−;CN)

is bounded, which finishes the proof.

Finally, we define a boundary integral operator associated with the free Dirac oper-
ator.

Definition 3.7. Let z ∈ ρ(H) and Σ = ∂Ω± ⊂ Rθ be a special C2-surface as in
Definition 2.1. Then, we define operator Cz : L2(Σ;CN)→ L2(Σ;CN) as the unique
bounded extension of

H1/2(Σ;CN) 3 f 7→ 1

2
(t+

Σ + t−Σ)Φzf.
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We prove in Proposition 3.8 that Cz is well-defined. We remark that this operator
could also be introduced as a strongly integral operator on Σ with the kernel Gz; cf.
for instance [4, Lemma 3.3] or [16, eq. (4.5)]. However, in our case this abstract
definition is more convenient. In particular, we do not have to deal with the existence
of principal value integrals and corresponding difficulties.

Next, we summarize important properties of Cz. Similar as in the case of Φz, these
properties are well known in various settings; see [4, Lemma 3.3] and [16, eq. (4.10)
and Theorem 4.3] if Σ is compact, and [19, Lemma 2.1 and Corollary 2.1] if Σ is a
plane with a compact perturbation.

Proposition 3.8. Let z ∈ ρ(H) = C \ ((−∞,−|m|] ∪ [|m|,∞)) and let Cz be given
by Definition 3.7. Then, Cz is well-defined and the following is true:

(i) For any r ∈ [−1
2
, 1

2
] the map Cz has a bounded extension or restriction (depend-

ing on r) Cz : Hr(Σ;CN)→ Hr(Σ;CN).

(ii) For any r ∈ (0, 1
2
] and ϕ ∈ Hr(Σ;CN) one has

Czϕ = ± i
2

(α · ν)ϕ+ t±ΣΦzϕ.

Proof. (i) First, it follows from Proposition 3.6 (i) and Definition 3.7 that Cz is
a bounded operator in H1/2(Σ;CN). Next, we show that the antidual C ′z of Cz,
which is a bounded map in H−1/2(Σ;CN), is an extension of Cz. To see this, let
ϕ, ψ ∈ H1/2(Σ;CN). We use (3.11), Proposition 3.6 (ii), (3.13), and the definition of
Cz to obtain

0 = (XΦ̂zϕ, Φ̂zψ)L2(Rθ;CN ) − (Φ̂zϕ,XΦ̂zψ)L2(Rθ;CN )

= (Czϕ, ψ)L2(Σ;CN ) − (ϕ, Czψ)L2(Σ;CN )

= 〈Czϕ, ψ〉H−1/2(Σ;CN )×H1/2(Σ;CN ) − 〈ϕ, Czψ〉H−1/2(Σ;CN )×H1/2(Σ;CN )

= 〈(Cz − C ′z)ϕ, ψ〉H−1/2(Σ;CN )×H1/2(Σ;CN ),

where 〈·, ·〉H−1/2(Σ;CN )×H1/2(Σ;CN ) denotes the sesquilinear duality product, which is
antilinear in the second argument, on H−1/2(Σ;CN)×H1/2(Σ;CN). Hence, C ′z is an
extension of Cz which is bounded in H−1/2(Σ;CN). By interpolation, we conclude
that Cz gives rise to a bounded map in Hr(Σ;CN) for any r ∈ [−1

2
, 1

2
], which also

implies that Cz can be extended to a bounded operator in L2(Σ;CN). This extension
is unique since H1/2(Σ;CN) is dense in L2(Σ;CN), see Proposition 2.2 (ii), and hence
Cz : L2(Σ;CN)→ L2(Σ;CN) is well-defined.
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(ii) First, for ϕ ∈ H1/2(Σ;CN) Definition 3.7 and the relation (3.13) imply

Czϕ =
1

2
t+

Σ (Φzϕ)+ +
1

2
t−Σ (Φzϕ)−

= ∓1

2

(
t+

Σ

(
Φ̂zϕ

)
+
− t−Σ

(
Φ̂zϕ

)
−

)
+ t±Σ(Φzϕ)±

= ± i
2

(α · ν)Γ0Φ̂zϕ+ t±Σ (Φzϕ)±

= ± i
2

(α · ν)ϕ+ t±Σ(Φzϕ)±,

(3.14)

which is the claimed identity for ϕ ∈ H1/2(Σ;CN). If r ∈ (0, 1
2
) and ϕ ∈ Hr(Σ;CN),

then (ii) follows from (3.14) by continuity and density; see Proposition 2.2 (ii).

3.2 Dirac operators with regular potentials

In this brief section we introduce Dirac operators with regular potentials and prove
a corresponding resolvent formula.

Definition 3.9. Let H be the free Dirac operator given by Definition 3.2 and the
operator P : L2(Rθ;CN)→ L2(Rθ;CN) be bounded and self-adjoint. Then, we define
the self-adjoint operator HP by

HP := H + P, domHP = domH = H1(Rθ;CN) ⊂ L2(Rθ;CN).

Next, we provide a Birman-Schwinger principle and a resolvent formula for HP .
Such principles and formulas are well known in various situations in literature; see
[32, 39, 45, 46]. However, for completeness we provide a short proof. We do this by
proving a Birman-Schwinger principle and a resolvent formula in a general framework
in Lemma 3.10. Afterwards, we apply this lemma to the operator HP in Proposi-
tion 3.11.

Lemma 3.10. Let G and H be Hilbert spaces, T be an unbounded self-adjoint oper-
ator in H, P = PLPR, where PL : G → H and PR : H → G are bounded operators
such that P = PLPR is self-adjoint, z ∈ ρ(T ) and R(z) := (T − z)−1. Then, T + P
is self-adjoint and the following is true:

(i) z ∈ σp(T + P) ⇐⇒ −1 ∈ σp(PRR(z)PL).

(ii) If −1 ∈ ρ(PRR(z)PL), then z ∈ ρ(T + P) and

(T + P − z)−1 = R(z)−R(z)PL(I + PRR(z)PL)−1PRR(z).
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Proof. The operator T +P is self-adjoint since P is bounded and self-adjoint. Next,
we prove (i). Let z ∈ σp(T + P). Then, there exists a nonzero u ∈ dom T such
that (T − z)u+Pu = 0. Applying R(z) and using P = PLPR gives us the equation
u +R(z)PLPRu = 0. This implies in particular f := PRu 6= 0. Applying PR yields
f + PRR(z)PLf = 0, i.e. −1 ∈ σp(PRR(z)PL). Now, let −1 ∈ σp(PRR(z)PL).
Then, there exists a nonzero f ∈ G such that f + PRR(z)PLf = 0. We define
u := R(z)PLf 6= 0. Then,

(T − z)u+ Pu = PLf + PLPRR(z)PLf = 0,

implying z ∈ σp(T + P). To prove (ii) we assume −1 ∈ ρ(PRR(z)PL). Then,

(T + P − z)
(
R(z)−R(z)PL(I + PRR(z)PL)−1PRR(z)

)
= ((T − z) + PLPR)

(
R(z)−R(z)PL(I + PRR(z)PL)−1PRR(z)

)
= I − PL(I + PRR(z)PL)−1PRR(z) + PLPRR(z)

− PLPRR(z)PL(I + PRR(z)PL)−1PRR(z)

= I − PL(I + PRR(z)PL)−1PRR(z)

+ PL(I + PRR(z)PL)(I + PRR(z)PL)−1PRR(z)

− PLPRR(z)PL(I + PRR(z)PL)−1PRR(z)

= I.

Hence, R(z) − R(z)PL(I + PRR(z)PL)−1PRR(z) is a right inverse of T + P − z.
One shows in the same way that R(z)−R(z)PL(I + PRR(z)PL)−1PRR(z) is a left
inverse of T + P − z. Thus, the resolvent formula for T + P is valid.

As a consequence of Lemma 3.10, we get the following result for the operator HP

from Definition 3.9.

Proposition 3.11. Let G be a Hilbert space, P = PLPR, where PL : G → L2(Rθ;CN)
and PR : L2(Rθ;CN)→ G are bounded operators such that P = PLPR is self-adjoint,
z ∈ ρ(H) and R(z) = (H − z)−1 be the resolvent of the free Dirac operator. Then,
HP = H + P is self-adjoint and the following statements hold:

(i) z ∈ σp(HP ) ⇐⇒ −1 ∈ σp(PRR(z)PL).

(ii) If −1 ∈ ρ(PRR(z)PL), then z ∈ ρ(HP ) and

(HP − z)−1 = R(z)−R(z)PL(I + PRR(z)PL)−1PRR(z).
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3.3 Dirac operators with δ-shell potentials

Next, we define Dirac operators with δ-shell potentials supported on a special C2-
surface Σ. Such operators are formally given by −i(α · ∇) + mβ + Ṽ δΣ, where
Ṽ = Ṽ ∗ ∈ W 1

∞(Σ;CN) is the interaction matrix.

Definition 3.12. Let m ∈ R, Σ = ∂Ω± ⊂ Rθ be a special C2-surface as in Defini-
tion 2.1 and Ṽ = Ṽ ∗ ∈ W 1

∞(Σ;CN). Then, we define the operator HṼ δΣ
through

domHṼ δΣ
:=
{
u ∈ H1(Rθ \ Σ;CN) : i(α · ν)(t+

Σ − t−Σ)u+
Ṽ

2
(t+

Σ + t−Σ)u = 0
}

HṼ δΣ
u := (−i(α · ∇) +mβ)u+ ⊕ (−i(α · ∇) +mβ)u−.

Using the notations introduced below Proposition 3.6 we can write the operator HṼ δΣ

as X � ker(Γ0 + Ṽ Γ1), where Γ0 = i(α · ν)(t+
Σ − t−Σ) and Γ1 = 1

2
(t+

Σ − t−Σ).

The self-adjointness and spectral properties of HṼ δΣ
have been investigated in numer-

ous papers in various situations; see for instance [4, 5, 8, 9, 13, 16, 18, 19, 24, 28, 56,
59, 60] Interaction matrices having the form Ṽ = η̃IN + τ̃β, where η̃ and τ̃ are con-
stants in R or sufficiently smooth real-valued functions on Σ, are the most prevalent
in literature. They are used to model electrostatic and Lorentz scalar interactions.
In this case an explicit condition for self-adjointness is known; cf. Proposition 3.15.
However, in our general setting self-adjointness is not guaranteed. We start our anal-
ysis by showing that HṼ δΣ

is a densely defined symmetric operator in Lemma 3.13.
Afterwards, we show in Proposition 3.14 the strong connection between HṼ δΣ

and
I + CzṼ , where Cz is the operator introduced in Definition 3.7.

Lemma 3.13. Let Ṽ = Ṽ ∗ ∈ W 1
∞(Σ;CN). Then, the operator HṼ δΣ

is symmetric
and densely defined.

Proof. By [54, Corollary 3.5] the set C∞0 (Ω+;CN)⊕C∞0 (Ω−;CN) ⊂ domHṼ δΣ
is dense

in L2(Rθ;CN). Consequently, the operator HṼ δΣ
is densely defined. Furthermore,

since HṼ δΣ
= X � ker(Γ0 + Ṽ Γ1), we obtain with (3.11)

(HṼ δΣ
u, v)L2(Rθ;CN ) − (u,HṼ δΣ

v)L2(Rθ;CN ) = (Γ1u,Γ0v)L2(Σ;CN ) − (Γ0u,Γ1v)L2(Σ;CN )

= −(Γ1u, Ṽ Γ1v)L2(Σ;CN ) + (Ṽ Γ1u,Γ1v)L2(Σ;CN )

= 0 ∀u, v ∈ domHṼ δΣ
.

Thus, HṼ δΣ
is symmetric.
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Proposition 3.14. Let Ṽ = Ṽ ∗ ∈ W 1
∞(Σ;CN), z ∈ ρ(H), R(z) = (H − z)−1 be

the resolvent of the free Dirac operator, Φz be defined as in Definition 3.5 and Cz be
defined as in Definition 3.7. Then, HṼ δΣ

is closed and z ∈ ρ(HṼ δΣ
), if and only if

I+CzṼ is continuously invertible in H1/2(Σ;CN). Moreover, in this case the resolvent
formula

(HṼ δΣ
− z)−1 = R(z)− ΦzṼ (I + CzṼ )−1Φ∗z (3.15)

applies.

Proof. We start by showing that if HṼ δΣ
is closed and z ∈ ρ(HṼ δΣ

), then I + CzṼ
is continuously invertible in H1/2(Σ;CN). By Proposition 2.2 (iii) and Proposi-
tion 3.8 (i) Ṽ and Cz act as bounded operators in H1/2(Σ;CN), respectively. Hence,
it suffices to show that I+Ṽ Cz is continuously invertible in H1/2(Σ;CN); then Propo-
sition 2.29 shows that I + CzṼ is continuously invertible in H1/2(Σ;CN). Moreover,
since I + Ṽ Cz is a bounded operator in H1/2(Σ;CN), we only have to prove that
I + Ṽ Cz is bijective. Let ψ ∈ H1/2(Σ;CN) such that (I + Ṽ Cz)ψ = 0. We set
u = Φzψ. Then, Proposition 3.6 (i) implies u ∈ H1(Rθ \ Σ;CN). Furthermore,
Proposition 3.6 (ii) yields (−i(α · ∇) + mβ − zIN)u± = 0 and Proposition 3.8 (ii)
gives us

Γ0u = ψ and Γ1u = Czψ. (3.16)

Thus, (3.16) leads to
Γ0u+ Ṽ Γ1u = ψ + Ṽ Czψ = 0

and hence u ∈ ker(HṼ δΣ
− z). We have ker(HṼ δΣ

− z) = {0} since z ∈ ρ(HṼ δΣ
). This

implies u = 0 and therefore (3.16) shows ψ = 0. Now, we turn to the surjectivity.
Let ϕ ∈ H1/2(Σ;CN). Then, according to Proposition 2.3 (i) there exist functions
w± ∈ H1(Ω±;CN) such that t±Σw± = ∓i(α·ν)

2
ϕ ∈ H1/2(Σ;CN). Next, we define

w := w+ ⊕ w− ∈ H1(Rθ \ Σ;CN) and see

Γ0w = ϕ as well as Γ1w = 0. (3.17)

Moreover, let
v := (HṼ δΣ

− z)−1(X − z)w,

where X is the operator introduced in (3.10). By definition, v ∈ domHṼ δΣ
⊂ domX

and (X − z)(w − v)± = 0, and thus due to (3.13) and the text below there exists
a ψ ∈ H1/2(Σ;CN) such that Φzψ = w − v. Hence, we use the relations (3.16) (for
u = Φzψ), (3.17) and v ∈ domHṼ δΣ

to obtain

(I + Ṽ Cz)ψ = Γ0Φzψ + Ṽ Γ1Φzψ

= Γ0(w − v) + Ṽ Γ1(w − v)

= Γ0w + Ṽ Γ1w = ϕ.
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This proves the surjectivity.

Next, let us prove the reverse direction. We assume that I + CzṼ is continuously
invertible in H1/2(Σ;CN). Then, by Proposition 2.29 I + Ṽ Cz is also continuously
invertible in H1/2(Σ;CN). We start by showing that ker(HṼ δΣ

−z) = {0} in this case.
To do so, we assume that u ∈ domHṼ δΣ

and (HṼ δΣ
− z)u = 0. Then, according to

(3.13) and the text below there exists a ψ ∈ H1/2(Σ;CN) such that u = Φzψ. Since u
satisfies the boundary conditions, the equation Γ0u+ Ṽ Γ1u = 0 is valid which implies
by Proposition 3.8 (ii)

Γ0Φzψ + Ṽ Γ1Φzψ = (I + Ṽ Cz)ψ = 0.

Hence, ψ = 0 and in turn also u = 0, which shows ker(HṼ δΣ
− z) = {0}. Finally, we

show that the expression R(z) − ΦzṼ (I + CzṼ )−1Φ∗z is a right inverse of HṼ δΣ
− z.

This implies ran (HṼ δΣ
− z) = L2(Rθ−1;CN) and (3.15). Moreover, as the right-hand

side of (3.15) is bounded in L2(Rθ;CN) by Proposition 3.3 (iii) and Proposition 3.6,
this also implies that HṼ δΣ

is closed and z ∈ ρ(HṼ δΣ
).

We start by choosing v ∈ L2(Rθ;CN) and setting

u := R(z)v − ΦzṼ (I + CzṼ )−1Φ∗zv.

Using domH = H1(Rθ;CN), Proposition 3.6 (iii) and Proposition 3.8 (ii) (applied
to ϕ = Ṽ (I + CzṼ )−1Φ∗zv) yields

Ṽ Γ1u+ Γ0u

= Ṽ Φ∗zv − Ṽ CzṼ (I + CzṼ )−1Φ∗zv − i(α · ν)(−i(α · ν))Ṽ (I + CzṼ )−1Φ∗zv

= Ṽ Φ∗zv − Ṽ (I + CzṼ )(I + CzṼ )−1Φ∗zv

= 0.

Hence, u ∈ domHṼ δΣ
. We get with (−i(α · ∇) +mβ − zIN)R(z)v = v and Proposi-

tion 3.6 (ii) that(
(HṼ δΣ

− z)u
)
± = (−i(α · ∇) +mβ − zIN)u±

= (−i(α · ∇) +mβ − zIN)(R(z)v)±

− (−i(α · ∇) +mβ − zIN)
(
ΦzṼ (I + CzṼ )−1Φ∗zv

)
±

= v±,

which concludes the proof.

The previous proposition can be used to show the self-adjointness of HṼ δΣ
. For

instance if I + CzṼ and I + CzṼ are continuously invertible in H1/2(Σ;CN), then it
follows directly by Lemma 3.13 and Proposition 3.14 that HṼ δΣ

is self-adjoint.
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For the rest of this section we focus on interaction matrices of the form Ṽ = η̃IN + τ̃β
with η̃, τ̃ ∈ C1

b (Σ;R). Properties of such Dirac operators which are important with
respect to this thesis are given in the following proposition.
Proposition 3.15. Let Ṽ = η̃IN + τ̃β with η̃, τ̃ ∈ C1

b (Σ;R) and d̃ = η̃ 2 − τ̃ 2. If

inf
xΣ∈Σ
|d̃(xΣ)− 4| > 0,

then HṼ δΣ
is self-adjoint. Moreover, in this case the following is true:

(i) If infxΣ∈Σ|d̃(xΣ)| > 0, then UHṼ δΣ
U = H−4(Ṽ /d̃)δΣ

, where U is the self-adjoint
unitary operator

U : L2(Rθ;CN)→ L2(Rθ;CN), Uu := u+ ⊕ (−u−).

(ii) If d̃ = −4, then HṼ δΣ
induces confinement, i.e. HṼ δΣ

= H+

Ṽ
⊕H−

Ṽ
, where H±

Ṽ

are operators acting in L2(Ω±;CN) given by

H±
Ṽ
u± = −i(α · ∇)u± +mβu±,

domH±
Ṽ

=
{
u± ∈ H1(Ω±;CN) : (2IN ∓ i(α · ν)Ṽ )t±Σu± = 0

}
⊂ L2(Ω±;CN).

(iii) The operator I + CzṼ is continuously invertible in Hr(Σ;CN) for all r ∈ [0, 1
2
]

and z ∈ C \ R.
Proof. The self-adjointness of HṼ δΣ

follows from [60, Section 6]. Item (i) and (ii) are
well known and have been shown in numerous settings, see for instance [24, Section 4],
[37, Theorem 2.3 (d)] or [49] for (i), and [5, Theorem 5.5], [16, Section 5.2] or [60,
Example 12] for (ii). Although the proofs do not change in our case, we provide them
for completeness. Let us start with (i). After checking the definitions of U and HṼ δΣ

one sees that we only have to prove for u ∈ H1(Rθ \ Σ;CN)

Uu ∈ ker
(
Γ0 + Ṽ Γ1

)
⇐⇒ u ∈ ker

(
Γ0 + −4Ṽ

d̃
Γ1

)
,

where Γ1 and Γ0 are the operators introduced above (3.10). Using (3.1), the identity
Ṽ (α · ν)Ṽ = (α · ν)d̃ and the definition of U yields

Γ0Uu+ Ṽ Γ1Uu = 0

⇐⇒ i(α · ν)(t+
Σu+ − t−Σ(−u−)) + Ṽ

1

2
(t+

Σu+ + t−Σ(−u−)) = 0

⇐⇒ −(t+
Σu+ + t−Σu−) + i(α · ν)Ṽ

1

2
(t+

Σu+ − t−Σu−) = 0

⇐⇒ −4Ṽ
1

2
(t+

Σu+ + t−Σu−) + d̃i(α · ν)(t+
Σu+ − t−Σu−) = 0

⇐⇒ −4Ṽ Γ1 + d̃Γ0u = 0

⇐⇒ Γ0u+
−4Ṽ

d̃
Γ1u = 0,
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which proves (i).

Next, let us consider (ii). In this setting d̃ = −4. Moreover, it suffices to show
that the domains of HṼ δΣ

and H+

Ṽ
⊕ H−

Ṽ
coincide. Let us start by assuming that

u ∈ domHṼ δΣ
. It is easy to see that the transmission condition Γ0u+ Ṽ Γ1u = 0 can

be rewritten in the form

(2IN − i(α · ν)Ṽ )t+
Σu+ = (2IN + i(α · ν)Ṽ )t−Σu−. (3.18)

Multiplying this equation with (2IN ∓ i(α ·ν)Ṽ ) and using ((α ·ν)Ṽ )2 = d̃IN = −4IN
yields

4(2IN ∓ i(α · ν)Ṽ )t±Σu± = 0.

Hence, u± ∈ domH±
Ṽ

and also u = u+ ⊕ u− ∈ domH+

Ṽ
⊕H−

Ṽ
. If u ∈ domH+

Ṽ
⊕H−

Ṽ
,

then (3.18) is fulfilled since both sides of the equation are zero. Thus, the equation
Γ0u+ Ṽ Γ1u = 0 is also valid, and therefore u ∈ domHṼ δΣ

.

It remains to prove (iii). For r = 1
2
the assertion follows from Proposition 3.14 since

HṼ δΣ
is self-adjoint. Next, let us consider the case r ∈ [0, 1/2). From the proof

of Proposition 3.8 we know that (Cz � H1/2(Σ;CN))′, where ′ is used to denote the
antidual operator, is a continuous extension of Cz to H−1/2(Σ;CN). Moreover, using
the symmetry of Ṽ and the fact that Ṽ induces a bounded multiplication operator in
H1/2(Σ;CN) shows that Ṽ can also be extended to a bounded multiplication operator
in H−1/2(Σ;CN). Therefore,(

(I + Ṽ Cz) � H1/2(Σ;CN)
)′

= I + (Cz � H1/2(Σ;CN))′(Ṽ � H1/2(Σ;CN))′ (3.19)

is a continuous extension of I + CzṼ to H−1/2(Σ;CN). Since HṼ δΣ
is self-adjoint, we

can apply Proposition 3.14 again and obtain that I + CzṼ is continuously invertible
in H1/2(Σ;CN). Thus, according to Proposition 2.29 the operator I + Ṽ Cz is also
continuously invertible in H1/2(Σ;CN). Therefore, the operator in (3.19) has the
bounded inverse

(
(I + Ṽ Cz)−1 � H1/2(Σ;CN)

)′. Hence, one can use interpolation to
show the assertion for r ∈ [0, 1

2
); cf. Section 2.1 (xiii) and Proposition 2.2 (i).



4 Norm resolvent convergence of Dirac operators with
general strongly localized potentials

In this chapter, which is based on [14, Section 3], we find in Theorem 4.15 conditions
for the norm resolvent convergence of Dirac operators with strongly localized poten-
tials. Moreover, we show in Corollary 4.16 that these conditions are fulfilled if the
potential satisfies a certain smallness condition.

Throughout this chapter we assume that Σ = ∂Ω± ⊂ Rθ, θ ∈ {2, 3}, is a special
C2-surface as in Definition 2.1 and εtub ∈ (0,∞) is chosen as in Proposition 2.12.
Moreover, we assume that

q ∈ L∞((−1, 1);R) with
∫ 1

−1

q(t) dt = 1 (4.1)

and
V = V ∗ ∈ W 1

∞(Σ;CN), (4.2)

which we call the interaction matrix. For ε ∈ (0, εtub) we define

Vε(x) :=

{
1
ε
V (xΣ)q

(
t
ε

)
, x = ι(xΣ, t) ∈ Ωε,

0, x /∈ Ωε,
(4.3)

where ι(xΣ, t) = xΣ + tν(xΣ) for (xΣ, t) ∈ Σ × R; cf. Definition 2.7. By Proposi-
tion 2.12 the strongly localized potential Vε is well-defined. Furthermore, the prop-
erties of q and V imply Vε = V ∗ε ∈ L∞(Rθ;CN×N). In this chapter we study the
norm resolvent convergence properties of the self-adjoint operators HVε = H + Vε,
ε ∈ (0, εtub), which are explicitly given by

HVε = −i(α · ∇) +mβ + Vε, domHVε = H1(Rθ;CN). (4.4)

We do this by finding a suitable resolvent formula in terms of Bochner-integral op-
erators, denoted by Aε(z), Bε(z) and Cε(z), in Section 4.1. Afterwards we introduce
a shift operator which allows us to prove convergence properties of Aε(z), Bε(z) and
Cε(z) in Section 4.3. In Section 4.4 we study the limits of these operators and con-
nect them to the resolvent of a Dirac operator with a δ-shell potential supported on
Σ and a rescaled interaction matrix Ṽ = Ṽ ∗ ∈ W 1

∞(Σ;CN×N). Lastly, we find in
Section 4.5 a condition for the norm resolvent convergence of HVε as ε→ 0.

51
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4.1 A resolvent formula for Dirac operators with strongly
localized potentials

In this section we find a suitable resolvent formula for HVε . In order to be able to
apply Proposition 3.11, we need an appropriate factorisation for the potential Vε. We
recall that Ωε was defined in Definition 2.7 and introduce the mappings

Iε : L2((−ε, ε);L2(Σ;CN))→ L2(Ωε;CN), Iεf(ι(xΣ, t)) := f(t)(xΣ),

I−1
ε : L2(Ωε;CN)→ L2((−ε, ε);L2(Σ;CN)), I−1

ε u(t)(xΣ) := u(ι(xΣ, t)),
(4.5)

and
Sε : B0(Σ)→ L2((−ε, ε);L2(Σ;CN)), Sεg(t) :=

1√
ε
g
(
t
ε

)
,

S−1
ε : L2((−ε, ε);L2(Σ;CN))→ B0(Σ), S−1

ε g(t) :=
√
εg(εt),

(4.6)

where B0(Σ) = L2((−1, 1);L2(Σ;CN)); cf. Section 2.1 (xi). According to Propo-
sition 2.12 and Proposition 2.18 (iii) for any ε ∈ (0, εtub) these mappings are well-
defined, bounded, invertible, and their inverses have the claimed form; cf. [7, equa-
tions (3.6) and (3.7)]. Moreover, we set uε :=

χΩε√
ε
, where χΩε is the characteristic

function for Ωε, and define the operators

Uε : L2(Rθ;CN)→ L2(Ωε;CN) and U∗ε : L2(Ωε;CN)→ L2(Rθ;CN) (4.7)

acting on u ∈ L2(Rθ;CN) and v ∈ L2(Ωε;CN) as

Uεu = (uεu) � Ωε and U∗ε v =

{
uεv in Ωε,

0 in Rθ \ Ωε.

Using these newly introduced operators shows that when viewed as a multiplication
operator Vε can be factorised in the following way:

Vε = U∗ε IεSεV qS−1
ε I−1

ε Uε.

This factorisation, defining for z ∈ ρ(H) and ε ∈ (0, εtub) the bounded operators

Aε(z) := R(z)U∗ε IεSε : B0(Σ)→ L2(Rθ;CN),

Bε(z) := S−1
ε I−1

ε UεR(z)U∗ε IεSε : B0(Σ)→ B0(Σ),

Cε(z) := S−1
ε I−1

ε UεR(z) : L2(Rθ;CN)→ B0(Σ),

(4.8)

where we used R(z) = (H − z)−1, and applying Proposition 3.11 for PL = U∗ε IεSεV q
PR = S−1

ε I−1
ε Uε and P = PLPR = Vε gives us:

Proposition 4.1. Let q, V and Vε, ε ∈ (0, εtub), be as in (4.1)–(4.3), z ∈ ρ(H) and
R(z) = (H − z)−1, where H is the free Dirac operator introduced in Definition 3.2.
Then, HVε is self-adjoint and the following holds:
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(i) z ∈ σp(HVε) ⇐⇒ −1 ∈ σp(Bε(z)V q).

(ii) If −1 ∈ ρ(Bε(z)V q), then z ∈ ρ(HVε) and the resolvent formula

(HVε − z)−1 = R(z)− Aε(z)V q(I +Bε(z)V q)−1Cε(z)

holds.

Having established a resolvent formula for HVε in terms of the operators Aε(z), Bε(z)
and Cε(z), we find in Proposition 4.2 integral representations of these operators,
which are more convenient than (4.8).

Proposition 4.2. Let z ∈ ρ(H), Gz be the integral kernel of R(z) = (H − z)−1

given by (3.3)–(3.4) and W be the Weingarten map defined in Definition 2.11. For
ε ∈ (0, εtub) the operators Aε(z), Bε(z), and Cε(z) defined by (4.8) have the integral
representations

Aε(z)f(x) =

∫ 1

−1

∫
Σ

Gz(x− yΣ − εsν(yΣ))f(s)(yΣ)

· det(I − εsW (yΣ)) dσ(yΣ) ds,

Bε(z)f(t)(xΣ) =

∫ 1

−1

∫
Σ

Gz(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))f(s)(yΣ)

· det(I − εsW (yΣ)) dσ(yΣ) ds,

Cε(z)u(t)(xΣ) =

∫
Rθ
Gz(xΣ + εtν(xΣ)− y)u(y) dy,

for f ∈ B0(Σ), u ∈ L2(Rθ;CN), a.e. x ∈ Rθ, a.e. t ∈ (−1, 1) and σ-a.e. xΣ ∈ Σ.

Proof. First, we prove the claim for Cε(z). Using (3.2), (4.5) and (4.6) gives us for
v ∈ L2(Rθ;CN), a.e. t ∈ (−1, 1), and σ-a.e. xΣ ∈ Σ

Cε(z)v(t)(xΣ) =
(
S−1
ε I−1

ε UεR(z)v
)
(t)(xΣ)

=
√
ε(UεR(z)v)(xΣ + εtν(xΣ))

=

∫
Rθ
Gz(xΣ + εtν(xΣ)− y)v(y) dy.

Next, to show the claim for Aε(z) we choose f ∈ B0(Σ). Applying (3.2), Proposi-
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tion 2.12 (iii), (4.5) and (4.6) yields

Aε(z)f(x) = (R(z)U∗ε IεSεf) (x)

=

∫
Rθ
Gz(x− y) (U∗ε IεSεf) (y) dy

=

∫
Ωε

Gz(x− y)uε(y) (IεSεf) (y) dy

=

∫ ε

−ε

∫
Σ

Gz(x− (yΣ + sν(yΣ)))
1√
ε

(IεSεf) (yΣ + sν(yΣ))

· det(I − sW (yΣ)) dσ(yΣ) ds

=

∫ ε

−ε

∫
Σ

Gz(x− yΣ − sν(yΣ))
1√
ε

(Sεf)(s)(yΣ) det(I − sW (yΣ)) dσ(yΣ) ds

=

∫ ε

−ε

∫
Σ

Gz(x− yΣ − sν(yΣ))
1

ε
f
(
s
ε

)
(yΣ) det(I − sW (yΣ)) dσ(yΣ) ds

=

∫ 1

−1

∫
Σ

Gz(x− yΣ − εsν(yΣ))f(s)(yΣ) det(I − εsW (yΣ)) dσ(yΣ) ds

for a.e. x ∈ Rθ, which is the claimed identity. The representation for Bε(z) follows
by combining the last two calculations.

4.2 The shift operator

We introduce and study a shift operator which turns out to be useful in the conver-
gence analysis of the maps Aε(z), Bε(z) and Cε(z) in (4.8). For this, we first provide
a lemma which later allows us to construct a suitable extension of the normal vector
field ν on Σ. We mention that this section can be found in a similar form in [14,
Section 3.2].

Lemma 4.3. Let Σ = ∂Ω± ⊂ Rθ be a special C2-surface as in Definition 2.1, εtub >
0 be as in Proposition 2.12 and o ∈ C1

b (Σ;Rn×k) for n, k ∈ N. Then o has an
extension ô ∈ C1

b (Rθ;Rn×k) such that supp ô ⊂ Ωεtub and ô(xΣ + tν(xΣ)) = o(xΣ) for
(xΣ, t) ∈ Σ× (− εtub

2
, εtub

2
).

Proof. Before we start, recall the maps ι, ιl, κl, ν and νl introduced in Definition 2.7.
Next, let us choose a function $ ∈ C1(R) such that the support of $ is contained in
(−εtub, εtub), 0 ≤ $ ≤ 1 and $ = 1 on (− εtub

2
, εtub

2
). Then, we define ô through

ô(x) =

{
o(xΣ)$(t), x = ι(xΣ, t) ∈ Ωεtub with (xΣ, t) ∈ Σ× (−εtub, εtub),

0, x /∈ Ωεtub .
(4.10)
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By Proposition 2.12 ô is well-defined. Moreover, it is obvious that ô has all the claimed
properties besides the C1-smoothness and the boundedness of the derivatives. Hence,
it remains to show ô ∈ C1

b (Rθ;Rn×k). Since ô is supported in Ωεtub , it suffices con-
sider ô only on Ωεtub . To do so, we fix an x = xΣ + tν(xΣ) = ι(xΣ, t) ∈ Ωεtub with
(xΣ, t) ∈ Σ × (−εtub, εtub). According to Definition 2.1 there exists an l ∈ {1, . . . p}
such that xΣ ∈ Wl. Hence, we can find an x′ ∈ Rθ−1 such that xΣ = κl(x′) and
therefore x = ιl(x

′, t) . Moreover, since Wl is open, we can choose a δ0 > 0 such that
B(xΣ, δ0) ⊂ Wl. Thus, the Lipschitz continuity of κl, cf. Proposition 2.9, guarantees
the existence of a δ1 > 0 such that

κl(B(x′, δ1)) ⊂ B(xΣ, δ0) ∩ Σl ⊂ Wl ∩ Σl ⊂ Σ,

implying ιl(B(x′, δ1)× (−εtub, εtub)) ⊂ Ωεtub and

(ô ◦ ιl)(y′, s) = o(κl(y′))$(s), ∀(y′, s) ∈ B(x′, δ1)× (−εtub, εtub). (4.11)

Equation (4.11), o ∈ C1
b (Σ;Rn×k) and $ ∈ C1(R;R) show that the function

ô ◦ ιl � B(x′, δ1)× (−εtub, εtub)

is C1-smooth. The Jacobian of ιl at the point (y′, s) ∈ B(x′, δ1) × (−εtub, εtub) is
given by

(Dιl)(y
′, s) =

(
(Iθ − sW (κl(y′))Tl(y′) νl(y

′)
)

with Tl(y′) =
(
(∂1κl)(y′) . . . (∂θ−1κl)(y′)

)
,

(4.12)

where W (κl(y′)), which is the Weingarten map introduced in Definition 2.11, is ap-
plied column-wise to Tl(y′). Using the coordinate representation Ll(y′) of W (κl(y′))
with respect to the basis {∂jκl(x′) : j = 1, . . . , θ − 1} we obtain

(Dιl)(y
′, s) =

(
Tl(y

′)(Iθ−1 − sLl(y′)) νl(y
′)
)

and

((Dιl)(y
′, s))T (Dιl)(y

′, s) =

(
(Iθ−1 − s(Ll(y′))T )(Tl(y

′))T

(νl(y
′))T

)
·
(
Tl(y

′)(Iθ−1 − sLl(y′)) νl(y
′)
)

=

(
(Iθ−1 − s(Ll(y′))T )(Tl(y

′))TTl(y
′)(Iθ−1 − sLl(y′)) 0

0 1

)
.

In particular, det((Dιl)(y
′, s))2 = det(Iθ−1− sLl(y′))2 det((Tl(y

′))TTl(y
′)). Moreover,

note that (Tl(y
′))TTl(y

′) = Ml(y
′) = Iθ−1 +∇ζl(x′)∇ζl(y′)T with Ml as in the proof

of Proposition 2.12, and hence det((Tl(y
′))TTl(y

′)) = 1 + |∇ζl(y′)|2. If we combine
this with Proposition 2.12 (ii), then we obtain

|det(Dιl)(y
′, s)| =

√
1 + |∇ζl(y′)|2 det(Iθ−1 − sLl(y′))

=
√

1 + |∇ζl(y′)|2 det(I − sW (κl(y′)))

>
1

2
.
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In particular, (Dιl)(y
′, s) is invertible and thus the inverse function theorem shows

that ιl is locally around (x′, t) a diffeomorphism and therefore ô = (ô ◦ ιl) ◦ ι−1
l

is C1-smooth around the point x = ιl(x
′, t). This shows that ô is C1-smooth in

Ωεtub . Furthermore, since |det(Dιl)(y
′, s)| > 1

2
and as (Dιl)(y

′s) can be bounded by
a constant which only depends on ζl and εtub, ((Dιl)(y

′, s))−1 can also be bounded
by a constant which depends only on ζl and εtub. Hence, by the chain rule and
o ∈ C1

b (Σ;Cn×k) the first order derivatives of ô are also bounded, which implies
ô ∈ C1

b (Rθ;Cn×k).

Lemma 4.3 shows that the unit normal vector field ν of Σ has an extension in
C1
b (Rθ;Rθ). We fix such an extension and denote it also by ν. Next, we define

for δ ∈ R the shift operator

τδ : L2(Rθ;CN)→ L2(Rθ;CN)

τδu(x) := u (x+ δν(x)) , x ∈ Rθ.
(4.13)

In the upcoming proposition we study basic properties of τδ.

Proposition 4.4. Let Dν be the Jacobian matrix (of the extension) of ν, r ∈ [0, 1]
and δ0 ∈ (0, ‖Dν‖−1

L∞(Rθ;Rθ×θ)). Then, the operators τδ, δ ∈ [−δ0, δ0], are uniformly
bounded in Hr(Rθ;CN) and for r′ ∈ [0, r] the inequality

‖τδ − I‖Hr(Rθ;CN )→Hr′ (Rθ;CN ) ≤ C|δ|r−r′ (4.14)

holds for all δ ∈ [−δ0, δ0], where C > 0 is independent of δ.

Proof. Fix δ ∈ [−δ0, δ0] and observe first that Iθ + δDν(x) is invertible for all x ∈ Rθ

and the norm of the inverse is bounded by (1 − |δ0|‖Dν‖L∞(Rθ;Rθ×θ))
−1. The same

bound holds for the modulus of the eigenvalues of (Iθ + δDν(x))−1 and hence we
conclude∣∣det

(
(Iθ + δDν(x))−1

)∣∣ ≤ 1(
1− |δ0|‖Dν‖L∞(Rθ;Rθ×θ)

)θ , x ∈ Rθ. (4.15)

We start by showing the uniform boundedness of τδ for r = 0. Let u ∈ L2(Rθ;CN).
Then, a change of variables and (4.15) lead to∫

Rθ
|τδu(x)|2 dx =

∫
Rθ
|u(x+ δν(x))|2 dx

=

∫
Rθ
|u(x+ δν(x))|2 |det(Iθ + δDν(x))|

|det (Iθ + δDν(x))|
dx

=

∫
Rθ
|u(x+ δν(x))|2|det(Iθ + δDν(x))|

∣∣det
(
(Iθ + δDν(x))−1

)∣∣ dx
≤ 1

(1− |δ0|‖Dν‖L∞(Rθ;Rθ×θ))
θ

∫
Rθ
|u(x)|2 dx,

(4.16)
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and it follows that the operators τδ, δ ∈ [−δ0, δ0], are uniformly bounded in L2(Rθ;CN).
To see the uniform boundedness of the operators τδ inH1(Rθ;CN), let u ∈ C∞0 (Rθ;CN)
and compute in a similar way as above∫

Rθ
|D(τδu)(x)|2 dx =

∫
Rθ
|(Du)(x+ δν(x))(Iθ + δDν(x))|2 dx

≤
(
1 + δ0‖Dν‖L∞(Rθ;Rθ×θ)

)2(
1− |δ0|‖Dν‖L∞(Rθ;Rθ×θ)

)θ ∫
Rθ
|Du(x)|2 dx.

(4.17)

By density this estimate remains valid for u ∈ H1(Rθ;CN). Therefore, the uniform
boundedness of the operators τδ in H1(Rθ;CN) follows from (4.16) and (4.17). Even-
tually, using interpolation one concludes that τδ is uniformly bounded in Hr(Rθ;CN)
for any r ∈ [0, 1].

It remains to prove (4.14). Since we have already shown that τδ is uniformly bounded
in Hr(Rθ;CN), the claim in (4.14) holds for r = r′ ∈ [0, 1]. Next, we show (4.14) for
r′ = 0 and r = 1. With the main theorem of calculus and the chain rule we find for
u ∈ C∞0 (Rθ;CN)∫

Rθ
|τδu(x)− u(x)|2 dx =

∫
Rθ

∣∣∣∫ δ

0

d

dt
u(x+ tν(x))dt

∣∣∣2 dx
=

∫
Rθ

∣∣∣∫ δ

0

Du(x+ tν(x))ν(x)dt
∣∣∣2 dx

≤
∫
Rθ

(∫ δ

0

|(τtDu)(x)|2 dt
)(∫ δ

0

|ν(x)|2 dt
)
dx

≤ |δ|‖ν‖2
L∞(Rθ;Rθ)

∫ δ

0

‖τtDu‖2
L2(Rθ;CN×θ) dt

≤ C|δ|
∫ δ

0

‖Du‖2
L2(Rθ;CN×θ) dt

≤ C|δ|2‖u‖2
H1(Rθ;CN ),

where τtDu is understood column-wise. By density this estimate is also valid for
u ∈ H1(Rθ;CN) and hence ‖τδ − I‖H1(Rθ;CN )→L2(Rθ;CN ) ≤ C|δ|. It remains to prove
the claim in the case 0 ≤ r′ < r ≤ 1 with (r′, r) 6= (0, 1). We set µ = r − r′ ∈ (0, 1)
and υ = r′

1−(r−r′) ∈ [0, 1]. Then,

r′ = (1− µ)υ + µ0 and r = (1− µ)υ + µ1

and consequently [54, Theorem B.7] implies

Hr′(Rθ;CN) =
[
Hυ(Rθ;CN), H0(Rθ;CN)

]
µ

=
[
Hυ(Rθ;CN), L2(Rθ;CN)

]
µ
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and
Hr(Rθ;CN) =

[
Hυ(Rθ;CN), H1(Rθ;CN)

]
µ
.

Applying (xiii) from Section 2.1 yields

‖I − τδ‖Hr(Rθ;CN )→Hr′ (Rθ;CN )

≤ C‖I − τδ‖[Hυ(Rθ;CN ),H1(Rθ;CN )]µ→[Hυ(Rθ;CN ),L2(Rθ;CN )]µ

≤ C‖I − τδ‖1−µ
Hυ(Rθ;CN )→Hυ(Rθ;CN )

‖I − τδ‖µH1(Rθ;CN )→L2(Rθ;CN )

= C|δ|r−r′ ,

which is exactly (4.14). This finishes the proof of this proposition.

We will also need a variant of the shift operator τδ that acts on functions defined
on Ω±. Since Σ = ∂Ω± fulfils Definition 2.1, we can make use of Stein’s extension
operator E : L2(Ω±;CN) → L2(Rθ;CN) given by Proposition 2.6. We then define
the shift operator for functions on Ω± by

τ
Ω±
δ := (τδE(·))± : L2(Ω±;CN)→ L2(Ω±;CN). (4.18)

The following properties of τΩ±
δ immediately follow from the properties of E and

Proposition 4.4.

Corollary 4.5. Let Dν be the Jacobian matrix (of the extension) of ν, r ∈ [0, 1]

and δ0 ∈ (0, ‖Dν‖−1
L∞(Rθ;Rθ×θ)). Then, the operators τΩ±

δ , δ ∈ [−δ0, δ0], are uniformly
bounded in Hr(Ω±;CN) and for r′ ∈ [0, r] the inequality

‖τΩ±
δ − I‖Hr(Ω±;CN )→Hr′ (Ω±;CN ) ≤ C|δ|r−r′

holds for all δ ∈ [−δ0, δ0], where C > 0 is independent of δ.

Finally, we show that the map t 7→ τtδu has a useful continuity property.

Proposition 4.6. Let Dν be the Jacobian matrix (of the extension) of ν, r ∈ [0, 1],
δ0 ∈ (0, ‖Dν‖−1

L∞(Rθ;Rθ×θ)), δ ∈ [−δ0, δ0], u ∈ Hr(Rθ;CN) and v ∈ Hr(Ω±;CN). Then,
the functions

fu : (−1, 1)→ Hr(Rθ;CN), t 7→ τtδu,

and

f±v : (−1, 1)→ Hr(Ω±;CN), t 7→ τ
Ω±
tδ v,

are continuous.
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Proof. First, consider u ∈ C∞0 (Rθ;CN) and let tn, t ∈ (−1, 1) such that tn → t as
n→∞. Then, with dominated convergence one gets

lim
n→∞

fu(tn) = lim
n→∞

u((·) + δtnν) = u((·) + δtν) = fu(t) in H1(Rθ;CN).

Since H1(Rθ;CN) is continuously embedded in Hr(Rθ;CN), the assertion follows
for u ∈ C∞0 (Rθ;CN). If u ∈ Hr(Rθ;CN), then there exists a sequence (un)n∈N in
C∞0 (Rθ;CN) such that un → u in Hr(Rθ;CN) as n → ∞. Applying Proposition 4.4
yields

‖fu(t)− fun(t)‖Hr(Rθ;CN ) = ‖τδt(u− un)‖Hr(Rθ;CN ) ≤ C‖u− un‖Hr(Rθ;CN )

for all n ∈ N and t ∈ (−1, 1). Hence, fun(t) → fu(t) uniformly with respect to
t ∈ (−1, 1) in Hr(Rθ;CN) as n→∞. Thus, fu is also continuous.

It remains to verify the claim for f±v . Let tn, t ∈ (−1, 1) such that tn → t for n→∞.
Using the properties of Stein’s extension operator E and the above observations,
we get that fEv(tn) → fEv(t) in Hr(Rθ;CN). Moreover, the boundedness of the
restriction mapping gives us that f±v (tn) = (τδtnEv)± = (fEv(tn))± converges to
(fEv(t))± = f±v (t) in Hr(Ω±;CN). This shows the continuity of f±v .

4.3 Convergence of Aε(z), Bε(z) and Cε(z)

This section is devoted to the convergence analysis of the operators Aε(z), Bε(z)
and Cε(z) introduced in (4.8) for ε → 0, and is based on [14, Section 3.3]. First,
in Proposition 4.8 we study the convergence of Cε(z). Then, a duality argument
allows us to investigate the convergence of Aε(z) in Proposition 4.9. Eventually, in
Proposition 4.10 we consider the convergence of Bε(z).

We choose the number εABC > 0 such that

εABC ≤ min

{
εtub

4
,

1

2‖Dν‖L∞(Rθ;Rθ×θ)

}
, (4.19)

where εtub is specified in Proposition 2.12. Let W be the Weingarten map associated
with Σ introduced in Definition 2.11. In our analysis, the multiplication operator
Mε : B0(Σ)→ B0(Σ) acting as

Mεf(t) = det (I − tεW ) f(t) for a.e. t ∈ (−1, 1) (4.20)

turns out to be useful. In the following lemma, which is an immediate consequence
of Proposition 2.12 (ii) and Proposition 2.19, some relevant properties of Mε are
stated.
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Lemma 4.7. For any ε ∈ (0, εABC) the operator Mε is bounded, invertible,

‖Mε‖0→0 ≤ (1 + εC) and ‖Mε − I‖0→0 ≤ εC.

To formulate the result concerning the convergence of Cε(z), we recall that the em-
bedding J is defined by (2.10) and introduce the operator

C0(z) := JΦ∗z : L2(Rθ;CN)→ B0(Σ). (4.21)

In fact, the properties of J and Φ∗z, see (2.10) and Proposition 3.6 (iii), imply that
C0(z) gives also rise to a bounded operator from L2(Rθ;CN) to B1/2(Σ).

Proposition 4.8. Let z ∈ ρ(H), R(z) = (H−z)−1, τ(·) be the shift operator in (4.13)
and ε ∈ (0, εABC) with εABC satisfying (4.19). Then, for any u ∈ L2(Rθ;CN) the
relation

Cε(z)u(t) = tΣτεtR(z)u for a.e. t ∈ (−1, 1) (4.22)

holds in L2(Σ;CN) and ranCε(z) ⊂ B1/2(Σ). Moreover, the operators Cε(z) are
uniformly bounded from L2(Rθ;CN) to B1/2(Σ) and for any r ∈

(
0, 1

2

)
one has

‖Cε(z)− C0(z)‖L2(Rθ;CN )→0 ≤ Cε1/2−r. (4.23)

Proof. First, we show (4.22) for u ∈ C∞0 (Rθ;CN). By density and continuity, this
implies (4.22) for all u ∈ L2(Rθ;CN). Recall thatR(z) : Hs(Rθ;CN)→ Hs+1(Rθ;CN)
is bounded for s ∈ R; see Proposition 3.3 (iii). Hence, by the Sobolev embedding
theorem R(z)u is continuous for u ∈ C∞0 (Rθ;CN) and the same is true for τεtR(z)u.
Furthermore, as τεtR(z)u ∈ H1(Rθ;CN) we conclude with Proposition 2.3 (ii) and
Proposition 4.2 for t ∈ (−1, 1) and xΣ ∈ Σ that

tΣτεtR(z)u(xΣ) = τεtR(z)u(xΣ) =

∫
Rθ
Gz(xΣ+εtν(xΣ)−y)u(y)dy = Cε(z)u(t)(xΣ).

Hence, (4.22) is true.

Next, we show the inclusion ranCε(z) ⊂ B1/2(Σ). Assume that u ∈ L2(Rθ;CN).
Then, by the boundedness of the trace operator tΣ : H1(Rθ;CN)→ H1/2(Σ;CN), see
Proposition 2.3 (ii), and Proposition 4.6 it follows that the function tΣτ(·)εR(z)u is
continuous as a mapping from (−1, 1) to H1/2(Σ;CN). In particular, tΣτ(·)εR(z)u is
measurable as a mapping from (−1, 1) to H1/2(Σ;CN). Using again the boundedness
of the trace operator tΣ : H1(Rθ;CN)→ H1/2(Σ;CN) and the uniform boundedness
of the shift operator in H1(Rθ;CN), see Proposition 2.3 (ii) and Proposition 4.4,
respectively, we conclude∫ 1

−1

‖tΣτεtR(z)u‖2
H1/2(Σ;CN ) dt ≤

∫ 1

−1

C‖R(z)u‖2
H1(Rθ;CN ) dt ≤ C‖u‖2

L2(Rθ;CN )
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and therefore tΣτ(·)εR(z)u ∈ B1/2(Σ). Moreover, this also shows that Cε(z) is uni-
formly bounded from L2(Rθ;CN) to B1/2(Σ).

Finally, with Proposition 2.3 (ii), Proposition 4.4 and C0(z) = JΦ∗z = JtΣR(z), see
Proposition 3.6 (iii), we have for r ∈

(
0, 1

2

)
and u ∈ L2(Rθ;CN)

‖Cε(z)u− C0(z)u‖2
0 = ‖tΣτε(·)R(z)u− JtΣR(z)u‖2

0

=

∫ 1

−1

‖tΣ(τεt − I)R(z)u‖2
L2(Σ;CN ) dt

≤ C

∫ 1

−1

‖(τεt − I)R(z)u‖2
Hr+1/2(Rθ;CN ) dt

≤ C

∫ 1

−1

|εt|1−2r‖R(z)u‖2
H1(Rθ;CN ) dt

≤ C

∫ 1

−1

ε1−2r‖u‖2
L2(Rθ;CN ) dt

≤ Cε1−2r‖u‖2
L2(Rθ;CN ),

which leads to (4.23). Therefore, all claims are shown.

Using the convergence of Cε(z), it is not difficult to show the convergence of Aε(z).
We define the natural candidate for the limit operator by

A0(z) := ΦzJ
∗ : B0(Σ)→ L2(Rθ;CN). (4.24)

Proposition 4.9. Let z ∈ ρ(H) and ε ∈ (0, εABC) with εABC satisfying (4.19).
Then, for any r ∈ (0, 1

2
) one has

‖Aε(z)− A0(z)‖0→L2(Rθ;CN ) ≤ Cε1/2−r

and, in particular, the operators Aε(z) : B0(Σ)→ L2(Rθ;CN) are uniformly bounded.

Proof. Let Iε, Sε, and Mε be the operators given by (4.5), (4.6), and (4.20), respec-
tively. One verifies by a direct calculation using Proposition 2.12 (iii), (4.5), and
(4.6) that (IεSε)∗ = MεS−1

ε I−1
ε . Using this relation we conclude from (4.8) that(

Aε(z)M−1
ε

)∗
= M−1

ε (Aε(z))∗ = M−1
ε (R(z)U∗ε IεSε)∗

= M−1
ε MεS−1

ε I−1
ε UεR(z) = S−1

ε I−1
ε UεR(z) = Cε(z).

(4.25)

Moreover, (A0(z))∗ = (ΦzJ
∗)∗ = JΦ∗z = C0(z). Hence, Lemma 4.7 and Proposi-

tion 4.8 yield∥∥Aε(z)− A0(z)
∥∥

0→L2(Rθ;CN )

= ‖Aε(z)M−1
ε (Mε − I) + Aε(z)M−1

ε − A0(z)‖0→L2(Rθ;CN )

≤ Cε‖Cε(z)‖L2(Rθ;CN )→0 + ‖Cε(z)− C0(z)‖L2(Rθ;CN )→0

≤ Cε1/2−r,
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which is the claimed estimate.

Next, we study the convergence of the operators Bε(z). We define the limit operator
B0(z) : B0(Σ)→ B0(Σ) which acts on f ∈ B0(Σ) evaluated for a.e. t ∈ (−1, 1) as

B0(z)f(t) :=
i

2
(α · ν)

∫ 1

−1

sign(t− s)f(s) ds+ Cz
∫ 1

−1

f(s) ds, (4.26)

where Cz : L2(Σ;CN) → L2(Σ;CN) is the operator defined in Definition 3.7. Using
the mapping properties of Cz from Proposition 3.8 (i) it follows that B0(z) can also
be regarded as a bounded operator in Br(Σ) for any r ∈ [−1

2
, 1

2
]. In the following

proposition we show that Bε(z) converges to B0(z). The proof of this result is more
complicated than the proofs of Proposition 4.8 and Proposition 4.9, and therefore
some of the more technical calculations are shifted to Appendix B.

Proposition 4.10. Let z ∈ ρ(H) and ε ∈ (0, εABC) with εABC satisfying (4.19).
Then, the operators Bε(z) are uniformly bounded in B0(Σ) and for any r ∈ (0, 1

2
) one

has
‖Bε(z)−B0(z)‖1/2→0 ≤ Cε1/2−r.

Proof. The proof is split into several steps. Let Φz be as in Definition 3.5 and let
τ

Ω±
(·) be defined by (4.18). We introduce the auxiliary operators

B̃ε(z) := Bε(z)M−1
ε : B0(Σ)→ B0(Σ), (4.27)

which are, due to the properties of Bε(z) and Mε in (4.8) and (4.20), bounded and
act on f ∈ B0(Σ) for a.e. t ∈ (−1, 1) and σ-a.e. xΣ ∈ Σ as

B̃ε(z)f(t)(xΣ) =

∫ 1

−1

∫
Σ

Gz(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))f(s)(yΣ) dσ(yΣ) ds. (4.28)

Moreover, we define
Bε(z) : B1/2(Σ)→ B1/2(Σ)

acting on f ∈ B1/2(Σ) for a.e. t ∈ (−1, 1) as

Bε(z)f(t) =

∫ t

−1

t−Στ
Ω−
ε(t−s)(Φzf(s))−ds+

∫ 1

t

t+
Στ

Ω+

ε(t−s)(Φzf(s))+ ds. (4.29)

First, in Step 1 we show that Bε(z) is bounded and converges to B0(z). Then, in
Step 2 we verify an alternative representation of Bε(z). In Step 3 we use Appendix B
to compare Bε(z) and B̃ε(z), and show that B̃ε(z) is uniformly bounded in ε. In
Step 4 we combine the results from Step 1 to Step 3 to conclude the claims of this
proposition.
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Step 1. First, we note that, due to Definition 2.13 and Proposition 4.6, the func-
tion (−1, 1)2 3 (t, s) 7→ Θ(∓(t − s))τ

Ω±
ε(t−s) ∈ L(H1(Ω±;CN), H1(Ω±;CN)) is mea-

surable, where Θ is the Heaviside function. Hence, it follows from the text be-
low Definition 2.13 that the integrands in (4.29) are measurable with respect to
(t, s) ∈ (−1, 1)2. Moreover, by the mapping properties of t±Σ, Φz and τ

Ω±
(·) in Proposi-

tion 2.3, Proposition 3.6 and Corollary 4.5 respectively, the integrands are bounded by
C‖f(s)‖H1/2(Σ;CN ) for (t, s) ∈ (−1, 1)2. In particular, we conclude that for f ∈ B1/2(Σ)

∫ 1

−1

∫ 1

−1

∥∥Θ(t− s)t−Στ
Ω−
ε(t−s)(Φzf(s))− + Θ(s− t)t+

Στ
Ω+

ε(t−s)(Φzf(s))+

∥∥2

H1/2(Σ;CN )
dtds

is finite. Thus, Fubini’s theorem for Bochner integrals, see Proposition 2.15, yields the
integrability of the integrands in (4.29) with respect to s ∈ (−1, 1) for a.e. t ∈ (−1, 1)
and the measurability of t 7→ Bε(z)f(t). Furthermore, the bound for the integrands
also implies ‖Bε(z)f‖1/2 ≤ C‖f‖1/2 for f ∈ B1/2(Σ). Hence, Bε(z) is well-defined
and uniformly bounded in B1/2(Σ). We claim that

‖Bε(z)−B0(z)‖1/2→0 ≤ Cε1/2−r. (4.30)

To see this we remark that with Proposition 3.8 (ii) we have the pointwise represen-
tation

B0(z)f(t) =

∫ t

−1

t−Σ (Φzf(s))− ds+

∫ 1

t

t+
Σ (Φzf(s))+ ds

for a.e. t ∈ (−1, 1) and f ∈ B1/2(Σ). Thus, r ∈
(
0, 1

2

)
and direct estimates show

‖Bε(z)f −B0(z)f‖2

0 =

∫ 1

−1

∥∥∥∥∫ t

−1

t−Σ
(
τ

Ω−
ε(t−s) − I

)
(Φzf(s))−ds

+

∫ 1

t

t+
Σ

(
τ

Ω+

ε(t−s) − I
)
(Φzf(s))+ds

∥∥∥∥2

L2(Σ;CN )

dt

≤
∫ 1

−1

(∫ t

−1

∥∥t−Σ(τΩ−
ε(t−s) − I

)
(Φzf(s))−

∥∥
Hr(Σ;CN )

ds

+

∫ 1

t

∥∥t+
Σ

(
τ

Ω+

ε(t−s) − I
)
(Φzf(s))+

∥∥
Hr(Σ;CN )

ds

)2

dt.

(4.31)

Employing Proposition 2.3, Proposition 3.6 (i) and Corollary 4.5 gives us for all
s, t ∈ (−1, 1)∥∥t±Σ(τΩ±

ε(t−s) − I
)
(Φzf(s))±

∥∥
Hr(Σ;CN )

≤ Cε1/2−r‖f(s)‖H1/2(Σ;CN ).
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Plugging this into (4.31) yields∥∥Bε(z)f −B0(z)f
∥∥2

0

≤ Cε2(1/2−r)
∫ 1

−1

(∫ t

−1

‖f(s)‖H1/2(Σ;CN ) ds+

∫ 1

t

‖f(s)‖H1/2(Σ;CN ) ds

)2

dt

≤ Cε2(1/2−r)
∫ 1

−1

‖f(s)‖2
H1/2(Σ;CN ) ds = Cε2(1/2−r)‖f‖2

1/2,

which implies (4.30).

Step 2. We show that the operator Bε(z) in (4.29) has the alternative representation

Bε(z)f(t)(xΣ) =

∫ 1

−1

∫
Σ

Gz(xΣ + ε(t− s)ν(xΣ)− yΣ)f(s)(yΣ) dσ(yΣ) ds (4.32)

for f ∈ B1/2(Σ), a.e. t ∈ (−1, 1) and σ-a.e. xΣ ∈ Σ. Let f ∈ B1/2(Σ) and
t, s ∈ (−1, 1) be fixed such that t > s. Note that the choice of εtub in Proposi-
tion 2.12 implies εABC ≤ εtub

2
< ει

2
; cf. also Proposition 2.9. Hence, by Corollary 2.10

we have xΣ + ε(t − s)ν(xΣ) ∈ Ω− for all xΣ ∈ Σ. Moreover, we conclude from the
representation of Φz given in Definition 3.5 and the form of the integral kernel Gz,
see (3.3)–(3.4), that Φzf(s) is continuous away from Σ. Thus, we have for σ-a.e.
xΣ ∈ Σ

t−Στ
Ω−
ε(t−s)(Φzf(s))−(xΣ) = (Φzf(s))(xΣ + ε(t− s)ν(xΣ))

=

∫
Σ

Gz(xΣ + ε(t− s)ν(xΣ)− yΣ)f(s)(yΣ) dσ(yΣ).

Analogously, for t < s and σ-a.e. xΣ ∈ Σ

t+
Στ

Ω+

ε(t−s)(Φzf(s))+(xΣ) = (Φzf(s))(xΣ + ε(t− s)ν(xΣ))

=

∫
Σ

Gz(xΣ + ε(t− s)ν(xΣ)− yΣ)f(s)(yΣ) dσ(yΣ).

Combining the previous two equations yields∫ t

−1

t−Στ
Ω−
ε(t−s)(Φzf(s))−(xΣ) ds+

∫ 1

t

t+
Στ

Ω+

ε(t−s)(Φzf(s))+(xΣ) ds

=

∫ 1

−1

∫
Σ

Gz(xΣ + ε(t− s)ν(xΣ)− yΣ)f(s)(yΣ) dσ(yΣ) ds.

(4.33)

Moreover, as the integrands on the right-hand side in (4.29) are Bochner integrable
(cf. Step 1 ), Proposition 2.18 (iii) shows that the pointwise evaluation of the Bochner
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integrals in the definition of Bε(z) in (4.29) coincides with (4.33), i.e.

Bε(z)f(t)(xΣ) =

(∫ t

−1

t−Στ
Ω−
ε(t−s) (Φzf(s))− ds+

∫ 1

t

t+
Στ

Ω+

ε(t−s) (Φzf(s))+ ds

)
(xΣ)

=

∫ t

−1

t−Στ
Ω−
ε(t−s)(Φzf(s))−(xΣ) ds+

∫ 1

t

t+
Στ

Ω+

ε(t−s)(Φzf(s))+(xΣ) ds.

This is exactly the claimed formula in (4.32).

Step 3. By the results in Appendix B the map B̃ε(z)−Bε(z) admits an extension to
a bounded operator from B0(Σ) to B1/2(Σ) and∥∥B̃ε(z)−Bε(z)

∥∥
0→1/2

≤ Cε1/2(1 + |log(ε)|)1/2. (4.34)

Moreover, we claim that B̃ε(z) is uniformly bounded in B0(Σ). To see this, observe
first that

‖B̃ε(z)‖1/2→1/2 ≤ ‖B̃ε(z)−Bε(z)‖1/2→1/2 + ‖Bε(z)‖1/2→1/2

≤ ‖B̃ε(z)−Bε(z)‖0→1/2 + ‖Bε(z)‖1/2→1/2.

Therefore, the estimate (4.34) and the uniform boundedness of Bε(z) in B1/2(Σ)

shown in Step 1 imply that B̃ε(z) is also uniformly bounded in B1/2(Σ). The same
is true for B̃ε(z) and hence also the antidual

(B̃ε(z) � B1/2(Σ))′ : B−1/2(Σ)→ B−1/2(Σ)

is uniformly bounded. Here, we used that (B1/2(Σ))′ can be identified with B−1/2(Σ);
see Proposition 2.21 (ii). We claim that (B̃ε(z) � B1/2(Σ))′ is an extension of B̃ε(z),
that is,

B̃ε(z)f = (B̃ε(z) � B1/2(Σ))′f, f ∈ B0(Σ). (4.35)

In fact, the identities B̃ε(z) = Bε(z)M−1
ε , (4.8), and (IεSε)∗ = MεS−1

ε I−1
ε , yield for

the adjoint of B̃ε(z) in B0(Σ)

(B̃ε(z))∗ =
(
S−1
ε I−1

ε UεR(z)U∗ε IεSεM−1
ε

)∗
= S−1

ε I−1
ε UεR(z)U∗ε IεSεM−1

ε = B̃ε(z)
(4.36)

and hence Proposition 2.21 (ii) implies for f ∈ B0(Σ) and g ∈ B1/2(Σ)〈
(B̃ε(z) � B1/2(Σ))′f, g

〉
B−1/2(Σ)×B1/2(Σ)

= 〈f, B̃ε(z)g〉B−1/2(Σ)×B1/2(Σ)

= (f, B̃ε(z)g)B0(Σ)

= (B̃ε(z)f, g)B0(Σ)

= 〈B̃ε(z)f, g〉B−1/2(Σ)×B1/2(Σ),
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where 〈·, ·〉B−1/2(Σ)×B1/2(Σ) denotes the sesquilinear duality product; cf. Section 2.1 (iii).
This implies (4.35) and since (B̃ε(z))′ and B̃ε(z) are both uniformly bounded in
B−1/2(Σ) and B1/2(Σ), respectively, an interpolation argument, see Proposition 2.21 (i)
and Section 2.1 (xiii), leads to the uniform boundedness of B̃ε(z) in B0(Σ).

Step 4. Using the results from Step 1 to Step 3 we now complete the proof of
Proposition 4.10. Since Bε(z) = B̃ε(z)Mε, Lemma 4.7 and the uniform boundedness
of B̃ε(z) shown in Step 3 imply the uniform boundedness of Bε(z) in B0(Σ), proving
the first claim of this proposition. Moreover, by applying Lemma 4.7, (4.30), (4.34)
and the uniform boundedness of B̃ε(z) in the space B0(Σ) we obtain

‖Bε(z)−B0(z)‖1/2→0 = ‖B̃ε(z)Mε −B0(z)‖1/2→0

≤ ‖B̃ε(z)(Mε − I)‖1/2→0 + ‖B̃ε(z)−Bε(z)‖1/2→0 + ‖Bε(z)−B0(z)‖1/2→0

≤ ‖B̃ε(z)(Mε − I)‖0→0 + ‖B̃ε(z)−Bε(z)‖0→1/2 + ‖Bε(z)−B0(z)‖1/2→0

≤ C
(
ε+ ε1/2(1 + |log(ε)|)1/2 + ε1/2−r)

≤ Cε1/2−r.

This is the claimed norm estimate and finishes the proof of this proposition.

4.4 Properties of the limit operators A0(z), B0(z) and C0(z)

After discussing the convergence properties of Aε(z), Bε(z) and Cε(z), we discuss in
this section the limit operators A0(z), B0(z) and C0(z). In particular, we give in
Proposition 4.14 conditions under which

(H − z)−1 − A0(z)V q(I +B0(z)V q)−1C0(z)

is the resolvent of HṼ δΣ
, where Ṽ = Ṽ (V ) is a rescaled interaction matrix. This

section contains parts of [14, Section 4] and [15].

To study the expression (H − z)−1−A0(z)V q(I +B0(z)V q)−1C0(z) it is essential to
investigate the operator I + B0(z)V q and its inverse. This requires some technical
preparations and we first introduce the operator

T : B0(Σ)→ B0(Σ),

T f(t) :=
i

2

∫ 1

−1

sign(t− s)f(s) ds,

and the function

Q(t) := −1

2
+

∫ t

−1

q(s)ds, t ∈ [−1, 1], (4.37)
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where q ∈ L∞((−1, 1);R) is the function introduced in (4.1). The function Q satisfies
Q′ = q, Q(−1) = −1

2
, and since

∫ 1

−1
q(s) ds = 1, also Q(1) = −Q(−1) = 1

2
. Moreover,

for r ∈ [0, 1
2
] the map T gives rise to a bounded operator in Br(Σ) and

B0(z) = T (α · ν) + JCzJ∗ (4.38)

with J from (2.10).

Lemma 4.11. Let q and V be as in (4.1) and (4.2), let r ∈ [0, 1
2
], and assume

cos
( (α·ν)V

2

)−1 ∈ W 1
∞(Σ;CN×N). Then, the following is true:

(i) I+T (α·ν)V q is boundedly invertible in Br(Σ) and its inverse is given by (4.40).

(ii) If f ∈ ran J, i.e. f is independent of t ∈ (−1, 1), then the equation

(I + T (α · ν)V q)−1f(t) = cos
( (α·ν)V

2

)−1
exp(−i(α · ν)V Q(t))f(t)

holds for a.e. t ∈ (−1, 1).

Proof. (i) We show that the operator O defined in (4.40) below is the inverse of
I + T (α · ν)V q. We start by fixing r ∈ [0, 1

2
] and defining the operators

Ξ : Br(Σ)→ Hr(Σ;CN),

Ξf :=
1

2
cos
(

(α·ν)V
2

)−1
i(α · ν)V

∫ 1

−1

exp
(
i(α · ν)V (Q(s)− 1

2
)
)
q(s)f(s) ds,

(4.39)

and

O : Br(Σ)→ Br(Σ),

Of(t) := f(t) + exp(−i(α · ν)V Q(t))Ξf

− i(α · ν)V

∫ t

−1

exp
(
i(α · ν)V (Q(s)−Q(t))

)
q(s)f(s) ds.

(4.40)

We argue that Ξ and O are bounded and that O = (I + T (α · ν)V q)−1. First, we
verify that Ξ is well-defined and bounded. Let f ∈ Br(Σ). Then, the integrand
in (4.39) is measurable as a function from (−1, 1) to Hr(Σ;CN) since the function(
exp
(
i(α · ν)V

(
Q(·) − 1

2

))
q(·)f(·), ψ

)
Hr(Σ;CN )

is measurable for all ψ ∈ Hr(Σ;CN);
see Definition 2.13. In fact, the latter function is the pointwise limit of the sequence
of measurable functions

t 7→
n∑
k=0

((
i(α · ν)V

(
Q(t)− 1

2

))k
q(t)f(t), ψ

)
Hr(Σ;CN )

k!

=
n∑
k=0

(
Q(t)− 1

2

)k
q(t)

(
(i(α · ν)V )kf(t), ψ

)
Hr(Σ;CN )

k!
.



68 4 Convergence of Dirac operators with general strongly localized potentials

Moreover, as cos
( (α·ν)V

2

)−1
, α·ν, V ∈ W 1

∞(Σ;CN×N) it follows from Proposition 2.2 (iii)
that

‖Ξf‖Hr(Σ;CN )

=
1

2

∥∥∥∥cos
(

(α·ν)V
2

)−1
i(α · ν)V

∫ 1

−1

exp
(
i(α · ν)V

(
Q(s)− 1

2

))
q(s)f(s) ds

∥∥∥∥
Hr(Σ;CN )

≤ C

∫ 1

−1

∥∥exp
(
i(α · ν)V

(
Q(s)− 1

2

))
q(s)f(s)

∥∥
Hr(Σ;CN )

ds

and α·ν, V ∈ W 1
∞(Σ;CN×N) also implies exp(i(α·ν)V (Q(s)− 1

2
)) ∈ W 1

∞(Σ;CN×N) via
the power series of the exponential function. Using q ∈ L∞((−1, 1);R) we conclude

‖Ξf‖Hr(Σ;CN )

≤ C

∫ 1

−1

∥∥exp
(
(α · ν)V (Q(s)− 1

2
)
)∥∥

W 1
∞(Σ;CN×N )

‖q‖L∞((−1,1))‖f(s)‖Hr(Σ;CN ) ds

≤ C

∫ 1

−1

‖f(s)‖Hr(Σ;CN ) ds

≤ C‖f‖r.

This shows that Ξ is well-defined and bounded. Analogously, one can check that O
is well-defined and bounded. Hence, in order to show (i) it suffices to prove

(I + T (α · ν)V q)Of = O(I + T (α · ν)V q)f = f (4.41)

for all f ∈ B0(Σ). By Proposition 2.18 (iii) this is true, if for σ-a.e. xΣ ∈ Σ the
relation

(I + T (α · ν)V q)Of(·)(xΣ) = O(I + T (α · ν)V q)f(·)(xΣ) = f(·)(xΣ)

holds a.e. on (−1, 1). For f ∈ B0(Σ) we get from Proposition 2.18 (iii) that the func-
tion (t, xΣ) 7→ f(t)(xΣ) is in L2((−1, 1)×Σ;CN) and thus f(·)(xΣ) ∈ L2((−1, 1);CN)
for σ-a.e. xΣ in Σ. We fix such an xΣ ∈ Σ and define ϕ := f(·)(xΣ) ∈ L2((−1, 1);CN)
and A := (α · ν(xΣ))V (xΣ). Then, we have for a.e. t ∈ (−1, 1)

(I + T (α · ν)V q)Of(t)(xΣ)

= ϕ(t) + exp(−iAQ(t))Ξf(xΣ)− iA
∫ t

−1

exp
(
iA(Q(s)−Q(t))

)
q(s)ϕ(s) ds

+
i

2

∫ 1

−1

sign(t− s)Aq(s)
(
ϕ(s) + exp(−iAQ(s))Ξf(xΣ)

− iA
∫ s

−1

exp
(
iA(Q(r)−Q(s))

)
q(r)ϕ(r) dr

)
ds.

(4.42)
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With a direct calculation we find that

i

2

∫ 1

−1

sign(t− s)A exp(−iAQ(s))q(s)Ξf(xΣ) ds

=
1

2

(∫ t

−1

iA exp(−iAQ(s))q(s) ds−
∫ 1

t

iA exp(−iAQ(s))q(s) ds

)
Ξf(xΣ)

= − exp(−iAQ(t))Ξf(xΣ) +
1

2

(
exp
(
−iA

2

)
+ exp

(
iA

2

))
Ξf(xΣ)

= − exp(−iAQ(t))Ξf(xΣ) + cos
(
A
2

)
Ξf(xΣ).

Furthermore, integration by parts gives us

− i
2

∫ 1

−1

sign(t− s)Aq(s)iA
∫ s

−1

exp
(
iA(Q(r)−Q(s))

)
q(r)ϕ(r) dr ds

=
i

2
A

∫ t

−1

d

ds

(
exp(−iAQ(s))

) ∫ s

−1

exp(iAQ(r))q(r)ϕ(r) dr ds

− i

2
A

∫ 1

t

d

ds

(
exp(−iAQ(s))

) ∫ s

−1

exp(iAQ(r))q(r)ϕ(r) dr ds

= iA exp(−iAQ(t))

∫ t

−1

exp(iAQ(r))q(r)ϕ(r) dr

− i

2
A

∫ 1

−1

exp(iA(Q(r)− 1
2
))q(r)ϕ(r) dr − i

2
A

∫ 1

−1

sign(t− s)q(s)ϕ(s) ds

= iA exp(−iAQ(t))

∫ t

−1

exp(iAQ(r))q(r)ϕ(r) dr

− i

2
A

∫ 1

−1

sign(t− s)q(s)ϕ(s) ds− cos
(
A
2

)
Ξf(xΣ).

A combination of the last two calculations with (4.42) yields

(I + T (α · ν)V q)Of(t)(xΣ) = ϕ(t).

One verifies in a very similar way that O is also the left inverse of I + T (α · ν)V q.
Consequently, (4.41) is true.

(ii) Let f ∈ ran J, that is, f is independent of t ∈ (−1, 1). Instead of inserting f in
(4.40) we find it more convenient and easier to verify this claim directly by showing

(I + T (α · ν)V q) cos
( (α·ν)V

2

)−1
exp(−i(α · ν)V Q)f = f.

Similarly as above it suffices to prove

(I + T (α · ν)V q) cos
( (α·ν)V

2

)−1
exp(−i(α · ν)V Q)f(·)(xΣ) = f(·)(xΣ)
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for σ-a.e. xΣ ∈ Σ a.e. on (−1, 1). Thus, we again fix xΣ ∈ Σ and use the same
abbreviations as in the proof of (i). Since here f is constant with respect to t,
ϕ = f(t)(xΣ) is also independent of t. We then compute

(I + T (α · ν)V q) cos
( (α·ν)V

2

)−1
exp(−i(α · ν)V Q)f(t)(xΣ)

= cos
(
A
2

)−1
exp(−iAQ(t))ϕ+

i

2

∫ 1

−1

sign(t− s)Aq(s) cos
(
A
2

)−1
exp(−iAQ(s))ϕds

= cos
(
A
2

)−1
exp(−iAQ(t))ϕ−

cos
(
A
2

)−1

2

∫ 1

−1

sign(t− s) d
ds

exp(−iAQ(s)) dsϕ

= cos
(
A
2

)−1
exp(−iAQ(t))ϕ

−
cos
(
A
2

)−1

2

(
2 exp(−iAQ(t))− exp(iA

2
)− exp(−iA

2
)
)
ϕ

= ϕ = f(t)(xΣ)

for a.e. t ∈ (−1, 1), which shows (ii).

In the next lemma we study relations connecting the interaction matrix V from (4.2)
and the matrix Ṽ = V S with

S := sinc
( (α·ν)V

2

)
cos
( (α·ν)V

2

)−1 (4.43)

if cos
(

(α·ν)V
2

)−1 ∈ W 1
∞(Σ;CN×N). We call S the scaling matrix.

Lemma 4.12. Let z ∈ ρ(H), q and V be as in (4.1) and (4.2), respectively, assume
cos
( (α·ν)V

2

)−1 ∈ W 1
∞(Σ;CN×N) and set Ṽ = V S, where S is the scaling matrix from

(4.43). Then, the following is true:

(i) S, Ṽ ∈ W 1
∞(Σ;CN×N) and, in particular, the multiplication by Ṽ gives rise to

a bounded operator in Hr(Σ;CN) for r ∈ [0, 1].

(ii) J∗q cos
( (α·ν)V

2

)−1
exp(−i(α · ν)V Q)J = S.

(iii) (I +B0(z)V q)(I + T (α · ν)V q)−1J = J(I + CzṼ ).

Proof. (i) From α · ν, V ∈ W 1
∞(Σ;CN×N) we conclude, using the power series of sinc

and Proposition 2.2 (iv), sinc
( (α·ν)V

2

)
∈ W 1

∞(Σ;CN×N) . Furthermore, the assump-
tion cos

( (α·ν)V
2

)−1 ∈ W 1
∞(Σ;CN×N) and Proposition 2.2 (iv) imply S ∈ W 1

∞(Σ;CN×N)

and Ṽ = V S ∈ W 1
∞(Σ;CN×N). Since the multiplication by any B ∈ W 1

∞(Σ;CN×N)

gives rise to a bounded operator in Hr(Σ;CN) for r ∈ [0, 1], the same is true for Ṽ ;
cf. Proposition 2.2 (iii).
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(ii) Recall that J is defined by (2.10) and that its adjoint acts as

J∗f =

∫ 1

−1

f(t) dt, f ∈ B0(Σ).

As in the proof of the previous lemma we use the abbreviation A = (α · ν)V . Then,
with Proposition 2.18 (iii) we get for ψ ∈ L2(Σ;CN)

J∗q cos
(
A
2

)−1
exp(−iAQ)Jψ =

∫ 1

−1

cos
(
A
2

)−1
exp(−iAQ(s))q(s)(Jψ)(s) ds

= cos
(
A
2

)−1
∫ 1/2

−1/2

exp(−iAr) drψ

= cos
(
A
2

)−1
∫ 1/2

0

2 cos(Ar) drψ.

Using the power series of sinc one verifies
∫ 1/2

0
2 cos(Ar) dr = sinc

(
A
2

)
and hence

J∗q cos
(
A
2

)−1
exp(−iAQ)Jψ = sinc

(
A
2

)
cos
(
A
2

)−1
ψ = Sψ

for ψ ∈ L2(Σ;CN). This shows (ii).

(iii) For ψ ∈ L2(Σ;CN) item (ii) from the current lemma, (4.38) and Lemma 4.11 (ii)
imply

(I +B0(z)V q)(I + T (α · ν)V q)−1Jψ

= Jψ + JCzJ∗V q(I + T (α · ν)V q)−1Jψ

= Jψ + JCzJ∗V q cos
( (α·ν)V

2

)−1
exp(−i(α · ν)V Q)Jψ

= Jψ + JCzV Sψ
= J(I + CzṼ )ψ.

Proposition 4.13. Let z ∈ ρ(H), r ∈ [0, 1
2
], q and V be as in (4.1) and (4.2),

assume cos
( (α·ν)V

2

)−1 ∈ W 1
∞(Σ;CN×N) and set Ṽ = V S. Moreover, assume that

I + CzṼ is continuously invertible in Hr(Σ;CN). Then, the operator I +B0(z)V q is
continuously invertible in the space Br(Σ) and

(I + T (α · ν)V q)−1J(I + CzṼ )−1 = (I +B0(z)V q)−1J. (4.44)

Proof. The operator B0(z) is according to the text below (4.26) bounded in Br(Σ).
Moreover, as V ∈ W 1

∞(Σ;CN×N) and q ∈ L∞((−1, 1)), V as well as q induce by
Proposition 2.2 (iii) and (2.9) also bounded operators in Br(Σ). Hence, I +B0(z)V q
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is bounded in Br(Σ) and therefore it suffices to show that I +B0(z)V q is bijective in
Br(Σ).

Let us start with the injectivity. To do so, we use the representation of B0(z) given
by (4.38) and assume

(I +B0(z)V q)f = (I + T (α · ν)V q)f + ICzV I∗qf = 0

for a f ∈ Br(Σ). Applying the operator (I + T (α · ν)V q)−1 yields

f + (I + T (α · ν)V q)−1ICzV I∗qf = 0.

Using Lemma 4.11 (ii) gives us

f + cos
( (α·ν)V

2

)−1
exp(−i(α · ν)V Q)ICzV I∗qf = 0. (4.45)

By applying I∗q and Lemma 4.12 (ii) we obtain

I∗qf + I∗q cos
(

(α·ν)V
2

)−1
exp(−i(α · ν)V Q)ICzV I∗qf

= (I + SCzV )I∗qf = 0.
(4.46)

Since I + CzṼ is continuously invertible in Hr(Σ;CN) and Ṽ = V S, I + SCzV
is by Proposition 2.29 also continuously invertible in Hr(Σ;CN). Hence, applying
(I + SCzV )−1 to (4.46) yields I∗qf = 0 and thus (4.45) shows f = 0.

Next, we show the surjectivity. Let g ∈ Br(Σ). We set fg = (I+T (α·ν)V q)−1(g+Iψ),
where

ψ = −(I + CzṼ )−1CzI∗V q(I + T (α · ν)V q)−1g.

Applying (I +B0(z)V q) = I + (T (α · ν) + JCzJ∗)V q to fg and Lemma 4.12 (iii) yield

(I +B0(z)V q)fg = g + ICzI∗V q(I + T (α · ν)V q)−1g

+ (I +B0(z)V q)(I + T (α · ν)V q)−1Iψ

= g + ICzI∗V q(I + T (α · ν)V q)−1g

+ I(I + CzṼ )ψ

= g,

which shows that I + B0(z)V q is continuously invertible in Br(Σ). Applying the
operators (I + CzṼ )−1 and (I + B0(z)V q)−1 from the left and from the right to
Lemma 4.12 (iii), respectively, yields (4.44).

Having provided all these preliminary results, we are well-equipped to prove the main
result of this section, which is a resolvent formula for HṼ δΣ

in terms of the operators
A0(z), B0(z) and C0(z).
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Proposition 4.14. Let z ∈ ρ(H), R(z) = (H−z)−1 be the resolvent of the free Dirac
operator, q and V be as in (4.1) and (4.2), assume cos

( (α·ν)V
2

)−1 ∈ W 1
∞(Σ;CN×N)

and set Ṽ = V S. Moreover, assume that I + CzṼ is continuously invertible in
H1/2(Σ;CN). Then, I + B0(z)V q is continuously invertible in B1/2(Σ), HṼ δΣ

is
closed, z ∈ ρ(HṼ δΣ

) and the formula

(HṼ δΣ
− z)−1 = R(z)− A0(z)V q(I +B0(z)V q)−1C0(z)

holds.

Proof. Since I + CzṼ is continuously invertible in H1/2(Σ;CN), Proposition 3.14
implies that HṼ δΣ

is closed, z ∈ ρ(HṼ δΣ
) and

(HṼ δΣ
− z)−1 = R(z)− ΦzṼ (I + CzṼ )−1Φ∗z. (4.47)

Proposition 4.13 and the assumption cos
( (α·ν)V

2

)−1 ∈ W 1
∞(Σ;CN×N) show that the

operator I +B0(z)V q is continuously invertible in B1/2(Σ). Hence, by (4.21), (4.44)
and Lemma 4.11 (ii) we get for v ∈ L2(Rθ;CN)

(I +B0(z)V q)−1C0(z)v

= (I + T (α · ν)V q)−1J(I + CzṼ )−1Φ∗zv

= cos
( (α·ν)V

2

)−1
exp(−i(α · ν)V Q)J(I + CzṼ )−1Φ∗zv.

(4.48)

With A0(z) = ΦzJ
∗, Lemma 4.12 (ii), and V S = Ṽ we conclude

A0(z)V q(I +B0(z)V q)−1C0(z)v

= ΦzV J∗q cos
( (α·ν)V

2

)−1
exp(−i(α · ν)V Q)J(I + CzṼ )−1Φ∗zv

= ΦzV S(I + CzṼ )−1Φ∗zv

= ΦzṼ (I + CzṼ )−1Φ∗zv.

Inserting this observation into (4.47) yields the claimed resolvent formula.

4.5 Convergence conditions for Dirac operators with general
strongly localized potentials

Now, we are in a position to state the first main result of this thesis, which provides
sufficient conditions for the norm resolvent convergence of HVε .

Theorem 4.15. Let q and V be as in (4.1) and (4.2), εABC > 0 as in (4.19), Vε
be defined by (4.3) and assume that for some z ∈ ρ(H) the following conditions are
fulfilled:
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(i) There exists an εconv ∈ (0, εABC ] such that the inverse (I + Bε(z)V q)−1 exists
for ε ∈ (0, εconv) and is uniformly bounded in B0(Σ).

(ii) cos
(

(α·ν)V
2

)−1 ∈ W 1
∞(Σ;CN×N).

(iii) The operator I+CzṼ (Ṽ = V S with S from (4.43)) is bijective in H1/2(Σ;CN).

Then, the operator HṼ δΣ
is self-adjoint, z ∈ ρ(HṼ δΣ

) ∩ ρ(HVε) for all ε ∈ (0, εconv)

and for any r ∈ (0, 1
2
) exists a C > 0 such that∥∥(HVε − z)−1 − (HṼ δΣ

− z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ Cε1/2−r (4.49)

for all ε ∈ (0, εconv). In particular, HVε converges to HṼ δΣ
in the norm resolvent

sense as ε→ 0.

Proof. Throughout this proof we assume ε ∈ (0, εconv). By Proposition 4.14 we have
that I +B0(z)V q is continuously invertible in B1/2(Σ), z ∈ ρ(HṼ δΣ

) and

(HṼ δΣ
− z)−1 = (H − z)−1 − A0(z)V q(I +B0(z)V q)−1C0(z).

The assumptions and Proposition 4.1 (ii) guarantee z ∈ ρ(HVε) as well as

(HVε − z)−1 = (H − z)−1 − Aε(z)V q(I +Bε(z)V q)−1Cε(z).

Subtracting the above two equations yields

(HVε−z)−1 − (HṼ δΣ
− z)−1

=− Aε(z)V q(I +Bε(z)V q)−1Cε(z) + A0(z)V q(I +B0(z)V q)−1C0(z)

=− Aε(z)V q(I +Bε(z)V q)−1(Cε(z)− C0(z))

− Aε(z)V q
(
(I +Bε(z)V q)−1 − (I +B0(z)V q)−1

)
C0(z)

− (Aε(z)− A0(z))V q(I +B0(z)V q)−1C0(z).

(4.50)

In the following we use the uniform boundedness of Aε(z) : B0(Σ) → L2(Rθ;CN)
and (I + Bε(z)V q)−1 : B0(Σ) → B0(Σ); cf. Proposition 4.9 and assumption (i).
Employing this and Proposition 4.8 we see that∥∥Aε(z)V q(I +Bε(z)V q)−1(Cε(z)− C0(z))

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ C‖Cε(z)− C0(z)‖L2(Rθ;CN )→0

≤ Cε1/2−r.

(4.51)
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Since C0(z) : L2(Rθ;CN) → B1/2(Σ) and (I + B0(z)V q)−1 : B1/2(Σ) → B1/2(Σ) are
bounded, see (4.21) and Proposition 4.14, we get from Proposition 4.10∥∥Aε(z)V q

(
(I +Bε(z)V q)−1 − (I +B0(z)V q)−1

)
C0(z)

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ C
∥∥(I +Bε(z)V q)−1 − (I +B0(z)V q)−1

∥∥
1/2→0

≤ C
∥∥(I +Bε(z)V q)−1

∥∥
0→0

· ‖(Bε(z)−B0(z))V q‖1/2→0

∥∥(I +B0(z)V q)−1
∥∥

1/2→1/2

≤ Cε1/2−r.

(4.52)

Eventually, in a similar way as in (4.51), we find with Proposition 4.9 that∥∥(Aε(z)− A0(z))V q(I +B0(z)V q)−1C0(z)
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ C‖Aε(z)− A0(z)‖0→L2(Rθ;CN )

≤ Cε1/2−r.

(4.53)

Combining (4.51)–(4.53) with (4.50) shows (4.49).

It remains to prove the self-adjointness of HṼ δΣ
. Let us first consider the case z ∈ R.

In this case (HṼ δΣ
− z)−1 is a bounded self-adjoint operator with the dense range

domHṼ δΣ
; cf. Lemma 3.13. Thus,

HṼ δΣ
= ((HṼ δΣ

− z)−1)−1 + z

is also self-adjoint. Now, let z ∈ C\R. Since (HVε−z)−1 converges in the the operator
norm to (HṼ δΣ

−z)−1, the adjoint resolvent (HVε−z)−1 converges also in the operator
norm to ((HṼ δΣ

− z)−1)∗ . Furthermore, ran (HṼ δΣ
− z)−1 = domHṼ δΣ

is dense in
L2(Rθ;CN) by Lemma 3.13. Hence, it follows from [62, Theorem VIII.22] that there
exists a self-adjoint operator H̃ such that z ∈ ρ(H̃) and (H̃ − z)−1 = (HṼ δΣ

− z)−1.
This implies H̃ = HṼ δΣ

and therefore HṼ δΣ
is self-adjoint and z ∈ ρ(HṼ δΣ

).

To make the conditions of Theorem 4.15 more tangible, we show in the upcoming
corollary that these conditions are satisfied if ‖V ‖W 1

∞(Σ;CN×N ) is sufficiently small.

Corollary 4.16. Let q and V be as in (4.1) and (4.2), εABC > 0 as in (4.19), Vε
be defined by (4.3) and z ∈ ρ(H). If ‖V ‖W 1

∞(Σ;CN×N ) is sufficiently small, then the
operator HṼ δΣ

is self-adjoint, z ∈ ρ(HṼ δΣ
)∩ρ(HVε) for all ε ∈ (0, εABC), and for any

r ∈ (0, 1
2
) exists a C > 0 such that∥∥(HVε − z)−1 − (HṼ δΣ

− z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ Cε1/2−r

for all ε ∈ (0, εABC). In particular, HVε converges to HṼ δΣ
in the norm resolvent

sense as ε→ 0.
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Proof. Let us shortly check that the conditions of Theorem 4.15 are fulfilled. We
start with (i). By Proposition 2.2 (iii), Proposition 4.10 and the comments below
(2.9) we have

sup
ε∈(0,εABC)

‖Bε(z)V q‖0→0 ≤ C‖q‖L∞((−1,1))‖V ‖W 1
∞(Σ;CN×N ) sup

ε∈(0,εABC)

‖Bε(z)‖0→0 < 1

if ‖V ‖W 1
∞(Σ;CN×N ) is sufficiently small, i.e. (i) of Theorem 4.15 is fulfilled if we set

εconv = εABC and ‖V ‖W 1
∞(Σ;CN×N ) is sufficiently small. For condition (ii) we use the

power series of cos and cosh to estimate∥∥cos
( (α·ν)V

2

)
− IN

∥∥
W 1
∞(Σ;CN×N )

≤ cosh
(‖(α·ν)V ‖

W1∞(Σ;CN×N )

2

)
− 1.

In particular, if ‖V ‖W 1
∞(Σ;CN×N ) is small enough, then cos

( (α·ν)V
2

)
is invertible in

W 1
∞(Σ;CN×N) and∥∥cos

(
(α·ν)V

2

)−1∥∥
W 1
∞(Σ;CN×N )

≤ 1

2− cosh
(‖(α·ν)V ‖

W1∞(Σ;CN×N )

2

) .
Now, let us turn to (iii). Using Ṽ = V S, (4.43), the power series of sinc and the
estimate from above we obtain

‖Ṽ ‖W 1
∞(Σ;CN×N )

≤ ‖V ‖W 1
∞(Σ;CN×N )2

sinh
(‖(α·ν)V ‖

W1∞(Σ;CN×N )

2

)
‖(α · ν)V ‖W 1

∞(Σ;CN×N )

(
2− cosh

(‖(α·ν)V ‖
W1∞(Σ;CN×N )

2

)) .
Hence,

‖CzṼ ‖H1/2(Σ;CN )→H1/2(Σ;CN ) ≤ C‖Cz‖H1/2(Σ;CN )→H1/2(Σ;CN )‖Ṽ ‖W 1
∞(Σ;CN×N )

is smaller than one if ‖V ‖W 1
∞(Σ;CN×N ) is sufficiently small. In particular, in this case

I + CzṼ is continuously invertible in H1/2(Σ;CN), i.e. (iii) of Theorem 4.15 is also
fulfilled.



5 An explicit convergence condition for Dirac operators with
strongly localized electrostatic and Lorentz scalar potentials

In Theorem 4.15 we provided conditions, which imply the norm resolvent convergence
of HVε as ε→ 0, with HVε as in (4.4). Unfortunately, the conditions in Theorem 4.15
and Corollary 4.16 are not explicit and it may be hard to verify them. The aim of
this chapter is to show that under the assumptions

q ∈ L∞((−1, 1); [0,∞)) such that
∫ 1

−1

q(t)dt = 1 (5.1)

and
V = ηIN + τβ with η, τ ∈ C1

b (Σ;R), (5.2)

one can simplify the three conditions in Theorem 4.15 to the explicit and simple
condition

sup
xΣ∈Σ

d(xΣ) <
π2

4
, d = η2 − τ 2. (5.3)

We focus on interaction matrices of the form V = ηIN+τβ, which model electrostatic
and Lorentz scalar interactions, as they are the most prevalent interaction matrices
in literature; cf. Section 3.3. In this situation we get with the help of (3.1) the
identity ((α · ν)V )2 = dIN . Hence, the power series expansions of cos and sinc give
us

cos
( (α·ν)V

2

)
= cos

(√
d

2

)
IN and sinc

( (α·ν)V
2

)
= sinc

(√
d

2

)
IN . (5.4)

This and (5.3) immediately imply cos
( (α·ν)V

2

)−1 ∈ W 1
∞(Σ;CN×N), i.e. (ii) in Theo-

rem 4.15 is fulfilled. Moreover, in this case the scaling matrix, see (4.43), is given
by

S = sinc
( (α·ν)V

2

)
cos
( (α·ν)V

2

)−1
=

sinc
(√

d
2

)
cos
(√

d
2

) IN = tanc
(√

d
2

)
IN , (5.5)

where tanc is the function from item (xx) of Section 2.1, and therefore

Ṽ = V S = η̃IN + τ̃β with (η̃, τ̃) = tanc
(√

d
2

)
(η, τ).

Thus,
d̃ = η̃ 2 − τ̃ 2 = 4 tan

(√
d

2

)2 (5.6)

and by (5.3)
inf
xΣ∈Σ

|d̃(xΣ)− 4| > 0.

77
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Now, Proposition 3.15 shows thatHṼ δΣ
is self-adjoint and that I+CzṼ is continuously

invertible in H1/2(Σ;CN) for z ∈ C \ R. In particular, (ii) of Theorem 4.15 is also
fulfilled for z ∈ C\R. Thus, in order to prove the norm resolvent convergence of HVε

one only has to guarantee that (i) of Theorem 4.15 is satisfied for z ∈ C \ R, i.e. it
is suffices to show that the inverse of I +Bε(z)V q is uniformly bounded in B0(Σ).

We proceed in the current chapter as follows: First, we show in Section 5.1 the uni-
form boundedness of (I+Bε(z)V q)−1 in B0(Σ) if Σ is a rotated C2

b -graph. Afterwards,
we use in the proof of the main theorem, Theorem 5.20, a partition of unity to reduce
the general case of a special C2-surface to the case of a rotated C2

b -graph. However,
in this case the proof of the norm resolvent convergence follows immediately from
the comments above and Section 5.1. Before we continue, let us mention that this
chapter is based on [15].

5.1 Analysis of I +Bε(z)V q for rotated C2
b -graphs

In this section we show that if Σ is a rotated C2
b -graph and if supxΣ∈Σ d(xΣ) < π2

4
,

d = η2 − τ 2, then (i) of Theorem 4.15 is fulfilled, i.e. (I + Bε(z)V q)−1 is uniformly
bounded in B0(Σ). To prove this result a very careful and deep analysis of I+Bε(z)V q
is necessary. We do this by meticulously studying I + Bε(z)V q in the case where Σ
is a hyperplane and η and τ are constant in Section 5.1.1. Then, we use a parameter
dependent partition of unity in Section 5.1.2 to transfer the results to the case where
Σ is a rotated C2

b -graph and η, τ ∈ C1
b (Σ;R).

Recall the bounded operators B̃ε(z) : B0(Σ)→ B0(Σ) and Bε(z) : B1/2(Σ)→ B1/2(Σ)

from (4.27) and (4.29), respectively. By (B.1) the difference of B̃ε(z) and Bε(z) can
be extended to a bounded operator mapping from B0(Σ) to B1/2(Σ). In particular,
this extension acts also as a bounded operator in B0(Σ). Thus,

Bε(z) = B̃ε(z) + (Bε(z)− B̃ε(z))

can also be extended to a bounded operator in B0(Σ). We denote this extension also
by Bε(z) and according to (4.28), (B.3), (B.15) and (B.16) it has the representation

Bε(z)f(t)(xΣ) =

∫ 1

−1

∫
Σ

Gz(xΣ + ε(t− s)ν(xΣ)− yΣ)f(s)(yΣ) dσ(yΣ) ds (5.7)

for f ∈ B0(Σ), a.e. t ∈ (−1, 1) and σ-a.e. xΣ ∈ Σ. According to Lemma 4.7, (4.27)
and (B.1) we have

‖Bε(z)−Bε(z)‖0→0 ≤ ‖Bε(z)− B̃ε(z)‖0→0 + ‖B̃ε(z)−Bε(z)‖0→0

≤ ‖Bε(z)− B̃ε(z)‖0→1/2 + ‖Bε(z)M−1
ε (I −Mε)‖0→0

≤ Cε1/2(1 + |log(ε)|)1/2 ∀ε ∈ (0, εABC)

(5.8)



5.1 Analysis of I +Bε(z)V q for rotated C2
b -graphs 79

with εABC defined by (4.19). This leads us to studying Bε(z) instead of Bε(z).
Next, we transfer this operator, which acts in B0(Σ), to B0(Rθ−1). To do so, let
ζ ∈ C2

b (Rθ;R), κ ∈ SO(θ) and

Σ = Σζ,κ := {κ(x′, ζ(x′)) : x′ ∈ Rθ−1},

where we used the convention from Section 2.1 (xvi) that (x′, ζ(x′)) is an abbreviation
for (x′T , ζ(x′))T . Then, we introduce the isomorphism

ιζ,κ : L2(Σζ,κ;CN)→ L2(Rθ−1;CN), (ιζ,κf)(x′) := f
(
κ(x′, ζ(x′))

)
. (5.9)

Through transforming integrals on Σζ,κ to integrals on Rθ−1 we get the following
norms for ιζ,κ and its inverse:

‖ιζ,κ‖L2(Σζ,κ;CN )→L2(Rθ−1;CN ) = sup
x′∈Rθ−1

(1 + |∇ζ(x′)|2)−1/4,∥∥ι−1
ζ,κ

∥∥
L2(Rθ−1;CN )→L2(Σζ,κ;CN )

= sup
x′∈Rθ−1

(1 + |∇ζ(x′)|2)1/4.
(5.10)

Note that the definition of Hr(Σζ,κ;CN), r ∈ [0, 2], see (2.2), implies that ιζ,κ also
acts as an isomorphic operator from Hr(Σζ,κ;CN) to Hr(Rθ−1;CN) for r ∈ [0, 2].
Recall that in this case ιζ,κ can also be viewed as a bounded operator from Br(Σζ,κ)
to Br(Rθ−1) which has the same norm as the operator acting from Hr(Σζ,κ;CN) to
Hr(Rθ−1;CN); cf. (2.9).

In the upcoming lines we often use Σζ,κ in the upper index of various already intro-
duced objects which depended on Σ. In this way we emphasize that the object with
the upper index depends on ζ and κ.

We introduce for ε ∈ (0, ε
Σζ,κ
ABC) the operators

Dζ,κ
ε (z) := ιζ,κB

Σζ,κ
ε (z)ι−1

ζ,κ : B0(Rθ−1)→ B0(Rθ−1),

Dζ,κ
0 (z) := ιζ,κB

Σζ,κ
0 (z)ι−1

ζ,κ : B0(Rθ−1)→ B0(Rθ−1).
(5.11)

The results from Proposition 4.10 and (5.8) imply that Dζ,κ
ε (z) is uniformly bounded

with respect to ε ∈ (0, ε
Σζ,κ
ABC) and for r ∈ (0, 1/2) the inequality

‖Dζ,κ
0 (z)−Dζ,κ

ε (z)‖1/2→0 =
∥∥ιζ,κ(BΣζ,κ

0 (z)−BΣζ,κ
ε (z))ι−1

ζ,κ

∥∥
1/2→0

≤ Cε1/2−r (5.12)

holds for all ε ∈ (0, ε
Σζ,κ
ABC). In particular, Dζ,κ

ε (z)f converges as ε→ 0 to Dζ,κ
0 (z)f in

B0(Rθ−1) for f ∈ B1/2(Rθ−1). Furthermore, B1/2(Rθ−1) is by Proposition 2.21 (iii) a
dense subset of B0(Rθ−1). Combining these considerations with the uniform bound-
edness of Dζ,κ

ε (z) in B0(Rθ−1) shows that for all f ∈ B0(Rθ−1)

Dζ,κ
ε (z)f

ε→0−→ Dζ,κ
0 (z)f in B0(Rθ−1). (5.13)
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Using (5.7) and (5.9), and setting

κζ,κ = κ(·, ζ(·)) and νζ,κ = νΣζ,κ ◦ κζ,κ =
κ(−∇ζ, 1)√

1 + |∇ζ|2
(5.14)

yields for f ∈ B0(Rθ−1) and a.e. (t, x′) ∈ (−1, 1)× Rθ−1

Dζ,κ
ε (z)f(t)(x′) =

∫ 1

−1

∫
Rθ−1

Gz

(
κζ,κ(x′)− κζ,κ(y′) + ε(t− s)νζ,κ(x′)

)
·
√

1 + |∇ζ(y′)|2f(s)(y′) dy′ ds.

(5.15)

Another useful representation is given by

Dζ,κ
ε (z)f(t) =

∫ 1

−1

dζ,κε(t−s)(z)f(s) ds, f ∈ B0(Rθ−1), t ∈ (−1, 1), (5.16)

with the operator

dζ,κε̃ (z) : L2(Σ;CN)→ L2(Σ;CN),

dζ,κε̃ (z)g(x′) =

∫
Rθ−1

Gz

(
κζ,κ(x′)− κζ,κ(y′) + ε̃νζ,κ(x

′)
)

·
√

1 + |∇ζ(y′)|2g(y′) dy′,

(5.17)

for ε̃ ∈ (−2ε
Σζ,κ
ABC , 2ε

Σζ,κ
ABC)\{0}. For the interaction strengths ηΣζ,κ , τΣζ,κ ∈ C1

b (Σζ,κ;R)
we also define the matrix-valued function

Qζ,κ
η,τ := V Σζ,κ ◦ κζ,κ = ηΣζ,κ ◦ κζ,κIN + τΣζ,κ ◦ κζ,κβ. (5.18)

There holds Qζ,κ
η,τ = ιζ,κV

Σζ,κι−1
ζ,κ in the sense of operators in L2(Rθ−1;CN).

5.1.1 Hyperplanes and constant interaction strengths

In this section we assume that Σ = Σy0,κ, for a y0 ∈ R and a κ ∈ SO(θ), i.e. Σ is
an affine (θ− 1)-dimensional hyperplane in Rθ. We also assume that the interaction
strengths are constant and given by η, τ ∈ R, i.e. ηΣy0,κ ≡ η ∈ R and τΣy0,κ ≡ τ ∈ R.
This implies that Qy0,κ

η,τ is equal to the constant matrix

Qη,τ := ηIN + τβ (5.19)

in this case. The main goal of this section is to show that for every compact set
S ⊂ R2 satisfying

max
(η,τ)∈S

η2 − τ 2 <
π2

4
,
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there exists an εpl,2 = εpl,2(S) such that
∥∥(I + Dy0,κ

ε (z)Qη,τ )
−1
∥∥

0→0
is uniformly

bounded with respect to (ε, y0, (η, τ), κ) ∈ (0, εpl,2) × R × S × SO(θ); cf. Corol-
lary 5.9. This result plays a major role when we prove the uniform boundedness
of the operators (I + Bε(z)V q)−1 in the case that Σ is a rotated C2

b -graph in Sec-
tion 5.1.2.

We proceed in this section as follows: First, we use the Fourier transform to turn
Dy0,κ
ε (z) into a decomposable operator with frequency dependent fiber operators; see

Lemma 5.1–Definition 5.3. Then, up to Lemma 5.7, we find and analyse suitable
approximations for the fiber operators for high and low frequencies. Finally, we use
these results to prove the main statements (Proposition 5.8 and Corollary 5.9) of this
section.

Before we start, let us fix some notations. In the current setting the normal vector νζ,κ
is constant and given by κeθ, where eθ is the θ-th Euclidean unit vector. Moreover,
the map ιΣy0,κ , see Definition 2.7, is a bijective isomorphism and the Weingarten map
WΣy0,κ is zero in this case. Hence, by revisiting Proposition 2.12 we can set εΣy0,κ

tub to
∞. Thus, (4.19) and the constancy of the unit-vector (and its constant extension to
Rθ) lets us also set εΣy0,κ

ABC to infinity. According to (5.14) and (5.15) Dy0,κ
ε (z) has for

ε ∈ (0,∞) and f ∈ B0(Rθ−1) the representation

Dy0,κ
ε (z)f(t)(x′) =

∫ 1

−1

∫
Rθ−1

Gz

(
κ(x′ − y′, ε(t− s))

)
f(s)(y′) dy′ ds (5.20)

for a.e. (t, x′) ∈ (−1, 1)×Rθ−1, which shows that Dy0,κ
ε (z) is independent of y0 ∈ R.

Furthermore, (5.13) implies that also Dy0,κ
0 (z) is independent of y0. Thus, w.l.o.g.

we can set y0 = 0. We define the matrices

α̃j := α · κej, j ∈ {1, . . . , θ}, and α̃ · ξ :=
θ∑
j=1

α̃jξj, ξ ∈ Rθ, (5.21)

as well as

α̃′ · ξ′ =
θ−1∑
j=1

α̃jξ
′
j, ξ′ ∈ Rθ−1, (5.22)

for convenience. Similarly to the α-matrices from Definition 3.1, the α̃-matrices are
self-adjoint, unitary and fulfil the relations

α̃jα̃l + α̃lα̃j = 2δjl and α̃jβ + βα̃j = 0 ∀j, l ∈ {1, . . . , θ}. (5.23)

Using these rules one easily concludes

(α̃ · ξ)2 = |ξ|2IN and (α̃′ · ξ′)2 = |ξ′|2IN ∀ξ = (ξ′, ξθ) ∈ Rθ. (5.24)

We start by calculating the Fourier transform of the function Gz(κ(·, ε̃)) for fixed
ε̃ 6= 0; cf. [60, eqs. (44)–(45)] for similar considerations.
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Lemma 5.1. Let z ∈ ρ(H), Gz be the integral kernel of (H − z)−1 given by (3.3)–
(3.4), ε̃ 6= 0 and F be the Fourier transform in Rθ−1 from Section 2.1 (xvii). Then,

FGz(κ(·, ε̃)) =

(
α̃′ · (·) +mβ + zIN√

z2 −m2 − |·|2
+ α̃θsign(ε̃)

)
ie|ε̃|i
√
z2−m2−|·|2

2
√

(2π)θ−1
.

Proof. Let F , F1, F2 and F1,2 be as defined in Section 2.1 (xvii). We start by
considering F1Gz(κ(·)). Since Gz(κ(·)) ∈ L1(Rθ;CN×N) ⊂ S ′(Rθ;CN×N), see Propo-
sition 3.4, the expression F1Gz(κ(·)) is well-defined in S ′(Rθ;CN×N). Moreover,
F1Gz(κ(·)) = F−1

2 F1,2Gz(κ(·)). Thus, we calculate F1,2Gz(κ(·)) next. The function
Gz satisfies the equation

(−i(α · ∇) +mβ − zIN)Gz = δIN ,

with δ denoting the δ-distribution supported in {0}. Hence, the standard rules for
the Fourier transform, see [63, Chapter IX], show(

α · (·) +mβ − zIN
)
F1,2Gz =

1√
(2π)θ

IN in S ′(Rθ;CN×N).

Furthermore, Gz ∈ L1(Rθ;CN×N) implies F1,2Gz ∈ C0(Rθ;CN×N); see [63, Theo-
rem IX.7]. Thus, using the properties of αj, j ∈ {1, . . . , θ}, and β yields

F1,2Gz(ξ) =
1√

(2π)θ
(α · ξ +mβ − zIN)−1 =

α · ξ +mβ + zIN

(|ξ|2 +m2 − z2)
√

(2π)θ
∀ξ ∈ Rθ.

Consequently,

(F1,2Gz)(κξ) =
α · (κξ) +mβ + zIN

(|κξ|2 +m2 − z2)
√

(2π)θ
∀ξ ∈ Rθ.

Additionally, κ ∈ SO(θ) gives us

F1,2Gz(κ(·))(ξ) = (F1,2Gz)(κξ) =
α̃ · ξ +mβ + zIN

(|ξ|2 +m2 − z2)
√

(2π)θ
∀ξ ∈ Rθ. (5.25)

Next, we determine F−1
2 F1,2Gz. We claim that for a.e. (ξ′, xθ) ∈ Rθ the equation

F−1
2 F1,2Gz(κ(·))(ξ′, xθ)

=

(
α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(xθ)

)
ie|xθ|i

√
z2−m2−|ξ′|2

2
√

(2π)θ−1

(5.26)

holds. We verify (5.26) by applying F2 and comparing the result with (5.25). As
the right-hand side of (5.26) decays exponentially for |xθ| → ∞, we can use the
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integral representation of the Fourier transform. Hence, simple integration gives us
for ξ = (ξ′, ξθ) ∈ Rθ

1√
2π

∫
R

(
α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(xθ)

)

· ie
i(−xθξθ+|xθ|

√
z2−m2−|ξ′|2)

2
√

(2π)θ−1
dxθ =

α̃ · ξ +mβ + zIN

(|ξ|2 +m2 − z2)
√

(2π)θ
,

which verifies (5.26). Therefore, F1Gz(κ(·)) = F−1
2 F1,2Gz(κ(·)) can be represented

by the function

Rθ 3 (ξ′, xθ) 7→
(
α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(xθ)

)
ie|xθ|i

√
z2−m2−|ξ′|2

2
√

(2π)θ−1
.

Moreover, since Gz(κ(·, ε̃)) ∈ L1(Rθ−1;CN×N) for ε̃ 6= 0, which follows from Proposi-
tion 3.4, this shows that for ε̃ 6= 0 and ξ′ ∈ Rθ−1 the equation

FGz(κ(·, ε̃))(ξ′) =
1√

(2π)θ−1

∫
Rθ−1

Gz(κ(x′, ε̃))e−i〈x
′,ξ′〉 dx′

= F1Gz(κ(·))(ξ′, ε̃)

=

(
α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(ε̃)

)
ie|ε̃|i
√
z2−m2−|ξ′|2

2
√

(2π)θ−1

holds.

Proposition 5.2. Let z ∈ ρ(H), ε > 0 and F be the Fourier transform in Rθ−1 from
Section 2.1 (xvii). Then, for f ∈ B0(Rθ−1)

FD0,κ
ε (z)F−1f(t)(ξ′) =

∫ 1

−1

(
α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(t− s)
)

· ie
|ε(t−s)|i

√
z2−m2−|ξ′|2

2
f(s)(ξ′) ds

(5.27)

and

FD0,κ
0 (z)F−1f(t)(ξ′) =

∫ 1

−1

(
α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(t− s)
)

· if(s)(ξ′)

2
ds

(5.28)

for a.e (t, ξ′) ∈ (−1, 1)× Rθ−1.
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Proof. We start with the case ε > 0. Using (5.20) shows

D0,κ
ε (z)f(t) =

∫ 1

−1

Gz(κ(·, ε(t− s))) ∗ f(s) ds

for a.e. t ∈ (−1, 1) and all f ∈ B0(Rθ−1). Thus, Lemma 5.1 and [63, Theorem IX.4]
prove the statement for ε > 0. It remains to consider the operator D0,κ

0 (z). We start
by defining

D̃0,κ
0 (z) : B0(Rθ−1)→ B0(Rθ−1),

D̃0,κ
0 (z)f(t)(ξ′) :=

∫ 1

−1

(
α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(t− s)
)
if(s)(ξ′)

2
ds.

Next, let f ∈ B0(Rθ−1). From (5.27) and the dominated convergence theorem, see
Proposition 2.16, one obtains that FD0,κ

ε (z)F−1f converges for ε → 0 to D̃0,κ
0 (z)f

in B0(Rθ−1). Thus, the boundedness of F and F−1 in L2(Rθ−1;CN) (and therefore
also in B0(Rθ−1), cf. (2.9)), implies that D0,κ

ε (z)f converges to F−1D̃0,κ
0 (z)Ff in

B0(Rθ−1). Moreover, by (5.13) D0,κ
ε (z)f converges to D0,κ

0 (z)f in B0(Rθ−1). Hence,
D0,κ

0 (z)f = F−1D̃0,κ
0 (z)Ff which proves (5.28).

The structure of FD0,κ
ε (z)F−1 and FD0,κ

0 (z)F−1 inspires us to change our viewpoint.
Namely, instead of viewing these operators in B0(Rθ−1) we consider them as operators
in the isometrically isomorphic space L2(Rθ−1;L2((−1, 1);CN)). In the context of
direct integrals the notation

∫ ⊕
Rθ−1 L

2((−1, 1);CN)) dξ′ for this space is also common.
Considered as operators acting in this space FD0,κ

ε (z)F−1 and FD0,κ
0 (z)F−1 are

decomposable operators in L2(Rθ−1;L2((−1, 1);CN)) with the following fibers.

Definition 5.3. Let ε > 0, ξ′ ∈ Rθ−1 and z ∈ ρ(H). We define

Dε,ξ′(z) : L2((−1, 1);CN)→ L2((−1, 1);CN),

Dε,ξ′(z)f(t) :=

∫ 1

−1

(
α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(t− s)
)

· ie
|ε(t−s)|i

√
z2−m2−|ξ′|2

2
f(s) ds,

and
D0,ξ′(z) : L2((−1, 1);CN)→ L2((−1, 1);CN),

D0,ξ′(z)f(t) :=

∫ 1

−1

(
α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(t− s)
)
if(s)

2
ds.

Remark 5.4. These operators still depend on the rotation matrix κ ∈ SO(θ) since
the α̃’s depend on κ. As we use these operators only as auxiliary operators in this
section, we omit κ.
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Next, we explain the ideas mentioned above Definition 5.3 in a more rigorous way.
Using

B0(Rθ−1) = L2((−1, 1);L2(Rθ−1;CN))

' L2((−1, 1)× Rθ−1;CN) ' L2(Rθ−1;L2((−1, 1);CN)),

see Proposition 2.18 (iii), allows us to define the isometric isomorphism

i : B0(Rθ−1)→ L2(Rθ−1;L2((−1, 1);CN)),

if(ξ′)(t) := Ff(t)(ξ′) for a.e. (ξ′, t) ∈ Rθ−1 × (−1, 1).

Thus, by Proposition 5.2 and Definition 5.3 we obtain for ε ≥ 0

iD0,κ
ε (z)i−1 : L2(Rθ−1;L2((−1, 1);CN))→ L2(Rθ−1;L2((−1, 1);CN)),

iD0,κ
ε (z)i−1f(ξ′) = Dε,ξ′(z)f(ξ′),

(5.29)

i.e. iD0,κ
ε (z)i−1 is a decomposable operator in the sense of (2.12) which is induced by

the operator-valued function ζ ′ 7→ Dε,ξ′(z). Hence, Proposition 2.19 lets us transfer
results regarding Dε,ξ′(z) to D0,κ

ε (z) and vice versa.

Next, we study the operator Dε,ξ′(z) in detail. For this purpose, we introduce the
auxiliary operator

Hρ,w′ : L2((−1, 1);CN)→ L2((−1, 1);CN),

(Hρ,w′f)(t) :=

∫ 1

−1

(
α̃′ · w′ + iα̃θsign(t− s))e

−ρ|t−s|

2
f(s) ds,

(5.30)

for ρ ∈ [0,∞) and w′ ∈ Rθ−1 with |w′| = 1. It is easy to check that Hρ,w′ is a
self-adjoint Hilbert-Schmidt operator.

Lemma 5.5. Let ε > 0, ξ′ ∈ Rθ−1 \{0} and z ∈ ρ(H). Then, there exists a constant
Cpl,1 > 0 which only depends on m and z such that

‖Dε,ξ′(z)−D0,ξ′(z)‖L2((−1,1);CN )→L2((−1,1);CN ) ≤ Cpl,1ε(1 + |ξ′|),

‖Dε,ξ′(z)− H|ξ′|ε,ξ′/|ξ′|‖L2((−1,1);CN )→L2((−1,1);CN )
≤ Cpl,1

1 + |ξ′|
.

Proof. In this proof C > 0 denotes a constant which may change in-between lines,
but only depends onm and z. We start by estimating the kernel of Dε,ξ′(z)−D0,ξ′(z).
We can bound this kernel by

C
∣∣∣1− eε|t−s|i√z2−m2−|ξ′|2

∣∣∣ ≤ Cε|t− s|
√
|z2 −m2 − |ξ′|2|

≤ Cε(1 + |ξ′|).
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Hence, there exists a constant Cpl,1 > 0 such that

‖Dε,ξ′(z)−D0,ξ′(z)‖L2((−1,1);CN )→L2((−1,1);CN ) ≤ Cpl,1ε(1 + |ξ′|).

Next, we estimate the kernel of Dε,ξ′(z)− H|ξ′|ε,ξ′/|ξ′| by

1

2

∣∣∣∣(e−ε|t−s||ξ′| − eε|t−s|i√z2−m2−|ξ′|2
)(
α̃′ · ξ

′

|ξ′|
+ isign(t− s)α̃θ)

)∣∣∣∣
+

1

2

∣∣∣∣∣eε|t−s|i√z2−m2−|ξ′|2
(
α̃′ · ξ

′

|ξ′|

)(
1− i|ξ′|√

z2 −m2 − |ξ′|2

)∣∣∣∣∣
+

1

2

∣∣∣∣eε|t−s|i√z2−m2−|ξ′|2 mβ + zIN√
z2 −m2 − |ξ′|2

∣∣∣∣.
(5.31)

The first term in (5.31) can be estimated for ε|t− s| ≤ 1 by

C
∣∣∣e−ε|t−s||ξ′| − eε|t−s|i√z2−m2−|ξ′|2

∣∣∣ ≤ Cε|t− s|
∣∣|ξ′|+ i

√
z2 −m2 − |ξ′|2

∣∣.
≤ C

|z2 −m2|∣∣|ξ′| − i√z2 −m2 − |ξ′|2
∣∣

≤ C

1 + |ξ′|
,

(5.32)

where we used z ∈ ρ(H) = C \
(
(−∞,−|m|] ∪ [|m|,∞)

)
as well as Im

√
w > 0 for

w ∈ C \ [0,∞). For ε|t− s| > 1, we get

C
∣∣∣e−ε|t−s||ξ′| − eε|t−s|i√z2−m2−|ξ′|2

∣∣∣ ≤ C
(
e−|ξ

′| + e−Im
√
z2−m2−|ξ′|2) ≤ C

1 + |ξ′|
. (5.33)

Similarly as we estimated the first term in the case ε|t− s| ≤ 1, the second term in
(5.31) can be bounded by

C

∣∣∣∣1− i|ξ′|√
z2 −m2 − |ξ′|2

∣∣∣∣ = C
|z2 −m2|∣∣∣√z2 −m2 − |ξ′|2 + i|ξ′|

∣∣∣∣∣∣√z2 −m2 − |ξ′|2
∣∣∣

≤ C

(1 + |ξ′|)2
≤ C

1 + |ξ′|
.

One also sees that the third term in (5.31) is smaller than C
1+|ξ′| for a sufficiently large

C. Summing up, we have that the kernel of Dε,ξ′(z)−H|ξ′|ε,ξ′/|ξ′| can be bounded by
C

1+|ξ′| and therefore if Cpl,1 is chosen sufficiently large, then

‖Dε,ξ′(z)− H|ξ′|ε,ξ′/|ξ′|‖L2((−1,1);CN )→L2((−1,1);CN )
≤ Cpl,1

1 + |ξ′|
.
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Lemma 5.6. Let ρ ≥ 0, w′ ∈ Rθ−1 with |w′| = 1 and q be as in (5.1). Then,
σ(
√
qHρ,w′

√
q) ⊂ [− 2

π
, 2
π
].

Proof. To shorten notation, we set α̃± := α̃′ · w′ ± iα̃θ. Then,

Hρ,w′f(t) =
1

2

∫ 1

t

e−ρ|t−s|α̃−f(s) ds+
1

2

∫ t

−1

e−ρ|t−s|α̃+f(s) ds

for f ∈ L2((−1, 1);CN). Using the rules for the α̃ matrices from (5.23) yields the
orthogonality relation ran α̃+ ⊥ ran α̃−. Hence, as q ≥ 0 a.e. on (−1, 1) by (5.1), we
have for f ∈ L2((−1, 1);CN)∥∥√qHρ,w′

√
qf
∥∥2

L2((−1,1);CN )

=
1

4

∫ 1

−1

q(t)
∣∣∣∫ 1

t

e−ρ|t−s|α̃−
√
q(s)f(s) ds

∣∣∣2 dt
+

1

4

∫ 1

−1

q(t)
∣∣∣∫ t

−1

e−ρ|t−s|α̃+

√
q(s)f(s) ds

∣∣∣2 dt.
(5.34)

We start by estimating the first term on the right-hand side. We define the function
Q(t) = −1 +

∫ t
−1
q(s) ds, t ∈ [−1, 1]. Then, Q′ = q, Q(−1) = −1 and Q(1) = 0 since∫ 1

−1
q(s) ds = 1. Applying the Cauchy-Schwarz inequality and Fubini’s theorem gives

us

1

4

∫ 1

−1

q(t)
∣∣∣∫ 1

t

e−ρ|t−s|α̃−
√
q(s)f(s) ds

∣∣∣2 dt
=

1

4

∫ 1

−1

q(t)
∣∣∣∫ 1

t

√
cos
(
π
2
Q(s)

)√
cos
(
π
2
Q(s)

)e−ρ|t−s|α̃−√q(s)f(s) ds
∣∣∣2 dt

≤ 1

4

∫ 1

−1

q(t)

(∫ 1

t

cos
(
π
2
Q(s)

)
q(s) ds

)(∫ 1

t

1

cos
(
π
2
Q(s)

) |α̃−f(s)|2 ds
)
dt

=
1

2π

∫ 1

−1

− sin
(
π
2
Q(t)

)
q(t)

(∫ 1

t

1

cos
(
π
2
Q(s)

) |α̃−f(s)|2 ds
)
dt

=
1

2π

∫ 1

−1

(∫ s

−1

− sin
(
π
2
Q(t)

)
q(t) dt

)
1

cos
(
π
2
Q(s)

) |α̃−f(s)|2 ds

=
1

π2

∫ 1

−1

|α̃−f(s)|2 ds.

The same trick with Q + 1 instead of Q yields that the second term of the right-
hand side of equation (5.34) can be estimated by 1

π2

∫ 1

−1
|α̃+f(s)|2 ds. These estimates,
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ran α̃+ ⊥ ran α̃− and (5.24) imply

∥∥√qHρ,w′
√
qf
∥∥2

L2((−1,1);CN )
≤ 1

π2

∫ 1

−1

|α̃−f(s)|2 + |α̃+f(s)|2 ds

=
1

π2

∫ 1

−1

|(α̃− + α̃+)f(s)|2 ds

=
1

π2

∫ 1

−1

|2(α̃′ · w′)f(s)|2 ds

=
4

π2
‖f‖2

L2((−1,1);CN ).

Since Hρ,w′ is self-adjoint in L2((−1, 1);CN), we obtain σ(
√
qHρ,w′

√
q) ⊂ [− 2

π
, 2
π
].

Having studied the spectrum of √qHρ,w′
√
q, we employ this knowledge to study the

bounded invertibility of I + Hρ,w′Qη,τq. Recall that Qη,τ = ηIN + τβ for η, τ ∈ R.

Lemma 5.7. Let ρ ≥ 0, w′ ∈ Rθ−1 with |w′| = 1, η, τ ∈ R, Qη,τ = ηIN + τβ,
d = η2 − τ 2,

c(d) :=

{√
d 2
π
, d ≥ 0,

0, d < 0,

and q be as in (5.1). If d < π2

4
, then c(d) < 1, I+Hρ,w′Qη,τq is continuously invertible

in L2((−1, 1);CN) and the norm of the inverse is bounded by the constant

Cpl,2 = Cpl,2(η, τ) := 4‖q‖L∞((−1,1))(|η|+ |τ |)
1 + (|η|+ |τ |) 2

π

(1− c(d))π
+ 1. (5.35)

Proof. The identities Hρ,w′Qη,τ = Qη,−τHρ,w′ and Qη,−τQη,τ = dIN , which follow from
(5.23), give us

I − d(
√
qHρ,w′

√
q)2 = (I +

√
qHρ,w′Qη,τ

√
q)(I −√qHρ,w′Qη,τ

√
q).

If d < π2

4
, then Lemma 5.6 implies 1 ∈ ρ(d(

√
qHρ,w′

√
q)2) and therefore the operator

I +
√
qHρ,w′Qη,τ

√
q is also continuously invertible in L2((−1, 1);CN) and∥∥(I +

√
qHρ,w′Qη,τ

√
q)−1

∥∥
L2((−1,1);CN )→L2((−1,1);CN )

=
∥∥(I − d(

√
qHρ,w′

√
q)2)−1(I −√qHρ,w′Qη,τ

√
q)
∥∥
L2((−1,1);CN )→L2((−1,1);CN )

≤
1 + (|η|+ |τ |) 2

π

1− c(d)
.
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Moreover, applying Proposition 2.29 shows that I + Hρ,w′Qη,τq is also continuously
invertible in L2((−1, 1);CN) and∥∥(I + Hρ,w′Qη,τq)

−1
∥∥
L2((−1,1);CN )→L2((−1,1);CN )

=
∥∥Hρ,w′Qη,τ

√
q(I +

√
qHρ,w′Qη,τ

√
q)−1√q − I

∥∥
L2((−1,1);CN )→L2((−1,1);CN )

≤ ‖q‖L∞((−1,1))(|η|+ |τ |)‖Hρ,w′‖L2((−1,1);CN )→L2((−1,1);CN )

1 + (|η|+ |τ |) 2
π

1− c(d)
+ 1

≤ 4‖q‖L∞((−1,1))(|η|+ |τ |)
1 + (|η|+ |τ |) 2

π

(1− c(d))π
+ 1,

where we used Lemma 5.6 (for q = 1
2
) to estimate ‖Hρ,w′‖L2((−1,1);CN )→L2((−1,1);CN ) by

4
π
.

In the last part of Section 5.1.1 we use our findings to prove a norm estimate for the
operator (I +D0,κ

ε (z)Qη,τq)
−1.

Proposition 5.8. Let κ ∈ SO(θ), η, τ ∈ R fulfil d = η2− τ 2 < π2

4
, Qη,τ = ηIN + τβ,

q be as in (5.1) and z ∈ C \ R. Moreover, let

Cpl,3 = Cpl,3(η, τ, κ) := 2 max{Cpl,2,
∥∥(I +D0,κ

0 (z)Qη,τq)
−1
∥∥

0→0
} (5.36)

with Cpl,2 = Cpl,2(η, τ) from Lemma 5.7 and

εpl,1 = εpl,1(η, τ, κ) := (Cpl,3Cpl,1(|η|+ |τ |)‖q‖L∞((−1,1)))
−2 (5.37)

with Cpl,1 from Lemma 5.5. Then,

sup
ε∈(0,εpl,1)

∥∥(I +D0,κ
ε (z)Qη,τq)

−1
∥∥

0→0
≤ Cpl,3 <∞.

Proof. We start by arguing that Cpl,3 < ∞. The assumption d < π2

4
guarantees

Cpl,2 < ∞. Moreover, applying Proposition 3.15 (iii) and Proposition 4.13 (for
V = Qη,τ = ηI2 + τβ = const. and r = 0) shows that I + B

Σy0,κ
0 (z)Qη,τq is con-

tinuously invertible in B0(Σy0,κ). Let us shortly explain why Proposition 4.13 is
indeed applicable. We have to show cos

( (α·ν)Qη,τ
2

)−1 ∈ W 1
∞(Σy0,κ;CN×N) and that

I + CΣy0,κ
z Q̃η,τ is continuously invertible in L2(Σy0,κ;CN), where

Q̃η,τ = Qη,τ sinc
( (α·ν)Qη,τ

2

)
cos
( (α·ν)Qη,τ

2

)−1
.

In the same way as in (5.4)–(5.6) we get cos
( (α·ν)Qη,τ

2

)
= cos

(√
d

2

)
= const. and

Q̃η,τ = η̃IN + τ̃β with (η̃, τ̃) = tanc
(√

d
2

)
(η, τ). Hence, d < π2

4
implies cos

(√
d

2

)
6= 0

and therefore cos
( (α·ν)Qη,τ

2

)−1 ∈ W 1
∞(Σy0,κ;CN×N). Furthermore, we have

d̃ = η̃ 2 − τ̃ 2 = 4 tan
(√

d
2

)2
< 4
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and thus Proposition 3.15 (iii) implies that I + CΣy0,κ
z Q̃η,τ is continuously invertible

in L2(Σy0,κ;CN). Hence, the assumptions of Proposition 4.13 are satisfied and its
application is justified. By (5.11) BΣ0,κ

0 (z) is related to D0,κ
0 (z) via an isometric

isomorphism and therefore I + D0,κ
0 (z)Qη,τq is continuously invertible in B0(Rθ−1),

which proves Cpl,3 <∞.

According to Lemma 5.5 we have

‖Dε,ξ′(z)Qη,τq − H|ξ′|ε,ξ′/|ξ′|Qη,τq‖L2((−1,1);CN )→L2((−1,1);CN )

≤ Cpl,1‖q‖L∞((−1,1))

|η|+ |τ |
1 + |ξ′|

=
ε
−1/2
pl,1

Cpl,3(1 + |ξ′|)

for ξ′ ∈ Rθ−1 \ {0} and all ε > 0. Hence, if we set R := ε
−1/2
pl,1 − 1, the choices of Cpl,3,

εpl,1 and R yield∥∥(I+H|ξ′|ε,ξ′/|ξ′|Qη,τq)
−1
∥∥
L2((−1,1);CN )→L2((−1,1);CN )

·
∥∥Dε,ξ′(z)Qη,τq − H|ξ′|ε,ξ′/|ξ′|Qη,τq

∥∥
L2((−1,1);CN )→L2((−1,1);CN )

≤ Cpl,2
ε
−1/2
pl,1

Cpl,3(1 +R)
≤ Cpl,3

2
·

ε
−1/2
pl,1

Cpl,3ε
−1/2
pl,1

=
1

2

for 0 6= |ξ′| ≥ R and ε > 0. In particular, Proposition 2.28 shows that

I + Dε,ξ′(z)Qη,τq = I + H|ξ′|ε,ξ′/|ξ′|Qη,τq + Dε,ξ′(z)Qη,τq − H|ξ′|ε,ξ′/|ξ′|Qη,τq

is continuously invertible in L2((−1, 1);CN) and that the corresponding norm esti-
mate ∥∥(I + Dε,ξ′(z)Qη,τq)

−1
∥∥
L2((−1,1);CN )→L2((−1,1);CN )

≤

∥∥(I + H|ξ′|ε,ξ′/|ξ′|Qη,τq)
−1
∥∥
L2((−1,1);CN )→L2((−1,1);CN )

1− 1
2

≤ 2
Cpl,3

2
= Cpl,3

(5.38)

is valid for 0 6= |ξ′| ≥ R and ε > 0.

Having found an estimate for 0 6= |ξ′| ≥ R, we aim to find a similar estimate for
0 6= |ξ′| < R. Again, according to Lemma 5.5 we have

‖Dε,ξ′(z)Qη,τq −D0,ξ′(z)Qη,τq‖L2((−1,1);CN )→L2((−1,1);CN )

≤ Cpl,1‖q‖L∞((−1,1))(|η|+ |τ |)ε(1 + |ξ′|) = ε
ε
−1/2
pl,1 (1 + |ξ′|)

Cpl,3
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for ξ′ ∈ Rθ−1 \ {0} and ε > 0. Moreover, Proposition 2.19, (5.29) and (5.36) imply

ess supξ′∈Rθ−1

∥∥(I + D0,ξ′(z)Qη,τq)
−1
∥∥
L2((−1,1);CN )→L2((−1,1);CN )

=
∥∥(I +D0,κ

0 (z)Qη,τq)
−1
∥∥

0→0
≤ Cpl,3

2
.

Hence, as 1 + |ξ′| < 1 + R = ε
−1/2
pl,1 , we estimate similarly as in the first part of the

proof for ε ∈ (0, εpl,1)

ess sup|ξ′|<R
∥∥(I + Dε,ξ′(z)Qη,τq)

−1
∥∥
L2((−1,1);CN )→L2((−1,1);CN )

= ess sup|ξ′|<R
∥∥[I + (I + D0,ξ′(z)Qη,τq)

−1
(
Dε,ξ′(z)−D0,ξ′(z)

)
Qη,τq

]−1

· (I + D0,ξ′(z)Qη,τq)
−1
∥∥
L2((−1,1);CN )→L2((−1,1);CN )

<
1

1− Cpl,3
2
· εε

−1/2
pl,1 (1+R)

Cpl,3

· Cpl,3

2
=

1

1− εε−1
pl,1
2

· Cpl,3

2
< Cpl,3.

(5.39)

Combining (5.38) and (5.39), and applying Proposition 2.19 gives us∥∥(I +D0,κ
ε (z)Qη,τq)

−1
∥∥

0→0

= max
{
ess sup|ξ′|≥R

∥∥(I + Dε,ξ′(z)Qη,τq)
−1
∥∥
L2((−1,1);CN )→L2((−1,1);CN )

,

ess sup|ξ′|<R
∥∥(I + Dε,ξ′(z)Qη,τq)

−1
∥∥
L2((−1,1);CN )→L2((−1,1);CN )

}
≤ Cpl,3 ∀ε ∈ (0, εpl,1).

Corollary 5.9. Let z ∈ C \ R, q be as in (5.1), S ⊂ R2 be a compact set and
max(η,τ)∈S η

2 − τ 2 < π2

4
. Then, there exists an εpl,2 = εpl,2(S) > 0 such that

sup
(ε,y0,(η,τ),κ)∈(0,εpl,2)×R×S×SO(θ)

∥∥(I +Dy0,κ
ε (z)Qη,τq)

−1
∥∥

0→0
<∞.

Proof. Since Dy0,κ
ε (z) = D0,κ

ε (z), see the text below (5.20), the assertion follows
directly from Proposition 5.8 if we can show

sup
((η,τ),κ)∈S×SO(θ)

Cpl,3(η, τ, κ) <∞ and inf
((η,τ),κ)∈S×SO(θ)

εpl,1(η, τ, κ) > 0, (5.40)

with Cpl,3 and εpl,1 as in Proposition 5.8. Note also that as S is bounded, the first
inequality in (5.40) and (5.37) imply the second inequality in (5.40). Moreover, the
assumption max(η,τ)∈S η

2 − τ 2 < π2

4
implies max(η,τ)∈S Cpl,2(η, τ) <∞, where Cpl,2 is

defined by (5.35). Hence, it follows from (5.36) that (5.40) is valid if

sup
((η,τ),κ)∈S×SO(θ)

∥∥(I +D0,κ
0 (z)Qη,τq)

−1
∥∥

0→0
<∞. (5.41)

By the representation of D0,κ
0 (z) in Proposition 5.2 and (5.21), D0,κ

0 (z)Qη,τq depends
with respect to the operator norm in B0(Rθ−1) continuously on η, τ and κ. Thus, as
S × SO(θ) is compact, (5.41) is indeed true.
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5.1.2 General rotated C2
b -graphs

After treating the case of affine hyperplanes, we turn to the case where Σ is a rotated
C2
b -graph. To do so, we fix in this section

ζ ∈ C2
b (Rθ−1;R) and κ ∈ SO(Rθ), (5.42)

and we assume
Σ = Σζ,κ = {κ(x′, ζ(x′)) : x′ ∈ Rθ−1}. (5.43)

Before we resume, let us mention that in the current section we use the upper index
notation introduced above (5.11), cf. (5.14) and (5.18), only for objects which do
not correspond to the fixed rotated graph Σ = Σζ,κ; i.e. we write Bε(z), ν, η, etc.
instead of BΣζ,κ

ε (z), νΣζ,κ , ηΣζ,κ , etc., respectively.

Recall from (5.14) that κζ,κ(x′) = κ(x′, ζ(x′)) and νζ,κ(x′) = ν(κζ,κ(x′)) for x′ ∈ Rθ−1.
According to Proposition 2.9 (i) (in the current case we have p = 1, κ1 = κζ,κ,
Σ1 = Σ = Σζ,κ), there exists a Cι,1 > 0 such that for all ε̃ ∈ (−2εABC , 2εABC) and
x′, y′ ∈ Rθ−1

C−1
ι,1

(
|x′ − y′|+ |ε̃|

)
≤ |κζ,κ(x′)− κζ,κ(y′) + ε̃νζ,κ(x

′)| ≤ Cι,1
(
|x′ − y′|+ |ε̃|

)
(5.44)

with εABC > 0 from (4.19). Furthermore, combining the estimates from Proposi-
tion 3.4 for Gz, z ∈ ρ(H), with (5.44) gives us for all x′, y′ ∈ Rθ−1, j ∈ {1, . . . , θ}
and ε̃ ∈ (−2εABC , 2εABC) the inequalities

|Gz(κζ,κ(x′)− κζ,κ(y′) + ε̃νζ,κ(x
′))| ≤ CG,1C

θ−1
ι,1 (|x′ − y′|+ |ε̃|)1−θe

−
CG,2
Cι,1

|x′−y′|
,

|∂jGz(κζ,κ(x′)− κζ,κ(y′) + ε̃νζ,κ(x
′))| ≤ CG,1C

θ
ι,1(|x′ − y′|+ |ε̃|)−θe−

CG,2
Cι,1

|x′−y′|
.
(5.45)

We are going to prove the uniform boundedness of (I + Bε(z)V q)−1 in B0(Σ) with
respect to ε ∈ (0, εconv) for a suitable εconv ∈ (0, εABC ]. According to (5.8), (5.10) and
(5.11) this is equivalent to proving the uniform boundedness of (I +Dζ,κ

ε (z)Qζ,κ
η,τq)

−1

in B0(Rθ−1).

We start by analysing Dζ,κ
ε (z) locally. To proceed, we need to introduce further

notations. For x′0 ∈ Rθ−1 we define

ζx′0(x′) := ζ(x′0) + 〈∇ζ(x′0), x′ − x′0〉, x′ ∈ Rθ−1. (5.46)

Moreover, we define the localization parameter aε := ε1/6 for ε ∈ (0, εABC). Next, we
introduce a family of auxiliary operators. For this, we choose a C∞-function ω with
0 ≤ ω ≤ 1, ω = 1 on Rθ−1\B(0, 1) and ω = 0 onB(0, 1/2). We use this function to cut
out the singular part of the kernel of Dζ,κ

ε (z); cf. (5.15). More precisely, by analogy
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with (5.16) and (5.17), we define for ε ∈ (0, εABC) and ε̃ ∈ (−2εABC , 2εABC) \ {0}
the operators

eaεε̃ (z) : L2(Rθ−1;CN)→ L2(Rθ−1;CN),

eaεε̃ (z)g(x′) :=

∫
Rθ−1

Gz(κζ,κ(x′)− κζ,κ(y′) + ε̃νζ,κ(x
′))ω

(
x′−y′
aε

)
·
√

1 + |∇ζ(y′)|2g(y′) dy′,

(5.47)

and

Eε(z) : B0(Rθ−1)→ B0(Rθ−1), Eε(z)f(t) :=

∫ 1

−1

eaεε(t−s)(z)f(s) ds. (5.48)

First, we prove preliminary results for eaεε̃ (z) and dζ,κε̃ (z). Afterwards, we transfer
these results to the operators Eε(z) and Dζ,κ

ε (z) in Proposition 5.14.

Lemma 5.10. Let z ∈ ρ(H), ε̃ ∈ (−2εABC , 2εABC) \ {0}, ε ∈ (0, εABC) as well as
aε = ε1/6. Then, the operator eaεε̃ (z) acts as a bounded operator from L2(Rθ−1;CN)
to H1(Rθ−1;CN) and

‖eaεε̃ (z)‖
L2(Rθ−1;CN )→H1(Rθ−1;CN )

≤ C
1 + |log(ε)|

aε
,

where C > 0 does not depend on ε̃ and ε. Moreover, for f ∈ L2(Rθ−1;CN) the
mapping (−2εABC , 2εABC) \ {0} 3 ε̃ 7→ eaεε̃ (z)f ∈ H1(Rθ−1;CN) is continuous.

Proof. We aim to prove the assertion by applying Lemma C.1. To do so, it is neces-
sary to find suitable estimates for the kernel of eaεε̃ (z) which is for x′, y′ ∈ Rθ−1 given
by

k(x′, y′) := Gz(κζ,κ(x′)− κζ,κ(y′) + ε̃νζ,κ(x
′))ω

(
x′−y′
aε

)√
1 + |∇ζ(y′)|2.

We notice as Gz ∈ C∞(Rθ \ {0};CN×N), ζ ∈ C2
b (Rθ−1;R) and ω ∈ C∞b (Rθ−1;R), and

as ω cuts out the singularity ofGz, we have k ∈ C1
b (Rθ−1×Rθ−1;CN×N). Furthermore,

using (5.45), 0 ≤ ω ≤ 1, suppω ⊂ Rθ−1 \B(0, 1/2) and ζ ∈ C2
b (Rθ−1;R) immediately

gives us for x′ 6= y′ ∈ Rθ−1

|k(x′, y′)| ≤ CχRθ−1\B(0,1/2)(
x′−y′
aε

)(|x′ − y′|+ |ε̃|)1−θe−c|x
′−y′|

≤ CχRθ−1\B(0,1/2)(
x′−y′
aε

)|x′ − y′|1−θe−c|x′−y′|,

where c =
CG,2
Cι,1

with Cι,1 > 0 from (5.44) and CG,2 from Proposition 3.4. Next, we
estimate the derivatives of k. The l-th derivative, l ∈ {1, . . . , θ − 1}, with respect to
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x′ is given by

d

dx′l
k(x′, y′) =

θ∑
j=1

(
(∂jGz)(κζ,κ(x′)− κζ,κ(y′) + ε̃νζ,κ(x

′))

· d
dx′l

(κζ,κ(x′)[j] + ε̃νζ,κ(x
′)[j])ω(x

′−y′
aε

)
√

1 + |∇ζ(y′)|2
)

+Gz(κζ,κ(x′)− κζ,κ(y′) + ε̃νζ,κ(x
′))

1

aε
(∂lω)(x

′−y′
aε

)
√

1 + |∇ζ(y′)|2

for x′ 6= y′ ∈ Rθ−1, where v[j] denotes the j-th component of a vector v. Applying
(5.45), and the properties of ζ and ω again lets us estimate∣∣∣ d

dx′l
k(x′, y′)

∣∣∣ ≤ CχRθ−1\B(0,1/2)(
x′−y′
aε

)
(

(|x′ − y′|+ |ε̃|)−θe−c|x′−y′|

+
1

aε
(|x′ − y′|+ |ε̃|)1−θe−c|x

′−y′|
)

≤ CχRθ−1\B(0,1/2)(
x′−y′
aε

)
(
|x′ − y′|−θ +

1

aε
|x′ − y′|1−θ

)
e−c|x

′−y′|.

Thus, if we set k̃(z′) := CχRθ−1\B(0,1/2)(
z′

aε
)
(
|z′|−θ+ 1

aε
|z′|1−θ

)
e−c|z

′| for z′ ∈ Rθ−1\{0}
we get

|k(x′, y′)|,
θ−1∑
l=1

∣∣∣ d
dx′l

k(x′, y′)
∣∣∣≤ k̃(x′ − y′) ∀x′ 6= y′ ∈ Rθ−1. (5.49)

Hence, eaεε̃ (z) acts by Lemma C.1 as a bounded operator from L2(Rθ−1;CN) to
H1(Rθ−1;CN) and

‖eaεε̃ (z)‖
L2(Rθ−1;CN )→H1(Rθ−1;CN )

≤ C‖k̃‖L1(Rθ−1).

Now, the norm estimate in the assertion follows from

‖k̃‖L1(Rθ−1) = C

∫
Rθ−1

χRθ−1\B(0,1/2)(
z′

aε
)
(
|z′|−θ +

1

aε
|z′|1−θ

)
e−c|z

′|dz′

≤ C

∫ ∞
aε/2

(
r−θ +

1

aε
r1−θ

)
e−crrθ−2 dr

≤ C
( 1

aε
+

1 + | log(aε)|
aε

)
≤ C

1 + | log(aε)|
aε

≤ C
1 + | log(ε)|

aε
.

Finally, we prove the continuity. For this, let ε̃ ∈ (−2εABC , 2εABC) \ {0} and (ε̃n)n∈N
be a sequence such that ε̃n ∈ (−2εABC , 2εABC) \ {0} for all n ∈ N and ε̃n → ε̃
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as n → ∞. Using the dominated convergence theorem and (5.49) shows that for
f ∈ L2(Rθ−1;CN) eaεε̃n(z)f and ∂le

aε
ε̃n

(z)f , l ∈ {1, . . . , θ − 1}, converge pointwise to
eaεε̃ (z)f and ∂le

aε
ε̃ (z)f , l ∈ {1, . . . , θ − 1}, respectively. Furthermore, the estimate

from (5.49) shows that the functions |eaεε̃n(z)f | and |∂leaεε̃n(z)f |, l ∈ {1, . . . , θ− 1}, are
independently of n ∈ N pointwise bounded by the function |f |∗ k̃ which is by Young’s
inequality square integrable as f ∈ L2(Rθ−1;CN) and k̃ ∈ L1(Rθ−1). Hence, applying
the dominated converge theorem again shows that eaεε̃n(z)f converges to eaεε̃ (z)f in
H1(Rθ−1;CN).

Lemma 5.11. Let x′0 ∈ Rθ−1, ζx′0 be as in (5.46), z ∈ ρ(H), ψ ∈ C1
b (Rθ−1) and

ε̃ ∈ (−2εABC , 2εABC) \ {0}. Then,∥∥[d
ζx′0

,κ

ε̃ (z), ψ]
∥∥
L2(Rθ−1;CN )→H1(Rθ−1;CN )

≤ C‖ψ‖W 1
∞(Rθ−1)(1 + |log|ε̃||),

where C > 0 does not depend on ε̃ and x′0 ∈ Rθ−1. Moreover, for f ∈ L2(Rθ−1;CN)

the mapping (−2εABC , 2εABC) \ {0} 3 ε̃ 7→ [d
ζx′0

,κ

ε̃ (z), ψ]f ∈ H1(Rθ−1;CN) is contin-
uous.

Proof. We prove this result in the same vein as the previous lemma, i.e. we estimate
the kernel of [d

ζx′0
,κ

ε̃ (z), ψ] and its partial derivatives, and apply Lemma C.1. The

kernel of [d
ζx′0

,κ

ε̃ (z), ψ] is given by

k(x′, y′) := Gz(κζx′0 ,κ(x
′)− κζx′0 ,κ(y

′) + ε̃νζx′0 ,κ
(x′))

√
1 + |∇ζx′0(y′)|2(ψ(y′)− ψ(x′))

for x′, y′ ∈ Rθ−1. The representations

κζx′0 ,κ(x
′) = κ(x′, ζ(x′0) + 〈∇ζ(x′0), x′ − x′0〉),

νζx′0 ,κ
(x′) =

κ(−∇ζ(x′0), 1)√
1 + |∇ζ(x′0)|2

= νζ,κ(x
′
0),

∇ζx′0(x′) = ∇ζ(x′0),

(5.50)

for x′ ∈ Rθ−1 show that k can be simplified to

k(x′, y′) := Gz(κ(x′−y′, 〈∇ζ(x′0), x′−y′〉)+ε̃νζ,κ(x′0))
√

1 + |∇ζ(x′0)|2(ψ(y′)−ψ(x′)).

Moreover, with (5.50) and κ ∈ SO(θ) one gets

|κ(x′ − y′, 〈∇ζ(x′0), x′ − y′〉) + ε̃νζ,κ(x
′
0)|2

= |x′ − y′|2 + 〈∇ζ(x′0), x′ − y′〉2 + ε̃2

≤ |x′ − y′|2(1 + ‖∇ζ‖2
L∞(Rθ−1;Rθ−1)) + ε̃2.
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In particular, we can choose a Clin > 0 which does not depend on x′0 and ε̃ such that

(Clin)−1(|x′ − y′|+ |ε̃|) ≤ |κ(x′ − y′, 〈∇ζ(x′0), x′ − y′〉) + ε̃νζ,κ(x
′
0)|

≤ Clin(|x′ − y′|+ |ε̃|).
(5.51)

Then, Proposition 3.4, (5.51), ψ ∈ C1
b (Rθ−1) and ζ ∈ C2

b (Rθ−1;R) yield

|k(x′, y′)| ≤ C(|x′ − y′|+ |ε̃|)1−θe−c
′|x′−y′|‖ψ‖W 1

∞(Rθ−1)|x
′ − y′|

≤ C‖ψ‖W 1
∞(Rθ−1)(|x

′ − y′|+ |ε̃|)2−θe−c
′|x′−y′| ∀x′, y′ ∈ Rθ−1,

where c′ = CG,2
Clin

with CG,2 from Proposition 3.4. The l-th derivative, l ∈ {1, . . . , θ−1},
with respect to x′ ∈ Rθ−1 of k is given by

d

dx′l
k(x′, y′) =

( θ∑
j=1

(∂jGz)(κ(x′ − y′, 〈∇ζ(x′0), x′ − y′〉) + ε̃νζ,κ(x
′
0))

·
(
κ(e′l, ∂lζ(x′0))

)
[j](ψ(y′)− ψ(x′))

−Gz(κ(x′ − y′, 〈∇ζ(x′0), x′ − y′〉) + ε̃νζ,κ(x
′
0))(∂lψ)(x′)

)
·
√

1 + |∇ζ(x′0)|2,

where e′l denotes the l-th Euclidean unit vector in Rθ−1 and
(
κ(e′l, ∂lζ(x′0))

)
[j] de-

notes the j-th entry of the vector κ(e′l, ∂lζ(x′0)). Using Proposition 3.4, (5.51),
ψ ∈ C1

b (Rθ−1) and ζ ∈ C2
b (Rθ−1;R) again gives us

∣∣∣ d
dx′l

k(x′, y′)
∣∣∣ ≤ C‖ψ‖W 1

∞(Rθ−1)

(
(|x′ − y′|+ |ε̃|)−θe−c′|x′−y′||x′ − y′|

+ (|x′ − y′|+ |ε̃|)1−θe−c
′|x′−y′|

)
≤ C‖ψ‖W 1

∞(Rθ−1)(|x
′ − y′|+ |ε̃|)1−θe−c

′|x′−y′|

for all x′, y′ ∈ Rθ−1, where C > 0 can be chosen independently of x′0 and ε̃. Setting

k̃(z′) = C‖ψ‖W 1
∞(Rθ−1)

(
(|z′|+ |ε̃|)2−θ + (|z′|+ |ε̃|)1−θ)e−c′|z′|

for z′ ∈ Rθ−1 leads to

|k(x′, y′)|,
θ−1∑
l=1

∣∣∣ d
dx′l

k(x′, y′)
∣∣∣ ≤ k̃(x′ − y′) ∀x′, y′ ∈ Rθ−1.
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Now, Lemma C.1 shows∥∥[d
ζx′0

,κ

ε̃ (z), ψ]
∥∥
L2(Rθ−1;CN )→H1(Rθ−1;CN )

≤ C

∫
Rθ−1

k̃(z′) dz′

≤ C‖ψ‖W 1
∞(Rθ−1)

∫ ∞
0

(
(r + |ε̃|)2−θ + (r + |ε̃|)1−θ)e−c′rrθ−2 dr

≤ C‖ψ‖W 1
∞(Rθ−1)

∫ ∞
0

(
1 + (r + |ε̃|)−1

)
e−c

′r dr

≤ C‖ψ‖W 1
∞(Rθ−1)(1 + |log|ε̃||).

The assertion regarding the continuity can be proven in a similar way as in the
previous lemma.

Lemma 5.12. Let x′0 ∈ Rθ−1, ζ and κ be as in (5.42), ζx′0 be as in (5.46), z ∈ ρ(H),
aε = ε1/6 and ε̃ ∈ (−2εABC , 2εABC) \ {0}. Then, there exists an εgr,1 = εgr,1(ζ) in the
interval (0, εABC ] such that for all ε ∈ (0, εgr,1) the inequality∥∥χB(x′0,3aε)

(
dζ,κε̃ (z)− d

ζx′0
,κ

ε̃ (z)
)
χB(x′0,3aε)

∥∥
L2(Rθ−1;CN )→L2(Rθ−1;CN )

≤ Caε(1 + |log|ε̃||)

holds, where C > 0 does not depend on ε, ε̃ and x′0.

Proof. We prove this statement by estimating the kernel of the operator

χB(x′0,aε)

(
dζ,κε̃ (z)− d

ζx′0
,κ

ε̃ (z)
)
χB(x′0,aε)

and applying Lemma C.1. The mentioned kernel is given by

k(x′, y′) := χB(x′0,3aε)
(x′)

(
Gz(κζ,κ(x′)− κζ,κ(y′) + ε̃νζ,κ(x

′))
√

1 + |∇ζ(y′)|2

−Gz(κ(x′ − y′, 〈∇ζ(x′0), x′ − y′〉) + ε̃νζ,κ(x
′
0))
√

1 + |∇ζ(x′0)|2
)

· χB(x′0,3aε)
(y′)

for x′ 6= y′ ∈ Rθ−1. If x′ 6∈ B(x′0, 3aε) or y′ 6∈ B(x′0, 3aε), then k(x′, y′) = 0. Thus,
we assume from now on x′, y′ ∈ B(x′0, 3aε). Using Lemma 2.8, Proposition 3.4 and
ζ ∈ C2

b (Rθ−1;R) gives us

|k(x′, y′)| ≤
√
θ sup
υ∈[0,1],j∈{1,...θ}

∣∣∂jGz(wυ)
√

1 + |∇ζ(y′)|2
∣∣|w1 − w0|

+
∣∣Gz(w0)

(√
1 + |∇ζ(y′)|2 −

√
1 + |∇ζ(x′0)|2

)∣∣
≤ C

(
sup
υ∈[0,1]

|wυ|−θ|w1 − w0|+ |w0|1−θ|x′0 − y′|
) (5.52)
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with

wυ = υ
(
κζ,κ(x′)−κζ,κ(y′)+ε̃νζ,κ(x′)

)
+(1−υ)

(
κ(x′−y′, 〈∇ζ(x′0), x′−y′〉)+ε̃νζ,κ(x′0)

)
for υ ∈ [0, 1]. We remark that we were able to apply Lemma 2.8 since wυ 6= 0 for all
υ ∈ [0, 1], which turns out be true in the course of the proof; cf. (5.54). Next, let us
estimate

|w1 − w0| =|κζ,κ(x′)− κζ,κ(y′) + ε̃νζ,κ(x
′)− κ(x′ − y′, 〈∇ζ(x′0), x′ − y′〉)− ε̃νζ,κ(x′0)|

= |κ(x′ − y′, ζ(x′)− ζ(y′))

− κ(x′ − y′, 〈∇ζ(x′0), x′ − y′〉) + ε̃(νζ,κ(x
′)− νζ,κ(x′0))|

≤ |κ(0, ζ(x′)− ζ(y′)− 〈∇ζ(x′0), x′ − y′〉)|+ |ε̃(νζ,κ(x′)− νζ,κ(x′0))|.
As ζ ∈ C2

b (Rθ−1;R) and κ ∈ SO(θ), there exists a Cζ > 0 such that

|νζ,κ(x′)− νζ,κ(x′0)| =
∣∣∣∣ κ(−∇ζ(x′), 1)√

1 + |∇ζ(x′)|2
− κ(−∇ζ(x′0), 1)√

1 + |∇ζ(x′0)|2

∣∣∣∣ ≤ Cζ |x′ − x′0| ≤ 3Cζaε

and

|κ(0, ζ(x′)− ζ(y′)− 〈∇ζ(x′0), x′ − y′〉)|
= |ζ(x′)− ζ(y′)− 〈∇ζ(x′0), x′ − y′〉|

=
∣∣∣∫ 1

0

〈∇ζ(y′ + t(x′ − y′))−∇ζ(x′0), x′ − y′〉 dt
∣∣∣

≤ Cζ

∣∣∣∫ 1

0

|t(x′ − x′0) + (1− t)(y′ − x′0)||x′ − y′| dt
∣∣∣

≤ 3Cζaε|x′ − y′|,

where we used x′, y′ ∈ B(x′0, 3aε). Hence, if εgr,1 = εgr,1(ζ) > 0 is chosen sufficiently
small, then for all aε ∈ (0, ε

1/6
gr,1) the inequality

|w1 − w0| ≤ 3Cζaε(|x′ − y′|+ |ε̃|) ≤
1

2Cι,1
(|x′ − y′|+ |ε̃|) (5.53)

holds with Cι,1 > 0 from (5.44). Therefore, we can use (5.44) to estimate |wυ|,
υ ∈ [0, 1], from below by

|wυ| = |υw1 + (1− υ)w0| = |w1 + (1− υ)(w0 − w1)| ≥ |w1| − |w1 − w0|

≥ 1

Cι,1
(|x′ − y′|+ |ε̃|)− 1

2Cι,1
(|x′ − y′|+ |ε̃|) =

1

2Cι,1
(|x′ − y′|+ |ε̃|).

(5.54)

Thus, by plugging (5.53) and (5.54) into (5.52), the kernel k can be estimated for
aε = ε1/6 with ε ∈ (0, εgr,1) by

|k(x′, y′)| ≤

{
0, x′ 6∈ B(x′0, 3aε) or y′ 6∈ B(x′0, 3aε),

Caε(|x′ − y′|+ |ε̃|)1−θ, x′ ∈ B(x′0, 3aε) and y′ ∈ B(x′0, 3aε).
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Applying Lemma C.1 yields∥∥χB(x′0,3aε)

(
dζ,κε̃ (z)− d

ζx′0
,κ

ε̃ (z)
)
χB(x′0,3aε)

∥∥
L2(Rθ−1;CN )→L2(Rθ−1;CN )

≤ Caε

∫
B(0,6aε)

(|z′|+ |ε̃|)1−θ dz′

≤ Caε

∫ 6aε

0

(r + |ε̃|)1−θrθ−2 dr

≤ Caε

∫ 6aε

0

(r + |ε̃|)−1 dr

≤ Caε(1 + |log|ε̃||).

Corollary 5.13. Let x′0 ∈ Rθ−1, ζ and κ be as in (5.42), ζx′0 be as in (5.46), Σ be
as in (5.43), η, τ ∈ C1

b (Σ;R), Qζ,κ
η,τ be as in (5.18), z ∈ ρ(H), ε ∈ (0, εgr,1) with εgr,1

chosen as in the previous lemma, aε = ε1/6 and ε̃ ∈ (−2εABC , 2εABC) \ {0}. Then,∥∥χB(x′0,3aε)

(
dζ,κε̃ (z)Qζ,κ

η,τ

− d
ζx′0

,κ

ε̃ (z)Qζ,κ
η,τ (x

′
0)
)
χB(x′0,3aε)

∥∥
L2(Rθ−1;CN )→L2(Rθ−1;CN )

≤ Caε(1 + |log|ε̃||),

where C > 0 does not depend on ε, ε̃ and x′0.

Proof. The previous lemma and Qζ,κ
η,τ ∈ C1

b (Rθ−1;CN×N) yield∥∥χB(x′0,3aε)

(
dζ,κε̃ (z)Qζ,κ

η,τ − d
ζx′0

,κ

ε̃ (z)Qζ,κ
η,τ (x

′
0)
)
χB(x′0,3aε)

∥∥
L2(Rθ−1;CN )→L2(Rθ−1;CN )

≤
∥∥χB(x′0,3aε)

dζ,κε̃ (z)
(
Qζ,κ
η,τ −Qζ,κ

η,τ (x
′
0)
)
χB(x′0,3aε)

∥∥
L2(Rθ−1;CN )→L2(Rθ−1;CN )

+
∥∥χB(x′0,3aε)

(
dζ,κε̃ (z)− d

ζx′0
,κ

ε̃ (z)
)
χB(x′0,3aε)

Qζ,κ
η,τ (x

′
0)
∥∥
L2(Rθ−1;CN )→L2(Rθ−1;CN )

≤ C
(
‖dζ,κε̃ (z)‖

L2(Rθ−1;CN )→L2(Rθ−1;CN )
aε + aε(1 + |log|ε̃||)

)
,

where C > 0 does not depend on ε, ε̃ and x′0. Moreover, (5.17), (5.44), (5.45) and
ζ ∈ C2

b (Rθ−1;R) let us estimate the kernel k of dζ,κε̃ (z) by

|k(x′, y′)| ≤ C(|x′ − y′|+ |ε̃|)1−θe−c|x
′−y′| ∀x′, y′ ∈ Rθ−1,

where c =
CG,2
Cι,1

> 0 with Cι,1 from (5.44) and CG,2 from Proposition 3.4, and therefore
Lemma C.1 implies

‖dζ,κε̃ (z)‖
L2(Rθ−1;CN )→L2(Rθ−1;CN )

≤ C

∫
Rθ−1

(|z′|+ |ε̃|)1−θe−c|z
′| dz′

≤ C

∫ ∞
0

(r + |ε̃|)1−θe−crrθ−2 dr

≤ C(1 + |log|ε̃||),

which yields the assertion.
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Now, we can transfer the results for dζ,κε̃ (z) and eaεε̃ (z) from Lemma 5.10, Lemma 5.11
and Corollary 5.13 to the operators Dζ,κ

ε (z) and Eε(z) via their representations in
(5.16) and (5.48), respectively. We obtain the following statement.
Proposition 5.14. Let x′0 ∈ Rθ−1, ζ and κ be as in (5.42), Σ be as in (5.43), ζx′0
be as in (5.46), η, τ ∈ C1

b (Σ;R), Qζ,κ
η,τ be as in (5.18), z ∈ ρ(H), ψ ∈ C1

b (Rθ−1),
ε ∈ (0, εgr,1) with εgr,1 chosen as in Lemma 5.12 and aε = ε1/6 . Then, the operators
Eε(z) and [Dζ,κ

ε (z), ψ] act as bounded operators from B0(Rθ−1) to B1(Rθ−1) and

‖Eε(z)‖0→1 ≤ C
1 + |log(ε)|

aε
,∥∥[D

ζx′0
,κ

ε (z), ψ]
∥∥

0→1
≤ C‖ψ‖W 1

∞(Rθ−1)(1 + |log(ε)|),∥∥χB(x′0,3aε)

(
Dζ,κ
ε (z)Qζ,κ

η,τ −D
ζx′0

,κ

ε (z)Qζ,κ
η,τ (x

′
0)
)
χB(x′0,3aε)

∥∥
0→0
≤ Caε(1 + |log(ε)|),

where C > 0 does not depend on x′0 and ε.

Proof. First, we consider [D
ζx′0

,κ

ε (z), ψ] . We start by showing that [D
ζx′0

,κ

ε (z), ψ] is
well-defined as an operator from B0(Rθ−1) to B1(Rθ−1). Let f ∈ B0(Rθ−1) and set

g = [D
ζx′0

,κ

ε (z), ψ]f . It follows from (5.16) that g has the representation

g(t) =

∫ 1

−1

[d
ζx′0

,κ

ε(t−s)(z), ψ]f(s) ds, t ∈ (−1, 1).

Since [d
ζx′0

,κ

ε(t−s)(z), ψ] has the continuity property from Lemma 5.11 and f ∈ B0(Rθ−1),
the text below Definition 2.13 implies that the function

(−1, 1)× (−1, 1) 3 (t, s) 7→ [d
ζx′0

,κ

ε(t−s)(z), ψ]f(s) ∈ H1(Rθ−1;CN)

is measurable. According to Lemma 5.11 we have∫ 1

−1

(∫ 1

−1

‖[d
ζx′0

,κ

ε(t−s)(z), ψ]f(s)‖
H1(Rθ−1;CN )

ds
)2

dt

≤ C‖ψ‖2
W 1
∞(Rθ−1)

∫ 1

−1

(∫ 1

−1

(1 + |log|ε(t− s)||)‖f(s)‖L2(Rθ−1;CN ) ds
)2

dt.

(5.55)

This expression can be estimated with the Cauchy-Schwarz inequality and Fubini’s
theorem by

C‖ψ‖2
W 1
∞(Rθ−1)

∫ 1

−1

∫ 1

−1

(1 + |log|ε(t− s)||) ds

·
∫ 1

−1

(1 + |log|ε(t− s)||)‖f(s)‖2
L2(Rθ−1;CN ) ds dt

≤ C‖ψ‖2
W 1
∞(Rθ−1)

(∫ 2

−2

(1 + | log |εs||) ds
)2
∫ 1

−1

‖f(s)‖2
L2(Rθ−1;CN ) ds

≤ C
(
‖ψ‖W 1

∞(Rθ−1)(1 + |log(ε)|)‖f‖0

)2
.

(5.56)
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In particular, applying the Cauchy-Schwarz inequality again gives us∫ 1

−1

∫ 1

−1

‖[d
ζx′0

,κ

ε(t−s)(z), ψ]f(s)‖
H1(Rθ−1;CN )

ds dt

≤
√

2

√∫ 1

−1

(∫ 1

−1

‖[d
ζx′0

,κ

ε(t−s)(z), ψ]f(s)‖
H1(Rθ−1;CN )

ds
)2

dt <∞.

Thus, (2.8) and Fubini’s theorem, see Proposition 2.15, shows that g = [D
ζx′0

,κ

ε (z), ψ]f
is well-defined and measurable as a function from (−1, 1) toH1(Rθ−1;CN). Moreover,
(5.55) and (5.56) also give us the norm estimate as

‖g‖2
1 =

∫ 1

−1

‖g(t)‖2
H1(Rθ−1;CN ) dt

≤
∫ 1

−1

(∫ 1

−1

‖[d
ζx′0

,κ

ε(t−s)(z), ψ]f(s)‖
H1(Rθ−1;CN )

ds
)2

dt

≤ C
(
‖ψ‖W 1

∞(Rθ−1)(1 + |log(ε)|)‖f‖0

)2
.

The proof for Eε(z) can be done in exactly the same way. Moreover,

χB(x′0,3aε)

(
Dζ,κ
ε (z)Qζ,κ

η,τ −D
ζx′0

,κ

ε (z)Qζ,κ
η,τ (x

′
0)
)
χB(x′0,3aε)

is a well-defined operator in B0(Rθ−1). So in this case it is sufficient to show the
norm estimate, which can be proven in the same way as the norm estimate for
[D

ζx′0
,κ

ε (z), ψ].

As the last part of our local analysis we state a result concerning the inverse of
I+D

ζx′0
,κ

ε (z)Qζ,κ
η,τ (x

′
0)q for x′0 ∈ Rθ−1. This is an important result since these operators

play an essential role when constructing the inverse of I +Dζ,κ
ε (z)Qζ,κ

η,τq.

Proposition 5.15. Let ζ and κ be as in (5.42), Σ be as in (5.43), ζx′0 be as in (5.46),
η, τ ∈ C1

b (Σ;R), d = η2 − τ 2 satisfy

sup
xΣ∈Σ

d(xΣ) <
π2

4
,

q be as in (5.1), Qζ,κ
η,τ be as in (5.18) and z ∈ C \ R. Then, there exists an εgr,2 > 0

such that the operators (I+D
ζx′0

,κ

ε (z)Qζ,κ
η,τ (x

′
0)q)−1 are uniformly bounded in B0(Rθ−1)

with respect to ε ∈ (0, εgr,2) and x′0 ∈ Rθ−1.
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Proof. Note that

Qζ,κ
η,τ (x

′
0) = η(κζ,κ(x′0))IN + τ(κζ,κ(x′0))β = Qη(κζ,κ(x′0)),τ(κζ,κ(x′0))

for x′0 ∈ Rθ−1; cf. (5.18) and (5.19) and the text below (5.43). Moreover, for every
x′0 ∈ Rθ−1 the set Σζx′0

,κ is an affine hyperplane in Rθ and therefore there exists a
ỹ0(x′0) ∈ R and a κ̃(x′0) ∈ SO(θ) such that

Σζx′0
,κ = {κ(x′, ζx′0(x′)) : x′ ∈ Rθ−1}

= κ̃(x′0)
(
Rθ−1 × {ỹ0(x′0)}

)
= Σỹ0(x′0),κ̃(x′0).

(5.57)

Hence, we get from (5.9), (5.10) and (5.11)∥∥(I +D
ζx′0

,κ

ε (z)Qζ,κ
η,τ (x

′
0)q)−1

∥∥
0→0

=
∥∥(I +B

Σζ
x′0
,κ

ε (z)Qη(κζ,κ(x′0)),τ(κζ,κ(x′0))q)
−1
∥∥

0→0

=
∥∥(I +B

Σỹ0(x′0),κ̃(x′0)

ε (z)Qη(κζ,κ(x′0)),τ(κζ,κ(x′0))q)
−1
∥∥

0→0

=
∥∥(I +Dỹ0(x′0),κ̃(x′0)

ε (z)Qη(κζ,κ(x′0)),τ(κζ,κ(x′0))q)
−1
∥∥

0→0
.

Now, the result follows from applying Corollary 5.9 (for S = ran (η, τ)) if one chooses
εgr,2 = εpl,2(ran (η, τ)) > 0, where εpl,2 was introduced in Corollary 5.9.

Inspired by the local principle in [60, Proposition 5], see also [59, 61], we construct
partitions of unity which allow us to globalize the established local results. We start
by choosing a partition of unity (φn′)n′∈Zθ−1 for Rθ−1 with uniformly bounded deriva-
tives which satisfies suppφn′ ⊂ B(n′, 1) for n′ ∈ Zθ−1. Moreover, let (ϑn′)n′∈Zθ−1 be a
sequence of functions with uniformly bounded derivatives which fulfils 0 ≤ ϑn′ ≤ 1,
ϑn′ = 1 on B(n′, 2) and suppϑn′ ⊂ B(n′, 3) for n′ ∈ Zθ−1. According to Proposi-
tion A.2 such sequences exist. By defining for a ∈ (0, (εABC)1/6) and n′ ∈ Zθ−1 the
functions φan′(·) = φn′(·/a) and ϑan′(·) = ϑn′(·/a) we obtain similar sequences; in par-
ticular (φan′)n′∈Zθ−1 is a partition of unity for Rθ−1 with scaled supports. Furthermore,
there exists a C > 0 which does not depend on a such that

sup
n′∈Zθ−1

max{‖φan′‖W 1
∞(Rθ−1), ‖ϑan′‖W 1

∞(Rθ−1)} <
C

a
; (5.58)

cf. Corollary A.3. Before we use these essential observations in the proof of Propo-
sition 5.17 to construct the right inverse of I + Dζ,κ

ε (z)Qζ,κ
η,τq, we state a helpful

preliminary lemma.

Lemma 5.16. Let z ∈ ρ(H), ε ∈ (0, εABC) and aε = ε1/6. Then,

(1− ϑaεn′ )Eε(z)φaεn′ = (1− ϑaεn′ )D
ζ,κ
ε (z)φaεn′ .
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Proof. We prove this lemma by showing that the difference of the integral kernels of
(1 − ϑaεn′ )Eε(z)φaεn′ and (1 − ϑaεn′ )Dζ,κ

ε (z)φaεn′ is zero. According to (5.15), (5.47) and
(5.48) this difference is given by

(1− ϑaεn′ (x
′))
(
ω(x

′−y′
aε

)− 1
)
φaεn′ (y

′)

·Gz(κζ,κ(x′)− κζ,κ(y′) + ε(t− s)νζ,κ(x′))
√

1 + |∇ζ(y′)|2
(5.59)

for all x′, y′ ∈ Rθ−1 and t, s ∈ (−1, 1). If y′ /∈ B(aεn
′, aε) for an n′ ∈ Rθ−1, then

y′

aε
/∈ B(n′, 1) ⊃ suppφn′ and therefore

φaεn′ (y
′) = φn′(

y′

aε
) = 0.

Furthermore, if x′ ∈ B(aεn
′, 2aε), then x′

aε
∈ B(n′, 2) and hence as ϑn′ = 1 on B(n′, 2)

we have
1− ϑaεn′ (x

′) = 1− ϑn′( x
′

aε
) = 0.

These two observations show that if y′ /∈ B(aεn
′, aε) or x′ ∈ B(aεn

′, 2aε), then (5.59)
vanishes. Thus, it remains to consider the case y′ ∈ B(aεn

′, aε) and x′ /∈ B(aεn
′, 2aε).

However, this implies |x′ − y′| > aε. In this case we use ω = 1 on Rθ−1 \B(0, 1), see
the text above (5.47), to obtain

ω(x
′−y′
aε

)− 1 = 0.

This shows that (5.59) vanishes for all x′, y′ ∈ Rθ−1 and t, s ∈ (−1, 1).

Proposition 5.17. Let ζ and κ be as in (5.42), Σ be as in (5.43), η, τ ∈ C1
b (Σ;R),

d = η2 − τ 2 satisfy

sup
xΣ∈Σ

d(xΣ) <
π2

4
, (5.60)

q be as in (5.1), Qζ,κ
η,τ be as in (5.18) and z ∈ C \R. Then, there exists an εgr,3 in the

interval (0, εABC ], with εABC > 0 chosen according to (4.19), such that the operator
I + Dζ,κ

ε (z)Qζ,κ
η,τq has a right inverse which is uniformly bounded in B0(Rθ−1) with

respect to ε ∈ (0, εgr,3).

Proof. The proof is split into four steps. In Step 1 we define a first approximation
for the right inverse of I+Dζ,κ

ε (z)Qζ,κ
η,τq denoted by Rε. Moreover, in this step we also

show that Rε is uniformly bounded in B0(Rθ−1) with respect to ε. Then, in Step 2
we calculate (I + Dζ,κ

ε (z)Qζ,κ
η,τq)Rε. Afterwards, we find in Step 3 that the product

(I +Dζ,κ
ε (z)Qζ,κ

η,τq)Rε equals I +Kε + Lε, where Kε and Lε fulfil the inequalities

‖Kε‖0→1 ≤ C
1 + |log(ε)|

a2
ε

and ‖Lε‖0→0 ≤ Caε(1 + |log(ε)|). (5.61)
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Based on these observations we use Proposition 2.30 in Step 4 to prove the assertion.

Step 1. We define for ε ∈ (0,min{εABC , εgr,2}) with εABC and εgr,2 chosen as in (4.19)
and Proposition 5.15, respectively, aε = ε1/6 and n′ ∈ Zθ−1

Rn′,ε := (I +D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′)q)−1

with ζaεn′ = ζx′0 as in (5.46) for x′0 = aεn
′. These operators are uniformly bounded

in B0(Rθ−1) with respect to n′ ∈ Zθ−1 and ε ∈ (0,min{εABC , εgr,2}) according to
Proposition 5.15. Therefore, Proposition C.3 (see also (v) in Section 2.1) shows that

Rε : B0(Rθ−1)→ B0(Rθ−1),

Rε :=
st.∑

n′∈Zθ−1

ϑaεn′φ
aε
n′Rn′,εϑ

aε
n′ ,

is well-defined and uniformly bounded by

‖Rε‖0→0 ≤ 11θ−1 sup
n′∈Zθ−1

∥∥(I +D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′)q)−1

∥∥
0→0
≤ C, (5.62)

where C > 0 does not depend on ε. Furthermore, since ϑaεn′φ
aε
n′ = φaεn′ by construction,

we have Rε =
∑st.

n′∈Zθ−1 φ
aε
n′Rn′,εϑ

aε
n′ .

Step 2. Applying I +Dζ,κ
ε (z)Qζ,κ

η,τq to Rε yields

(I +Dζ,κ
ε (z)Qζ,κ

η,τq)Rε =
st.∑

n′∈Zθ−1

(I +Dζ,κ
ε (z)Qζ,κ

η,τq)φ
aε
n′Rn′,εϑ

aε
n′

=
st.∑

n′∈Zθ−1

ϑaεn′ (I +Dζ,κ
ε (z)Qζ,κ

η,τq)φ
aε
n′Rn′,εϑ

aε
n′

+
st.∑

n′∈Zθ−1

(1− ϑaεn′ )D
ζ,κ
ε (z)Qζ,κ

η,τqφ
aε
n′Rn′,εϑ

aε
n′ .

Moreover, using Lemma 5.16 gives us

(I +Dζ,κ
ε (z)Qζ,κ

η,τq)Rε =
st.∑

n′∈Zθ−1

ϑaεn′ (I +Dζ,κ
ε (z)Qζ,κ

η,τq)φ
aε
n′Rn′,εϑ

aε
n′

+
st.∑

n′∈Zθ−1

(1− ϑaεn′ )Eε(z)Qζ,κ
η,τqφ

aε
n′Rn′,εϑ

aε
n′

=
st.∑

n′∈Zθ−1

ϑaεn′ (I +Dζ,κ
ε (z)Qζ,κ

η,τq − Eε(z)Qζ,κ
η,τq)φ

aε
n′Rn′,εϑ

aε
n′

+ Eε(z)Qζ,κ
η,τqRε.
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Writing Dζ,κ
ε (z)Qζ,κ

η,τqφ
aε
n′ as

D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′)qφaεn′ +

(
Dζ,κ
ε (z)Qζ,κ

η,τ −D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′)
)
qφaεn′

= φaεn′D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′)q + [D

ζaεn′ ,κ
ε (z), φaεn′ ]Q

ζ,κ
η,τ (aεn

′)q

+
(
Dζ,κ
ε (z)Qζ,κ

η,τ −D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′)
)
qφaεn′

and introducing the operators Ln′,ε :=
(
Dζ,κ
ε (z)Qζ,κ

η,τ −D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′)
)
qφaεn′ and

Kn′,ε := [D
ζaεn′ ,κ
ε (z), φaεn′ ]Q

ζ,κ
η,τ (aεn

′)q − Eε(z)Qζ,κ
η,τqφ

aε
n′ yields

(I +Dζ,κ
ε (z)Qζ,κ

η,τq)Rε

=
st.∑

n′∈Zθ−1

ϑaεn′φ
aε
n′ (I +D

ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′)q)Rn′,εϑ

aε
n′

+
st.∑

n′∈Zθ−1

ϑaεn′ (Kn′,ε + Ln′,ε)Rn′,εϑ
aε
n′ + Eε(z)Qζ,κ

η,τqRε

= I +
st.∑

n′∈Zθ−1

ϑaεn′ (Kn′,ε + Ln′,ε)Rn′,εϑ
aε
n′ + Eε(z)Qζ,κ

η,τqRε,

(5.63)

where
st.∑

n′∈Zθ−1

ϑaεn′φ
aε
n′ϑ

aε
n′ =

∑
n′∈Zθ−1

ϑaεn′φ
aε
n′ϑ

aε
n′ =

∑
n′∈Zθ−1

φaεn′ = 1

was used.

Step 3. We start this step by setting

Kε :=
st.∑

n′∈Zθ−1

ϑaεn′Kn′,εRn′,εϑ
aε
n′ + Eε(z)Qζ,κ

η,τqRε,

Lε :=
st.∑

n′∈Zθ−1

ϑaεn′Ln′,εRn′,εϑ
aε
n′ .

Then, (5.63) shows (I + Dζ,κ
ε (z)Qζ,κ

η,τq)Rε = I + Kε + Lε. Since Rε and Dζ,κ
ε (z) are

uniformly bounded in B0(Rθ−1), see Step 1 and the text above (5.12), respectively,
this implies that also Kε + Lε is uniformly bounded in B0(Rθ−1). Moreover, Propo-
sition C.3, Proposition 5.14, Proposition 5.15, (5.62) and Qζ,κ

η,τ ∈ C1
b (Rθ−1;CN×N)
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imply

‖Kε‖0→1 ≤
∥∥∥ st.∑
n′∈Zθ−1

ϑaεn′Kn′,εRn′,εϑ
aε
n′

∥∥∥
0→1

+ ‖ Eε(z)Qζ,κ
η,τqRε‖0→1

≤ C

aε
sup

n′∈Zθ−1

‖Kn′,εRn′,ε‖0→1 + ‖ Eε(z)Qζ,κ
η,τqRε‖0→1

≤ C

aε
sup

n′∈Zθ−1

‖[Dζaεn′ ,κ
ε (z), φaεn′ ]Q

ζ,κ
η,τ (aεn

′)q − Eε(z)Qζ,κ
η,τqφ

aε
n′‖0→1

+ ‖ Eε(z)‖0→1

≤ C

aε
sup

n′∈Zθ−1

(
‖[Dζaεn′ ,κ

ε (z), φaεn′ ]‖0→1 + ‖Eε(z)‖0→1

)
+ ‖ Eε(z)‖0→1

≤ C
1 + |log(ε)|

aε

(
sup

n′∈Zθ−1

‖φaεn′‖W 1
∞(Rθ−1) +

1

aε
+ 1
)

≤ C
1 + |log(ε)|

aε

( 2

aε
+ 1
)

≤ C
1 + |log(ε)|

a2
ε

.

Similarly, we estimate Lε with Proposition C.3, Proposition 5.14 and Proposition
5.15 by

‖Lε‖0→0 =
∥∥∥ st.∑
n′∈Zθ−1

ϑaεn′Ln′,εRn′,εϑ
aε
n′

∥∥∥
0→0

=
∥∥∥ st.∑
n′∈Zθ−1

ϑaεn′χB(aεn′,3aε)Ln′,εRn′,εϑ
aε
n′

∥∥∥
0→0

≤ C sup
n′∈Zθ−1

‖χB(aεn′,3aε)Ln′,ε‖0→0

= C sup
n′∈Zθ−1

‖χB(aεn′,3aε)

(
Dζ,κ
ε (z)Qζ,κ

η,τ −D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′)
)
qφaεn′‖0→0

= C sup
n′∈Zθ−1

‖χB(aεn′,3aε)

(
Dζ,κ
ε (z)Qζ,κ

η,τ −D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′)
)
qχB(aεn′,3aε)φ

aε
n′‖0→0

≤ Caε(1 + |log(ε)|).

This shows that (5.61) is valid and hence completes Step 3.

Step 4. Revisiting the considerations from the beginning of the current chapter
shows that for V = ηIN + τβ, η, τ ∈ C1

b (Σ;R) fulfilling (5.60), the following holds:
cos
( (α·ν)V

2

)−1 ∈ W 1
∞(Σ;CN×N),

Ṽ = V sinc
( (α·ν)V

2

)
cos
( (α·ν)V

2

)−1
= η̃IN + τ̃β with (η̃, τ̃) = tanc

(√
d

2

)
(η, τ),
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and d̃ = η̃ 2 − τ̃ 2 fulfils infxΣ∈Σ|d̃(xΣ)− 4| > 0. Thus, by Proposition 3.15 (iii) and
Proposition 4.13 the operator I + B0(z)V q is continuously invertible in B0(Σ) and
B1/2(Σ). Hence, (5.9) and (5.11) imply that also I + Dζ,κ

0 (z)Qζ,κ
η,τq is continuously

invertible in B0(Rθ−1) and B1/2(Rθ−1). Applying Proposition 2.30 (for the choices
A = I +Dζ,κ

ε (z)Qζ,κ
η,τq, A0 = I +Dζ,κ

0 (z)Qζ,κ
η,τq, T = Rε, K1 = 0, K2 = Kε +Lε) shows

that if the operator norm of

L̃ε := (Dζ,κ
0 (z)−Dζ,κ

ε (z))Qζ,κ
η,τq(I +Dζ,κ

0 (z)Qζ,κ
η,τq)

−1(Kε + Lε)

(= K1 + (A0 −A)A−1
0 K2)

is bounded by 1
2
, then I +Dζ,κ

ε (z)Qζ,κ
η,τq has a right inverse which is bounded by

2
∥∥Rε − (I +Dζ,κ

0 (z)Qζ,κ
η,τq)

−1(Kε + Lε)
∥∥

0→0
.

In particular, as Kε+Lε and Rε are uniformly bounded in B0(Rθ−1), this would yield
the assertion. Using the estimates for Lε and Kε from Step 3 as well as (5.12) and
the text above it, we obtain for a fixed r ∈ (0, 1

6
)

‖L̃ε‖0→0 ≤
∥∥(Dζ,κ

0 (z)−Dζ,κ
ε (z))Qζ,κ

η,τq(I +Dζ,κ
0 (z)Qζ,κ

η,τq)
−1Kε

∥∥
0→0

+
∥∥(Dζ,κ

0 (z)−Dζ,κ
ε (z))Qζ,κ

η,τq(I +Dζ,κ
0 (z)Qζ,κ

η,τq)
−1Lε

∥∥
0→0

≤
∥∥(Dζ,κ

0 (z)−Dζ,κ
ε (z))Qζ,κ

η,τq
∥∥

1/2→0

·
∥∥(I +Dζ,κ

0 (z)Qζ,κ
η,τq)

−1
∥∥

1/2→1/2
‖Kε‖0→1/2

+ ‖(Dζ,κ
0 (z)−Dζ,κ

ε (z))Qζ,κ
η,τq‖0→0

·
∥∥(I +Dζ,κ

0 (z)Qζ,κ
η,τq)

−1
∥∥

0→0
‖Lε‖0→0

≤ ‖(Dζ,κ
0 (z)−Dζ,κ

ε (z))Qζ,κ
η,τq‖1/2→0

·
∥∥(I +Dζ,κ

0 (z)Qζ,κ
η,τq)

−1
∥∥

1/2→1/2
‖Kε‖0→1

+ ‖(Dζ,κ
0 (z)−Dζ,κ

ε (z))Qζ,κ
η,τq‖0→0

·
∥∥(I +Dζ,κ

0 (z)Qζ,κ
η,τq)

−1
∥∥

0→0
‖Lε‖0→0

≤C
(ε1/2−r(1 + |log(ε)|)

a2
ε

+ aε(1 + |log(ε)|)
)

=C(1 + |log(ε)|)(ε1/6−r + ε1/6) ≤ C(1 + |log(ε)|)ε1/6−r.

This shows that if we choose εgr,3 > 0 sufficiently small, then ‖L̃ε‖0→0 <
1
2
for all

ε ∈ (0, εgr,3).

Finally, we are able to state the main result of Section 5.1 in the following proposi-
tion.
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Proposition 5.18. Let Σ be a rotated C2
b -graph as described in the beginning of

Section 5.1.2, z ∈ C \ R, q and V = ηIN + τβ be as in (5.1) and (5.2), d = η2 − τ 2

fulfil

sup
xΣ∈Σ

d(xΣ) <
π2

4
,

and z ∈ C\R. Then, there exists an εconv ∈ (0, εABC ], with εABC > 0 chosen according
to (4.19), such that I+Bε(z)V q has an inverse which is uniformly bounded in B0(Σ)
with respect to ε ∈ (0, εconv).

Proof. From the previous proposition, (5.10), (5.11) and (5.18) we directly get that
the operator I+Bε(z)V q has a right inverse which is uniformly bounded with respect
to ε ∈ (0, εgr,3). Using (5.8) shows that then I + Bε(z)V q has a right inverse which
is uniformly bounded for ε ∈ (0, εconv) if εconv > 0 is chosen small enough. Moreover,
since z ∈ C \ R, Proposition 4.1 (i) implies that I + Bε(z)V q has also a left inverse
which yields that I +Bε(z)V q is invertible and its inverse is uniformly bounded.

5.2 Main results

In this section we state and prove the main results of this chapter. After dealing
with the cases where Σ is a hyperplane in Section 5.1.1 and a rotated graph of a
C2
b -function in Section 5.1.2, we return to our general assumption that Σ ⊂ Rθ is

a special C2-surface as in Definition 2.1. We start by providing a useful lemma
regarding Dirac operators with δ-shell potentials.

Lemma 5.19. Let O1, O2 ⊂ Rθ be open sets such that their boundaries S1 = ∂O1,
S2 = ∂O2 are special C2-surfaces as in Definition 2.1, V̂1 = V̂ ∗1 ∈ W 1

∞(S1;CN×N),
V̂2 = V̂ ∗2 ∈ W 1

∞(S2;CN×N), ϕ ∈ C1
b (Rθ) and HV̂1δS1

, HV̂2δS2
be Dirac operators with

δ-shell potentials as in Definition 3.12. Moreover, assume that there exists an open
set O ⊂ Rθ such that suppϕ ⊂ O and O1 ∩ O = O2 ∩ O, and V̂1 = V̂2 σ-a.e on
S1 ∩O(= S2 ∩O). Then, HV̂1δS1

ϕ = HV̂2δS2
ϕ, where ϕ is viewed as an multiplication

operator in L2(Rθ;CN), and for u ∈ domHV̂jδSj
, j ∈ {1, 2}, one has u ∈ domHV̂jδSj

ϕ

and
ϕHV̂jδSj

u = HV̂jδSj
ϕu+ i(α · ∇ϕ)u.

Proof. In this proof we use the notations Oj,+ = Oj and Oj,− = Rθ \Oj for j ∈ {1, 2}.
Moreover, νj denotes the unit normal vector field on Sj pointing outwards of Oj,+.
Now, let us start by showing HV̂1δS1

ϕ = HV̂2δS2
ϕ. To do so, let u ∈ domHV̂1δS1

ϕ.
Then, ϕu ∈ domHV̂1δS1

⊂ H1(Rθ \ S1). In particular, (ϕu) � O1,± ∈ H1(O1,±;CN).
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Furthermore, (ϕu) � O2,± ∈ H1(O2,±;CN) since suppϕ ⊂ O and O1,±∩O = O2,±∩O.
Thus, we can apply the trace operator to (ϕu) � O2,± and obtain(

i(α · ν2)(t+
S2
− t−S2

) +
V̂2

2
(t+
S2

+ t−S2
)
)
ϕu

=

{(
i(α · ν2)(t+

S2
− t−S2

) + V̂2

2
(t+
S2

+ t−S2
)
)
ϕu on S2 ∩O,

0 on S2 \O,

=

{(
i(α · ν1)(t+

S1
− t−S1

) + V̂1

2
(t+
S1

+ t−S1
)
)
ϕu on S1 ∩O,

0 on S1 \O,
= 0,

where we used ϕu ∈ domHV̂1δS1
, suppϕ ⊂ O and S1 ∩O = S2 ∩O. Hence, uϕ fulfils

the boundary condition(
i(α · ν2)(t+

S2
− t−S2

) +
V̂2

2
(t+
S2

+ t−S2
)
)
ϕu = 0,

i.e. ϕu ∈ domHV̂2δS2
. This shows domHV̂1δS1

ϕ ⊂ domHV̂2δS2
ϕ. The reverse inclusion

can be proven in the same way. Moreover, for u ∈ domHV̂1δS1
ϕ = domHV̂2δS2

ϕ the
equality

HV̂1δS1
ϕu =

{
(−i(α · ∇) +mβ)(ϕu) � O1,± ∩O in O1,± ∩O,
0 else,

=

{
(−i(α · ∇) +mβ)(ϕu) � O2,± ∩O in O2,± ∩O,
0 else,

= HV̂2δS2
ϕu

is valid, showing HV̂1δS1
ϕ = HV̂2δS2

ϕ. With similar arguments as above one proves
ϕu ∈ domHV̂jδSj

, j ∈ {1, 2}, for u ∈ domHV̂jδSj
. Moreover, the product rule gives

us for u ∈ domHV̂jδSj

ϕHV̂jδSj
u = HV̂jδSj

ϕu+ i(α · ∇ϕ)u.

The upcoming theorem, which is one of the main results of this thesis, shows that
for electrostatic and Lorentz scalar interactions, i.e. V = ηIN + τβ, η, τ ∈ C1

b (Σ;R),
the simple condition

sup
xΣ∈Σ

d(xΣ) <
π2

4
, d = η2 − τ 2, (5.64)

guarantees the norm resolvent convergence of HVε for ε→ 0.
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Theorem 5.20. Let q be as in (5.1), V = ηIN + τβ with η, τ ∈ C1
b (Σ;R) satisfy

(5.64), Vε be defined by (4.3) and z ∈ C \ R. Moreover, set Ṽ = η̃IN + τ̃β with
(η̃, τ̃) = tanc

(√
d

2

)
(η, τ) where d = η2 − τ 2. Then, the operator HṼ δΣ

is self-adjoint
and there exists an εconv > 0 such that for any r ∈ (0, 1

2
) exists a C > 0 such that∥∥(HVε − z)−1 − (HṼ δΣ

− z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ Cε1/2−r

for all ε ∈ (0, εconv). In particular, HVε converges to HṼ δΣ
in the norm resolvent

sense as ε→ 0.

Proof. First, we observe that (5.64), η, τ ∈ C1
b (Σ;R) and d̃ = η̃ 2 − τ̃ 2 = 4 tan

(√
d

2

)2

imply
inf
xΣ∈Σ
|d̃(xΣ)− 4| > 0

and thus HṼ δΣ
is self-adjoint by Proposition 3.15. Moreover, we note that if Σ is a

rotated C2
b -graph, then the assertion follows directly from Theorem 4.15, the text in

the beginning of Chapter 5 and Proposition 5.18.

In the general setting Σ ⊂ Rθ is a special C2-surface as in Definition 2.1. The
surface Σ is in this case a subset of

⋃p
l=1 Σl with Σl = {κl(x′, ζl(x′)) : x′ ∈ Rθ−1} for

l ∈ {1, . . . , p}. Thus, we prove the general case by reducing it to the case of rotated
C2
b -graphs. However, V is only defined on Σ and therefore in general only on parts

of Σl, l ∈ {1, . . . , p}. Hence, we define suitable extensions of V to Σl in the following
way: Let V̂ , η̂, τ̂ be the C1

b -extensions of V , τ and η defined by (4.10). Moreover,
we set Vl := V̂ � Σl, ηl := η̂ � Σl, τl := τ̂ � Σl and dl := η2

l − τ 2
l for l ∈ {1, . . . , p}.

Then, these functions also satisfy

sup
xΣl
∈Σl

dl(xΣl) <
π2

4
∀l ∈ {1, . . . , p} (5.65)

by construction as d = η2 − τ 2 satisfies (5.64).

In order to be able to reduce the general case, we choose the C1-partition of unity
ϕ̂1, . . . , ϕ̂p ∈ C1

b (Rθ) for Ω εtub
2

from Corollary A.5, which fulfils supp ϕ̂l ∩ Σ ⊂ Wl,
where W1, . . . ,Wp is the open cover of Σ from Definition 2.1. Moreover, let for
ε ∈ (0, εtub) Ωl,ε be the tubular neighbourhood of Σl and Vl,ε be defined analogously
to Vε in (4.3). We claim that Ωε ∩ supp ϕ̂l = Ωε,l ∩ supp ϕ̂l for all ε ∈ (0, εtub) and
l ∈ {1, . . . p}. Indeed, if x ∈ Ωε ∩ supp ϕ̂l, then there exists (xΣ, t) ∈ Σ × (−ε, ε)
such that x = xΣ + tν(xΣ). The equation 0 6= ϕ̂l(x) = ϕ̂l(xΣ)$(t), see Corollary A.5,
implies xΣ ∈ supp ϕ̂l ∩ Σ ⊂ Wl ∩ Σ = Wl ∩ Σl. Thus, xΣ ∈ Σl and ν(xΣ) = νl(xΣ).
Consequently, x = xΣ + tνl(xΣ) ∈ Ωl,ε ∩ supp ϕ̂l and additionally

Vε(x) = V (xΣ)
q
(
t
ε

)
ε

= Vl(xΣ)
q
(
t
ε

)
ε

= Vl,ε(x).
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The reverse inclusion can be shown in exactly the same way. This implies in particular
Vl,εϕ̂l = Vεϕ̂l for l ∈ {1, . . . , p} and ε ∈ (0, εtub). Hence, we get for l ∈ {1, . . . , p} and
ε ∈ (0, εtub) the identity

HVl,εϕ̂lu = HVεϕ̂lu ∀u ∈ domHVε = domHVl,ε = H1(Rθ;CN),

where HVl,ε = H + Vl,ε and HVε = H + Vε with H being the free Dirac operator; cf.
(4.4) and Definition 3.2. Additionally to ϕ̂1, . . . , ϕ̂p, we introduce ϕ̂p+1 := 1−

∑p
l=1 ϕ̂l.

The fact that ϕ̂1, . . . , ϕ̂p is a partition of unity for Ω εtub
2

shows that for all ε ∈ (0, εtub
2

)

Vεϕ̂p+1 = 0 and thus HVεϕ̂p+1u = Hϕ̂p+1u for u ∈ H1(Rθ;CN). These observations,
setting HVp+1,ε = H and applying the product rule yields for l ∈ {1, . . . , p + 1},
ε ∈ (0, εtub

2
) and u ∈ domHVε = H1(Rθ;CN)

ϕ̂lHVεu = HVεϕ̂lu+ i(α · ∇ϕ̂l)u = HVl,εϕ̂lu+ i(α · ∇ϕ̂l). (5.66)

Next, we construct a resolvent for HVε in terms of the operators HVl,ε . We use (5.66)
to get for u ∈ domHVε and z ∈ C \ R

(p+1∑
l=1

(HVl,ε − z)−1ϕ̂l

)
(HVε − z)u

=

p+1∑
l=1

(HVl,ε − z)−1(HVl,ε − z)ϕ̂lu+ i(HVl,ε − z)−1(α · ∇ϕ̂l)u

=

p+1∑
l=1

ϕ̂lu+ i(HVl,ε − z)−1(α · ∇ϕ̂l)u

=
(
I +

p+1∑
l=1

i(HVl,ε − z)−1(α · ∇ϕ̂l)
)
u.

(5.67)

In particular, if |Im z| >
∑p+1

l=1 ‖α · ∇ϕ̂l‖L∞(Rθ;CN×N ), then

I +

p+1∑
l=1

i(HVl,ε − z)−1(α · ∇ϕ̂l)

is continuously invertible in L2(Rθ;CN) and

(HVε − z)−1 =
(
I +

p+1∑
l=1

i(HVl,ε − z)−1(α · ∇ϕ̂l)
)−1(p+1∑

l=1

(HVl,ε − z)−1ϕ̂l

)
(5.68)

for all ε ∈ (0, εtub
2

). Next, we find a similar resolvent formula for the resolvent
of HṼ δΣ

. Again, it is important to establish relations between HṼ δΣ
and HṼlδΣl

.
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Here, Ṽ = tanc
(√

d
2

)
V , Ṽl = tanc

(√
dl
2

)
Vl, l ∈ {1, . . . , p}, HṼ δΣ

is defined as in
Definition 3.12 and HṼlδΣl

is defined in the same way as HṼ δΣ
(with Σl instead of

Σ and Ṽl instead of V ). Furthermore, we set Ṽp+1 = 0 and Σp+1 = Σ. In this case
HṼp+1δΣp+1

coincides with the free Dirac operator H. Note that we already know from
the comments at the beginning of the proof that (5.64) and (5.65) imply that HṼ δΣ

and HṼlδΣl
, l ∈ {1, . . . , p}, are self-adjoint in L2(Rθ;CN). Moreover, Lemma 5.19

shows that if u ∈ domHṼ δΣ
, then ϕ̂lu ∈ domHṼlδΣl

and

ϕ̂lHṼ δΣ
u = HṼ δΣ

ϕ̂lu+ i(α · ∇ϕ̂l)u = HṼlδΣl
ϕ̂lu+ i(α · ∇ϕ̂l)u (5.69)

for all l ∈ {1, . . . , p + 1}. Using (5.69) one argues with the same steps as in (5.67)
that for u ∈ domHṼ δΣ

and z ∈ C \ R

(p+1∑
l=1

(HṼlδΣl
− z)−1ϕ̂l

)
(HṼ δΣ

− z)u =
(
I +

p+1∑
l=1

i(HṼlδΣl
− z)−1(α · ∇ϕ̂l)

)
u.

Hence, if |Im z| >
∑p+1

l=1 ‖α · ∇ϕ̂l‖L∞(Rθ;CN×N ), then I +
∑p+1

l=1 i(HṼlδΣl
− z)−1(α ·∇ϕ̂l)

is continuously invertible in L2(Rθ;CN) and

(HṼ δΣ
− z)−1 =

(
I +

p+1∑
l=1

i(HṼlδΣl
− z)−1(α · ∇ϕ̂l)

)−1(p+1∑
l=1

(HṼlδΣl
− z)−1ϕ̂l

)
. (5.70)

Thus, if |Im z| >
∑p+1

l=1 ‖α · ∇ϕ̂l‖L∞(Rθ;CN×N ), then the assertion follows from com-
paring (5.68) and (5.70) with one another, and the case of the rotated C2

b -graph.
Moreover, we can get rid of the assumption |Im z| >

∑p+1
l=1 ‖α · ∇ϕ̂l‖L∞(Rθ;CN×N ) by

applying the resolvent identity

(HṼ δΣ
− w)−1 − (HVε − w)−1 = (I + (w − z)(HṼ δΣ

− w)−1)

·
(
(HṼ δΣ

− z)−1 − (HVε − z)−1
)
(I + (w − z)(HVε − w)−1) ∀z, w ∈ C \ R.

This completes the proof of Theorem 5.20.

In the next theorem we add a magnetic term to V and show that then HVε also
converges to a Dirac operator with δ-shell potential with electrostatic and Lorentz
scalar interactions. However, in the following theorem the rescaling of the interaction
strengths is different.

Theorem 5.21. Let q be as in (5.1), V = ηIN + τβ + π(α · ν) with η, τ ∈ C1
b (Σ;R)

and the unit normal vector ν on Σ, d = η2 − τ 2 satisfy

sup
xΣ∈Σ

d(xΣ) <
π2

4
and inf

xΣ∈Σ
|d(xΣ)| > 0,
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Vε be defined by (4.3) and z ∈ C \ R. Moreover, set

(η̃, τ̃) :=
−2

√
d tan

(√
d

2

)(η, τ)

and Ṽ := η̃IN + τ̃β. Then, the operator HṼ δΣ
is self-adjoint and there exists an

εconv > 0 such that for any r ∈ (0, 1
2
) exists a C > 0 such that∥∥(HVε − z)−1 − (HṼ δΣ
− z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ Cε1/2−r

for all ε ∈ (0, εconv). In particular, HVε converges to HṼ δΣ
in the norm resolvent

sense as ε→ 0.

Proof. We start by calculating

d̃ = η̃ 2 − τ̃ 2 =
4(η2 − τ 2)

d tan
(√

d
2

)2 =
4

tan
(√

d
2

)2 . (5.71)

Thus, the assumptions regarding d imply that the infxΣ∈Σ|d̃(xΣ)− 4| > 0 and hence
HṼ δΣ

is self-adjoint according to Proposition 3.15.

For the remaining proof we use an idea from [24, Section 8]. This idea makes use
of the fact stated in Proposition 3.15 (i) that the two Dirac operators HṼ δΣ

and
H−4(Ṽ /d̃)δΣ

are unitarily equivalent. More precisely, HṼ δΣ
= UH−4(Ṽ /d̃)δΣ

U , where U
is the self-adjoint unitary multiplication operator in L2(Rθ;CN) which is induced by
the function w = χΩ+ − χΩ− . If we set F := ηIN + τβ and F̃ := tanc

(√
d

2

)
F , we get

in the current setting

Ṽ =
−2

√
d tan

(√
d

2

)F
and by (5.71)

−4

d̃
Ṽ =

2 tan
(√

d
2

)
√
d

F = tanc
(√

d
2

)
F = F̃ .

In particular,
UHF̃ δΣ

U = HṼ δΣ
.

Note also that Theorem 5.20 shows that HFε , where Fε is analogously defined as Vε
in (4.3) with F instead of V , converges to HF̃ δΣ

in the norm resolvent sense. In this
proof we find unitary multiplication operators Wε such that

W ∗
εHFεWε = HVε

andWε → U for ε→ 0 in a suitable sense. Furthermore, using the convergence prop-
erties of these operators and HFε we show that HVε converges in the norm resolvent
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sense to HṼ δΣ
. Having explained the ideas, we start the main part of the proof by

defining for ε ∈ (0, εtub) the function

wε : Rθ → C, wε(x) :=


1, x ∈ Ω+ \ Ωε,

eiπ
∫ t/ε
−1 q(s) ds, x = xΣ + tν(xΣ) ∈ Ωε,

−1, x ∈ Ω− \ Ωε.

This function is well-defined according to Proposition 2.12. Moreover,
∫ 1

−1
q(s) ds = 1

shows that wε is continuous. We define Wε to be the unitary multiplication operator
in L2(Rθ;CN) induced by wε. Next, we show wε ∈ W 1

∞(Rθ). To do so, let us fix
x = ι(xΣ, t) ∈ Ωε and x′ ∈ Rθ−1 such that κl(x′) = xΣ for a l ∈ {1, . . . , p}. This
implies x = ιl(x

′, t) with ιl from Definition 2.7. In the proof of Lemma 4.3 we showed
that ιl : Rθ−1 × R → Rθ is locally around (x′, t) a diffeomorphism. Moreover, using
wε ◦ ιl(x′, t) = eiπ

∫ t/ε
−1 q(s) ds, the chain rule and formula (4.12) for (Dιl)(x

′, t) yields

∇wε(x) =
(
((Dιl)(x

′, t))−1
)T∇(wε ◦ ιl)(x′, t)

=
(
∗ νl(x

′)
)iπq( t

ε

)
ε

eiπ
∫ t/ε
−1 q(s) dseθ

= ν(xΣ)
iπq
(
t
ε

)
ε

wε(x),

where eθ is the θ-th Euclidean unit vector in Rθ. Hence,

∇wε(x) =

ν(xΣ)
iπq
(
t
ε

)
ε

wε(x), x = ι(xΣ, t) ∈ Ωε,

0, x 6∈ Ωε,

and wε ∈ W 1
∞(Rθ). These considerations, 1

wε
= wε ∈ W 1

∞(Rθ), and the definition of
Vε in (4.3) show domW ∗

εHFεWε = domHVε = H1(Rθ;CN) and

W ∗
εHFεWε = HFε − iwε(α · ∇wε) = HVε ;

cf. [24, Section 8, below the proof of Theorem 2.6]. We note that wε converges
pointwise to w = χΩ+ − χΩ− and therefore Wε converges in the strong sense to the
operator U . In addition, for ε ∈ (0, εtub) the estimate

‖(W ∗
ε − U)u‖L2(Rθ;CN ) ≤ ε1/2C‖u‖H1(Rθ\Σ;CN ) ∀u ∈ H

1(Rθ \ Σ) (5.72)

is also valid. We postpone the verification of this fact to the end of the proof. More-
over, (HF̃ δΣ

−z)−1 also acts as a bounded operator from L2(Rθ;CN) toH1(Rθ\Σ;CN).
Indeed, one can show this by using domHF̃ δΣ

⊂ H1(Rθ \Σ;CN), see Definition 3.12,
the boundedness of (HF̃ δΣ

−z)−1 acting as an operator in L2(Rθ;CN), the continuous
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embedding of H1(Rθ \ Σ;CN) in L2(Rθ;CN) and the closed graph theorem. Thus,
(5.72) gives us for ε ∈ (0, εtub)∥∥(W ∗

ε − U)(HF̃ δΣ
− z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ Cε1/2.

This observation, the norm resolvent convergence of HFε (see Theorem 5.20) and
the fact that U and Wε are unitary operators let us estimate for ε ∈ (0, εconv) (with
εconv > 0 from Theorem 5.20)∥∥(HVε − z)−1−(HṼ δΣ

− z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

= ‖W ∗
ε (HFε − z)−1Wε − U(HF̃ δΣ

− z)−1U‖L2(Rθ;CN )→L2(Rθ;CN )

≤
∥∥W ∗

ε ((HFε − z)−1 − (HF̃ δΣ
− z)−1)Wε

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

+
∥∥(W ∗

ε − U)(HF̃ δΣ
− z)−1Wε

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

+
∥∥U(HF̃ δΣ

− z)−1(Wε − U)
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

=
∥∥(HFε − z)−1 − (HF̃ δΣ

− z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

+
∥∥(W ∗

ε − U)(HF̃ δΣ
− z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

+
∥∥(HF̃ δΣ

− z)−1(Wε − U)
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

=
∥∥(HFε − z)−1 − (HF̃ δΣ

− z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

+
∥∥(W ∗

ε − U)(HF̃ δΣ
− z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

+
∥∥(W ∗

ε − U)(HF̃ δΣ
− z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

.

≤ Cε1/2−r + Cε1/2

≤ Cε1/2−r,

where r ∈ (0, 1
2
). Hence, it only remains to prove (5.72).

We start by choosing u = u+ ⊕ u− with u± ∈ C∞0 (Ω±;CN) and get for ε ∈ (0, εtub)

‖(W ∗
ε − U)u‖2

L2(Rθ;CN ) =

∫
Ωε

|(wε(x)− χΩ+(x) + χΩ−(x))u(x)|2 dx

≤ 4

∫
Ωε

|u(x)|2 dx.

Moreover, by Corollary 2.10 (where we use εtub < ει) and Proposition 2.12 we obtain∫
Ωε

|u(x)|2 dx ≤C
∫ ε

−ε

∫
Σ

|u(xΣ + tν(xΣ))|2 dσ(xΣ) dt

=Cε
(∫ 0

−1

∫
Σ

|u+(xΣ + tεν(xΣ))|2 dσ(xΣ) dt

+

∫ 1

0

∫
Σ

|u−(xΣ + tεν(xΣ))|2 dσ(xΣ) dt
)
.



116 5 An explicit convergence condition

Next, we estimate the term
∫ 0

−1

∫
Σ
|u+(xΣ + tεν(xΣ))|2 dσ(xΣ) dt. Note that the smooth-

ness of u implies that for t ∈ (−1, 0) the function

Σ 3 xΣ 7→ u+(xΣ + tεν(xΣ))

coincides with the trace of the function τΩ+

εt u, where τ
Ω±
εt is the shift operator intro-

duced in (4.18) (for δ = εt). Thus,∫ 0

−1

∫
Σ

|u+(xΣ + tεν(xΣ))|2 dσ(xΣ) dt =

∫ 0

−1

∫
Σ

|tΣτ
Ω+

εt u(xΣ)|2 dσ(xΣ) dt.

Now, Proposition 2.3 and Corollary 4.5 let us estimate this term in the following
way: ∫ 0

−1

∫
Σ

|tΣτ
Ω+

εt u+(xΣ)|2 dσ(xΣ) dt =

∫ 0

−1

‖tΣτ
Ω+

εt u+‖2
L2(Σ;CN ) dt

≤
∫ 0

−1

‖tΣτ
Ω+

εt u+‖2
H1/2(Σ;CN ) dt

≤ C

∫ 0

−1

‖τΩ+

εt u+‖2
H1(Ω+;CN ) dt

≤ C‖u+‖2
H1(Ω+;CN ).

Therefore, ∫ 0

−1

∫
Σ

|u+(xΣ + tν(xΣ))|2 dσ(xΣ) dt ≤ C‖u+‖2
H1(Ω+;CN );

in the same way one gets∫ 1

0

∫
Σ

|u−(xΣ + tν(xΣ))|2 dσ(xΣ) dt ≤ C‖u−‖2
H1(Ω−;CN ).

This implies (5.72) for u ∈ C∞0 (Ω+;CN) ⊕ C∞0 (Ω−;CN), which is a dense subspace
of H1(Rθ \ Σ;CN) = H1(Ω+;CN) ⊕ H1(Ω−;CN); see e.g. [54, Chapter 3]. Hence,
(5.72) is valid.

An immediate consequence of the two previous theorems is the following corollary.

Corollary 5.22. Let q be as in (5.1), Ṽ = η̃IN+τ̃β with η̃, τ̃ ∈ C1
b (Σ;R), d̃ = η̃ 2 − τ̃ 2

satisfy either
sup
xΣ∈Σ
|d̃(xΣ)| < 4 or inf

xΣ∈Σ
|d̃(xΣ)| > 4,
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and z ∈ C \ R. Moreover, let the interaction strengths η, τ ∈ C1
b (Σ;R) be given by

(η, τ) :=


2 arctan

(√
d̃

2

)
√
d̃

(η̃, τ̃), supxΣ∈Σ|d̃(xΣ)| < 4,

−2 arctan
(

2√
d̃

)
√
d̃

(η̃, τ̃), infxΣ∈Σ|d̃(xΣ)| > 4,

V :=

{
ηIN + τβ, supxΣ∈Σ|d̃(xΣ)| < 4,

ηIN + τβ + π(α · ν), infxΣ∈Σ|d̃(xΣ)| > 4,

and Vε be defined by (4.3). Then, the operator HṼ δΣ
is self-adjoint and there exists

an εconv > 0 such that for any r ∈ (0, 1
2
) exists a C > 0 such that∥∥(HVε − z)−1 − (HṼ δΣ

− z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ Cε1/2−r

for all ε ∈ (0, εconv). In particular, HVε converges to HṼ δΣ
in the norm resolvent

sense as ε→ 0.

Proof. By definition, we have

d = η2 − τ 2 =

{
4 arctan

(√
d̃

2

)2

, supxΣ∈Σ|d̃(xΣ)| < 4,

4 arctan
(

2√
d̃

)2

, infxΣ∈Σ|d̃(xΣ)| > 4.

Hence, as arctan(t)2 < π2

16
for t ∈ [0, 1) and t ∈ iR, the inequality supxΣ∈Σ d(xΣ) < π2

4

holds in both cases. Thus, if |d̃(xΣ)| < 4, then the assertion follows from Theo-
rem 5.20 and infxΣ∈Σ|d̃(xΣ)| > 4, then the assertion is a consequence of Theorem 5.21.

Corollary 5.22 is particularly interesting in the case that η̃, τ̃ ∈ R. Then, the condi-
tions of Corollary 5.22 reduce to d̃ = η̃ 2 − τ̃ 2 6= ±4. The two excluded cases d̃ = −4
and d̃ = 4 are called the confinement case and the critical case, respectively; cf. the
discussion below (1.3). We show in Corollary 7.5 that by an additional scaling of the
strongly localized potentials one can also approximate Dirac operators with δ-shell
potentials in the confinement case and therefore all Dirac operators with δ-shell po-
tentials and noncritical electrostatic and Lorentz scalar interaction strengths can be
approximated in the norm resolvent sense by Dirac operators with strongly localized
potentials. Moreover, we provide a counterexample in Theorem 6.1 in the critical
case.





6 Counterexamples

In Theorem 5.20 we showed that for V = ηIN + τβ, η, τ ∈ C1
b (Σ;R), d = η2− τ 2, the

condition
sup
xΣ∈Σ

d(xΣ) <
π2

4

guarantees that HVε converges in the norm resolvent sense for ε → 0 to HṼ δΣ
with

Ṽ = η̃IN + τ̃β, where (η̃, τ̃) = tanc
(√

d
2

)
(η, τ). In this chapter we show that this

condition is optimal by providing counterexamples in the case of constant interac-
tion strengths, i.e. η, τ ∈ R. As already mentioned in the introduction, we have to
consider the case d̃ = η̃ 2− τ̃ 2 = 4, which is the so-called critical case, and d̃ 6= 4, sep-
arately. From Proposition 3.15 we know that HṼ δΣ

is self-adjoint if d̃ 6= 4. However,
if d̃ 6= 4 , then Proposition 3.15 is not applicable and HṼ δΣ

is generally not self-
adjoint. Thus, in the latter case it is not meaningful to ask the question whether HVε

converges in the norm resolvent sense to HṼ δΣ
. However, under certain assumptions

regarding Σ, the operator HṼ δΣ
is essentially self-adjoint. The first counterexample

given in Theorem 6.1 deals with this situation. In particular, we show the following:
If Σ is a compact and smooth hypersurface, d ≥ π2

4
and d̃ = 4 (i.e. d = (2k + 1)2 π2

4
,

k ∈ N0), then HVε does not converge in the norm resolvent sense to the closure
of HṼ δΣ

. Afterwards, we consider the case where Σ is an affine hyperplane in Rθ

and find out that in this situation σ(HVε) = R if η, τ ∈ R are chosen such that
d = η2 − τ 2 > π2

4
and ε > 0 is sufficiently small. Furthermore, by combining this

result with known spectral properties of HṼ δΣ
we show in Corollary 6.6 that if Σ is

an affine hyperplane, d ≥ π2

4
, d 6= (2k + 1)2π2 for k ∈ N0 and d̃ 6= 4, then HVε does

not converge to HṼ δΣ
in the norm resolvent sense. Finally, we transfer this result

in Theorem 6.7 to the case where Σ is a special C2-surface which contains a flat
part. The mentioned counterexamples are particularly interesting since it is known
in various situations which are included in the counterexamples that HVε converges
in the strong resolvent sense to HṼ δΣ

; see [18, Theorem 7.2], [24, Theorem 2.6] and
[74, Theorem 2.1].
Theorem 6.1. Let Σ ⊂ Rθ be a compact C∞-smooth hypersurface, q be as in (4.1),
V = ηIN + τβ with η, τ ∈ R, d = η2 − τ 2 ≥ π2

4
such that d 6= (2k + 1)2π2 for

k ∈ N0 is fulfilled and Vε be defined by (4.3). Moreover, let Ṽ = η̃IN + τ̃β with
(η̃, τ̃) = tanc

(√
d

2

)
(η, τ) and d̃ = η̃ 2 − τ̃ 2 = 4. Then, HṼ δΣ

is not self-adjoint but
essentially self-adjoint. Furthermore, HVε does not converge in the norm resolvent
sense to the closure of HṼ δΣ

for ε→ 0.

119
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Proof. The claims regarding the (essential) self-adjointness follow from [13, Theo-
rem 4.11] for θ = 2 and from [19, Theorem 3.1 (ii)] for θ = 3. Thus, it only remains
to prove the non-convergence statement. By Proposition 2.24 we can w.l.o.g. assume
m > 0. If Σ is compact, then suppVε ⊂ Ωε is compact. Hence, according to [54,
Theorem 3.27 (ii)] Vε induces a compact operator from H1(Rθ;CN) to L2(Rθ;CN).
Moreover, we know from Proposition 3.3 (iii) that (H− z)−1 is bounded acting as an
operator from L2(Rθ;CN) to H1(Rθ;CN). In turn, the resolvent difference

(H − z)−1 − (HVε − z)−1 = (HVε − z)−1Vε(H − z)−1

is compact in L2(Rθ;CN), which shows σess(HVε) = σess(H) = (−∞,−m] ∪ [m,∞).
Equipped with this preliminary observation, we now prove the claim about the non-
convergence by contradiction. We assume that HVε converges in the norm resolvent
sense to HṼ δΣ

for ε→ 0. Then, Proposition 2.25 (ii) yields

σess(HṼ δΣ
) = (−∞,−m] ∪ [m,∞).

Furthermore, [13, Theorem 1.2 and Theorem 1.3] and [20] give us − τ̃
η̃
m ∈ σess(HṼ δΣ

).
However, in the current case η̃ 2− τ̃ 2 = 4 and therefore − τ̃

η̃
m ∈ (−m,m) which leads

to a contradiction.

Next, we consider the case Σ = κ(Rθ−1 × {y0}) = Σy0,κ with κ ∈ SO(θ) and y0 ∈ R,
i.e. Σ is an affine hyperplane in Rθ. Moreover, we assume V = ηIN + τβ with
η, τ ∈ R such that d = η2 − τ 2 > π2

4
. We show in Theorem 6.5 that under this set of

assumptions σ(HVε) = R for ε > 0 sufficiently small. In Corollary 6.6 we utilize this
knowledge to show that in this situation HVε does not converge in the norm resolvent
sense to HṼ δΣ

.

We start by applying the coordinate transformation x̃(x) = κTx−y0eθ, where x ∈ Rθ

and eθ is the θ-th Euclidean unit vector in Rθ, to HVε . This transformation turns the
operator HVε into the unitarily equivalent Dirac operator

H̃Vεu(x̃) = HVεu(x̃(x))

= −iα · ∇xu(x̃(x)) +mβu(x̃(x)) + Vε(x)u(x̃(x))

= −iα̃ · ∇x̃u(x̃) +mβu(x̃) + Vε(x)u(x̃), x̃ = x̃(x) ∈ Rθ,

for u ∈ dom H̃Vε = HVε = H1(Rθ;CN), where α̃ = (α̃1, . . . α̃θ) is defined as in (5.21),
i.e. α̃ = (α̃1, . . . , α̃θ) with α̃l = α · κej, j ∈ {1, · · · θ}, where ej is the j-th Euclidean
unit vector. Furthermore, for x̃ = (x̃′, x̃θ) = x̃(x) ∈ Rθ we get

x = κx̃+ y0κeθ = κ(x̃′, y0) + x̃θκeθ, where κ(x̃′, y0) ∈ Σ and κeθ ⊥ Σ.
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In particular, combining this observation with the definition of Vε in (4.3), and in-
troducing q̃ as the zero extension of q to R with q ∈ L∞((−1, 1);R) as in (4.1), we
obtain

Vε(x) = V
q̃
(
x̃θ
ε

)
ε

for x̃ = (x̃′, x̃θ) = x̃(x) ∈ Rθ. (6.1)

Hence,

dom H̃Vε = H1(Rθ;CN),

H̃Vεu(x̃) = −iα̃ · ∇x̃u(x̃) +mβu(x̃) + V
q̃
(
x̃θ
ε

)
ε

u(x̃), x̃ = (x̃′, x̃θ) ∈ Rθ.
(6.2)

Applying the Fourier transform with respect to the first θ − 1 variables, which is
denoted by F1 and defined in Section 2.1 (xvii), and identifying L2(Rθ;CN) with
the Bochner space L2(Rθ−1;L2(R;CN)), see Proposition 2.18 (iii), we get similarly
as in [18, eq. (2.3) and the text below] that F1H̃VεF−1

1 is unitarily equivalent to the
decomposable operator in L2(Rθ−1;L2(R;CN)) which is induced by the mapping

Rθ−1 3 ξ′ 7→ HVε,ξ′

with

HVε,ξ′ := α̃′ · ξ′ − iα̃θ
d

dx̃θ
+mβ + V

q̃
( ·
ε

)
ε

, domHVε,ξ′ := H1(R;CN), (6.3)

for ξ′ ∈ Rθ−1; cf. Proposition 2.20. The notation α̃′ · ξ′ was introduced in (5.22). By
Proposition 2.20 we can analyse the spectrum of HVε by studying the spectrum of
HVε,ξ′ for ξ′ ∈ Rθ−1. Next, we introduce the operators

H0,ξ′ := α̃′ · ξ′ − iα̃θ
d

dx̃θ
+mβ, domH0,ξ′ := H1(R;CN),

V ε
R : L2(R;CN)→ L2((−1, 1);CN), V ε

Ru(x̃θ) := 1√
ε
u(εx̃θ),

and

V ε
L : L2((−1, 1);CN)→ L2(R;CN), V ε

Lu(x̃θ) :=

{
1√
ε
u
(
x̃θ
ε

)
, |x̃θ| < ε,

0, |x̃θ| ≥ ε.

Then,
HVε,ξ′ = H0,ξ′ + V ε

LV qV
ε
R.

Let us start analysing HVε,ξ′ by studying the operator H0,ξ′ . Thereby, we proceed in
a similar way as in [18, Section 2]. Applying the (one-dimensional) Fourier transform
shows that H0,ξ′ is unitarily equivalent to the matrix multiplication operator induced
by the matrix-valued function

Mξ′ : R→ CN×N , Mξ′(ξθ) = α̃ · (ξ′, ξθ) +mβ.
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This implies that the operator H0,ξ′ is self-adjoint. The spectrum of H0,ξ′ is given
by the closure of the image of the eigenvalue curves corresponding to Mξ′ ; see [36,
Proposition 1]. Using the rules for the Dirac matrices from (5.23) one concludes

(Mξ′(ξθ))
2 = (|ξ′|2 + ξ2

θ +m2)IN

for ξ = (ξ′, ξθ) ∈ Rθ. Moreover, by the structure of the Dirac matrices, Mξ′(ξθ)
cannot be a multiple of IN if ξ 6= 0 or m 6= 0; cf. Definition 3.1 and (5.21) . Thus,
the eigenvalues of Mξ′(ξθ) are given by ±

√
|ξ′|2 + ξ2

θ +m2, and hence the spectrum
of H0,ξ′ is given by (−∞,−

√
|ξ′|2 +m2] ∪ [

√
|ξ′|2 +m2,∞). Applying the rules for

the Dirac matrices again yields

H2
0,ξ′ =

(
− d2

dx̃2
θ

+ |ξ′|2 +m2
)
IN , domH2

0,ξ′ = H2(R;CN).

It is well known that

(H2
0,ξ′ − z2)−1f(t) =

∫ ∞
−∞

iei|t−s|
√
z2−m2−|ξ′|2

2
√
z2 −m2 − |ξ′|2

f(s) ds, f ∈ L2(R,CN), t ∈ R;

see for instance [66, eq. (8.7)]. Note also that we switched from the variable x̃θ to t
for convenience. The resolvent representation of H2

0,ξ′ implies

(H0,ξ′ − z)−1f(t) = (H0,ξ′ + z)(H2
0,ξ′ − z2)−1f(t)

=

∫ ∞
−∞

( α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(t− s)
)iei|t−s|√z2−m2−|ξ′|2

2
f(s) ds

for f ∈ L2(R;CN) and t ∈ R. Using Lemma 3.10 (i) one obtains that z ∈ ρ(H0,ξ′) is
in the point spectrum of HVε,ξ′ if and only if

− 1 ∈ σp(Dε,ξ′(z)V q) with Dε,ξ′(z) = V ε
R(H0,ξ′ − z)−1V ε

L . (6.4)

The operator Dε,ξ′(z) : L2((−1, 1);CN)→ L2((−1, 1);CN) has the explicit represen-
tation

Dε,ξ′(z)g(t) =

∫ 1

−1

( α̃′ · ξ′ +mβ + zIN√
z2 −m2 − |ξ′|2

+ α̃θsign(t− s)
)ieiε|t−s|√z2−m2−|ξ′|2

2
g(s) ds

for g ∈ L2((−1, 1);CN) and t ∈ (−1, 1). Recall that this operator was already derived
in a different way in Section 5.1.1; cf. Lemma 5.1, Proposition 5.2 and Definition 5.3.
In the following lemma we compare this operator with the operator H0,ξ′/|ξ′|(z) which
was defined in (5.30) and which is for ξ′ ∈ Rθ−1 \ {0}, g ∈ L2((−1, 1);CN) and
t ∈ (−1, 1) given by

H0,ξ′/|ξ′|g(t) =

∫ 1

−1

(
α̃′ · ξ

′

|ξ′|
+ iα̃θsign(t− s)

)1

2
g(s) ds.
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Lemma 6.2. Let ε > 0, 0 6= ξ′ ∈ Rθ−1 and z ∈ (−|m|, |m|). Then,

‖H0,ξ′/|ξ′| −Dε,ξ′(z)‖L2((−1,1);CN )→L2((−1,1);CN )

≤
√
N
(

4ε
√
m2 + |ξ′|2 +

2|m|
|ξ′|

+
m2

2|ξ′|2
)
.

Proof. Similarly as in Lemma 5.5, we prove the result by estimating the difference
of the kernels of both operators. This difference is given by

α̃′ · ξ′

2|ξ′|

(
1− i|ξ′|eiε|t−s|

√
z2−m2−|ξ′|2√

z2 −m2 − |ξ′|2

)
− i(mβ + zIN)eiε|t−s|

√
z2−m2−|ξ′|2

2
√
z2 −m2 − |ξ′|2

+ i
α̃θ
2
sign(t− s)(1− eiε|t−s|

√
z2−m2−|ξ′|2).

(6.5)

Before we estimate the individual terms of this sum, we mention that for a unitary
self-adjoint matrix A ∈ CN×N the Frobenius-norm is given by

|A|2 = tr(AA∗) = tr(IN) = N.

This applies in particular to α̃′ · ξ′|ξ′| , α̃θ, β and IN . Hence, the third term in (6.5) is
bounded by

√
N

2

∣∣∣1− eiε|t−s|√z2−m2−|ξ′|2
∣∣∣ ≤ ε

√
N
√
m2 + |ξ′|2 − z2 ≤ ε

√
N
√
m2 + |ξ′|2,

where we used z ∈ (−|m|, |m|) and |t− s| ≤ 2. The second term in (6.5) can be
estimated by √

N(|m|+ |z|)
2
√
|ξ′|2 +m2 − z2

≤
√
N |m|
|ξ′|

.

Finally, we estimate the first term in (6.5) by

√
N

2

∣∣∣1− eiε|t−s|√z2−m2−|ξ′|2
∣∣∣+

√
N
(√
|ξ′|2 +m2 − z2 − |ξ′|

)
2
√
|ξ′|2 +m2 − z2

≤ ε
√
N
√
m2 + |ξ′|2 +

√
N(m2 − z2)

2
√
|ξ′|2 +m2 − z2(

√
|ξ′|2 +m2 − z2 + |ξ′|)

≤ ε
√
N
√
m2 + |ξ′|2 +

√
Nm2

4|ξ′|2
,

where we used again z ∈ (−|m|, |m|) and |t− s| ≤ 2. Combining these results
shows that the kernel of H0,ξ′/|ξ′|(z) − Dε,ξ′(z) can be estimated by the expression
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√
N
(
2ε
√
m2 + |ξ′|2 + |m|

|ξ′| + m2

4|ξ′|2
)
. This estimate and the Schur test, see [44, Chap-

ter III, Example 2.4], yield

‖H0,ξ′/|ξ′| −Dε,ξ′(z)‖L2((−1,1);CN )→L2((−1,1);CN )

≤
∫ 1

−1

√
N
(

2ε
√
m2 + |ξ′|2 +

|m|
|ξ′|

+
m2

2|ξ′|2
)
dt

=
√
N
(

4ε
√
m2 + |ξ′|2 +

2|m|
|ξ′|

+
m2

2|ξ′|2
)
.

.

Lemma 6.3. Let q be as in (4.1), V = ηIN + τβ with η, τ ∈ R, d = η2 − τ 2 > 0,
and ξ′ ∈ Rθ−1 \ {0}. Then, the (nonzero) eigenvalues of H0,ξ′/|ξ′|V q are given by
λk = 2

√
d

(2k+1)π
, k ∈ Z.

Proof. Let λ ∈ C \ {0} and g ∈ L2((−1, 1);CN) such that H0,ξ′/|ξ′|V qg = λg, i.e.∫ 1

−1

(
α̃′ · ξ′|ξ′| + isign(t− s)α̃θ

)1

2
V q(s)g(s) ds = λg(t) ∀t ∈ (−1, 1).

Differentiating both sides gives us

iα̃θV qg = λg′. (6.6)

Hence, g(t) = exp
(
iα̃θ
λ
V Q(t)

)
v for a v ∈ CN \ {0}, where Q is the primitive function

of q chosen in such a way that Q(1) = −Q(−1) = 1
2
; cf. (4.37). Note that the

equation H0,ξ′/|ξ′|V qg = λg implies

g(1) + g(−1) =

∫ 1

−1

α̃′ · ξ′

|ξ′|λ
V q(s)g(s) ds

= − α̃
′ · ξ′

|ξ′|
iα̃θ

∫ 1

−1

iα̃θ
λ
V q(s) exp

(
iα̃θ
λ
V Q(t)

)
v ds.

(6.7)

Calculating the integral on the right-hand side leads to

g(1) + g(−1) = 2 cos
(
α̃θ
2λ
V
)
v = 2

α̃′ · ξ′

|ξ′|
α̃θ sin

(
α̃θ
2λ
V
)
v =

α̃′ · ξ′

|ξ′|λ
V sinc

(
α̃θ
2λ
V
)
v.

Noticing (α̃θV )2 = (α̃θ(ηIN + τβ))2 = dIN yields

cos
(√

d
2λ

)
v =

α̃′ · ξ′

2|ξ′|λ
(ηIN + τβ)sinc

(√
d

2λ

)
v.
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Thus, v 6= 0 implies

0 = det
(
cos
(√

d
2λ

)
IN − α̃′·ξ′

2|ξ′|λ(ηIN + τβ)sinc
(√

d
2λ

))
.

Now, using the rules from (5.23) and (5.24) shows that this is equivalent to

0 = det
((

cos
(√

d
2λ

)
IN − α̃′·ξ′

2|ξ′|λ(ηIN + τβ)sinc
(√

d
2λ

))
· β
(
cos
(√

d
2λ

)
IN − α̃′·ξ′

2|ξ′|λ(ηIN + τβ)sinc
(√

d
2λ

)))
= det

((
cos
(√

d
2λ

)
IN − α̃′·ξ′

2|ξ′|λ(ηIN + τβ)sinc
(√

d
2λ

))
·
(
cos
(√

d
2λ

)
IN + α̃′·ξ′

2|ξ′|λ(ηIN + τβ)sinc
(√

d
2λ

))
β
)

= det
((

cos
(√

d
2λ

)2 − d
4λ2 sinc(

√
d

2λ

)2
)β
)

=
(

cos
(√

d
2λ

)2 − sin
(√

d
2λ

)2
)N

det(β) = (cos
(√

d
2λ

)2 − sin
(√

d
2λ

)2
)N(−1)N/2

and therefore λ = 2
√
d

(2k+1)π
= λk for k ∈ Z.

Finally, let us shortly argue that every λk, k ∈ Z, is an eigenvalue of H0,ξ′/|ξ′|V q.
Taking the the same steps as before in the reverse direction one can construct a
nonzero smooth function g ∈ L2((−1, 1);CN) which fulfils (6.6) and (6.7) for λ = λk.
Integrating (6.6) over the intervals (−1, t) and (t, 1), subtracting these two integrals
and applying (6.7) gives us∫ t

−1

iα̃θV q(s)g(s) ds−
∫ 1

t

iα̃θV q(s)g(s) ds = λk
(
(g(t)− g(−1))− (g(1)− g(t))

)
= 2λkg(t)−

∫ 1

−1

α̃′ · ξ′

|ξ′|
V q(s)g(s) ds.

Hence, dividing by two and rearranging the terms leads to H0,ξ′/|ξ′|V qg = λkg; i.e.
λk is an eigenvalue of H0,ξ′/|ξ′|V q.

Lemma 6.4. Let q be as in (5.1), V = ηIN + τβ with η, τ ∈ R, d = η2 − τ 2 > π2

4

and HVε,ξ′, ξ′ ∈ Rθ−1, be defined by (6.3). Then, there exists an εcex > 0 such that
for all ε ∈ (0, εcex) and z ∈ (−|m|, |m|) exists a ξ′ε,z with z ∈ σp(HVε,ξ′ε,z).

Proof. Since η2−τ 2 > π2

4
> 0, we have sign(η) = sign(η+τ) = sign(η−τ). Moreover,

q ≥ 0 a.e. by assumption (5.1). Therefore, V q can be rewritten as sign(η)D2 with
D =

√
qdiag(

√
|η + τ |IN/2,

√
|η − τ |IN/2). Hence, the eigenvalues of Dε,ξ′(z)V q and

sign(η)DDε,ξ′(z)D, ξ′ ∈ Rθ−1, coincide. Now, (6.4) shows that in order to verify the
assertion, we have to prove that there exists an εcex > 0 such that for all ε ∈ (0, εcex)
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and z ∈ (−|m|, |m|) exists a ξ′ε,z with 1 ∈ σp(−sign(η)DDε,ξ′ε,z(z)D). Before we
proceed with the proof, we introduce two useful functions. Let S(L2((−1, 1);CN))
be the space of all self-adjoint and compact operators on L2((−1, 1);CN) equipped
with the operator norm topology. Note that Dε,ξ′(z) and H0,ξ′/|ξ′| are Hilbert-Schmidt
operators, since their kernels are bounded, which implies

sign(η)DDε,ξ′(z)D, sign(η)DH0,ξ′/|ξ′|D ∈ S(L2((−1, 1);CN)).

The mapping
λ0 : S(L2((−1, 1);CN))→ R

which maps a compact self-adjoint operator to its biggest nonnegative element of the
spectrum is continuous; see [33, Lemma 3.10]. Furthermore, we define for a fixed
ξ′0 ∈ Rθ−1 \ {0}, and z ∈ C \ R and ε > 0 the continuous function

µε,z : (0,∞)→ S(L2((−1, 1);CN)), r 7→ −sign(η)DDε,rξ′0
(z)D.

Our goal is to find r ∈ (0,∞) such that λ0 ◦ µε,z(r) = 1, as this implies that z is
an eigenvalue of the operator HVε,rξ′0

. Since Proposition 2.29 shows that the spectra
of −sign(η)DH0,ξ′/|ξ′|(z)D and −H0,ξ′/|ξ′|(ηIN + τβ)q coincide, Lemma 6.3 implies
λ0(−sign(η)DH0,ξ′/|ξ′|D) = 2

√
d

π
> 1. Moreover, as λ0 is continuous, there exists a

δ > 0 such that for all A ∈ S(L2((−1, 1);CN)) with

‖A+ sign(η)DH0,ξ′/|ξ′|D‖L2((−1,1);CN )→L2((−1,1);CN )
< δ

also λ0(A) > 1. According to Lemma 6.2 there exist εcex > 0 and rcex > 0 such that
for all ε ∈ (0, εcex) and all z ∈ (−|m|, |m|)

‖µε,z(rcex) + sign(η)DH0,ξ′/|ξ′|D‖L2((−1,1);CN )→L2((−1,1);CN )
< δ,

implying λ0 ◦ µε,z(rcex) > 1 for all ε ∈ (0, εcex) and all z ∈ (−|m|, |m|). Moreover,
it is easy to see that for fixed ε ∈ (0, εcex) and z ∈ (−|m|, |m|) the operator µε,z(r)
converges for r → ∞ in the operator norm to zero. Therefore, also λ0 ◦ µε,z(r) con-
verges for r →∞ to zero. Let us summarize, for ε ∈ (0, εcex) and z ∈ (−|m|, |m|) the
function λ0 ◦µε,z is continuous, λ0 ◦µε,z(rcex) > 1 and λ0 ◦µε,z(r)

r→∞−→ 0. Hence, there
exists an rε,z ∈ (rcex,∞) such that λ0 ◦ µε,z(rε,z) = 1 and therefore z ∈ σp(HVε,rε,zξ′0

).
Setting ξε,z := rε,zξ

′
0 concludes the proof.

Theorem 6.5. Let Σ = κ(Rθ−1×{y0}), i.e. Σ is an affine hyperplane, q as in (5.1),
V = ηIN + τβ with η, τ ∈ R, d = η2 − τ 2 > π2

4
and Vε be defined by (4.3). Then,

there exists an εcex > 0 such that σ(HVε) = R for all ε ∈ (0, εcex).

Proof. Let εcex > 0 be chosen as in Lemma 6.4. We claim that in this case for all z ∈ R
and ε ∈ (0, εcex) exists a ξ′ε,z ∈ Rθ−1 such that z ∈ σ(HVε,ξ′ε,z). If z ∈ (−|m|, |m|), then
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this follows from Lemma 6.4. Now, let us assume that z ∈ (−∞,−|m|] ∪ [|m|,∞).
The difference

HVε,0 −H0,0 = V
q̃
( ·
ε

)
ε

is a compactly supported L∞-function and therefore induces by [54, Theorem 3.27 (ii)]
a compact operator from H1(R;CN) = domH0,0 to L2(R;CN). Moreover, the graph
norm of H0,0 is equivalent to the H1(R;CN)-norm and hence V is relatively compact
with respect to the operator H0,0. Thus, [44, Chapter IV, Theorem 5.35] implies

(−∞,−|m|] ∪ [|m|,∞) = σ(H0,0) = σess(H0,0) = σess(HVε,0) ⊂ σ(HVε,0).

Hence, the claim that for all ε ∈ (0, εcex) and all z ∈ R exists a ξ′ε,z such that
z ∈ σ(HVε,ξ′ε,z) is valid.

We finish the proof by showing that z ∈ σ(HVε,ξ′ε,z) for a fixed ξ′ε,z implies z ∈ σ(HVε).
The assertion follows from Proposition 2.20 and the text above (6.3) if we can show
that for all δ > 0 exists a γδ > 0 such that (z − δ, z + δ) ∩ σ(HVε,ξ′) 6= ∅ for all
ξ′ ∈ B(ξ′ε,z, γδ). We assume that our claim is not true. In this case there exists a
δ′ > 0 and a sequence (ξ′n)n∈N such that ξ′n

n→∞−→ ξ′ε,z and (z−δ′, z+δ′)∩σ(HVε,ξ′n) = ∅
for all n ∈ N. Note that for w ∈ C \ R holds∥∥(HVε,ξ′ε,z − w)−1 − (HVε,ξ′n − w)−1

∥∥
L2(R;CN )→L2(R;CN )

=
∥∥(HVε,ξ′ε,z − w)−1α̃′ · (ξ′n − ξ′ε,z)(HVε,ξ′n − w)−1

∥∥
L2(R;CN )→L2(R;CN )

≤ 1

(Imw)2
|ξ′n − ξ′ε,z|

n→∞−→ 0,

i.e. HVε,ξ′n converges in the norm resolvent sense to HVε,ξ′ε,z . Moreover,

(z − δ′, z + δ′) ∩ σ(HVε,ξ′n) = ∅, n ∈ N,

and Proposition 2.25 (i) imply the contradiction (z − δ′, z + δ′) ∩ σ(HVε,ξ′ε,z) = ∅.

Using Theorem 6.5 leads us to the second counterexample concerning the norm re-
solvent convergence of HVε .

Corollary 6.6. Let the assumptions of Theorem 6.5 be satisfied and assume ad-
ditionally d 6= (2k + 1)2π2 for k ∈ N0. Moreover, let (η̃, τ̃) = tanc

(√
d

2

)
(η, τ),

d̃ = η̃ 2 − τ̃ 2 6= 4 and Ṽ = η̃IN + τ̃β. Then, HVε does not converge in the norm
resolvent sense to HṼ δΣ

for ε→ 0.

Proof. By Proposition 2.24 it is no restriction to assume m > 0. We prove this
corollary by contradiction. Thus, we assume thatHVε converges in the norm resolvent
sense to HṼ δΣ

. Then, Theorem 6.5 and Proposition 2.25 (i) imply σ(HṼ δΣ
) = R.
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However, this is not the case according to [18, Theorem 6.2 (c)] (θ = 2), where
HṼ δΣ

was defined and studied via direct integral methods, and [19, Theorem 4.1]
(θ = 3). Note that these two references only consider Σ = {0}×R and Σ = R2×{0},
respectively. However, by a suitable rotation and translation one can transform
HṼ δΣ

to a Dirac operator with a δ-shell potential supported on {0}×R or R2×{0},
respectively, and a different set of Dirac matrices; cf. [60, Proposition 4] and (6.2).
The exact form of the Dirac matrices does not influence the spectrum and therefore
the results from [18, 19] are also valid for the case Σ = κ(Rθ−1 × {y0}).

Having established a counterexample for the case where Σ is an affine hyperplane,
we consider the case where Σ is a special C2-surface containing a flat part in the next
theorem.

Theorem 6.7. Let Σ ⊂ Rθ be a special C2-surface as in Definition 2.1 and assume
additionally that there exist κ ∈ SO(θ), y0 ∈ R, δ > 0 and x′0 ∈ Rθ−1 such that
Σ ⊃ κ(B(x′0, δ) × {y0}), i.e. Σ contains a flat part. Moreover, let q be as in (5.1),
V = ηIN + τβ with η, τ ∈ R, d = η2 − τ 2 > π2

4
such that d 6= (2k+ 1)2π2 for k ∈ N0,

Vε be defined by (4.3), (η̃, τ̃) = tanc
(√

d
2

)
(η, τ), d̃ = η̃ 2 − τ̃ 2 6= 4 and Ṽ = η̃IN + τ̃β.

Then, HVε does not converge in the norm resolvent sense to HṼ δΣ
.

Proof. We prove this theorem by contradiction. Thus, we assume that HVε converges
in the norm resolvent sense to HṼ δΣ

and proceed as follows: In Step 1 we compare
the two operators HVε and H

V
Σy0,κ
ε

, where V Σy0,κ
ε is defined as Vε in (4.3) with Σ

substituted by Σy0,κ = κ(Rθ−1 × {y0}). Then, in Step 2, we construct a resolvent
formula for H

V
Σy0,κ
ε

in terms of (HVε − z)−1. Finally, in Step 3, we use this formula
to show that H

V
Σy0,κ
ε

converges to HṼ δΣy0,κ
for ε→ 0; this contradicts Corollary 6.6.

Step 1. As in (6.1) we can represent V Σy0,κ
ε , ε ∈ (0,∞), by

V
Σy0,κ
ε (x) = V

q̃
(
x̃θ
ε

)
ε

for x ∈ Rθ and x̃ = (x̃′, x̃θ) = κTx− y0eθ, (6.8)

where q̃ is the zero extension q to R and eθ is the θ-th Euclidean unit vector. Next,
we compare Vε and V

Σy0,κ
ε . To guarantee the well-definedness of Vε we assume

ε ∈ (0, εtub) with εtub > 0 as in Proposition 2.12. Let

x ∈ κ(B(x′0, δ)× (y0 − εtub, y0 + εtub)).

Then, x = κ(x̃′, y0) + x̃θκeθ for a vector x̃ = (x̃′, x̃θ) ∈ B(x′0, δ) × (−εtub, εtub). In
particular, through defining xΣ := κ(x̃′, y0) we get xΣ ∈ κ(B(x′0, δ)× {y0}) ⊂ Σ and
that ν(xΣ) = κeθ is the corresponding normal vector at this point. Hence, by setting
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t := x̃θ ∈ (−εtub, εtub), we have x = xΣ + tν(xΣ) ∈ Ωεtub , and by (4.3) and (6.8)

Vε(x) =

V q
(
x̃θ
ε

)
ε

, |x̃θ| < ε,

0, |x̃θ| ≥ ε,

= V
q̃
(
x̃θ
ε

)
ε

= V
Σy0,κ
ε (x),

implying

Vε � κ(B(x′0, δ)× (y0 − εtub, y0 + εtub))

= V
Σy0,κ
ε � κ(B(x′0, δ)× (y0 − εtub, y0 + εtub)).

(6.9)

In particular, if u ∈ L2(Rθ;CN) and suppu ⊂ κ(B(x′0, δ)× (y0−εtub, y0 +εtub)), then

Vεu = V
Σy0,κ
ε u and if u ∈ H1(Rθ;CN), then also HVεu = H

V
Σy0,κ
ε

u.

Step 2. Based on Step 1 we construct a resolvent for H
V

Σy0,κ
ε

in terms of (HVε − z)−1

in this step. We start by constructing a partition of unity for the strip

κ
(
Rθ−1 ×

(
y0 − εtub

4
, y0 + εtub

4

))
.

To do so, let (φan′)n′∈Zθ−1 with fixed a ∈ (0,max{1, δ
3
}) be the partition of unity for

Rθ−1 from Corollary A.3 (for n = θ− 1). Moreover, let (ϑan′)n′∈Zθ−1 be also chosen as
in Corollary A.3. These sequences possess the following properties:

suppφan′ ⊂ B(an′, a), suppϑan′ ⊂ B(an′, 3a) and φan′ϑ
a
n′ = φan′ for all n

′ ∈ Zθ−1.

Moreover, the W 1
∞-norms of φan′ and ϑan′ are uniformly bounded with respect to

n′ ∈ Zθ−1. Now, we choose a function % ∈ C∞0 (R) such that 0 ≤ % ≤ 1, % = 1 on
(y0 − εtub

4
, y0 + εtub

4
) and supp % ⊂ (y0 − εtub

2
, y0 + εtub

2
), and define for n′ ∈ Zθ−1

ψan′ := (φan′ ⊗ ρ)(κT (·)− y0eθ) as well as ςan′ :=
(
ϑan′ ⊗ %( ·

2
)
)
(κT (·)− y0eθ).

Then, (ψan′)n′∈Zθ−1 is a partition of unity for κ
(
Rθ−1 × (y0 − εtub

4
, y0 + εtub

4
)
)
, the

inclusions
suppψan′ ⊂ κ

(
B(an′, a)× (y0 − εtub

2
, y0 + εtub

2
)
)
,

supp ςan′ ⊂ κ
(
B(an′, 3a)× (y0 − εtub, y0 + εtub)

)
,

hold and ψan′ςan′ = ψan′ for all n′ ∈ Zθ−1. Now, let the unitary translation operator Tn′ ,
n′ ∈ Zθ−1, which translates the argument of a function parallel to Σy0,κ, be given by

Tn′ : L2(Rθ;CN)→ L2(Rθ;CN), Tn′u(x) = u(x+ κ(an′ − x′0, 0)).
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As Tn′ translates the argument of a function parallel to Σy0,κ, we see with the help
of (6.8) that V Σy0,κ

ε commutes with Tn′ . Hence, also H
V

Σy0,κ
ε

commutes with Tn′ .
Moreover, for all n′ ∈ Zθ−1 and u ∈ L2(Rθ;CN) the inclusions

suppTn′ψan′u ⊂ κ
(
B(x′0, a)× (y0 − εtub

2
, y0 + εtub

2
)
)
,

suppTn′ςan′u ⊂ κ
(
B(x′0, 3a)× (y0 − εtub, y0 + εtub)

)
,

are valid. These considerations and (6.9) show that we have for all n′ ∈ Zθ−1 and
u ∈ H1(Rθ−1;CN)

H
V

Σy0,κ
ε

ςan′u = T−1
n′ HV

Σy0,κ
ε

Tn′ς
a
n′u = T−1

n′ HVεTn′ς
a
n′u. (6.10)

We define ψ := 1−
∑

n′∈Z ψ
a
n′ . By definition ψ = 0 on κ

(
Rθ−1× (y0− εtub

4
, y0 + εtub

4
)
)
.

Consequently, Hψu = H
V

Σy0,κ
ε

ψu for u ∈ H1(Rθ−1;CN) and ε ∈ (0, εtub
4

).

Next, we introduce for a fixed z ∈ C \ R and for ε ∈ (0, εtub
4

) the two series

Rε,1 := (H − z)−1ψ +
st.∑

n′∈Zθ−1

ψan′T
−1
n′ (HVε − z)−1Tn′ς

a
n′ ,

Rε,2 := (H − z)−1i(α · ∇ψ) +
st.∑

n′∈Zθ−1

ψan′T
−1
n′ (HVε − z)−1Tn′i(α · ∇ςan′).

We claim that both Rε,1 and Rε,2 are well-defined acting as operators in L2(Rθ;CN).
Setting An′ := ψan′T

−1
n′ (HVε − z)−1Tn′ς

a
n′ and using the properties of ψn′ and ϑn′

shows that for every n′0 ∈ Zθ−1 exist at most 7θ−1 indices n′ ∈ Zθ−1 such that
An′0A

∗
n′ 6= 0 and A∗n′0An′ 6= 0. Hence, Lemma C.2 implies that the family of operators

(A)n′∈Zθ−1 = (ψan′T
−1
n′ (HVε − z)−1Tn′ς

a
n′)n′∈Zθ−1 is strongly summable and therefore

st.∑
n′∈Zθ−1

ψan′T
−1
n′ (HVε − z)−1Tn′ς

a
n′

is well-defined and its norm is bounded by

C sup
n′∈Zθ−1

∥∥ψan′T−1
n′ (HVε − z)−1Tn′ς

a
n′

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ C sup
n′∈Zθ−1

∥∥T−1
n′ (HVε − z)−1Tn′

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

= C
∥∥(HVε − z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

.

Thus, Rε,1 is bounded by

C
(∥∥(H − z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

+
∥∥(HVε − z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

)
.
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Similar arguments and the fact that the derivatives of ςan′ are uniformly bounded with
respect to n′ ∈ Zθ−1 show that Rε,2 is well-defined and bounded by the same expres-
sion. Moreover, by choosing Im z big enough (independent of ε) we can guarantee
‖Rε,2‖L2(Rθ;CN )→L2(Rθ;CN ) <

1
2
and hence I + Rε,2 is boundedly invertible. Next, we

show that (I + Rε,2)−1Rε,1 is the inverse of HΣy0,κ
Vε

− z. We do this by determining
(I + Rε,2)−1Rε,1(H

V
Σy0,κ
ε

− z)u for u ∈ H1(Rθ;CN). The product rule gives us

ςan′HV
Σy0,κ
ε

u = H
V

Σy0,κ
ε

ςan′u+ i(α · ∇ςan′)u and ψHu = Hψu+ i(α · ∇ψ)u.

Combining this observation with (6.10) yields

(I + Rε,2)−1Rε,1(H
V

Σy0,κ
ε

− z)u

= (I + Rε,2)−1
(

(H − z)−1ψ(H
V

Σy0,κ
ε

− z)u

+
st.∑

n′∈Zθ−1

ψan′T
−1
n′ (HVε − z)−1Tn′ς

a
n′(HV

Σy0,κ
ε

− z)u
)

= (I + Rε,2)−1
(

(H − z)−1(H
V

Σy0,κ
ε

− z)ψu

+
st.∑

n′∈Zθ−1

ψan′T
−1
n′ (HVε − z)−1Tn′(HV

Σy0,κ
ε

− z)ςan′u

+
st.∑

n′∈Zθ−1

(H − z)−1i(α · ∇ψ)u

+
st.∑

n′∈Zθ−1

ψan′T
−1
n′ (HVε − z)−1Tn′i(α · ∇ςan′)u

)
= (I + Rε,2)−1

(
(H − z)−1(H − z)ψu

+
st.∑

n′∈Zθ−1

ψan′T
−1
n′ (HVε − z)−1Tn′T

−1
n′ (HVε − z)Tn′ς

a
n′u+ Rε,2u

)
= (I + Rε,2)−1

(
ψu+

st.∑
n′∈Zθ−1

ψan′ς
a
n′u+ Rε,2u

)
= (I + Rε,2)−1(I + Rε,2)u = u.

(6.11)

Hence, (I + Rε,2)−1Rε,1 is indeed the inverse of HΣy0,κ
Vε

− z.
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Step 3. Similarly as we defined Rε,1 and Rε,2, we also introduce

R0,1 := (H − z)−1ψ +
st.∑

n′∈Zθ−1

ψan′T
−1
n′ (HṼ δΣ

− z)−1Tn′ς
a
n′ ,

R0,2 := (H − z)−1i(α · ∇ψ) +
st.∑

n′∈Zθ−1

ψan′T
−1
n′ (HṼ δΣ

− z)−1Tn′i(α · ∇ςan′).

Applying Lemma C.2 shows on the one hand that these operators are bounded by

C
(∥∥(H − z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

+ sup
n′∈Zθ−1

∥∥T−1
n′ (HṼ δΣ

− z)−1Tn′
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

)
= C

(∥∥(H − z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

+
∥∥(HṼ δΣ

− z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

)
and on the other hand that the differences Rε,2 −R0,2 and Rε,1 −R0,1 are bounded
by

C
∥∥ (HVε − z)−1 − (HṼ δΣ

− z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

ε→0−→ 0.

Hence, (H
V

Σy0,κ
ε

− z)−1 = (I + Rε,2)−1Rε,1 converges to (I + R0,2)−1R0,1 in the op-
erator norm. It remains to prove (I + R0,2)−1R0,1 = (HṼ δΣy0,κ

− z)−1. We start by
noticing that HṼ δΣy0,κ

also commutes with Tn′ , n′ ∈ Zθ−1, since Tn′ translates the

argument of a function only along Σy0,κ and Ṽ is constant. According to Lemma 5.19
u ∈ domHṼ δΣy0,κ

(or equivalently Tn′u = u((·) + κ(an′ − x′0, 0)) ∈ domHṼ δΣy0,κ
for a

n′ ∈ Zθ−1) implies Tn′ςan′u = ςan′((·)+κ(an′−x′0, 0))u((·)+κ(an′−x′0, 0)) ∈ domHṼ δΣ
and

HṼ δΣy0,κ
ςan′u = T−1

n′ HṼ δΣy0,κ
Tn′ς

a
n′u = T−1

n′ HṼ δΣ
Tn′ς

a
n′u,

ςan′HṼ δΣy0,κ
u = HṼ δΣy0,κ

ςan′u+ i(α · ∇ςan′)u.

Using these observations one shows (HṼ δΣy0,κ
− z)−1 = (I + R0,2)−1R0,1 in the same

way as in (6.11).



7 Consequences of the approximation results

In this chapter we present various consequences of the approximation results shown
in Chapter 4 and Chapter 5. In particular, in Section 7.1, we show a scheme to
approximate Dirac operators with δ-shell potentials that induce confinement; cf. [65]
for the one-dimensional counterpart. Furthermore, in Section 7.2, we transfer results
from Dirac operators with δ-shell potentials to Dirac operators with strongly localized
potentials to study their discrete and essential spectrum.

7.1 Approximation of Dirac operators with δ-shell potentials
that induce confinement

In Corollary 5.22 we saw that all Dirac operators with δ-shell potentials and inter-
action matrices of the form Ṽ = η̃IN + τ̃β, η̃, τ̃ ∈ C1

b (Σ;R), with d̃ = η̃ 2 − τ̃ 2,
satisfying

sup
xΣ∈Σ
|d̃(xΣ)| < 4 or inf

xΣ∈Σ
|d̃(xΣ)| > 4

can be approximated by Dirac operators with strongly localized potentials. However,
this excludes the case where d̃ = η̃ 2 − τ̃ 2 = −4. According to Proposition 3.15 (ii)
this is a particular interesting case as it induces confinement, i.e. the operator HṼ δΣ

splits into the orthogonal sum H+

Ṽ
⊕H−

Ṽ
with

domH±
Ṽ

= {u± ∈ H1(Ω±;CN) : (2IN ∓ i(α · ν)Ṽ )t±Σu± = 0} ⊂ L2(Ω±;CN),

H±
Ṽ
u± = −i(α · ∇)u± +mβu±,

which means on a physical level that Σ becomes impermeable for a particle. This
raises the question whether there is also a way to approximate such Dirac operators by
Dirac operators with strongly localized potentials. Inspired by the rescaling formula
in (5.6) one would have to choose V = ηIN + τβ with d = η2 − τ 2 = −∞ as the
interaction matrix in the approximating operators to obtain a Dirac operator with
δ-shell potential and d̃ = η̃ 2− τ̃ 2 = −4 in the limit. We rigorously realize this idea by
choosing ε-dependent interaction strengths ηε and τε such that η2

ε−τ 2
ε
ε→0−→ −∞. The

same approach was used in [65, Chapter 3] when dealing with the one-dimensional
case.
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We begin by explaining the setting. We choose q as in (5.1), V = ηIN + τβ with
η, τ ∈ C1

b (Σ;R) and assume that Vε is defined as in (4.3). Moreover, we set d = η2−τ 2,
assume

sup
xΣ∈Σ

d(xΣ) < 0 and sign(τ) = const., (7.1)

and fix a continuous function f : (0, εtub) → (0,∞), with εtub > 0 from Proposi-
tion 2.12, which satisfies the condition

lim
ε→0

f(ε) =∞ and lim
ε→0

f(ε)4ε1/2−r = 0 (7.2)

for an r ∈ (0, 1
2
). We also introduce the ε-depend interaction strengths

(ηε, τε) = f(ε)(η, τ) and dε = η2
ε − τ 2

ε = f(ε)2d. (7.3)

Then, f(ε)V = ηεIN +τεβ. Now, we are interested in the norm resolvent convergence
of the operator Hf(ε)Vε . Note that for a fixed ε0 ∈ (0, εtub) Hf(ε0)Vε converges by
Theorem 5.20 in the norm resolvent sense to HṼε0δΣ

for ε→ 0 with

Ṽε0 := tanc
(√dε0

2

)
f(ε0)V.

Our goal is to prove that the limit of Hf(ε)Vε is the operator HṼ δΣ
with

Ṽ = lim
ε→0

Ṽε = lim
ε→0

tanc
(√

dε
2

)
f(ε)V

= lim
ε→0

2 tan
(
f(ε)
√
d

2

)
f(ε)
√
d

f(ε)V =
2i√
d
V =

2√
|d|
V.

Consequently, Ṽ = η̃IN + τ̃β with (η̃, τ̃) = 2√
|d|

(η, τ) and therefore d̃ = η̃ 2− τ̃ 2 = −4,

i.e. HṼ δΣ
induces confinement.

We start by proving several preparatory statements.

Lemma 7.1. Let q be as in (5.1), V = ηIN + τβ with η, τ ∈ C1
b (Σ;R) satisfy (7.1),

Vε be defined by (4.3), f(ε) be the function from (7.2) and z ∈ C \ R. Moreover,
let Ṽε = tanc(

√
dε
2

)f(ε)V , Ṽ = 2√
|d|
V and dinf := infxΣ∈Σ

√
|d(xΣ)| > 0, where

d = η2 − τ 2 and dε = f(ε)2d. Then, HṼεδΣ
and HṼ δΣ

are self-adjoint and there exists
an εconf,1 ∈ (0, εtub) such that

‖(HṼ δΣ
− z)−1 − (HṼεδΣ

− z)−1‖
L2(Rθ;CN )→L2(Rθ;CN )

≤ Cf(ε)e−f(ε)dinf

for all ε ∈ (0, εconf,1).



7.1 Approximation in the confinement case 135

Proof. The interaction strengths corresponding to the interaction matrix Ṽε are given
by (η̃ε, τ̃ε) = tanc(

√
dε
2

)(ηε, τε). Using (ηε, τε) = f(ε)(η, τ) and d(xΣ) < 0, xΣ ∈ Σ,
yields

d̃ε(xΣ) = η̃ε(xΣ)2 − τ̃ε(xΣ)2

= 4 tan
(
f(ε)
√
d(xΣ)

2

)2

= −4 tanh
(
f(ε)

√
|d(xΣ)|

2

)2

≤ −4 tanh
(
f(ε)dinf

2

)2

< 0

for all xΣ ∈ Σ. Moreover, by construction d̃ = −4. Thus, Proposition 3.14 implies
that both HṼεδΣ

and HṼ δΣ
are self-adjoint, and that I + CzṼε as well as I + CzṼ are

continuously invertible in H1/2(Σ;CN). Moreover, the resolvent formulas

(HṼεδΣ
− z)−1 = (H − z)−1 − ΦzṼε(I + CzṼε)−1Φ∗z,

(HṼ δΣ
− z)−1 = (H − z)−1 − ΦzṼ (I + CzṼ )−1Φ∗z,

hold by Proposition 3.14. Thus, the difference of the resolvents is given by

−ΦzṼε(I + CzṼε)−1Φ∗z + ΦzṼ (I + CzṼ )−1Φ∗z

= Φz(Ṽ − Ṽε)(I + CzṼ )−1Φ∗z + ΦzṼε
(
(I + CzṼ )−1 − (I + CzṼε)−1

)
Φ∗z.

(7.4)

Simple calculations show

Ṽε = tanc
(√

dε
2

)
f(ε)V = 2

tan
(√

dε
2

)
√
dε

f(ε)V

= 2
tanh

(
f(ε)

√
|d|

2

)
f(ε)

√
|d|

f(ε)V = tanh
(
f(ε)

√
|d|

2

)
Ṽ .

Thus, applying Proposition 2.2 (iv) and (v) yields

‖Ṽε−Ṽ ‖W 1
∞(Σ;CN×N ) ≤ C‖ tanh

(
f(ε)

√
|d|

2

)
− 1‖W 1

∞(Σ)‖Ṽ ‖W 1
∞(Σ;CN×N )

≤ C‖ tanh
(
f(ε) ·

2

)
− 1‖W 1

∞((dinf ,∞))‖
√
|d|‖W 1

∞(Σ)‖Ṽ ‖W 1
∞(Σ;CN×N )

≤ C‖ tanh
(
f(ε) ·

2

)
− 1‖W 1

∞((dinf ,∞)).

The expression ‖tanh
(
f(ε) ·

2

)
− 1‖

W 1
∞((dinf ,∞))

is smaller than

‖ tanh
(
f(ε) ·

2

)
− 1‖L∞((dinf ,∞)) +

f(ε)

2
‖ tanh′

(
f(ε) ·

2

)
‖L∞((dinf ,∞)).
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Next, we estimate the two summands separately. We start with the first one. For
t ∈ (dinf ,∞) the inequality

| tanh
(
f(ε) t

2

)
− 1| = 2

1 + ef(ε)t
≤ 2e−f(ε)t < 2e−f(ε)dinf

is valid. Hence, ‖ tanh
(
f(ε) ·

2

)
− 1‖L∞((dinf ,∞)) ≤ 2e−f(ε)dinf . For the second term we

obtain

| tanh′
(
f(ε) t

2

)
| = 1

cosh(f(ε)t/2)2
≤ e−f(ε)t < e−f(ε)dinf ∀t ∈ (dinf ,∞).

Consequently, ‖ tanh
(
f(ε) ·

2

)
− 1‖W 1

∞((dinf ,∞)) ≤ f(ε)e−f(ε)dinf and, in turn,

‖Ṽε − Ṽ ‖W 1
∞(Σ;CN×N ) ≤ Cf(ε)e−f(ε)dinf .

In particular, if εconf,1 ∈ (0, εtub) is small enough, then Proposition 2.2 (iii) and
Proposition 3.8 (i) give us for ε ∈ (0, εconf,1)

‖(I + CzṼ )−1‖H1/2(Σ;CN )→H1/2(Σ;CN )

· ‖Cz(Ṽε − Ṽ )‖H1/2(Σ;CN )→H1/2(Σ;CN ) ≤ C‖Ṽε − Ṽ ‖W 1
∞(Σ;CN ) ≤

1
2
.

Moreover, Proposition 2.28 yields for I + CzṼε = I + CzṼ + Cz(Ṽε − Ṽ )

‖(I + CzṼε)−1‖H1/2(Σ;CN )→H1/2(Σ;CN ) ≤ 2‖(I + CzṼ )−1‖H1/2(Σ;CN )→H1/2(Σ;CN ). (7.5)

Using the estimates from above, Proposition 3.6 (i) and (7.4) yield

‖(HṼ δΣ
− z)−1 − (HṼε

− z)−1‖L2(Rθ;CN )→L2(Rθ;CN )

≤ ‖Φz(Ṽε − Ṽ )(I + CzṼε)−1Φ∗z‖L2(Rθ;CN )→L2(Rθ;CN )

+ ‖ΦzṼε
(
(I + CzṼ )−1 − (I + CzṼε)−1

)
Φ∗z‖L2(Rθ;CN )→L2(Rθ;CN )

≤ C‖Ṽε − Ṽ ‖W 1
∞(Σ;CN×N )

+ ‖(I + CzṼ )−1 − (I + CzṼε)−1‖H1/2(Σ;CN )→H1/2(Σ;CN )

≤ Cf(ε)e−f(ε)dinf

+ ‖(I + CzṼ )−1Cz(Ṽε − Ṽ )(I + CzṼε)−1‖H1/2(Σ;CN )→H1/2(Σ;CN )

≤ C
(
f(ε)e−f(ε)dinf + ‖Ṽε − Ṽ ‖W 1

∞(Σ;CN×N )

)
≤ Cf(ε)e−f(ε)dinf ,

which completes the proof.
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Lemma 7.2. Let q be as in (5.1), V = ηIN + τβ with η, τ ∈ C1
b (Σ;R) satisfy (7.1),

f(ε) be as in (7.2), εconf,1 be as in the previous lemma, z ∈ C \ R, and B0(z) and
C0(z) be the operators from (4.26) and (4.21). Then,∥∥f(ε)V q(I +B0(z)f(ε)V q)−1C0(z)

∥∥
L2(Rθ;CN )→1/2

≤ Cf(ε)2,∥∥f(ε)V q(I +B0(z)f(ε)V q)−1C0(z)
∥∥
L2(Rθ;CN )→0

≤ Cf(ε),

for all ε ∈ (0, εconf,1).

Proof. The proof of both results is very similar. Thus, we only verify the first norm
estimate. We give some remarks on how to show the second result at the end of
the proof. By Proposition 3.15 (iii), Proposition 4.13 and Lemma 7.1, the operator
I +B0(z)f(ε)V q is continuously invertible in B1/2(Σ) and from (4.48) we get

f(ε)V q(I +B0(z)f(ε)V q)−1C0(z) =

f(ε)V q cos
(
(α · ν)f(ε)V

2

)−1
exp(−i(α · ν)f(ε)V Q)J(I + CzṼε)−1Φ∗z,

with Ṽε from Lemma 7.1 and Q(t) = −1
2

+
∫ t
−1
q(t) dt for t ∈ (−1, 1); see (4.37).

We know from Proposition 3.6 that Φ∗z acts as a bounded operator from L2(Rθ;CN)
to H1/2(Σ;CN). Moreover, from the proof of the previous lemma, see (7.5), we
also know that ‖(I+CzṼε)−1‖H1/2(Σ;CN )→H1/2(Σ;CN ) is uniformly bounded with respect
to ε ∈ (0, εconf,1). Hence, using the boundedness of J acting as an operator from
H1/2(Σ;CN) to B1/2(Σ), see (2.10), Proposition 2.2 (iii) and Proposition 2.19 gives
us∥∥f(ε)V q(I +B0(z)f(ε)V q)−1C0(z)

∥∥
L2(Rθ;CN )→1/2

≤ C
∥∥f(ε)V q cos

(
(α · ν)f(ε)V

2

)−1
exp(−i(α · ν)f(ε)V Q)

∥∥
1/2→1/2

= Cf(ε)ess supt∈(−1,1)

∥∥V q(t) cos
(
(α · ν)f(ε)V

2

)−1

· exp(−i(α · ν)f(ε)V Q(t))
∥∥
H1/2(Σ;CN )→H1/2(Σ;CN )

≤ Cf(ε)ess supt∈(−1,1)

∥∥cos
(
(α · ν)f(ε)V

2

)−1

· exp(−i(α · ν)f(ε)V Q(t))
∥∥
W 1
∞(Σ;CN×N )

.

(7.6)

Next, we fix t ∈ (−1, 1). The identity ((α · ν)V )2 = dIN = −|d|IN and f(ε) > 0 lead
to

cos
(
(α · ν)f(ε)V

2

)−1
exp(−i(α · ν)f(ε)V Q(t))

=
cosh(f(ε)

√
|d|Q(t)) + (α · ν) V√

d
sinh(f(ε)

√
|d|Q(t))

cosh(f(ε)

√
|d|

2
)

.
(7.7)
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Applying Proposition 2.2 (v) and using ν ∈ C1
b (Σ;Rθ) ⊂ W 1

∞(Σ;Rθ) lets us estimate∥∥∥∥cosh(f(ε)
√
|d|Q(t)) + (α · ν) V√

d
sinh(f(ε)

√
|d|Q(t))

cosh(f(ε)

√
|d|

2
)

∥∥∥∥
W 1
∞(Σ;CN×N )

≤
∥∥∥∥cosh(f(ε)

√
|d|Q(t))

cosh(f(ε)

√
|d|

2
)

∥∥∥∥
W 1
∞(Σ;CN×N )

+ C

∥∥∥∥sinh(f(ε)
√
|d|Q(t))

cosh(f(ε)

√
|d|

2
)

∥∥∥∥
W 1
∞(Σ;CN×N )

≤ C
∥∥f(ε)

√
|d|‖W 1(Σ)

∥∥(∥∥∥∥cosh((·)Q(t))

cosh( ·
2
)

∥∥∥∥
W 1
∞((0,∞))

+

∥∥∥∥sinh((·)Q(t))

cosh( ·
2
)

∥∥∥∥
W 1
∞((0,∞))

)
≤ Cf(ε)

(∥∥∥∥cosh((·)Q(t))

cosh( ·
2
)

∥∥∥∥
W 1
∞((0,∞))

+

∥∥∥∥sinh((·)Q(t))

cosh( ·
2
)

∥∥∥∥
W 1
∞((0,∞))

)
.

(7.8)

Furthermore, |Q(t)| ≤ 1
2
for t ∈ (−1, 1) since q ≥ 0 a.e. and

∫ 1

−1
q(s) ds = 1 by (5.1).

Thus, ∥∥∥∥cosh((·)Q(t))

cosh( ·
2
)

∥∥∥∥
W 1
∞((0,∞))

+

∥∥∥∥sinh((·)Q(t))

cosh( ·
2
)

∥∥∥∥
W 1
∞((0,∞))

<∞.

Hence, using (7.7) and plugging (7.8) into (7.6) yields the first inequality of the claim.

Now, we shortly comment on how to prove the second inequality. According to
Proposition 3.15 (iii) and Proposition 4.13, I+B0(z)f(ε)V q is continuously invertible
in B0(Σ). Moreover, the same formula for f(ε)V q(I +B0(z)f(ε)V q)−1C0(z) is valid.
Since one deals with the B0(Σ) case now, one may estimate the norm of this expression
by

Cf(ε)ess supt∈(−1,1)

∥∥cos
(
(α · ν)f(ε)V

2

)−1
exp(−i(α · ν)f(ε)V Q(t))

∥∥
L∞(Σ;CN×N )

,

which, in turn, can be estimated with the help of (7.7) by Cf(ε).

Lemma 7.3. Let q be as in (5.1), V = ηIN + τβ with η, τ ∈ C1
b (Σ;R) satisfy (7.1),

f(ε) be as in (7.2), z ∈ C\R, Bε(z) be as in (4.8) and assume m sign(τ) > 0. Then,
there exists an εconf,2 ∈ (0, εABC), where εABC > 0 is chosen as in (4.19), such that
(I +Bε(z)f(ε)V q)−1 is continuously invertible in B0(Σ) and

‖f(ε)V q(I +Bε(z)f(ε)V q)−1‖0→0 ≤ Cf(ε)2

for all ε ∈ (0, εconf,2).

Proof. We start by mentioning 0 ∈ ρ(H) = C \
(
(−∞,−|m|] ∪ [|m|,∞)

)
as m 6= 0.

Thus, the operator B̃ε(0) = Bε(0)M−1
ε , ε ∈ (0, εABC), with Mε from (4.20), which
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was introduced in (4.27), is well-defined and because of (4.36) also self-adjoint in
B0(Σ). Now, let us explain the strategy of the proof. We split the proof into three
steps. In Step 1 we show the estimate∥∥(f(ε)−1β + sign(τ)DB̃ε(0)D)−1

∥∥
0→0
≤ f(ε) ∀ε ∈ (0, εεABC ), (7.9)

where
D =

√
qdiag(

√
|η + τ |IN/2,

√
|η − τ |IN/2).

In Step 2, we use Step 1 and V q = sign(τ)DβD, which is valid since q ≥ 0 a.e
and d(xΣ) = η(xΣ)2 − τ(xΣ)2 < 0 for all xΣ ∈ Σ by assumption, to show that the
expression

∥∥f(ε)V q(I+Bε(0)f(ε)V q)−1
∥∥

0→0
is bounded by Cf(ε). Lastly, in Step 3,

we perform the change from 0 to z in order to prove (7.9).

Step 1. We begin by calculating the square

(f(ε)−1β + sign(τ)DB̃ε(0)D)2 = f(ε)−2I + f(ε)−1sign(τ)D(βB̃ε(0) + B̃ε(0)β)D

+ (DB̃ε(0)D)2.

It is clear that (DB̃ε(0)D)2 is a nonnegative operator. We claim that the operator
sign(τ)D(βB̃ε(0) + B̃ε(0)β)D is also nonnegative. Using (4.8) and (4.27) yields

βB̃ε(0) + B̃ε(0)β = S−1
ε I−1

ε Uε(βR(0) +R(0)β)U∗ε IεSεM−1
ε

with R(0) being the inverse of the free Dirac operator H. Moreover, from Defini-
tion 3.2 one easily concludes

βR(0)+R(0)β = R(0)HβR(0)+R(0)β = R(0)β(−H+2mβ)R(0)+R(0)β = 2mR(0)2.

Consequently, we get with (4.8) and (4.25)

βB̃ε(0) + B̃ε(0)β = 2mCε(0)(Cε(0))∗.

Therefore, the assumptionm sign(τ) > 0 guarantees that sign(τ)D(βB̃ε(0)+B̃ε(0)β)D

is a nonnegative operator in B0(Σ). Thus, the norm of (f(ε)−1β + sign(τ)DB̃ε(0)D)−2

is bounded by f(ε)2. Furthermore, since f(ε)−1β + sign(τ)DB̃ε(0)D is self-adjoint,
we also have∥∥(f(ε)−1β+sign(τ)DB̃ε(0)D)−1

∥∥
0→0

=
(∥∥(f(ε)−1β + sign(τ)DB̃ε(0)D)−2

∥∥
0→0

)1/2

≤ f(ε)

proving (7.9).
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Step 2. Next, we choose εconf,2 ∈ (0, εABC) sufficiently small such that

‖D(B̃ε(0)−Bε(0))D‖0→0 = ‖DBε(0)(M−1
ε − I)D‖0→0 ≤

1

2f(ε)

for all ε ∈ (0, εconf,2). This is possible according to Lemma 4.7 and Proposition 4.10.
Then, by Proposition 2.28 the operator f(ε)−1β + sign(τ)DBε(0)D is also continu-
ously invertible in B0(Σ) and the estimate∥∥(f(ε)−1β + sign(τ)DBε(0)D)−1

∥∥
0→0

≤
∥∥(f(ε)−1β + sign(τ)DB̃ε(0)D)−1

∥∥
0→0

1−
∥∥(f(ε)−1β + sign(τ)DB̃ε(0)D)−1

∥∥
0→0
‖sign(τ)D(Bε(0)− B̃ε(0))D‖0→0

≤ f(ε)

1− f(ε)
2f(ε)

= 2f(ε) ∀ε ∈ (0, εconf,2)

is valid. Therefore, I+ f(ε)sign(τ)βDBε(0)D = f(ε)β(f(ε)−1β+ sign(τ)βDBε(0)D)
is also continuously invertible in B0(Σ) and its inverse is uniformly bounded by 2.
Hence, by Proposition 2.29 and V q = sign(τ)DβD the operator I + Bε(0)f(ε)V q is
also continuously invertible in B0(Σ) and∥∥f(ε)V q(I+Bε(0)f(ε)V q)−1

∥∥
0→0

=
∥∥f(ε)D(I + f(ε)sign(τ)βDBε(0)D)−1sign(τ)βD

∥∥
0→0

≤ Cf(ε)

(7.10)

for all ε ∈ (0, εconf,2).

Step 3. In this step we perform the change from 0 to z ∈ C \ R. We start with the
following observation

Bε(z)−Bε(0) = S−1
ε I−1

ε Uε(R(z)−R(0))U∗ε IεSε
= zS−1

ε I−1
ε UεR(z)R(0)U∗ε IεSε = zCε(z)Aε(0),

where we used R(z)−R(0) = zR(z)R(0) and (4.8). Next, we calculate

(I +Bε(z)f(ε)V q)(I +Bε(0)f(ε)V q)−1

= (I + (Bε(0) + zCε(z)Aε(0))f(ε)V q)(I +Bε(0)f(ε)V q)−1

= I + zCε(z)Aε(0)f(ε)V q(I +Bε(0)f(ε)V q)−1

= I + z(Cε(z)− C0(z))Aε(0)f(ε)V q(I +Bε(0)f(ε)V q)−1

+ zC0(z)Aε(0)f(ε)V q(I +Bε(0)f(ε)V q)−1.

(7.11)
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Now, we aim to apply Proposition 2.30 for

A := I +Bε(z)f(ε)V q,

A0 := I +B0(z)f(ε)V q,

T := (I +Bε(0)f(ε)V q)−1,

K1 := z(Cε(z)− C0(z))Aε(0)f(ε)V q(I +Bε(0)f(ε)V q)−1,

K2 := zC0(z)Aε(0)f(ε)V q(I +Bε(0)f(ε)V q)−1.

Rewriting (7.11) in terms of these newly defined operators yields AT = I +K1 +K2.
Moreover, we can estimate K1 and (A0 − A)A−1

0 K2 with Proposition 4.8, Proposi-
tion 4.9, Proposition 4.10 and (7.10) by

‖K1‖0→0 = ‖z(Cε(z)− C0(z))Aε(0))f(ε)V q(I +Bε(0)f(ε)V q)−1‖0→0

≤ Cf(ε)‖Cε(z)− C0(z)‖L2(Rθ;CN )→0‖Aε(0)‖0→L2(Rθ;CN )

≤ Cf(ε)ε1/2−r

and

‖(A0 −A)A−1
0 K2‖0→0

= ‖z(B0(z)−Bε(z))f(ε)V q(I +B0(z)f(ε)V q)−1

· C0(z)Aε(0)f(ε)V q(I +Bε(0)f(ε)V q)−1‖0→0

≤ Cf(ε)‖Bε(z)−B0(z)‖1/2→0

· ‖f(ε)V q(I +B0(z)f(ε)V q)−1C0(z)‖L2(Rθ;CN )→1/2‖Aε(0)‖0→L2(Rθ;CN )

≤ Cf(ε)3ε1/2−r

for ε ∈ (0, εconf,2) as εconf,2 is chosen such that εconf,2 ∈ (0, εABC). In particular, since
f(ε)4ε1/2−r → 0 for ε → 0, see (7.2), we have ‖K1 + (A0 − A)A−1

0 K2‖0→0 ≤ 1
2
for

all ε ∈ (0, εconf,2) if εconf,2 ∈ (0, εABC) is sufficiently small. In turn, Proposition 2.30
implies that I +Bε(z)f(ε)V q has the bounded right inverse

(
T − A−1

0 K2

)(
I +K1 + (A0 −A)A−1

0 K2

)−1
,

which is its unique inverse according to Proposition 4.1 (i). Hence, Proposition 2.28,
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Proposition 4.9, Lemma 7.2 and (7.10) yield

‖f(ε)V q(I +Bε(z)V q)−1‖0→0 ≤ ‖f(ε)V q(T − A−1
0 K2)‖0→0

·
∥∥(I +K1 + (A0 −A)A−1

0 K2

)−1∥∥
0→0

≤ ‖f(ε)V q(T − A−1
0 K2)‖0→0

1− ‖K1 + (A0 −A)A−1
0 K2‖0→0

≤ 2‖f(ε)V q(T − A−1
0 K2)‖0→0

= 2
∥∥f(ε)V q(I +Bε(0)f(ε)V q)−1

− zf(ε)V q(I +B0(z)f(ε)V q)−1C0(z)Aε(0)f(ε)V q(I +Bε(0)f(ε)V q)−1
∥∥

0→0

≤ C
(

1 + |z|
∥∥f(ε)V q(I +B0(z)f(ε)V q)−1C0(z)Aε(0)

∥∥
0→0

)
· ‖f(ε)V q(I +Bε(0)f(ε)V q)−1‖0→0

≤ C
(

1 +
∥∥f(ε)V q(I +B0(z)f(ε)V q)−1C0(z)

∥∥
L2(Rθ;CN )→0

)
· ‖f(ε)V q(I +Bε(0)f(ε)V q)−1‖0→0

≤ C(1 + f(ε))f(ε)

≤ Cf(ε)2.

After providing all these preliminary results, we are ready to prove the main theorem
of Section 7.1.

Theorem 7.4. Let q be as in (5.1), V = ηIN +τβ with η, τ ∈ C1
b (Σ;R) satisfy (7.1),

Vε be defined by (4.3), f(ε) be as in (7.2) (with r ∈ (0, 1/2)), dinf be as in Lemma 7.1
and z ∈ C \ R. Moreover, set Ṽ = 2√

|d|
V , where d = η2 − τ 2. Then, the operator

HṼ δΣ
is self-adjoint and there exists an εconf > 0 and a C > 0 such that∥∥(Hf(ε)Vε−z)−1−(HṼ δΣ

−z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ C
(
f(ε)4ε1/2−r+f(ε)e−dinff(ε)

)
for all ε ∈ (0, εconf). In particular, Hf(ε)Vε converges to HṼ δΣ

in the norm resolvent
sense as ε→ 0.

Proof. Before we start, let us mention that we can w.l.o.g. assume sign(τ)m > 0
according to Proposition 2.24. Let εconf := min{εconf,1, εconf,2} with εconf,1 > 0 and
εconf,2 > 0 from Lemma 7.1 and Lemma 7.3, respectively. According to Lemma 7.1
HṼ δΣ

is self-adjoint and it suffices to show∥∥(Hf(ε)Vε − z)−1 − (HṼεδΣ
− z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ Cf(ε)4ε1/2−r,
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where Ṽε = tanc(
√
dε
2

)f(ε)V with dε = η2
ε − τ 2

ε as in (7.3). Similarly as in the
proof of Theorem 4.15, applying Proposition 4.8, Proposition 4.9, Proposition 4.10,
Lemma 7.2 and Lemma 7.3 lets us estimate∥∥(Hf(ε)Vε − z)−1 − (HṼεδΣ

− z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ ‖Aε(z)f(ε)V q(I +Bε(z)f(ε)V q)−1(Cε(z)− C0(z))‖L2(Rθ;CN )→L2(Rθ;CN )

+ ‖Aε(z)f(ε)V q(I +Bε(z)f(ε)V q)−1

· (Bε(z)−B0(z))f(ε)V q(I +B0(z)f(ε)V q)−1C0(z)‖L2(Rθ;CN )→L2(Rθ;CN )

+ ‖(Aε(z)− A0(z))f(ε)V q(I +B0(z)f(ε)V q)−1C0(z)‖L2(Rθ;CN )→L2(Rθ;CN )

≤ Cε1/2−r
(
‖f(ε)V q(I +Bε(z)f(ε)V q)−1‖0→0

+ ‖f(ε)V q(I +Bε(z)f(ε)V q)−1‖0→0

· ‖f(ε)V q(I +B0(z)f(ε)V q)−1C0(z)‖L2(Rθ;CN )→1/2

+ ‖f(ε)V q(I +B0(z)f(ε)V q)−1C0(z)‖L2(Rθ;CN )→0

)
≤ Cε1/2−r(f(ε)2 + f(ε)4 + f(ε))

≤ Cε1/2−rf(ε)4

for all ε ∈ (0, εconf).

We are now in a position to answer the question posed in the beginning of the current
section, namely, whether there is a way to approximate a given Dirac operator with δ-
shell potential which induces confinement by Dirac operators with strongly localized
potentials.

Corollary 7.5. Let q be as in (5.1), Ṽ = η̃IN + τ̃β with η̃, τ̃ ∈ C1
b (Σ;R) satisfy

d̃ = η̃ 2 − τ̃ 2 = −4 and sign(τ̃) = const., f(ε) be as in (7.2) (with r ∈ (0, 1/2)) and
z ∈ C \ R. Moreover, set V = υṼ for a υ ∈ C1

b (Σ;R) with infxΣ∈Σ υ(xΣ) > 0, and
let Vε be defined by (4.3) and dinf be as in Lemma 7.1. Then, the operator HṼ δΣ

is
self-adjoint and there exists an εconf > 0 and a C > 0 such that∥∥(Hf(ε)Vε−z)−1−(HṼ δΣ

−z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ C
(
f(ε)4ε1/2−r+f(ε)e−dinff(ε)

)
for all ε ∈ (0, εconf). In particular, Hf(ε)Vε converges to HṼ δΣ

in the norm resolvent
sense as ε→ 0.

Proof. The conditions in (7.1) are fulfilled by definition. Moreover, using d̃ = −4

and d = η2 − τ 2 = υ2(η̃ 2 − τ̃ 2) = υ2d̃ yields

2√
|d|
V =

2

υ

√
|d̃|
υṼ = Ṽ .

Therefore, the assertion follows from Theorem 7.4.
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7.2 Spectra of Dirac operators with strongly localized
potentials

In this section we investigate the discrete and essential spectrum of HVε . Since many
spectral results depend on the parameter m ∈ R, we write in this section H(m),
HṼ δΣ

(m) and HVε(m) instead of H, HṼ δΣ
and HVε , see Definition 3.2, Definition 3.12

and (4.4), to emphasize the m-dependence of these operators.

We start by presenting results for the case that Σ is bounded. The resolvent difference
of HVε(m) = H(m) + Vε and H(m) is for z ∈ ρ(H(m)) ∩ ρ(HVε(m)) given by

(H(m)− z)−1 − (HVε(m)− z)−1 = (HVε(m)− z)−1Vε(H(m)− z)−1.

In the case that Σ is bounded, Ωε, see Definition 2.7, is also bounded. Thus, Vε
is compactly supported and, in turn, induces a compact operator from H1(Rθ;CN)
to L2(Rθ;CN); cf. [54, Theorem 3.27 (ii)]. Moreover, (H(m) − z)−1 is a bounded
operator from L2(Rθ;CN) to H1(Rθ;CN); see Proposition 3.3 (iii). Thus, also the
resolvent difference is compact for z ∈ ρ(H(m)) ∩ ρ(HVε(m)). Therefore,

σess(HVε(m)) = σess(H) = σ(H) = (−∞,−|m|] ∪ [|m|,∞)

and σdisc(HVε(m)) ⊂ (−|m|, |m|). Next, we focus on special cases which allow us to
make more precise statements concerning the discrete spectrum. Here, we are par-
ticularly interested in cases which guarantee the existence of discrete eigenvalues.

Proposition 7.6. Let θ = 3, Σ ⊂ R3 be the boundary of a bounded C∞-smooth
domain, m ∈ R, V = τI4 with τ ∈ R and HVε(m) be as in the beginning of Section 7.2.
Then, the following holds:

(i) If τm ≥ 0 and δ ∈ (0, |m|), then σdisc(HVε(m)) ∩ [−|m| + δ, |m| − δ] = ∅ for
ε > 0 sufficiently small.

(ii) If τ 6= 0 and M ∈ N, then there exists for sufficiently large −sign(τ)m > 0 an
εm > 0 such that for all ε ∈ (0, εm) the operator HVε(m) has at least M discrete
eigenvalues counted with multiplicities.

Proof. If V = τI4, then d = −τ 2 ≤ 0 and therefore it follows from Theorem 5.20 that
HVε(m) converges for ε→ 0 to HṼ δΣ

(m) in the norm resolvent sense, where Ṽ = τ̃β
with

τ̃ = tanc
(√

d
2

)
τ = tanc

(√−τ2

2

)
τ =

2 tanh
( |τ |

2

)
|τ |

τ = 2 tanh
(
τ
2

)
.

Having established the convergence of HVε(m) we are able to prove (i) and (ii).
We start with (i). If τm ≥ 0, then also τ̃m ≥ 0 and hence according to [37,
Proposition 3.6 b)] the discrete spectrum of HṼ δΣ

(m) is empty. Moreover, since
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Σ is bounded we have σess(HVε(m)) = (−∞,−|m|] ∪ [|m|,∞) and thus by Proposi-
tion 2.25 (ii) σ(HṼ δΣ

(m)) = σess(HṼ δΣ
(m)) = (−∞,−|m|] ∪ [|m|,∞). Consequently,

Proposition 2.27 (i) implies

σdisc(HVε(m)) ∩ [−|m|+ δ, |m| − δ] = σ(HVε(m)) ∩ [−|m|+ δ, |m| − δ] = ∅

for ε > 0 sufficiently small.
Next, we consider (ii). We obtain from [37, Theorem 2.3 (e) and Corollary 4.4]
that HṼ δΣ

(m) has at least M discrete eigenvalues (counted with multiplicities) for
sufficiently large −sign(τ)m = −sign(τ̃)m > 0. Now, applying Proposition 2.26
yields assertion (ii).

After considering purely Lorentz scalar interaction strengths in Proposition 7.6, we
consider purely electrostatic interaction strengths in the next statement.

Proposition 7.7. Let θ = 3, Σ ⊂ R3 be the unit sphere, m = 1, V = ηI4 with
η ∈ (−π

2
, π

2
). Then, there holds the following:

(i) If |η| < 2 arctan(
√

5− 2) and δ ∈ (0, 1), then σdisc(HVε(1))∩ [−1 + δ, 1− δ] = ∅
for ε > 0 sufficiently small.

(ii) If |η| > 2 arctan(
√

5− 2), then σdisc(HVε(1)) 6= ∅ for ε > 0 sufficiently small.

Proof. The assumption η ∈ (−π
2
, π

2
) implies d = η2 < π2

4
and therefore Theorem 5.20

guarantees that HVε(1) converges for ε→ 0 to HṼ δΣ
(1) in the norm resolvent sense,

where Ṽ = η̃I4 with

η̃ = tanc
(√

d
2

)
η = tanc

(√η2

2

)
η =

2 tan
( |η|

2

)
|η|

η = 2 tan
(
η
2

)
.

If |η| < 2 arctan(
√

5 − 2), then |η̃| < 2
√

5 − 4 and hence [6, Theorem 1.1 and
Lemma 5.2 (iii)] show that the discrete spectrum of HṼ δΣ

(1) is empty. Now, the same
arguments as in the proof of Proposition 7.6 (i) yield assertion (i). If the inequality
|η| > 2 arctan(

√
5− 2) holds, then |η̃| > 2

√
5− 4 and thus σdisc(HṼ δΣ

(1)) 6= ∅ by [5,
(4.35)–(4.36) and the text below]. Consequently, Proposition 2.26 implies (ii).

Next, we consider the case where Σ is unbounded. In particular, we assume that Σ is
a non-self-intersecting C∞-smooth curve in R2 which coincides outside of a compact
set with a broken line with opening angle 2ω, ω ∈ (0, π

2
), which is given by

Γ̃ω = {r(cos(ω), sin(ω)) : r > 0} ∪ {r(cos(ω),− sin(ω)) : r > 0}.

In this setting the discrete eigenvalues of HṼ δΣ
(m) were studied in [10, Section 2.4].

In the upcoming two statements we use Theorem 5.20 to transfer these results from
HṼ δΣ

(m) toHVε(m). This allows us to provide conditions under whichHVε(m) admits
discrete eigenvalues.
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Proposition 7.8. Let θ = 2 and Σ be a non-self-intersecting C∞-curve which co-
incides outside of a compact set with Γ̃ω for a ω ∈ (0, π

2
), a < 0, η = τ = a

m
and

V = V (m) = ηI2 + τβ for m > 0. Then, the following holds:

(i) If δ ∈ (0,mm2−a2

m2+a2 ), then σess(HVε(m))∩ [−m+δ,mm2−a2

m2+a2 −δ] = ∅ for sufficiently
small ε > 0.

(ii) If m > 0 is sufficiently large, then there exists an εm > 0 such that for
ε ∈ (0, εm) the discrete spectrum of HVε(m) is not empty.

Proof. Under the assumptions of this proposition we have d = η2−τ 2 = a2

m2 − a2

m2 = 0

and therefore (η̃, τ̃) = tanc(
√
d

2
)(η, τ) = (η, τ). Thus, Theorem 5.20 implies that

HVε(m) converges for ε→ 0 to HV δΣ(m) in the norm resolvent sense. Moreover, [10,
Theorem 2.3 (ii) (c)] and rescaling the results from [10, Theorem 2.7] yields

σess(HV δΣ(m)) = (−∞,m] ∪ [mm2−a2

m2+a2 ,∞)

and σdisc(HV δΣ(m)) 6= ∅ for sufficiently large m > 0, respectively. Combining these
results with Proposition 2.27 and Proposition 2.26 concludes the proof of (i) and (ii),
respectively.

Proposition 7.9. Let θ = 2 and Σ be a non-self-intersecting C∞-curve which co-
incides outside of a compact set with Γ̃ω for a ω ∈ (0, π

2
), τ < 0, V = τβ and

τ̃ = 2 tanh(τ/2). Moreover, assume that τm < 0. Then, the following holds:

(i) If δ ∈ (0, |m|4−τ̃2

4+τ̃2 ), then σess(HVε(m)) ∩ [−|m|4−τ̃2

4+τ̃2 + δ, |m|4−τ̃2

4+τ̃2 − δ] = ∅ for
sufficiently small ε > 0.

(ii) For every M ∈ N exists an ωM ∈ (0, π
2
) and an εM > 0 such that for ε ∈ (0, εM)

the operator HVε(m) has at leastM discrete eigenvalues with multiplicities taken
into account.

Proof. If V = τI4, then it follows from Theorem 5.20 thatHVε(m) converges for ε→ 0

to HṼ δΣ
(m) in the norm resolvent sense, where Ṽ = τ̃β with τ̃ = 2 tanh

(
τ
2

)
∈ (−2, 2).

This also shows that the assumption τm < 0 implies τ̃m < 0. Hence, according to
[10, Corollary 2.5] the essential spectrum of HṼ δΣ

(m) is given by

σess(HVε(m)) = (−∞,−|m|4−τ̃2

4+τ̃2 ] ∪ [|m|4−τ̃2

4+τ̃2 ,∞)

and therefore Proposition 2.27 (ii) implies assertion (i). By [10, Theorem 2.8] and
[37, Theorem 2.3 (e)] there exists an ωM ∈ (0, π

2
) such that HṼ δΣ

(m) has at least M
discrete eigenvalues. Thus, assertion (ii) follows from Proposition 2.26
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We conclude this section by considering the case where the interaction matrix has
the form f(ε)V with V = ηIN + τβ, η, τ ∈ R, such that d = η2− τ 2 < 0 and f is the
monotonically decreasing function from (7.2). Recall that in this case the conditions
of Theorem 7.4 are met and therefore the operator Hf(ε)Vε(m) converges in the norm
resolvent sense to HṼ δΣ

(m) with Ṽ = 2√
|d|
V , which is a Dirac operator that induces

confinement; cf. Section 7.1.

Proposition 7.10. Let θ = 3, Σ ⊂ R3 be the boundary of a bounded C∞-smooth
domain, V = ηI4 + τβ with η, τ ∈ R fulfil d = η2 − τ 2 < 0 and m 6= 0. Then, the
following holds:

(i) If mτ > 0 and δ ∈ (0, |m|), then σdisc(Hf(ε)Vε(m)) ∩ [−|m|+ δ, |m| − δ] = ∅ for
sufficiently small ε > 0.

(ii) If η = 0 and M ∈ N, then for sufficiently large −sign(τ)m > 0 exists an
εm > 0 such that for ε ∈ (0, εm) the operator Hf(ε)Vε(m) has at least M discrete
eigenvalues counted with multiplicities.

Proof. According to Theorem 7.4 Hf(ε)Vε(m) converges for ε → 0 to HṼ δΣ
(m) in

the norm resolvent sense with Ṽ = η̃I4 + τ̃β, where (η̃, τ̃) = 2√
|d|

(η, τ). Hence,

if τ > 0, then τ̃ > 0 and therefore [11, Proposition 2.2] implies that the discrete
spectrum of HṼ δΣ

is empty if m > 0. Thus, for m > 0 assertion (i) follows from
Proposition 2.27; cf. the proof of Proposition 7.6 (i) for a analogous more detailed
proof. It remains to consider the case m < 0. The anticommutation rules from
(3.1) imply Hf(ε)Vε(m) = −βH−f(ε)Vε(−m)β and thus this case can be reduced to
the case m > 0. Now, let us consider (ii). Under the set of assumptions in (ii),
[3, Corollary 1.15] and [37, Remark 2.1, Theorem 2.3 (e)] imply that HṼ δΣ

(m) has
at least M discrete eigenvalues for sufficiently large −sign(τ)m. Consequently, (ii)
follows from Proposition 2.26.





8 Convergence of Dirac operators with semilocal potentials

In this chapter we approximate Dirac operators with δ-shell potentials by Dirac oper-
ators with so-called semilocal potentials. Before we define these semilocal potentials,
we motivate their definition by results regarding one-dimensional Dirac operators.

Recall that δ0 denotes the δ-potential supported in the point {0}. Furthermore, let
h ∈ L∞(R;R) ∩ L1(R;R) with

∫
R h(x) dx = 1 and hε := 1

ε
h( ·

ε
) for ε > 0. Then,

the multiplication operator induced by hε and the projection operator defined by
u 7→ hε(u, hε)L2(R) converge to δ0 viewed as operators from C∞0 (R) to (C∞0 (R))′,
i.e.

lim
ε→0

(C∞0 (R))′〈hεu, v〉C∞0 (R) = (C∞0 (R))′〈δ0u, v〉C∞0 (R)

= u(0)v(0)

= lim
ε→0

(C∞0 (R))′〈hε, u〉C∞0 (R) (C∞0 (R))′〈hε, v〉C∞0 (R)

= lim
ε→0

(C∞0 (R))′〈hε(u, hε)L2(R), v〉C∞0 (R)

for all u, v ∈ C∞0 (R). Similarly as in the multidimensional case, H + V hε converges
to HṼ δΣ

in the norm (or strong) resolvent sense for V = V ∗ ∈ C2×2; see [40, 41,
42, 67, 72] and Section 1.2. Surprisingly, it was shown in [34, Section 4] and [67]
that H +V hε(·, hε)L2(R) converges to HV δΣ in the norm resolvent sense, i.e. for these
kinds of nonlocal potentials there is no rescaling necessary. In [35] this idea was
picked up and used as an inspiration for the two and three-dimensional setting. In
the mentioned paper they considered (generalizations of) Dirac operators of the type
H + qεV (·, qε)L2(Rθ), where V = V ∗ ∈ CN×N and

qε(x) :=

{
1
ε
q
(
t
ε

)
, x = xΣ + tν(xΣ) ∈ Ωε,

0, x /∈ Ωε,

with q as in (4.1). It turns out that this family of operators converges to the operator
which is formally given by H + V δΣ C∞0 (Rθ)〈δΣ, ·〉C∞0 (Rθ) and can be realized as an
unperturbed Dirac operator on Ω+∪Ω− and via nonlocal transmission conditions on
Σ, i.e. transmission conditions which involve the integral over Σ; see also [33]. Hence,
on the one hand no renormalization of V is necessary but on the other hand the limit
operator is not the operator HV δΣ , which is the operator we aim to approximate.
This leads us to the definition of so-called semilocal potentials. They behave locally

149



150 8 Convergence of Dirac operators with semilocal potentials

with respect to the surface Σ and nonlocally with respect to the normal direction of
Σ and allow us to approximate HV δΣ without any rescaling.

Let us recall our general setting from the beginning of Chapter 4. Let Σ = ∂Ω± ⊂ Rθ

be a special C2-surface as in Definition 2.1, Ωε and ι be as in Definition 2.7, and
εtub ∈ (0,∞) be chosen as in Proposition 2.12. Moreover, recall from (4.1) and (4.2)
that q ∈ L∞((−1, 1);R) with

∫ 1

−1
q(t) dt = 1 and V = V ∗ ∈ W 1

∞(Σ;CN). In this
setting we define for ε ∈ (0, εtub)

Vε : L2(Rθ;CN)→ L2(Rθ;CN),

Vεu(x) :=


1
ε
q
(
t
ε

)
V (xΣ)

∫ 1

−1
u(ι(xΣ, εs))q(s)

· det(I − sεW (xΣ)) ds, x = ι(xΣ, t) ∈ Ωε,

0, x /∈ Ωε.

(8.1)

Note that the expression det(I − sεW (xΣ)), which is defined below Definition 2.11
and stems from the usage of the tubular coordinates (xΣ, t), plays a secondary role as
it converges to one for ε → 0; see Proposition 2.12. However, the term is necessary
to guarantee the self-adjointness of Vε.

8.1 General interactions

In this section we consider HVε = H + Vε for general V = V ∗ ∈ W 1
∞(Σ;CN×N). It

turns out that we can represent the resolvent of HVε in a similar way as the resolvent
of HVε in Proposition 4.1. This allows us to transfer the convergence results from the
local to the semilocal case.

We use the operators J, Iε, Sε, Uε and Mε, see (2.10), (4.5)–(4.7) and (4.20), to
express Vεu for u ∈ L2(Rθ;CN) and x = ι(xΣ, t) ∈ Ωε by

Vεu(x) =
1

ε
q
(
t
ε

)
V (xΣ)

∫ 1

−1

u(ι(xΣ, εs))q(s) det(I − sεW (xΣ)) ds

=
1

ε
q
(
t
ε

)
V (xΣ)

∫ 1

−1

q(s)
(
MεS−1

ε I−1
ε Uεu

)
(s)(xΣ) ds

=
1

ε
q
(
t
ε

)(
V J∗qMεS−1

ε I−1
ε Uεu

)
(xΣ)

=
1

ε

(
qJV J∗qMεS−1

ε I−1
ε Uεu

)(
t
ε

)
(xΣ)

=
1√
ε

(
IεSεqJV J∗qMεS−1

ε I−1
ε Uεu

)
(x)

=
(
U∗ε IεSεqJV J∗qMεS−1

ε I−1
ε Uεu

)
(x).
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For u ∈ L2(Rθ;CN) and x /∈ Ωε we trivially have

Vεu(x) = 0 =
(
U∗ε IεSεqJV J∗qMεS−1

ε I−1
ε Uεu

)
(x).

Thus,
Vε = U∗ε IεSεqJV J∗qMεS−1

ε I−1
ε Uε.

This representation implies that Vε is a bounded operator in L2(Rθ,CN) and with
the help of (IεSε)∗ = MεS−1

ε I−1
ε , see the lines above (4.25), one gets that Vε is self-

adjoint. Hence, similarly as in Section 4.1, we define for z ∈ ρ(H), R(z) = (H− z)−1

and ε ∈ (0, εtub)

Aε(z) := R(z)U∗ε IεSεqJ : L2(Σ;CN)→ L2(Rθ;CN),

Bε(z) := J∗qMεS−1
ε I−1

ε UεR(z)U∗ε IεSεqJ : L2(Σ;CN)→ L2(Σ;CN),

Cε(z) := J∗qMεS−1
ε I−1

ε UεR(z) : L2(Rθ;CN)→ L2(Σ;CN).

By definition, the identities

Aε(z) = Aε(z)qJ, Bε(z) = J∗qMεBε(z)qJ, Cε(z) = J∗qMεCε(z),

are valid, where Aε(z), Bε(z) and Cε(z) are the operators from (4.8). Applying
Proposition 3.11 for PL = U∗ε IεSεqJV , PR = J∗qMεS−1

ε I−1
ε Uε and Vε = PLPR yields

the following proposition.

Proposition 8.1. Let q and V be as in (4.1) and (4.2), Vε be defined by (8.1) for
ε ∈ (0, εtub), z ∈ ρ(H) and R(z) = (H − z)−1, where H is the free Dirac operator
introduced in Definition 3.2. Then, HVε is self-adjoint and the following holds:

(i) z ∈ σp(HVε) ⇐⇒ −1 ∈ σp(Bε(z)V ).

(ii) If −1 ∈ ρ(V Bε(z)), then z ∈ ρ(HVε) and

(HVε − z)−1 = R(z)− Aε(z)V (I +Bε(z)V )−1Cε(z).

Proposition 8.1 shows that the resolvent ofHVε has a similar structure as the resolvent
of HVε ; cf. Proposition 4.1 (ii). Moreover, the operators Aε(z), Bε(z) and Cε(z) are
strongly connected to the operators Aε(z), Bε(z) and Cε(z), respectively. We use
this connection to transfer the convergence results from the local operators to the
semilocal operators. Before we do so, we introduce the limit operators

A0(z) := Φz : L2(Σ;CN)→ L2(Rθ;CN),

B0(z) := Cz : L2(Σ;CN)→ L2(Σ;CN),

C0(z) := Φ∗z : L2(Rθ;CN)→ L2(Σ;CN).
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Proposition 8.2. Let z ∈ ρ(H) and ε ∈ (0, εABC) with εABC given by (4.19). Then,
the families of operators (Aε(z))ε∈(0,εABC), (Bε(z))ε∈(0,εABC) and (Cε(z))ε∈(0,εABC) are
uniformly bounded and for r ∈ (0, 1/2) holds

‖Aε(z)− A0(z)‖
L2(Rθ;CN )→L2(Σ;CN )

≤ Cε1/2−r,

‖Bε(z)−B0(z)‖
H1/2(Σ;CN )→L2(Σ;CN )

≤ Cε1/2−r,

‖Cε(z)− C0(z)‖
L2(Σ;CN )→L2(Rθ;CN )

≤ Cε1/2−r.

Furthermore, the operators Cε(z), ε ∈ (0, εABC), are also well-defined acting as op-
erators from L2(Rθ;CN) to H1/2(Σ;CN) and the corresponding operator norms are
uniformly bounded.

Proof. The assertions are direct consequences of Lemma 4.7, Proposition 4.8, Propo-
sition 4.9 and Proposition 4.10 if

A0(z) = A0(z)qJ, B0(z) = J∗qB0(z)qJ, C0(z) = J∗qC0(z). (8.2)

According to (4.24) we have A0(z) = ΦzJ
∗. Hence, A0(z)qJ = ΦzJ

∗qJ. Furthermore,∫ 1

−1
q(t) dt = 1, (2.10) and (2.11) give us for ψ ∈ L2(Σ;CN)

J∗qJψ =

∫ 1

−1

q(t)(Jψ)(t) dt =

∫ 1

−1

q(t) dt ψ = ψ, (8.3)

which shows A0(z)qJ = Φz = A0(z). Moreover, (4.21) and (8.3) also imply

J∗qC0(z) = J∗qJΦ∗z = Φ∗z = C0(z).

The representation for B0(z) in (4.38) and (8.3) yield

J∗qB0(z)qJ = J∗qT (α · ν)qJ + J∗qJCzJ∗qJ = J∗qT (α · ν)qJ + Cz.

Thus, it remains to show J∗qT (α · ν)qJ = 0. This follows from

J∗qT (α · ν)qJψ =

∫ 1

−1

q(t)
i

2

∫ 1

−1

sign(t− s)(α · ν)q(s)ψ ds dt

=

∫ 1

−1

∫ 1

−1

sign(t− s)q(t)q(s) ds dt i
2

(α · ν)ψ = 0 ∀ψ ∈ L2(Σ;CN).

Having stated these preliminary results, which were essentially consequences of Sec-
tion 4.3, we are able to present the main theorem of this section, which states condi-
tions under which HVε converges to HV δΣ in the norm resolvent sense.
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Theorem 8.3. Let q and V be as in (4.1) and (4.2), εABC > 0 be as in (4.19) and
assume that for some z ∈ ρ(H) the following conditions are fulfilled:

(i) There exists an εconv ∈ (0, εABC ] such that (I+Bε(z)V q)−1 exists for ε ∈ (0, εconv)
and is uniformly bounded in L2(Σ;CN).

(ii) The operator I + CzV is bijective in H1/2(Σ;CN).

Then, the operator HV δΣ is self-adjoint, z ∈ ρ(HV δΣ) ∩ ρ(HVε) for all ε ∈ (0, εconv)
and for any r ∈ (0, 1

2
) exists a C > 0 such that∥∥(HVε − z)−1 − (HV δΣ − z)−1

∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ Cε1/2−r

for ε ∈ (0, εconv). In particular, HVε converges to HV δΣ in the norm resolvent sense
as ε→ 0.

Proof. Since I+CzV is continuously invertible in H1/2(Σ;CN), it follows from Propo-
sition 3.14 that HV δΣ − z is invertible and

(HV δΣ − z)−1 = R(z)− ΦzV (I + CzV )−1Φ∗z
= R(z)− A0(z)V (I +B0(z)V )−1C0(z).

The rest of the proof can be shown in exactly the same way as Theorem 4.15 by
applying Proposition 8.1, Proposition 8.2 and using the spaces Hr(Σ;CN) instead
the spaces Br(Σ).

8.2 An explicit condition for electrostatic and Lorentz scalar
interactions

Similarly as in Chapter 5, we find an explicit convergence condition for the norm
resolvent convergence of HVε if V = ηIN + τβ with η, τ ∈ C1

b (Σ;R) in this section.
Our goal is to show that the conditions (5.1) and

sup
xΣ∈Σ

d(xΣ) < 4, d = η2 − τ 2, (8.4)

guarantees norm resolvent convergence. If (8.4) holds, then Proposition 3.15 (iii)
shows that (ii) of Theorem 8.3 is fulfilled for z ∈ C \ R. Thus, we only have to
consider (i) of Theorem 8.3. We proceed as follows: We show that if Σ is a rotated
C2
b -graph, then the operator (I + V Bε(z))−1 exists and is uniformly bounded in

L2(Σ;CN) with respect to ε. Then, (ii) of Theorem 8.3 is fulfilled and therefore HVε

converges in the norm resolvent sense to HV δΣ for ε→ 0. If Σ is a special C2-surface
as in Definition 2.1 one uses again a partition of unity to prove the main result of
this section which is Theorem 8.9.
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Recall from Section 5.1.2 that if Σ is a a rotated C2
b -graph, then there exists a function

ζ ∈ C2
b (Rθ;R) and a rotation matrix κ ∈ SO(Rθ) such that

Σ = Σζ,κ = {κ(x′, ζ(x′)) : x′ ∈ Rθ−1}.

As in Section 8.1, we make extensive use of the results known from the case of local
potentials; cf. Section 5.1. Thereby, we use the following notation: If O is one of the
operators introduced in (5.11) or (5.48), which act as bounded operators in B0(Rθ−1),
then we define the semilocal version of O through

O = J∗qOqJ : L2(Rθ−1;CN)→ L2(Rθ−1;CN). (8.5)

If O also acts as a bounded operator from Br(Rθ−1) to Br′(Rθ−1) with r, r′ ∈ [0, 1],
then the properties of J and q immediately imply

‖O‖Hr(Σ;CN )→Hr′ (Σ;CN ) ≤ 2‖q‖2
L∞((−1,1))‖O‖r→r′ . (8.6)

We aim to prove that (I +Bε(z)V )−1 is uniformly bounded in L2(Σ;CN) if ε is suffi-
ciently small. We show this in the same way as we proved the uniform boundedness
of (I + Bε(z)V q)−1 in Section 5.1. As almost all the steps are identical, with the
sole exception of Proposition 8.5, we keep this section as short as possible and refer
to Section 5.1 for details. To shorten notation and to emphasize the connection to
Section 5.1 we also write ‖·‖r→r′ instead of ‖·‖Hr(Rθ−1;CN )→Hr′ (Rθ−1;CN ) in the current
section.

Proposition 8.4. Let x′0 ∈ Rθ−1, ζ and κ be as in (5.42), ζx′0 be as in (5.46), q be as
in (4.1), η, τ ∈ C1

b (Σ;R), Qζ,κ
η,τ be as in (5.18), z ∈ ρ(H), ψ ∈ C1

b (Rθ−1), ε ∈ (0, εgr,1)

with εgr,1 chosen as in Lemma 5.12 and aε = ε1/6. Then, the operators Eε(z) and

[D
ζx′0

,κ

ε (z), ψ] act as bounded operators from L2(Rθ−1;CN) to H1(Rθ−1;CN) and

‖Eε(z)‖0→1 ≤ C
1 + |log(ε)|

aε
,∥∥[D

ζx′0
,κ

ε (z), ψ]
∥∥

0→1
≤ C‖ψ‖W 1

∞(Rθ−1)(1 + |log(ε)|),∥∥χB(x′0,3aε)

(
Dζ,κ
ε (z)Qζ,κ

η,τ −D
ζx′0

,κ

ε (z)Qζ,κ
η,τ (x

′
0)
)
χB(x′0,3aε)

∥∥
0→0
≤ Caε(1 + |log(ε)|),

where C > 0 does not depend on x′0 and ε.

Proof. The statement follows from Proposition 5.14 and (8.6).

In Proposition 8.5 we show that (I+D
ζx′0

,κ

ε (z)Qζ,κ
η,τ (x

′
0))−1 is uniformly bounded with

respect to ε and x′0 ∈ Rθ−1. This is the only proposition in the current section where
we apply a different proof strategy than in the analogous local statement given by
Proposition 5.15 in Section 5.1.



8.2 An explicit condition for electrostatic and Lorentz scalar interactions 155

Proposition 8.5. Let x′0 ∈ Rθ−1, ζ and κ be as in (5.42), ζx′0 be as in (5.46), q be as
in (5.1), η, τ ∈ C1

b (Σ;R), d = η2−τ 2 satisfy (8.4), Qζ,κ
η,τ be as in (5.18) and z ∈ C\R.

Then, there exists an εgr,1 > 0 such that the operators (I + D
ζx′0

,κ

ε (z)Qζ,κ
η,τ (x

′
0))−1 are

uniformly bounded with respect to ε ∈ (0, εgr,1) and x′0 ∈ Rθ−1.

Proof. Let us first assume that ζx′0 ≡ y0 ∈ R. Then, we get from (8.5), the comments
below (5.20) and Proposition 5.2 for ξ′ ∈ Rθ−1

(FDy0,κ
ε (z)F−1f)(ξ′) = (FD0,κ

ε (z)F−1f)(ξ′) =
α̃′ · ξ′ +mβ + zIN

2
√
z2 −m2 − |ξ′|2

ω(ξ′, ε),

where ω(ξ′, ε) = i
∫ 1

−1

∫ 1

−1
q(t)q(s)e|ε(t−s)|i

√
z2−m2−|ξ′|2 ds dt and α̃′ · ξ′ is defined as in

(5.22). Hence, the operator

I + FD
ζx′0

,κ

ε (z)F−1Qζ,κ
η,τ (x

′
0)

is a matrix multiplication operator induced by the matrix-valued function

Rθ−1 3 ξ′ 7→ IN +
α̃′ · ξ′ +mβ + zIN

2
√
z2 −m2 − |ξ′|2

ω(ξ′, ε)Qζ,κ
η,τ (x

′
0).

We define the function

R2 × Rθ−1 × (0,∞) 3 (η̂, τ̂ , ξ′, ε)

7→ p(η̂, τ̂ , ξ′, ε) := 1 + (η̂2 − τ̂ 2)
ω(ξ′, ε)2

4
+ (η̂z + τ̂m) ω(ξ′,ε)√

z2−m2−|ξ′|2
.

Now, using the rules from (5.23) and Qζ,κ
η,τ (x

′
0) = η(κζ,κ(x′0))IN + τ(κζ,κ(x′0))β yields

(
IN +

α̃′ · ξ′ +mβ + zIN

2
√
z2 −m2 − |ξ′|2

ω(ξ′, ε)
(
η(κζ,κ(x′0))IN + τ(κζ,κ(x′0))β

))
·
(
IN −

(
η(κζ,κ(x′0))IN − τ(κζ,κ(x′0))β

) α̃′ · ξ′ +mβ − zIN
2
√
z2 −m2 − |ξ′|2

ω(ξ′, ε)
)

= p(η(κζ,κ(x′0)), τ(κζ,κ(x′0)), ξ′, ε)IN .

Hence, if p(η(κζ,κ(x′0)), τ(κζ,κ(x′0)), ξ′, ε) 6= 0, then IN + α̃′·ξ′+mβ−zIN
2
√
z2−m2−|ξ′|2

ω(ξ′, ε)Qζ,κ
η,τ (x

′
0)

is invertible and by applying (5.24), η, τ ∈ C2
b (Σ;R) and ζ ∈ C2

b (Rθ−1;R) we are able
to estimate∣∣∣(IN +

α̃′ · ξ′ +mβ − zIN
2
√
z2 −m2 − |ξ′|2

ω(ξ′, ε)Qζ,κ
η,τ (x

′
0)
)−1∣∣∣ ≤ C

|p(η(κζ,κ(x′0)), τ(κζ,κ(x′0)), ξ′, ε)|
,
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where C > 0 does not depend on ξ′, x′0, κ and ε. Moreover, there exists an εgr,1 > 0
such that

pinf = inf
(η̂,τ̂)∈ran (η,τ),ξ′∈Rθ−1,ε∈(0,εgr,1)

|p(η̂, τ̂ , ξ′, ε)| > 0. (8.7)

We postpone the proof of (8.7) to the end of the proof . This estimate and Proposi-
tion 2.19 imply that for ε ∈ (0, εgr,1) the operator I +Dy0,κ

ε Qζ,κ
η,τ (x

′
0) is invertible and

the norm of its inverse is bounded by C
pinf

, which does not depend on κ, x′0, y0 and
ε. Thus, the assertion is true if ζx′0 ≡ y0 ∈ R. If this is not the case, then as Σζx′0

,κ

is an affine hyperplane in Rθ, there exists an ỹ0(x′0) ∈ R and a κ̃(x′0) ∈ SO(θ) such
that Σζx′0

,κ = Σỹ0(x′0),κ̃(x′0); cf (5.57). Hence, one gets in the same way as in the proof
of Proposition 5.15

‖(I +D
ζx′0

,κ

ε Qζ,κ
η,τ (x

′
0))−1‖

0→0
= ‖(I +Dỹ0(x′0),κ̃(x′0)

ε Qζ,κ
η,τ (x

′
0))−1‖

0→0
≤ C

pinf

.

It remains to prove (8.7). We start by introducing

dmax := max
(η̂,τ̂)∈ran (η,τ)

η̂2 − τ̂ 2 and ω̃(ξ′, ε) = i

∫ 1

−1

∫ 1

−1

q(s)q(t)e−ε|t−s||ξ
′| ds dt.

Then, (8.4) implies dmax < 4. Moreover, |ω̃(ξ′, ε)| ≤ 1 and ω̃(ξ′, ε)2 < 0 since q ≥ 0
a.e. on (−1, 1) by (5.1). Thus,∣∣∣1 + (η̂2 − τ̂ 2)

ω̃(ξ′, ε)2

4

∣∣∣ ≥ min
{

1− dmax

4
, 1
}
> 0 (8.8)

for all ξ′ ∈ Rθ−1, ε > 0 and (η̂, τ̂) ∈ ran (η, τ). Furthermore, (5.32), (5.33) and
q ∈ L∞((−1, 1)) yield

|ω(ξ′, ε)− ω̃(ξ′, ε)| ≤ C

1 + |ξ′|
for all ξ′ ∈ Rθ−1 and ε > 0. Thus, since ran (η, τ) is bounded and |ω(ξ′, ε)| ≤ 1, there
exists an R > 0 such that for all |ξ′| ≥ R, ε > 0 and (η̂, τ̂) ∈ ran (η, τ)

∣∣∣(η̂2 − τ̂ 2)
ω(ξ′, ε)2 − ω̃(ξ′, ε)2

4
+ (η̂z + τ̂m)

ω(ξ′, ε)√
z2 −m2 − |ξ′|2

∣∣∣ ≤ min
{

1− dmax

4
, 1
}

2
.

This and (8.8) imply for all |ξ′| ≥ R, ε > 0 and (η̂, τ̂) ∈ ran (η, τ)

|p(η̂, τ̂ , ξ′, ε)| ≥
∣∣∣1 + (η̂2 − τ̂ 2)

ω̃(ξ′, ε)2

4

∣∣∣
−
∣∣∣(η̂2 − τ̂ 2)

ω(ξ′, ε)2 − ω̃(ξ′, ε)2

4
+ (η̂z + τ̂m)

ω(ξ′, ε)√
z2 −m2 − |ξ′|2

∣∣∣
>

min
{

1− dmax

4
, 1
}

2
;
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i.e.

inf
(η̂,τ̂)∈ran (η,τ),|ξ′|≥R,ε>0

|p(η̂, τ̂ , ξ′, ε)| >
min

{
1− dmax

4
, 1
}

2
> 0. (8.9)

Thus, it remains to consider the case |ξ′| ≤ R. We use
∫ 1

−1
q(t) dt = 1 to get

|ω(ξ′, ε)− i| =
∣∣∣∫ 1

−1

∫ 1

−1

q(t)q(s)
(
e|ε(t−s)|i

√
z2−m2−|ξ′|2 − 1

)
ds dt

∣∣∣ ≤ CεR ∀|ξ′| ≤ R,

where C > 0 does only depend on q, z and m. Hence,

∣∣∣p(η̂, τ̂ , ξ′, ε)− (1− η̂2 − τ̂ 2

4
+

i(η̂z + τ̂m)√
z2 −m2 − |ξ′|2

)∣∣∣ ≤ CεR (8.10)

for all |ξ′| ≤ R, ε > 0 and (η̂, τ̂) ∈ ran (η, τ). Next, we show

inf
(η̂,τ̂)∈ran (η,τ),|ξ′|≤R

∣∣∣1− η̂2 − τ̂ 2

4
+

i(η̂z + τ̂m)√
z2 −m2 − |ξ′|2

∣∣∣ > 0. (8.11)

Since B(0, R)× ran (η, τ) is compact, it suffices to show

1− η̂2 − τ̂ 2

4
6= − i(η̂z + τ̂m)√

z2 −m2 − |ξ′|2
∀(η̂, τ̂) ∈ ran (η, τ), |ξ′| ≤ R.

Squaring the equation, multiplying with z2−m2−|ξ′|2 and setting d̂ = η̂2− τ̂ 2 yields

(
1− d̂

4

)2

(|ξ′|2+m2−z2) 6= η̂2z2+2η̂τ̂mz+τ̂ 2m2 ∀(η̂, τ̂) ∈ ran (η, τ), |ξ′| ≤ R. (8.12)

By the solution formula for quadratic equations, this is equivalent to

z 6=
−η̂τ̂m±

√
(η̂τ̂m)2 + ((1− d̂

4
)2 + η̂ 2)((1− d̂

4
)2(|ξ′|2 +m2)− τ̂ 2m2)

(1− d̂
4
)2 + η̂ 2

=
−η̂τ̂m±

√
((1− d̂

4
)2 + η̂ 2)(1− d̂

4
)2(|ξ′|2 +m2)− (1− d̂

4
)2τ̂ 2m2

(1− d̂
4
)2 + η̂ 2

=
−η̂τ̂m± (1− d̂

4
)

√
((1− d̂

4
)2 + η̂ 2)(|ξ′|2 +m2)− τ̂ 2m2

(1− d̂
4
)2 + η̂ 2

(8.13)
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for all |ξ′| ≤ R and (η̂, τ̂) ∈ ran (η, τ). Using the identity (1− d̂
4
)2 + η̂2 = (1+ d̂

4
)2 + τ̂ 2

shows that the right-hand side of the above inequality equals

−η̂τ̂m± (1− d̂
4
)

√
((1 + d̂

4
)2 + τ̂ 2)(|ξ′|2 +m2)− τ̂ 2m2

(1 + d̂
4
)2 + τ̂ 2

=
−η̂τ̂m± (1− d̂

4
)

√
((1 + d̂

4
)2 + τ̂ 2)|ξ′|2 + (1 + d

4
)2m2

(1 + d̂
4
)2 + τ̂ 2

.

Thus, the expression in the square root is nonnegative and therefore the right-hand
side in (8.13) is a real. Moreover, z is assumed to be in C \R. Hence, (8.13) is valid,
and therefore also (8.12) and (8.11) are true. Consequently, according to (8.10) we
can choose εgr,1 > 0 sufficiently small such that

|p(η̂, τ̂ , ξ′, ε)| ≥
∣∣∣1− η̂2 − τ̂ 2

4
+

i(η̂z + τ̂m)√
z2 −m2 − |ξ′|2

∣∣∣− CεR
≥ inf

(η̂,τ̂)∈ran (η,τ),|ξ′|≤R

∣∣∣1− η̂2 − τ̂ 2

4
+

i(η̂z + τ̂m)√
z2 −m2 − |ξ′|2

∣∣∣− CεR
≥

inf(η̂,τ̂)∈ran (η,τ),|ξ′|≤R

∣∣∣1− η̂2−τ̂2

4
+ i(η̂z+τ̂m)√

z2−m2−|ξ′|2

∣∣∣
2

> 0

for all |ξ′| ≤ R, ε ∈ (0, εgr,1) and (η̂, τ̂) ∈ ran (η, τ). Combined with (8.9) this gives
us (8.7), which completes the proof.

In the next statements we use similarly as in Section 5.1.2 the functions φan′ and ϑan′ ,
where a ∈ (0,∞) and n′ ∈ Zθ−1, from Corollary A.3. They allow us to construct
a uniformly bounded right inverse of I + Dζ,κ

ε (z)Qζ,κ
η,τ with the help of the operators

(I + D
ζx′0

,κ

ε (z)Qζ,κ
η,τ (x

′
0))−1, x′0 ∈ Rθ−1; cf. the text between Proposition 5.15 and

Lemma 5.16.

Lemma 8.6. Let z ∈ ρ(H), ε ∈ (0, εtub) and aε = ε1/6. Then,

(1− ϑaεn′ )Eε(z)φaεn′ = (1− ϑaεn′ )D
ζ,κ
ε (z)φaεn′ .

Proof. This follows from Lemma 5.16 and the fact that J and J∗ commute with ϑaεn′
and φaεn′ .

Proposition 8.7. Let ζ and κ be as in (5.42), q be as in (5.1), η, τ ∈ C1
b (Σ;R),

d = η2 − τ 2 satisfy (8.4), Qζ,κ
η,τ be defined by (5.18) and z ∈ C \ R. Then, there

exists an εgr,2 ∈ (0, εABC ], with εABC > 0 chosen according to (4.19), such that
I +Dζ,κ

ε (z)Qζ,κ
η,τ has a right inverse which is uniformly bounded in L2(Rθ−1;CN) with

respect to ε ∈ (0, εgr,2).
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Proof. We define for ε ∈ (0,min{εABC , εgr,1}) with εgr,1 chosen as in Proposition 8.5

Rε : L2(Rθ−1;CN)→ L2(Rθ−1;CN),

Rε :=
∑
n′∈Z

φaεn′Rn′,εϑ
aε
n′ ,

with aε = ε1/6 and Rn′,ε := (I +D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′))−1. The equality ϑaεn′φ

aε
n′ = φaεn′ ,

implies Rε =
∑

n′∈Zθ−1 ϑ
aε
n′φ

aε
n′Rn′,εϑ

aε
n′ and therefore Proposition 8.5 and Corollary C.4

show that Rε is well-defined and uniformly bounded by

‖Rε‖0→0
≤ 11θ−1 sup

n′∈Zθ−1

∥∥(I +D
ζaεn′ ,κ
ε (z)Qζ,κ

η,τ (aεn
′))−1

∥∥
0→0
≤ C,

where C > 0 does not depend on ε. In the exact same way as in the Steps 1–3 of
Proposition 5.17 one shows with the help of Proposition 8.4, Proposition 8.5 and
Lemma 8.6 that

(I +Dζ,κ
ε (z)Qζ,κ

η,τ )Rε = I +Kε + Lε, (8.14)

where Kε acts as a bounded operator from L2(Rθ−1;CN) to H1(Rθ−1;CN) and the
norm estimates

‖Kε‖0→1
≤ C

1 + | log(ε)|
a2
ε

and ‖Lε‖0→0
≤ Caε(1 + | log(ε))

Moreover, (8.14) shows that the operatorKε+Lε is uniformly bounded in L2(Rθ−1;CN)
with respect to ε ∈ (0,min{εABC , εgr,1}). According to Proposition 3.15 (iii) the op-
erator I + CzV = I + B0(z)V (with V = ηIN + τβ) is continuously invertible in
L2(Σ;CN) and H1/2(Σ;CN). Thus, by (5.11), (5.18), (8.2) and (8.5) the operator
(I + Dζ,κ

0 (z)Qζ,κ
η,τ )
−1 is continuously invertible in L2(Rθ−1;CN) and H1/2(Rθ−1;CN).

Using this observation as well as the properties of Lε and Kε one proves the assertion
of the proposition in the same way as in Step 4 of Proposition 5.17.

Proposition 8.8. Let Σ be a is C2
b -graph as described in the beginning of Sec-

tion 5.1.2, q be as in (5.1), V = ηIN + τβ with η, τ ∈ C1
b (Σ;R) satisfy (8.4) and

z ∈ C \ R. Then, there exists an εconv ∈ (0, εABC ], with εABC > 0 from (4.19), such
that I +Bε(z)V has a inverse which is uniformly bounded in L2(Σ;CN) with respect
to ε ∈ (0, εconv).

Proof. The statement can be proven in the same way as Proposition 5.18.

Finally, we are able to provide the main theorem of this section.
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Theorem 8.9. Let Σ be a special C2-boundary as in Definition 2.1, q be as in (5.1),
V = ηIN + τβ with η, τ ∈ C1

b (Σ;R) satisfy (8.4) and z ∈ C \ R. Then, the operator
HV δΣ is self-adjoint and there exists an εconv > 0 such that for any r ∈ (0, 1

2
) exists

a C > 0 such that∥∥(HVε − z)−1 − (HV δΣ − z)−1
∥∥
L2(Rθ;CN )→L2(Rθ;CN )

≤ Cε1/2−r

for ε ∈ (0, εconv). In particular, HVε converges to HV δΣ in the norm resolvent sense
as ε→ 0.

Proof. In the case that Σ is a rotated C2
b -graph the assertion follows from Theo-

rem 8.3, the text below (8.4) and Proposition 8.8. In the general case one can use
the C1-partition of unity ϕ̂1, . . . , ϕ̂p from Corollary A.5 and the same strategy as in
the proof of Theorem 5.20 in order to prove the assertion. We remark that in the
current semilocal case the choice of the partition of unity is crucial since the property
ϕ̂l(xΣ) = ϕ̂l(x) for x = xΣ + tν(xΣ) with (xΣ, t) ∈ Σ × (− εtub

2
, εtub

2
), which the C1-

partition of unity from Corollary A.5 possesses, guarantees that Vε and ϕ̂l commute
for ε ∈ (0, εtub

2
). Making use of this property allows one to prove formula (5.66) in

the semilocal case in a very similar manner, which, in turn, ensures that the proof
strategy from Theorem 5.20 is successful.



Appendix A. Partitions of unity

In this chapter, which contains results from [15], we construct various useful partitions
of unity. Similarly as in [54, Chapter 3], we define a partition of unity as follows.

Definition A.1. We call a sequence of functions (ϕj)j∈J , where J is a countable
(finite or infinite) index set and ϕj ∈ C∞(Rn), n ∈ N, (ϕj ∈ Ck(Rn), k, n ∈ N) for
all j ∈ J , a partition (Ck-partition) of unity for a set S ⊂ Rn if the following three
conditions are met:

(i) φj(x) ≥ 0 for x ∈ Rn and j ∈ J .

(ii) Every x ∈ Rn has a neighbourhood that intersects suppφj for only finitely many
j’s.

(iii)
∑

j∈J ϕj(x) = 1 for all x ∈ S.

Moreover, if (Wj)j∈J is an open cover of S and suppϕj ⊂ Wj for all j ∈ J , then we
call (ϕj)j∈J a partition (Ck-partition) of unity for S subordinate to the open cover
(Wj)j∈J .

In this thesis we often use partitions of unity in settings where derivatives are in-
volved; cf. Section 8.1 and the proofs of Proposition 5.17, Theorem 5.20 and The-
orem 6.7. Thus, it is important to construct partitions of unity with uniformly
bounded derivatives. We show in several situations that such a choice is possible,
starting with the case S = Rn, n ∈ {1, 2, 3}.

Proposition A.2. Let n ∈ {1, 2, 3}. Then, there exists a partition of unity (φj)j∈Zn
for Rn subordinate to the open cover (B(j, 1))j∈Zn of Rn and a sequence of smooth
functions (ϑj)j∈N which have the following properties:

(i) supj∈Zn max{‖φj‖W 1
∞(Rn), ‖ϑj‖W 1

∞(Rn)} < ∞.

(ii) suppϑj ⊂ B(j, 3), 0 ≤ ϑj ≤ 1 and ϑj = 1 on B(j, 2) for all j ∈ Zn.

Proof. Note that since θ ∈ {1, 2, 3}, the family (B(j, 7/8))j∈Zn is also an open cover
of Rn. We start by choosing a function φ ∈ C∞(Rn) such that 0 ≤ φ ≤ 1, φ = 1

on B(0, 7/8) and suppφ ⊂ B(0, 1). Furthermore, we set φ̃j := φ(· − j) for j ∈ Zn.
Then, 0 ≤ φ̃j ≤ 1, φ̃j = 1 on B(j, 7/8) and supp φ̃j ⊂ B(j, 1). Next, we fix a bijection
Z : N → Zn and set φZ(1) := φ̃Z(1) and φZ(l) := (1 − φ̃Z(1)) · · · · · (1 − φ̃Z(l−1))φ̃Z(l)
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for l ∈ N \ {1}. Then, suppφj ⊂ supp φ̃j, 0 ≤ φ̃j ≤ 1 for j ∈ Zn and one gets via
induction for l ∈ N

l∑
k=1

φZ(k) = 1−
l∏

k=1

(1− φ̃Z(k)).

This implies
∑

j∈Zn φj(x) =
∑∞

l=1 φZ(l)(x) = 1 for x ∈ Rn. Thus, (φj)j∈Zn is a
partition of unity for Rn subordinate to (B(j, 1))j∈Zn .

Furthermore, let l ∈ N, w ∈ {1, . . . , n} and x ∈ Rn. We estimate

|∂wφZ(l)(x)| =
∣∣∣∂w(φ̃Z(l)(x))

l−1∏
k=1

(1− φ̃Z(k)(x))

−
l−1∑
k=1

φ̃Z(l)(x)(∂wφ̃Z(k)(x))
l−1∏

r=1,r 6=k

(1− φ̃Z(r)(x))
∣∣∣

≤
l∑

k=1

∣∣∂wφ̃Z(k)(x)
∣∣ =

l∑
k=1,x∈B(Z(k),1)

∣∣∂wφ̃Z(k)(x)
∣∣

≤2n‖∂wφ‖L∞(Rn),

where we used that x ∈ Rn can be contained in at most 2n balls of the type B(j, 1)
with j ∈ Zn. This shows that the derivatives of the φj’s are uniformly bounded
by 2n‖φ‖W 1

∞(Rn). Next, we construct the sequence (ϑj)j∈Zn . To do so, we choose
ϑ ∈ C∞(Rn) such that 0 ≤ ϑ ≤ 1, θ = 1 on B(0, 2) and suppϑ ⊂ B(0, 3). Then, we
define ϑj := ϑ(· − j). The constructed sequence has the claimed properties.

A useful consequence of this proposition is the following corollary.

Corollary A.3. Let n ∈ {1, 2, 3} and b > 0. Then, for all a ∈ (0, b) exists a
partition of unity (φaj )j∈Zn for Rn subordinate to the open cover (B(ja, a))j∈Zn of Rn

and a sequence of smooth functions (ϑaj )j∈Zn which have the following properties:

(i) supj∈Zn max{‖φaj‖W 1
∞(Rn)

, ‖ϑaj‖W 1
∞(Rn)

} < C
a
, where C > 0 does not depend on

a ∈ (0, b).

(ii) suppϑaj ⊂ B(ja, 3a), 0 ≤ ϑaj ≤ 1 and ϑaj = 1 on B(ja, 2) for all j ∈ Zn.

Proof. Define φaj := φj(
·
a
) and ϑaj := ϑaj (

·
a
) for j ∈ Zn. Then, all the claims follow

directly from Proposition A.4.

Next, we also find suitable partitions of unity for special C2-surfaces defined in Def-
inition 2.1.
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Proposition A.4. Let Σ ⊂ Rθ, θ ∈ {2, 3}, be a special C2-surface as in Defini-
tion 2.1 and W1, . . . ,Wp be the corresponding open cover of Σ. Then, there ex-
ists a partition of unity ϕ1, . . . , ϕp ∈ C∞b (Rθ) for Σ subordinate to the open cover
W1, . . . ,Wp of Σ. Moreover, there exist functions χ1, . . . , χp ∈ C∞b (Rθ) such that
suppχl ⊂ Wl and ϕlχl = ϕl for all l ∈ {1, . . . , p}.

Proof. According to [69, Appendix 1, Lemma 1.2 and Lemma 1.3] there exists a
sequence (xn)n∈N ⊂ Rθ, M ∈ N, 0 < δ < εΣ

4
, with εΣ from Definition 2.1, and

a sequence of real-valued C∞-functions (φn)n∈N such that (B(xn, δ))n∈N is an open
cover of Rθ, (φn)n∈N is a partition of unity for Rθ, suppφn ⊂ B(xn, δ) for all n ∈ N,
every point x ∈ Rθ is contained in at mostM of the sets B(xn, δ), and the derivatives
(of any order) of the functions φn are uniformly bounded. Next, we define the set
Y := {xn : B(xn, 2δ)∩Σ 6= ∅}. Note that for all xn ∈ Y there exists an l ∈ {1, . . . , p}
such thatB(xn, 2δ) ⊂ Wl. In fact, asB(xn, 2δ)∩Σ 6= ∅, there exists yΣ ∈ B(xn, 2δ)∩Σ
and thus, Definition 2.1 implies B(yΣ, εΣ) ⊂ Wl for an l ∈ {1, . . . , p}. Hence, for any
y ∈ B(xn, 2δ) one has

|y − yΣ| ≤ |y − xn|+ |xn − yΣ| < 4δ < εΣ,

which shows B(xn, 2δ) ⊂ Wl. Define the sets I1 := {n : xn ∈ Y,B(xn, 2δ) ⊂ W1}
and Il := {n : xn ∈ Y,B(xn, 2δ) ⊂ Wl, B(xn, 2δ) 6⊂ Wk, k ∈ {1, . . . , l − 1}} for
l ∈ {2, . . . , p}. Then, it is not difficult to see that

ϕl =
∑
n∈Il

φn

is a partition of unity having the claimed properties. Moreover, the construction
of ϕl, l ∈ {1, . . . , p}, also implies suppϕl + B(0, δ) ⊂ Wl. Thus, [54, Theorem 3.6]
guarantees the existence of the functions χ1, . . . , χp ∈ C∞b (Rθ) with suppχl ⊂ Wl

and ϕlχl = ϕl for l ∈ {1, . . . , p}.

Corollary A.5. Let Σ ⊂ Rθ, θ ∈ {2, 3}, be a special C2-surface as in Definition 2.1,
W1, . . . ,Wp be the corresponding open cover of Σ, Ωε be as in Definition 2.7 and
εtub > 0 be chosen as in Proposition 2.12. Then, there exists a C1-partition of unity
ϕ̂1, . . . , ϕ̂p ∈ C1

b (Rθ) for Ω εtub
2

and a function $ ∈ C1(R) with 0 ≤ $ ≤ 1 such that
ϕ̂l(xΣ + tν(xΣ)) = ϕ̂l(xΣ)$(t) for (xΣ, t) ∈ Σ × (−εtub, εtub), supp ϕ̂l ∩ Σ ⊂ Wl and
supp ϕ̂l ⊂ Ωεtub for all l ∈ {1, . . . , p}.

Proof. Let ϕ1, . . . , ϕp ∈ C∞b (Rθ) be the partition of unity from Proposition A.4 and
define for l ∈ {1, . . . , p} the function ϕ̂l as the extension of ϕl � Σ given by Lemma 4.3.
Then, the functions ϕ̂1, . . . , ϕ̂p have the claimed properties because of the way they
are constructed in Lemma 4.3.
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Before we start with the proof of (4.34), let us mention that this section can be found
in [14, Appendix B]. Let us shortly recall the problem setting. Let z ∈ ρ(H) and
B̃ε(z) : B0(Σ) → B0(Σ) and Bε(z) : B1/2(Σ) → B1/2(Σ) be the operators defined
by (4.27) and (4.29), respectively. In this chapter we prove (4.34), i.e. we show that
B̃ε(z) − Bε(z) can be extended to a bounded operator from B0(Σ) to B1/2(Σ) and
that

‖B̃ε(z)−Bε(z)‖0→1/2 ≤ Cε1/2(1 + |log(ε)|)1/2 (B.1)

for some C > 0, which is used in (4.34) in Step 3 in the proof of Proposition 4.10.
With (4.28) and (4.32) one obtains for f ∈ B1/2(Σ)

(
B̃ε(z)−Bε(z)

)
f(t)(xΣ) =

∫ 1

−1

∫
Σ

(
Gz(xΣ − yΣ + εtν(xΣ)− εsν(yΣ))

−Gz(xΣ − yΣ + ε(t− s)ν(xΣ))
)
f(s)(yΣ) dσ(yΣ) ds

(B.2)

for a.e. t ∈ (−1, 1) and for σ-a.e. xΣ ∈ Σ, where Gz is the integral kernel of
Rz = (H − z)−1; cf. (3.3)–(3.4). Thus, in order to show (B.1), we proceed as follows:
We prove in Proposition B.2 that for fixed t 6= s ∈ (−1, 1) the operator formally
acting on ψ ∈ L2(Σ;CN) as

bt,s,ε(z)ψ(xΣ) =

∫
Σ

(
Gz(xΣ − yΣ + εtν(xΣ)− εsν(yΣ))

−Gz(xΣ − yΣ + ε(t− s)ν(xΣ))
)
ψ(yΣ) dσ(yΣ),

(B.3)

xΣ ∈ Σ, gives rise to a bounded operator from L2(Σ;CN) to H1/2(Σ;CN) and we
prove an estimate for its operator norm. Then, we show in Lemma B.3 that the map
(s, t) 7→ bt,s,ε(z) is measurable and use (B.2) to transfer the results from bt,s,ε(z) to
B̃ε(z)−Bε(z).

In the following, we always assume ε ∈ (0, εABC) with εABC > 0 satisfying (4.19).
Recall that εtub and ει are the numbers that are specified in Proposition 2.12 and
Proposition 2.9, respectively. Since εtub < ει, see the proof of Proposition 2.12, we
conclude from (4.19) that εABC < ει

2
. We define for t 6= s ∈ (−1, 1) and xΣ, yΣ ∈ Σ

∆Gz(xΣ, yΣ, t, s) := Gz(xΣ − yΣ + εtν(xΣ)− εsν(yΣ))

−Gz(xΣ − yΣ + ε(t− s)ν(xΣ)).
(B.4)
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Moreover, we introduce for t 6= s ∈ (−1, 1) and xΣ, yΣ ∈ Σ the quantities

z0(xΣ, yΣ, t, s) := xΣ − yΣ + εtν(xΣ)− εsν(yΣ) = ι(xΣ, εt)− ι(yΣ, εs),

z1(xΣ, yΣ, t, s) := xΣ − yΣ + ε(t− s)ν(xΣ) = ι(xΣ, ε(t− s))− ι(yΣ, 0),

zµ(xΣ, yΣ, t, s) := µz0(xΣ, yΣ, t, s) + (1− µ)z1(xΣ, yΣ, t, s)

= ι(xΣ, µεt+ (1− µ)ε(t− s))− ι(yΣ, µεs) for µ ∈ (0, 1),

L(xΣ, yΣ, t, s) := |xΣ − yΣ|+ |ε(t− s)|.

Then, ∆Gz(xΣ, yΣ, t, s) = Gz(z0(xΣ, yΣ, t, s)) − Gz(z1(xΣ, yΣ, t, s)). It follows from
Proposition 2.9 (ii) that for µ ∈ [0, 1] the inequalities

C−1
ι,2 L(xΣ, yΣ, t, s) ≤ |zµ(xΣ, yΣ, t, s)| ≤ Cι,2L(xΣ, yΣ, t, s) (B.5)

hold. To shorten notation we also set

c :=
CG,2
Cι,2

> 0 (B.6)

with CG,2 from Proposition 3.4. Furthermore, until Lemma B.3 we fix t 6= s ∈ (−1, 1)
and hence omit the arguments t, s in the functions L, ∆Gz, z0, zµ and z1.

Lemma B.1. Let Gz be the integral kernel of Rz in (3.3)–(3.4), ∆Gz as in (B.4),
l ∈ {1, . . . , p}, and κl as in (2.1). Then, the following is true:

(i) There exists C > 0 which does not depend on ε, t, and s such that

|∆Gz(xΣ, yΣ)| ≤ CεL(xΣ, yΣ)1−θe−cL(xΣ,yΣ)

for all xΣ, yΣ ∈ Σ.

(ii) There exists C > 0 which does not depend on ε, t, and s such that

∣∣∣ d
dx′k

∆Gz(κl(x′), yΣ)
∣∣∣ ≤ CεL(κl(x′), yΣ)−θe−cL(κl(x′),yΣ)

for all k ∈ {1, . . . , θ − 1}, yΣ ∈ Σ, and x′ ∈ κ−1
l (Σ).

Proof. Before we prove (i) and (ii), we show a useful estimate of the difference
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z0(xΣ, yΣ)− z1(xΣ, yΣ). Since εABC < ει
2
, it follows from Proposition 2.9 (ii) that

|z0(xΣ, yΣ)−z1(xΣ, yΣ)| = |εtν(xΣ)− εsν(yΣ)− ε(t− s)ν(xΣ)|
= ε|s||ν(xΣ)− ν(yΣ)|

≤ ε

εABC
|εABCν(xΣ)− εABCν(yΣ)|

≤ ε

εABC

(
|xΣ − yΣ|+

∣∣xΣ + εABCν(xΣ)− yΣ − εABCν(yΣ)
∣∣)

=
ε

εABC

(
|xΣ − yΣ|+ |ι(xΣ, εABC)− ι(yΣ, εABC)|

)
≤ 1 + Cι,2

εABC
ε|xΣ − yΣ|

≤ 1 + Cι,2
εABC

εL(xΣ, yΣ)

(B.7)

for all xΣ, yΣ ∈ Σ.

(i) Applying Lemma 2.8, Proposition 3.4, (B.5) and (B.7) yields

|∆Gz(xΣ, yΣ)| = |Gz(z0(xΣ, yΣ))−Gz(z1(xΣ, yΣ))|
≤ C sup

µ∈[0,1],j∈{1,... ,θ}
|∂jGz(zµ(xΣ, yΣ))||z0(xΣ, yΣ)− z1(xΣ, yΣ)|

≤ C sup
µ∈[0,1],j∈{1,... ,θ}

|∂jGz(zµ(xΣ, yΣ))|εL(xΣ, yΣ)

≤ C sup
µ∈[0,1]

|zµ(xΣ, yΣ)|−θe−CG,2|zµ(xΣ,yΣ)|εL(xΣ, yΣ)

≤ CεL(xΣ, yΣ)1−θe−cL(xΣ,yΣ)

for all xΣ, yΣ ∈ Σ, where c is defined in (B.6) and C > 0 is a constant which does
not depend on ε, t, and s. Hence, the claim in (i) is shown.
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(ii) For k ∈ {1, . . . , θ − 1}, yΣ ∈ Σ, and x′ ∈ κ−1
l (Σ) we compute

d

dx′k
∆Gz(κl(x′), yΣ) =

d

dx′k

(
Gz(z0(κl(x′), yΣ))−Gz(z1(κl(x′), yΣ))

)
=

θ∑
j=1

(∂jGz)(z0(κl(x′), yΣ))
d

dx′k
(z0(κl(x′), yΣ))[j]

−
θ∑
j=1

(∂jGz)(z1(κl(x′), yΣ))
d

dx′k
(z1(κl(x′), yΣ))[j]

=
θ∑
j=1

(
(∂jGz)(z0(κl(x′), yΣ))− (∂jGz)(z1(κl(x′), yΣ))

) d

dx′k
(z0(κl(x′), yΣ))[j]

+
θ∑
j=1

(∂jGz)(z1(κl(x′), yΣ))
d

dx′k
(z0(κl(x′), yΣ)− z1(κl(x′), yΣ)) [j]

=
θ∑
j=1

(
(∂jGz)(z0(κl(x′), yΣ))− (∂jGz)(z1(κl(x′), yΣ))

) d

dx′k
(z0(κl(x′), yΣ))[j]

+
θ∑
j=1

εs(∂jGz)(z1(κl(x′), yΣ))
d

dx′k
(νl(x

′))[j],

where the convention νl(x′) = ν(κl(x′)) was used in the last step. To estimate the
second sum we use (B.5), Proposition 3.4 and ζl ∈ C2

b (Rθ−1;CN) and obtain

∣∣∣ θ∑
j=1

εs(∂jGz)(z1(κl(x′), yΣ))
d

dx′k
(νl(x

′))[j]
∣∣∣

≤ Cε sup
j∈{1,...,θ}

|(∂jGz)(z1(κl(x′), yΣ))|‖Dνl‖L∞(Rθ−1;Rθ×(θ−1))

≤ CεL(κl(x′), yΣ)−θe−cL(κl(x′),yΣ).

For the remaining part given by

θ∑
j=1

(
(∂jGz)(z0(κl(x′), yΣ))− (∂jGz)(z1(κl(x′), yΣ))

) d

dx′k
(z0(κl(x′), yΣ))[j] (B.8)

we proceed in the same way as in the proof of (i). Using Lemma 2.8 as well as
ζl ∈ C2

b (Rθ−1;R) one can show that the absolute value of the expression in (B.8) is
bounded by the term

C sup
µ∈[0,1], n,j∈{1,...,θ}

|∂n∂jGz(zµ(κl(x′), yΣ))|εL(κl(x′), yΣ),
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which, in turn, is according to Proposition 3.4 and (B.5) also bounded by

CεL(κl(x′), yΣ)−θe−cL(κl(x′),yΣ).

To estimate the operator norm of bt,s,ε(z) in Proposition B.2 below we make use of
a partition of unity ϕ1, . . . , ϕp for Σ subordinate to W1, . . . ,Wp with the additional
property that the derivatives are uniformly bounded; the existence of such a partition
of unity is shown in Proposition A.4.

Proposition B.2. Let t 6= s ∈ (−1, 1) and ε ∈ (0, εABC). Then, (B.3) gives rise
to a bounded operator bt,s,ε(z) : L2(Σ;CN) → H1/2(Σ;CN) and there exists a C > 0
which does not depend on ε, t, and s such that

‖bt,s,ε(z)‖L2(Σ;CN )→H1/2(Σ;CN ) ≤ C
(
ε(1 + | log(ε|t− s|)|)

)1/2 1

|t− s|1/2
. (B.9)

Proof. We split this proof into four steps. In Step 1 we verify the preliminary estimate

sup
xΣ∈Σ

∫
Σ

L(xΣ, yΣ)je−cL(xΣ,yΣ) dσ(yΣ) ≤ C

{
1 + |log(ε|t− s|)|, j = 1− θ,

1
ε|t−s| , j = −θ,

(B.10)

which will be used in Step 2 and Step 3 to obtain bounds for bt,s,ε(z) viewed as an op-
erator from L2(Σ;CN) to L2(Σ;CN) and from L2(Σ;CN) to H1(Σ;CN), respectively.
Finally, we conclude with an interpolation argument (B.9) in Step 4.

Step 1. Let xΣ ∈ Σ and j ∈ {1 − θ,−θ}. Recall that Σ satisfies Definition 2.1 and
let ϕ1, . . . , ϕp ∈ C∞b (Rθ) be the partition of unity from Proposition A.4. Using the
definition of the boundary integral, we can write∫

Σ

L(xΣ, yΣ)je−cL(xΣ,yΣ) dσ(yΣ)

=

p∑
n=1

∫
κ−1
n (Σ)

L(xΣ,κn(y′))je−cL(xΣ,κn(y′))ϕn(κn(y′))
√

1 + |∇ζn(y′)|2 dy′.

Hence, 0 ≤ ϕn ≤ 1, ζn ∈ C2
b (Rθ−1;R), and κ−1

n (Σ) ⊂ Rθ−1 yield∫
Σ

L(xΣ, yΣ)je−cL(xΣ,yΣ) dσ(yΣ) ≤ C max
n∈{1,...,p}

∫
Rθ−1

L(xΣ,κn(y′))je−cL(xΣ,κn(y′)) dy′

≤ C max
n∈{1,...,p}

∫
Rθ−1

cjL(xΣ,κn(y′))je−cL(xΣ,κn(y′)) dy′,
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where C > 0 does not depend on xΣ, t, s, and ε. Next, let n ∈ {1, . . . , p} and fix
x′n ∈ Rθ−1 such that |xΣ − κn(x′n)| = miny′∈Rθ−1|xΣ − κn(y′)|. With this choice we
obtain for all y′ ∈ Rθ−1

1

2
|x′n − y′| ≤

1

2
|κn(x′n)− κn(y′)|

≤ 1

2

(
|xΣ − κn(y′)|+ |xΣ − κn(x′n)|

)
≤ |xΣ − κn(y′)|.

This implies for any y′ ∈ Rθ−1

cL(xΣ,κn(y′)) = c
(
|xΣ − κn(y′)|+ ε|t− s|

)
≥ c

2
|x′n − y′|+ cε|t− s|.

Moreover, a 7→ aje−a, a > 0, j ∈ {1− θ,−θ}, is a monotonically decreasing function
and therefore we get with ρ(x′n, y

′) := c
2
|x′n − y′|∫

Σ

cjL(xΣ, yΣ)je−cL(xΣ,yΣ) dσ(yΣ)

≤ C max
n∈{1,...,p}

∫
Rθ−1

(ρ(x′n, y
′) + cε|t− s|)je−ρ(x′n,y

′)−cε|t−s| dy′

≤ C

∫ ∞
0

(ρ+ cε|t− s|)je−ρ−cε|t−s|ρθ−2dρ

≤ C

∫ ∞
0

(ρ+ cε|t− s|)j+θ−2e−ρ−cε|t−s| dρ

= C

∫ ∞
cε|t−s|

ρj+θ−2e−ρ dρ

≤ C

{
1 + |log(ε|t− s|)|, j = 1− θ,

1
ε|t−s| , j = −θ,

where C > 0 does not depend on xΣ, t, s, and ε. This proves (B.10).

Step 2. In this step we verify the estimate

‖bt,s,ε(z)ψ‖L2(Σ;CN ) ≤ Cε(1 + |log(ε|t− s|)|)‖ψ‖L2(Σ;CN ), ψ ∈ L2(Σ;CN). (B.11)

In fact, with the help of the Cauchy-Schwarz inequality, Lemma B.1 (i), and (B.10)
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we obtain for ψ ∈ L2(Σ;CN) and xΣ ∈ Σ∣∣bt,s,ε(z)ψ(xΣ)
∣∣2 =

∣∣∣∫
Σ

∆Gz(xΣ, yΣ)ψ(yΣ) dσ(yΣ)
∣∣∣2

≤
∫

Σ

|∆Gz(xΣ, yΣ)| dσ(yΣ)

∫
Σ

|∆Gz(xΣ, yΣ)||ψ(yΣ)|2 dσ(yΣ)

≤ Cε2

∫
Σ

L(xΣ, yΣ)1−θe−cL(xΣ,yΣ) dσ(yΣ)

·
∫

Σ

L(xΣ, yΣ)1−θe−cL(xΣ,yΣ)|ψ(yΣ)|2 dσ(yΣ)

≤ Cε2(1 + |log(ε|t− s|)|)
∫

Σ

L(xΣ, yΣ)1−θe−cL(xΣ,yΣ)|ψ(yΣ)|2 dσ(yΣ).

(B.12)

Now, Fubini’s theorem and (B.10) show∫
Σ

|bt,s,ε(z)ψ(xΣ)|2 dσ(xΣ)

≤ Cε2(1 + |log(ε|t− s|)|)
∫

Σ

∫
Σ

L(xΣ, yΣ)1−θe−cL(xΣ,yΣ)|ψ(yΣ)|2 dσ(yΣ) dσ(xΣ)

= Cε2(1 + |log(ε|t− s|)|)
∫

Σ

∫
Σ

L(xΣ, yΣ)1−θe−cL(xΣ,yΣ) dσ(xΣ)|ψ(yΣ)|2 dσ(yΣ)

≤ Cε2(1 + |log(ε|t− s|)|)2

∫
Σ

|ψ(yΣ)|2 dσ(yΣ),

which yields (B.11).

Step 3. Next, we prove the estimate

‖bt,s,ε(z)ψ‖H1(Σ;CN ) ≤ C
1

|t− s|
‖ψ‖L2(Σ;CN ), ψ ∈ L2(Σ;CN). (B.13)

Let ψ ∈ L2(Σ;CN) and κl(x′) = xΣ ∈ Σ with x′ ∈ Rθ−1. By Proposition A.4 the
function ϕl and its derivatives are bounded. Thus, with ϕ̃l := ϕl ◦ κl we have∣∣∣ d

dx′k

(
ϕ̃l(x

′)(bt,s,ε(z)ψ)(κl(x′))
)∣∣∣2

≤ 2|ϕ̃l(x′)
d

dx′k
(bt,s,ε(z)ψ)(κl(x′))|2 + 2

∣∣∣( d

dx′k
ϕ̃l(x

′)
)
bt,s,ε(z)ψ(κl(x′))

∣∣∣2
≤ C

(∣∣∣ d
dx′k

(bt,s,ε(z)ψ)(κl(x′))
∣∣∣2 + |bt,s,ε(z)ψ(κl(x′))|

)
.

Using the dominated convergence theorem and the properties of ∆Gz stated in
Lemma B.1 one obtains

d

dx′k
(bt,s,ε(z)ψ)(κl(x′)) =

∫
Σ

d

dx′k
∆Gz(κl(x′), yΣ)ψ(yΣ) dσ(yΣ).
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Hence, we get with the Cauchy-Schwarz inequality, Lemma B.1 (ii), xΣ = κl(x′), and
(B.10)∣∣∣ d

dx′k
(bt,s,ε(z)ψ)(κl(x′))

∣∣∣2 =
∣∣∣∫

Σ

d

dx′k
∆Gz(κl(x′), yΣ)ψ(yΣ) dσ(yΣ)

∣∣∣2
≤
∫

Σ

∣∣∣ d
dx′k

∆Gz(κl(x′), yΣ)
∣∣∣ dσ(yΣ)

∫
Σ

∣∣∣ d
dx′k

∆Gz(κl(x′), yΣ)
∣∣∣|ψ(yΣ)|2dσ(yΣ)

≤ Cε2

∫
Σ

L(xΣ, yΣ)−θe−cL(xΣ,yΣ) dσ(yΣ)

·
∫

Σ

L(xΣ, yΣ)−θe−cL(xΣ,yΣ)|ψ(yΣ)|2 dσ(yΣ)

≤ C
ε

|t− s|

∫
Σ

L(xΣ, yΣ)−θe−cL(xΣ,yΣ)|ψ(yΣ)|2 dσ(yΣ).

According to (B.12) we can estimate

|bt,s,ε(z)ψ(κl(x′))|2 ≤ Cε2(1+|log(ε|t− s|)|)
∫

Σ

L(xΣ, yΣ)1−θe−cL(xΣ,yΣ)|ψ(yΣ)|2 dσ(yΣ),

where xΣ = κl(x′). Moreover, 1 + |log(a)| ≤ C 1
a
for a ∈ (0, 2εABC) yields

|bt,s,ε(z)ψ(κl(x′))|2 ≤ C
ε

|t− s|

∫
Σ

L(xΣ, yΣ)1−θe−cL(xΣ,yΣ)|ψ(yΣ)|2 dσ(yΣ).

Thus,∫
κ−1
l (Σ)

∣∣∣ d
dx′k

(
ϕl(κl(x′))bt,s,ε(z)ψ

)
(x′)
∣∣∣2 dx′

≤ C
ε

|t− s|

∫
κ−1
l (Σ)

∫
Σ

(L(κl(x′), yΣ)1−θ + L(κl(x′), yΣ)−θ)

· e−cL(κl(x′),yΣ)|ψ(yΣ)|2 dσ(yΣ) dx′

≤ C
ε

|t− s|

∫
κ−1
l (Σ)

∫
Σ

(L(κl(x′), yΣ)1−θ + L(κl(x′), yΣ)−θ)

· e−cL(κl(x′),yΣ)|ψ(yΣ)|2 dσ(yΣ)
√

1 + |∇ζl(x′)|2 dx′

≤ C
ε

|t− s|

∫
Σ

∫
Σ

(L(κl(x′), yΣ)1−θ + L(xΣ, yΣ)−θ)e−cL(xΣ,yΣ) |ψ(yΣ)|2 dσ(yΣ)dσ(xΣ).

Therefore, Fubini’s theorem, (B.10) and using 1 + |log(a)| ≤ C 1
a
for a ∈ (0, 2εABC)

again yield∫
κ−1
l (Σ)

∣∣∣ d
dx′k

(
ϕl(κl(x′))bt,s,ε(z)ψ

)
(x′)
∣∣∣2 dx′ ≤ C

1

|t− s|2
‖ψ‖2

L2(Σ;CN ).
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This estimate, the definition of the norm in H1(Σ;CN), see (2.2), and (B.11) imply
(B.13).

Step 4. By Proposition 2.2 (i), we have H1/2(Σ;CN) = [L2(Σ;CN), H1(Σ;CN)]1/2
and using that also L2(Σ;CN) = [L2(Σ;CN), L2(Σ;CN)]1/2 we conclude from the
bounds (B.11) and (B.13) together with (xiii) from Section 2.1 that

‖bt,s,ε(z)‖L2(Σ;CN )→H1/2(Σ;CN )

≤ C‖bt,s,ε(z)‖1/2

L2(Σ;CN )→L2(Σ;CN )
‖bt,s,ε(z)‖1/2

L2(Σ;CN )→H1(Σ;CN )

≤ C
(
ε(1 + | log(ε|t− s|)|)

)1/2 1

|t− s|1/2
.

This completes the proof of Proposition B.2.

Lemma B.3. Let ε ∈ (0, εABC). Then, the operator-valued function

F : (−1, 1)2 → L(L2(Σ;CN), H1/2(Σ;CN)),

F (t, s) =

{
bt,s,ε(z), if t 6= s,

0, if t = s,

is measurable.

Proof. It suffices to prove that (F (·, ·)ϕ, ψ)H1/2(Σ;CN ) is measurable on (−1, 1)2 for all
ϕ ∈ L2(Σ;CN) and ψ ∈ H1/2(Σ;CN); cf. Definition 2.13. For this, we prove that the
function (F (·, ·)ϕ, ψ)H1/2(Σ;CN ) is continuous on O := (−1, 1)2 \ {(t, t) : t ∈ (−1, 1)}.
Let (t, s) ∈ O be fixed and let us consider the case t > s. We choose a sequence
((tn, sn))n∈N in O which converges to (t, s). It is no restriction to assume that
3
2
(tn − sn) > t− s > 1

2
(tn − sn) holds for all n ∈ N. Then,

L(xΣ, yΣ, tn, sn) = |xΣ − yΣ|+ ε|tn − sn| < |xΣ − yΣ|+ 2ε|t− s| ≤ 2L(xΣ, yΣ, t, s)

and in a similar way

L(xΣ, yΣ, tn, sn)1−θ ≤
(2

3

)1−θ
L(xΣ, yΣ, t, s)

1−θ.

Moreover, as |tn − sn| ≥ 0 = |t− s| − |t− s| ≥ |t− s| − 2, one has

e−cL(xΣ,yΣ,tn,sn) ≤ e−c(|xΣ−yΣ|+ε|t−s|)+2cε ≤ e2cεABCe−cL(xΣ,yΣ,t,s).

Combining Lemma B.1 (i) with the latter three displayed formulas yields the existence
of a constant C > 0 which is independent of xΣ, yΣ, t, s, tn, sn, and ε such that

|∆Gz(xΣ, yΣ, tn, sn)| ≤ CεL(xΣ, yΣ, tn, sn)1−θ e−cL(xΣ,yΣ,tn,sn)

≤ CεL(xΣ, yΣ, t, s)
1−θe−cL(xΣ,yΣ,t,s).

(B.14)
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We claim that (btn,sn,ε(z)ϕ)n∈N converges weakly to bt,s,ε(z)ϕ in L2(Σ;CN). Let the
function γ ∈ L2(Σ;CN) be fixed. Then,

((btn,sn,ε(z)− bt,s,ε(z))ϕ, γ)L2(Σ;CN )

=

∫
Σ

∫
Σ

〈(∆Gz(xΣ, yΣ, tn, sn)−∆Gz(xΣ, yΣ, t, s))ϕ(yΣ), γ(xΣ)〉 dσ(yΣ) dσ(xΣ).

The integrand on the right-hand side converges pointwise almost everywhere to
zero, as n → ∞. Moreover, (B.14) shows that the integrand is bounded by
M(xΣ, yΣ)|ϕ(yΣ)||γ(xΣ)| with

M(xΣ, yΣ) := CεL(xΣ, yΣ, t, s)
1−θe−cL(xΣ,yΣ,t,s).

Applying the Cauchy-Schwarz inequality twice, Fubini’s theorem, and the symmetry
relation M(xΣ, yΣ) = M(yΣ, xΣ) yields(∫

Σ

∫
Σ

M(xΣ, yΣ)|ϕ(yΣ)||γ(xΣ)| dσ(yΣ) dσ(xΣ)

)2

≤
∫

Σ

(∫
Σ

M(xΣ, yΣ)|ϕ(yΣ)| dσ(yΣ)

)2

dσ(xΣ)‖γ‖2
L2(Σ;CN )

≤
∫

Σ

∫
Σ

M(xΣ, yΣ)|ϕ(yΣ)|2 dσ(yΣ)

∫
Σ

M(xΣ, yΣ) dσ(yΣ) dσ(xΣ)‖γ‖2
L2(Σ;CN )

≤C
(

sup
xΣ∈Σ

∫
Σ

M(xΣ, yΣ) dσ(yΣ)

)2

‖ϕ‖2
L2(Σ;CN )‖γ‖

2
L2(Σ;CN ).

Furthermore, with (B.10) we see that

sup
xΣ∈Σ

∫
Σ

M(xΣ, yΣ) dσ(yΣ) ≤ Cε(1 + |log(ε|t− s|)|) <∞.

Hence, ((btn,sn,ε(z)− bt,s,ε(z))ϕ, γ)L2(Σ;CN ) → 0 for n → ∞ by applying the domi-
nated convergence theorem. Since γ ∈ L2(Σ;CN) was arbitrary, we conclude that
(btn,sn,ε(z)ϕ)n∈N converges weakly to bt,s,ε(z)ϕ in L2(Σ;CN).

Next, we show that (btn,sn,ε(z)ϕ)n∈N converges weakly to bt,s,ε(z)ϕ in the space
H1/2(Σ;CN), which shows the claimed continuity. For this, we note that Propo-
sition B.2 and 3

2
(tn − sn) > t − s > 0 imply that (btn,sn,ε(z)ϕ)n∈N is a bounded

sequence in H1/2(Σ;CN). Let us assume that (btn,sn,ε(z)ϕ)n∈N does not converge
weakly to bt,s,ε(z)ϕ in H1/2(Σ;CN). Then, the H1/2-boundedness implies that there
exists a weakly convergent subsequence (btnk ,snk ,ε(z)ϕ)k∈N which converges to some
ϕ′ ∈ H1/2(Σ;CN) with ϕ′ 6= bt,s,ε(z)ϕ. However, in this case (btnk ,snk ,ε(z)ϕ)k∈N
would also converge weakly to ϕ′ in L2(Σ;CN) which contradicts the first part of
the proof. Hence, (btn,sn,ε(z)ϕ)n∈N converges weakly to bt,s,ε(z)ϕ in H1/2(Σ;CN) and
therefore, ((btn,sn,ε(z)ϕ, ψ)H1/2(Σ;CN ))n∈N converges to (bt,s,ε(z)ϕ, ψ)H1/2(Σ;CN ) for all
ψ ∈ H1/2(Σ;CN).
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After all these preliminary considerations we are prepared to prove (4.34).

Proof of (4.34). Let f ∈ B0(Σ) be fixed. Using Proposition B.2, the Cauchy-Schwarz
inequality, and Fubini’s theorem we obtain∫ 1

−1

(∫ 1

−1

‖bt,s,ε(z)f(s)‖H1/2(Σ;CN ) ds

)2

dt

≤ C

∫ 1

−1

(∫ 1

−1

(
ε(1 + | log(ε|t− s|)|)

)1/2 1

|t− s|1/2
‖f(s)‖L2(Σ;CN ) ds

)2

dt

≤ C

∫ 1

−1

(∫ 1

−1

(
ε(1 + | log(ε|t− s|)|)

)1/2 1

|t− s|1/2
ds

·
∫ 1

−1

(
ε(1 + | log(ε|t− s|)|)

)1/2 1

|t− s|1/2
‖f(s)‖2

L2(Σ;CN ) ds

)
dt

≤ C sup
s∈(−1,1)

(∫ 1

−1

(
ε(1 + | log(ε|t− s|)|)

)1/2 1

|t− s|1/2
dt

)2 ∫ 1

−1

‖f(s)‖2
L2(Σ;CN ) ds

≤ Cε(1 + |log(ε)|)‖f‖2
0,

where we used that for ε > 0 sufficiently small one has

sup
s∈(−1,1)

∫ 1

−1

(
ε(1 + | log(ε|t− s|)|)

)1/2 1

|t− s|1/2
dt

≤
∫ 2

−2

(
ε(1 + | log(ε|τ |)|)

)1/2 1

|τ |1/2
dτ

≤ Cε1/2(1 + |log(ε)|)1/2

∫ 2

−2

(1 + |log(|τ |)|)1/2 1

|τ |1/2
dτ

≤ Cε1/2(1 + |log(ε)|)1/2.

Combined with Lemma B.3, (2.8) and Proposition 2.15 this shows that the Bochner
integral

∫ 1

−1
bt,s,ε(z)f(s) ds ∈ H1/2(Σ;CN) exists for a.e. t ∈ (−1, 1) and that the

function t 7→
∫ 1

−1
bt,s,ε(z)f(s) ds ∈ H1/2(Σ;CN) is measurable. Hence, the mapping

Bε(z) : B0(Σ)→ B1/2(Σ),

Bε(z)f(t) :=

∫ 1

−1

bt,s,ε(z)f(s) ds,
(B.15)

is well-defined, bounded, and ‖Bε(z)‖0→1/2 ≤ Cε1/2(1 + |log(ε)|1/2). By (B.2), (B.3),
and Proposition 2.18 (iii) we also have

(B̃ε(z)−Bε(z))f(t) =

∫ 1

−1

bt,s,ε(z)f(s) ds = Bε(z)f(t) (B.16)
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for all f ∈ B1/2(Σ). Therefore, B̃ε(z)−Bε(z) can be extended to a bounded operator
from B0(Σ) to B1/2(Σ) and (4.34) is true.



Appendix C. Additional results for Section 5.1.2 and
Section 8.2

In this chapter, which is based on [15], we provide results which are used in Sec-
tion 5.1.2 and Section 8.2. We begin by stating a fitting version of the Schur test.

Lemma C.1. Let k be a measurable function in Rθ−1 × Rθ−1 with values in CN×N

and k̃ ∈ L1(Rθ−1) such that

|k(x′, y′)| ≤ k̃(x′ − y′) for a.e. x′, y′ ∈ Rθ−1.

Then, k induces an integral operator K : L2(Rθ−1;CN) → L2(Rθ−1;CN), which is
bounded by ‖k̃‖L1(Rθ−1). Moreover, if k ∈ C1(Rθ−1 × Rθ−1;CN×N) and

θ−1∑
l=1

∣∣∣ d
dx′l

k(x′, y′)
∣∣∣ ≤ k̃(x′ − y′) for a.e. x′, y′ ∈ Rθ−1,

then the induced operator K also acts as bounded operator from L2(Rθ−1;CN) to
H1(Rθ−1;CN) and the corresponding operator norm is bounded by C‖k̃‖L1(Rθ−1), where
C > 0 does not depend on k or k̃.

Proof. The first assertion is an immediate consequence of the Schur test; see for
instance [44, Chapter III, Example 2.4]. Next, let us prove the second assertion. We
start by choosing g ∈ C∞0 (Rθ−1;CN). Our assumptions and dominated convergence
show that in this case, Kg is differentiable and

∂l(Kg)(x′) =

∫
Rθ−1

d

dx′l
k(x′, y′)g(y′) dy′.

Hence, applying the Schur test shows

‖Kg‖H1(Rθ−1;CN ) ≤ C‖k̃‖L1(Rθ−1)‖g‖L2(Rθ−1;CN ).

The fact that C∞0 (Rθ−1;CN) is dense in L2(Rθ−1;CN), see [54, the text above eq. (3.22)],
the completeness ofH1(Rθ−1;CN) and the L2-continuity ofK imply that the estimate
is also valid for g ∈ L2(Rθ−1;CN).

Our next goal is to use the functions ϑan′ , n′ ∈ Z, from Corollary A.3 (for n = θ−1) to
construct operators based on a uniformly bounded sequence of operators. We start
by providing a useful variant of the Cotlar-Stein lemma.

177
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Lemma C.2. Let H and G be Hilbert spaces, let (An′)n′∈Zθ−1 be a family of uniformly
bounded operators acting from H to G. Moreover, assume that there exists a number
M ∈ N such that for every n′ ∈ Zθ−1 exist at most M indices m′ ∈ Zθ−1 such that
A∗n′Am′ and An′A∗m′ are nonzero operators. Then, the family (An′)n′∈Zθ−1 is strongly
summable (in the sense of (v) of Section 2.1) and for A =

∑st.
n′∈Zθ−1 An′ the estimate

‖A‖H→G ≤M sup
n′∈Zθ−1

‖An′‖H→G

is valid.

Proof. Our assumptions guarantee

sup
n′∈Zθ−1

∑
m′∈Zθ−1

‖An′A∗m′‖
1/2
G→G ≤M sup

n′∈Zθ−1

‖An′‖H→G,

sup
n′∈Zθ−1

∑
m′∈Zθ−1

‖A∗n′Am′‖
1/2
H→H ≤M sup

n′∈Zθ−1

‖An′‖H→G.

Hence, the assertions follow from the Cotlar-Stein lemma; see [38, Lemma 18.6.5].

Proposition C.3. Let a ∈ (0, b) for a b > 0, (ϑan′)n′∈Zθ−1 be the sequence from
Corollary A.3 (for n = θ − 1) and (An′)n′∈Zθ−1 be a sequence of uniformly bounded
operators in B0(Rθ−1). Then,

A =
st.∑

n′∈Zθ−1

ϑan′An′ϑ
a
n′

is a well-defined operator in B0(Rθ−1) which is bounded by 11θ−1 supn′∈Zθ−1 ‖An′‖0→0.
Moreover, if (An′)n′∈Zθ−1 is also a family of uniformly bounded operators acting from
B0(Rθ−1) to B1(Rθ−1), then A also acts as a bounded operator from B0(Rθ−1) to
B1(Rθ−1) and ‖A‖0→1 ≤

C
a

supn′∈Zθ−1 ‖An′‖0→1, where C > 0 does not depend on
a ∈ (0, b).

Proof. Let us start by proving the assertions where we consider A and An′ , n′ ∈ Zθ−1,
as operators acting from B0(Rθ−1) to B0(Rθ−1). We set An′ := ϑan′An′ϑ

a
n′ . Since

a fixed ball B(an′, 3a) overlaps with at most 11θ−1 balls of the type B(am′, 3a),
m′ ∈ Zθ−1, there exist for every n′ ∈ Zθ−1 at most M = 11θ−1 indices m′ ∈ Zθ−1 such
that An′A∗m′ 6= 0 and A∗n′Am′ 6= 0. Moreover, for all n′ ∈ Zθ−1 we have

‖An′‖0→0 ≤ ‖ϑ
a
n′‖0→0‖An′‖0→0‖ϑ

a
n′‖0→0 ≤ ‖An′‖0→0.

Thus, by Lemma C.2 the assertions where A and An′ , n′ ∈ Zθ−1, are considered as
bounded operators from B0(Rθ−1) to B0(Rθ−1) are true. Next, we assume that An′ ,
n′ ∈ Zθ−1, act as uniformly bounded operators from B0(Rθ−1) to B1(Rθ−1). Using
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again the fact that a fixed ball B(an′, 3a) overlaps with at most 11θ−1 balls of the
type B(am′, 3a), m′ ∈ Zθ−1, shows that there exist for every n′ ∈ Zθ−1 at most
M = 11θ−1 indices m′ ∈ Zθ−1 such that An′A0∗1

m′ 6= 0 and A0∗1
n′ Am′ 6= 0, where the

expressions An′0∗1 and Am′0∗1 denote the adjoint operators of An′ and Am′ , respec-
tively, considered as operators mapping from B0(Rθ−1) to B1(Rθ−1). Furthermore,
applying Corollary A.3 gives us for all n′ ∈ Zθ−1

‖An′‖0→1 ≤ ‖ϑ
a
n′‖1→1‖An′‖0→1‖ϑ

a
n′‖0→0

≤ ‖ϑan′‖1→1‖An′‖0→1

≤ C‖ϑan′‖W 1
∞(Rθ−1)‖An′‖0→1

≤ C

a
‖An′‖0→1

≤ C

a
‖An′‖0→1.

Applying Lemma C.2 again concludes the proof.

As a corollary we obtain a result for series of operators in L2(Rθ−1;CN).

Corollary C.4. Let a ∈ (0, b) for a b > 0, (ϑn′)n′∈Zθ−1 be the sequence from Corol-
lary A.3 (for n = θ−1) and (An′)n′∈Zθ−1 be a sequence of uniformly bounded operators
in L2(Rθ−1;CN). Then,

A =
st.∑

n′∈Zθ−1

ϑan′An′ϑ
a
n′

is a well-defined operator in L2(Rθ−1;CN) which is bounded by

11θ−1 sup
n′∈Zθ−1

‖An′‖L2(Rθ−1;CN )→L2(Rθ−1;CN ).

Moreover, if (An′)n′∈Zθ−1 is also a family of uniformly bounded operators acting
from L2(Rθ−1;CN) to H1(Rθ−1;CN), then A also acts as a bounded operator from
L2(Rθ−1;CN) to H1(Rθ−1;CN) and

‖A‖L2(Rθ−1;CN )→H1(Rθ−1;CN ) ≤
C
a

sup
n′∈Zθ−1

‖An′‖L2(Rθ−1;CN )→H1(Rθ−1;CN )
,

where C > 0 does not depend on a ∈ (0, b).

Proof. With the help of the operators J and J∗ defined in (2.10) and (2.11) (for
O = (−1, 1)), respectively, we are able to write

st.∑
n′∈Zθ−1

ϑan′An′ϑ
a
n′ = J∗

( ∑
n′∈Zθ−1

ϑan′
(

1
4
JAn′J

∗)ϑan′)J.
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Here, we used J∗J = 2I and the fact that ϑan′ commutes with J and J∗, if one
considers ϑan′ once as a multiplication operator in B0(Rθ−1) (or B1(Rθ−1)) and once
as a multiplication operator in L2(Rθ−1;CN) (or H1(Rθ−1;CN)). Thus, the result
follows from applying Proposition C.3 to (An′)n′∈Zθ−1 =

(
1
2
JAn′J

∗)
n′∈Zθ−1 and

‖J‖L2(Rθ−1;CN )→0 = ‖J∗‖0→L2(Rθ−1;CN )

= ‖J‖H1(Rθ−1;CN )→1 = ‖J∗‖1→H1(Rθ−1;CN ) =
√

2.
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Approximation of Dirac Operators with Delta-Shell Potentials  
in the Norm Resolvent Sense

The present thesis is devoted to the approximation of Dirac operators with 
δ-shell potentials supported on the boundary of a two or three-dimensional 
C2-domain. These singular potentials are used as idealized replacements for 
potentials which are strongly localized in a neighbourhood of the support of 
the δ-shell potential and they often simplify the spectral analysis. To justify the 
usage of such potentials it is essential to prove that Dirac operators with δ-shell 
potentials can be approximated by Dirac operators with strongly localized po-
tentials in a way which transfers the spectral properties. The most important 
contribution of this thesis is the establishment of conditions for the convergen-
ce of Dirac operators with strongly localized potentials in the norm resolvent 
sense. This type of convergence implies that the spectrum of the Dirac opera-
tor with δ-shell potential can be completely characterized by the spectra of the 
approximating operators and vice versa. In the special case of electrostatic and 
Lorentz scalar δ-shell potentials an explicit convergence condition is provided.
Furthermore, counterexamples which imply the sharpness of this condition are 
also presented.
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