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Abstract

In real-world applications, machine learning models must
reliably detect Out-of-Distribution (OoD) samples to pre-
vent unsafe decisions. Current OoD detection methods
often rely on analyzing the logits or the embeddings of
the penultimate layer of a neural network. However, little
work has been conducted on the exploitation of the rich
information encoded in intermediate layers. To address
this, we analyze the discriminative power of intermedi-
ate layers and show that they can positively be used for
OoD detection. Therefore, we propose to regularize in-
termediate layers with an energy-based contrastive loss,
and by grouping multiple layers in a single aggregated
response. We demonstrate that intermediate layer activa-
tions improves OoD detection performance by running a
comprehensive evaluation across multiple datasets.

1. Introduction

When a model is exposed to data which does not belong to
the distribution it was originally trained on, it is desirable
that it can detect it and respond appropriately. Therefore,
it is beneficial for a machine learning framework to in-
clude an Out-of-Distribution (OoD) detection mechanism,
especially in real-world scenarios. Without it, the model
might produce unreliable or even dangerous outputs when
confronted with data from an unfamiliar distribution, lead-
ing to potential failures in critical applications such as au-
tonomous driving, healthcare, or financial systems [1, 42].
Deep neural networks perform well in many applications
but can be overly confident with unseen classes [30]. A
key feature would be the ability to avoid providing (over-
confident) predictions for unknown classes. Implement-
ing this safety mechanism should not interfere with the
intended tasks of the model, such as correctly classify-
ing the samples from the In-Distribution (ID) data [42].
However, achieving a balance between ID performance
and OoD detection, presents significant challenges. Fur-
thermore, OoD detection mechanisms ought to perform
efficiently, without imposing an excessive computational
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Figure 1. Intermediate representations are often more informa-
tive than the logits when dealing with OoD detection.

overhead or diminishing the capacity of the model when
performing on the original task. Although recent advances
have lead to promising strategies [25, 27, 42], develop-
ing methods that achieve this dual goal remains a pressing
challenge for the design of trustworthy, scalable AI sys-
tems [7].

Building on these challenges, deep learning mod-
els have emerged as a powerful solution, becoming the
preferred framework for constructing complex training
pipelines [9]. These models address the need for effec-
tive OoD detection by leveraging their hierarchical archi-
tectures, which enable the learning and encoding of mid-
level features [31], which are representations that bridge
low-level patterns such as edges and textures to high-level
abstract feature maps such as object parts and semantic
categories [12]. In computer vision, these features are in-
herently diverse, capturing the hierarchical nature of the
input data. This diversity not only makes them able to
generalize to tasks within the original in-distribution but
also highly transferable to new, related tasks. This has
been shown within transfer learning scenarios [11].

For OoD detection, most methods rely on penultimate
layer embeddings or on the logits of the model [42]. The
potential of leveraging ensembles of intermediate layer
embeddings remains under-explored [24]. We argue that
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mid-level features alone can act as reliable stand-alone
OoD-indicators. For instance, inputs with semantically
unrelated characteristics compared to the training data
may trigger unusual activations in specific layers, serving
as an early warning of abnormality.

We pose that specific hidden layers can be effectively
isolated and used to enhance OoD detection, performing
better than the final layer. However, leveraging these in-
termediate representations may yield different results de-
pending on the type of shift from ID data -— whether se-
mantic or covariate. Also, this may result in varying ef-
fects depending on how close or distant the ID and OoD
distributions are.

Building on this insight, we test with an aggregated
approach, which leverages hidden-layer information in a
layer-agnostic manner. This method avoids relying on
specific layers, which enables a more robust and general-
ized use of the network’s intermediate representations for
OoD tasks. Further, we also propose an approach that reg-
ularizes selected hidden layers through an energy-based
contrastive loss, improving OoD detection by leveraging
their intermediate representations. The goal is to promote
the information encoded in the hidden spaces to be dis-
tributed such that OoD detection is more efficient, and
without disrupting the ID task performance.

Therefore, our contributions are summarized as:

• we establish that the embeddings of hidden layers are
valuable for OoD detection,

• we introduce a layer-agnostic aggregated (Ag-EBO) ap-
proach that leverages intermediate representations,

• we propose a modular strategy to enhance robustness by
regularizing specific layers (R-EBO).

The article is structured as follows: Sec. 2 presents a
current overview of the OoD field, while Sec. 3 introduces
the preliminaries needed for the study in Sec. 4, which
shows that intermediate layers contain useful information
for the OoD detection task. An overview of the proposed
ways of exploiting this capabilities, with detailed results
is presented in Sec. 5. Finally, in Sec. 6 we discuss some
limitations of the proposed approaches and the main take-
aways.

2. Related Work
In this paper, we concentrate on two main families
of Out-of-Distribution methods: post-hoc and training-
based [25, 42].
Post-hoc methods are applied after the model has been
trained and typically involve analyzing its predictions or
intermediate representations to identify whether an input
is OoD [14, 17, 41]. These methods often focus on com-
putational efficiency and adaptability to pre-trained mod-
els, as they avoid retraining [25].
Training-based methods modify the training process,
sometimes completely restructuring the model to accom-
modate OoD detection [6, 20, 34]. These methods often

come at the cost of higher training complexity, and might
dilute the efforts to obtain an optimal ID training accu-
racy [25, 28]. Additionally, exposure to outliers (real or
generated) can be done to improve generalization [39].
Baselines. A classic baseline for OoD is considered to be
Maximum Softmax Probability (MSP) [17], a simple ap-
proach that relies on the logit scores to identify OoD sam-
ples. However, a major limitation of this approach is the
tendency of models to produce overconfident predictions
on anomalous data, leading to poor performance [14].
Temperature scaling [14] is a simple post-hoc way of tack-
ling the overconfidence issue, where logits are scaled by a
temperature T , but its results are not optimal [43].
OoD and intermediate layers. Some methods lever-
age intermediate embeddings within the network. How-
ever, most do it to refine the head’s detection capabilities,
rather than for direct OoD detection. ASH [8] enhances
the network’s OoD detection capabilities through activa-
tion masking of hidden layers. Similarly, ReAct [32] pro-
poses to rectify the embeddings of the penultimate layer
to reduce overconfidence. However, despite leveraging
intermediate embeddings to an extent, the final detection
decisions in both methods rely solely on the output log-
its. Mahalanobis distance-based method (MDSEns) [24]
uses features from hidden layers to compute distances
from the known distribution. However, this approach re-
lies on the assumption that the class-conditional distribu-
tions of hidden layer features are Gaussian, which may
not hold true for complex datasets and deep network ar-
chitectures [36]. Head2Toe [11] leverages intermediate
representations by training a classifier head on concate-
nated embeddings from multiple hidden layers to improve
generalization during transfer learning. This enables the
refinement of existing OoD detection techniques through
the utilization of hidden layer structures.

3. Out-of-Distribution Detection
3.1. Problem statement
In Out-of-Distribution (OoD) detection, the objective is
to differentiate between samples generated by the same
distribution as the in-distribution dataset, Din, and those
originating from a different, out-of-distribution dataset,
Dout. Due to the complexity and variance of image-based
data, the concept of the amount of out-of-distributioness
of samples is inherently challenging to define. However,
two primary types of distributional shifts are commonly
identified [35]:
• Semantic (or Concept) shifts: they arise when new

classes appear at test time. For instance, encountering
an image of a dog after the model has been trained on
pictures of cats and mice.

• Covariate shifts: occur when the style or attributes of
samples change within the same class. Examples in-
clude image corruptions [16], such as artifacts, blurs
or noise, and domain changes [18, 38], such as shifting
from natural photographs to artistic paintings.



Both semantic and covariate shifts can occur with varying
levels of severity depending on the problem, and can also
appear entangled within a distribution shift. Given a fixed
Din, we refer to near and far OoD datasets as those that
are semantically closer to or further from it, respectively.

Moreover, depending on the OoD detection applica-
tion, different shifts might be considered within the spec-
trum that comprises between novelty and anomaly detec-
tion [28]. The first relates to distribution shift that might
need to be explicitly added to the model, while the second
is usually added in a more implicit way, in order to effi-
ciently use the capacity of the model. In this paper, we
do not distinguish samples based on the suitability for fur-
ther learning, but instead aim to analyze these shifts from
a perspective of distribution similarity.
Terminology. Consider a neural network f(x; θ) with in-
put x and parameters θ, and trained to classify C classes.
The architecture of the network is defined as a series of L
layers with intermediate functions such that:

y = f(x; θ) = (fθL
L ◦ fθL−1

L−1 ◦ · · · ◦ fθ1
1 )(x),

where the output y is a vector of C logits representing
the unnormalized prediction over the classes. Therefore,
the intermediate representations or embeddings of a given
layer l are defined as:

al = (fl ◦ · · · ◦ f1)(x).

To determine whether an input x belongs to Din or Dout,
a score function S(x), is usually derived from the neural
network. This score reflects the confidence of the model
in the input belonging to the expected in-distribution. A
threshold T is applied to classify the input such that:

g(x) =

{
x ∈ Din if S(x) ≥ T
x ∈ Dout if S(x) < T.

The threshold can be adjusted depending on the desired
balance between sensitivity and specificity for OoD de-
tection.
Metrics. In order to evaluate the strength of a method,
two essentials metrics are AUROC, the Area Under the
Receiver Operating Characteristic (the higher the better)
and FPR@TPR95, the False Positive Rate when the True
Positive Rate is 95% (the lower the better).

3.2. Energy-based out-of-distribution detection.
Energy-based models [23] have demonstrated to be effec-
tive as post-hoc OoD detectors. The free energy function
E(x; f) is defined as:

E(x; f) = −T log

C∑
c=1

ef
c(x)/T , (1)

where T is the temperature, for temperature scaling [14].
When T = 1, it simplifies to the negative log of the de-
nominator of the softmax function, which represents the

normalization factor in the softmax computation. In this
case, the energy function effectively captures the aggre-
gate contribution of all logits, weighted by their exponen-
tial, to produce a measure of confidence over the entire
output distribution. The Energy-Based OoD (EBO) [26]
detection approach uses the free energy associated to each
input to determine whether it is ID or OoD, where the
higher the energy is, the more likely the sample is OoD.
JEM [13] is another energy-based approach that improves
the calibration (the mismatch between accuracy and con-
fidence) of the model.

4. OoD with Intermediate Layers
4.1. Motivation
As data moves through the trained layers of the network,
the represented features become more complex, from
edges and simple texture patterns to higher-level represen-
tations or combinations of intermediate features [31]. Our
assumption is that the use of these intermediate represen-
tations can improve out-of-distribution detection. There-
fore, we take EBO [26] as a starting point and analyze
how discriminative the different layers of the model are
for OoD detection. To quantify the capacity of hidden lay-
ers in the OoD task, we introduce a hypothetical method
called Best Hidden Layer (BHL), which utilizes an ora-
cle to identify the optimal hidden layer for OoD detec-
tion. Therefore, since it requires access to the distribu-
tion ground truth, it is proposed as an a-posteriori analysis
strategy.

Following classic setups, we train a classification
model on Din, using the standard cross-entropy loss LCE.
Then, we evaluate on test data from both Din and Dout, ex-
tracting the embeddings from the intermediate layers for
each sample. Here, the free energy from Eq. (1) is a nat-
ural candidate to use on the logits. However, the function
can also take the embeddings al from any other layer l.
Thus, we propose to extract the energy score:

El(x) = −T log
∑
i

ea
i
l(x)/T , (2)

where the unit indices i correspond to the output of the
l-th layer.

We extract and analyze the energy of each layer, re-
gardless of its type, such as convolutional, batch normal-
ization, or fully connected. We observe that certain inter-
mediate layers consistently outperform the network logits
from the original EBO approach. This effect is shown in
Figure 2 for semantic shift, which presents the AUROC
scores evaluated across all layers of a ResNet18 [15] for
CIFAR-10 [22] as Din and near and far OoD as Dout.
Some high-performing layers exhibit unexpected behavior
by assigning lower energy values to Dout samples instead
of Din samples. This leads to two possibilities: assigning
OoD to lower energy samples or to higher energy samples.
Among the two, the “correct” possibility is reflected in the
reported results.
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Figure 2. AUROC scores for OoD detection for each intermedi-
ate layer of ResNet18 are presented. The network is pretrained
on CIFAR-10 (Din) and evaluated against the corresponding
Dnear

out and Dfar
out datasets. Results are averaged across datasets

in both categories.

Covariate shift OoD detection also shows significant
improvement when considering intermediate layers rather
than relying solely on the network’s output logits. To test
it, we look at the performance of different layers when
the OoD represents the in-distribution shifted by differ-
ent corruptions (CIFAR-10-C [16], see Sec. 5.1). Fig-
ure 3 shows that throughout the depth of the network,
several layers outperform yet again the head. Initial lay-
ers, which provide low-level features such as edges or lo-
cal histogram projections, seem to be good candidates for
OoD detection when covariate shift is present, since it rep-
resents a transformation on the in-distribution.

Despite the clear benefits from using some of the lay-
ers, determining which one to use for OoD detection un-
der different shifts is still challenging due to different
Dout distributions or modes having a tendency to elicit
the strongest responses in different layers. This variabil-
ity means that no single layer is universally optimal for
detecting all types of OoD inputs effectively. It must be
noted that, on average for semantic shifts, the optimal lay-
ers are observed to reside more towards the later layers
of the network (see Fig. 2). However, this is not enough
to identify a good one-fits-all layer, or to find a straight-
forward selection criteria. We try to circumvent this issue
by proposing two strategies to leverage the information
from the intermediate layer representation spaces:
• aggregating all intermediate responses into a single uni-

fied response (described in Sec. 4.2);
• strictly regularize selected layers to enforce generaliza-

tion over different distributions (described in Sec. 4.3).

4.2. Energy aggregation (Ag-EBO)

To develop a fully layer-agnostic post-hoc method that
leverages all the potential from intermediate embeddings,
we propose to aggregate the energy values extracted from
all L layers simultaneously. Thus, for each input x, we
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Figure 3. AUROC scores for each intermediate layer of
ResNet18 pretrained on CIFAR-10 as Din and evaluated
against different corruptions (CIFAR-10-C). Results are aver-
aged over all corruption types and seeds.

construct a vector of energies:

E(x) = (E1(x), . . . , EL(x)),

which groups the energy contributions of each layer into
a unified representation. The dimension of this vector is
significantly smaller than the total hidden dimension of
the network, making it scalable and suitable for use with
most common OoD methods. However, for the interme-
diate layer to be considered, it is desirable that it offers
better results than just relying on the logits or on the em-
beddings from the penultimate layer.

We tested with some straightforward approaches from
literature, presented in the next paragraphs. Two
of the following three methods need a reference for
the ID data, therefore we use the set of energies
Ẽ = Etrain

in = {E(x) |x∈Dtrain
in }, extracted from Dtrain

in .

Mahalanobis distance. The score SMD(x) depends on
the Mahalanobis distance [24] of E(x):

SMD(x) = min
µc∈Ẽ

√
(E(x)− µc)

⊤
Σ−1

c (E(x)− µc),

where µc and Σc are the mean vector and covariance ma-
trix of the energy vectors for class c in Dtrain

in , respectively.

K-nearest neighbor. The score SKNN(x) is based on the
distance of E(x) to its K nearest neighbors [33]:

SKNN(x) =
1

K

K∑
i=1

∥∥∥E(x)−Ei

∥∥∥
2
,

where {E1, . . . ,EK} ⊂ Ẽ are the K nearest neighbors
of E(x) in the in-distribution training set, measured using
the Euclidean distance.

Reconstruction Error. The score SVAE(x) is computed
as the reconstruction error of E(x) using a small Varia-
tional Autoencoder [21]:

SVAE(x) =
∥∥∥E(x)− Ê(x)

∥∥∥
2
,



CIFAR-10 [22] CIFAR-100 [22] ImageNet200 [4] ImageNet [4]

Architecture RESNET18 [30] RESNET18 RESNET18 RESNET50 [30]

Input Size 32×32×3 32×32×3 224×224×3 224×224×3

Near-OoD CIFAR-100 CIFAR-10 SSB-HARD [43] SSB-HARD
TINYIMAGENET [4] TINYIMAGENET NINCO [2] NINCO

Far-OoD

TEXTURE [3] TEXTURE TEXTURE TEXTURE
MNIST [5] MNIST INATURALIST [19] INATURALIST
SVHN [29] SVHN OPENIMAGEO [37] OPENIMAGEO

PLACES365 [44] PLACES365 - -

Corruptions CIFAR-10-C [16] - - -

Table 1. Setup description for each ID dataset.

CIFAR-100 TIN Near OoD MNIST Places365 SVHN Texture Far OoD

EBO [26] 86.36 88.80 87.58 94.32 89.25 91.79 89.47 91.21

BHL 88.23 92.26 90.25 99.89 92.13 98.46 93.5 96.00

MDSEns [24] 61.29 59.57 60.43 99.17 66.56 77.40 52.47 73.90

Ag-EBO w/ MD 66.03 67.03 66.53 99.05 63.73 94.25 93.32 87.59
Ag-EBO w/ KNN 83.69 86.5 85.09 92.81 86.01 89.64 87.46 88.98
Ag-EBO w/ VAE 80.42 83.11 81.77 89.31 83.27 88.25 84.13 86.24

Table 2. AUROC scores of MDSEns, EBO, BHL and three aggregation methods with CIFAR-10 as Din, averaged over 3 runs.

where Ê(x) is the reconstruction of E(x). Higher recon-
struction error indicates that the input is likely to be out-
of-distribution.

4.3. Energy regularization (R-EBO)
Regularizing intermediate layers directly provides an ef-
fective approach to addressing the intermediate layer se-
lection problem. Ideally, by enforcing a strong energy-
based discriminative behavior within the hidden layers,
we promote their reliability, allowing them to be used con-
fidently without additional selection mechanisms.

EBO [26] introduces an energy-bounded learning loss
Lenergy to push the network to assign low energy values to
ID samples (and viceversa for OoD). Since their approach
operates at the logits level, this loss is applied exclusively
to the model’s head. In contrast, our proposed strategy ex-
tends the scope of this loss by applying it to each hidden
convolutional layer during training, computing and back-
propagating all the losses simultaneously. Given an ID
dataset Dtrain

in and an OoD seen dataset Dtrain
out (for outlier

exposure), the energy regularization loss for the l-th hid-
den layer is defined as:

Lenergy,l = Exin∼Dtrain
in

[max(0, El(xin)−min)]
2

+ Exout∼Dtrain
out

[max(0,mout − El(xout)]
2 ,

(3)

where min and mout are two margins, serving as the upper
bound for the energy of the ID data and the lower bound
for the energy of the seen OoD data, respectively. We

define the total loss as:

LR-EBO =

L∑
l=1

Lenergy,l , (4)

where the same constant margin values for min and mout
are used across all layers, although each can be ex-
plored independently. In the original EBO paper [26],
LEBO = Lenergy,EL

, where L is the last layer of the net-
work. Furthermore, the decision to reduce the free ID en-
ergy and increase the OoD energy in intermediate layers is
a design choice. Alternative regularization strategies can
also be considered.

5. Experimental results
5.1. Implementation details

Datasets. The datasets used in this study were selected
based on the guidelines of the OpenOoD benchmark [43],
which offers a comprehensive and well-documented col-
lection of state-of-the-art (SoTA) methods across various
OoD scenarios. Also, the results presented here have
been extracted from its continuously updated report, to en-
sure alignment with the latest developments in the field.
For each Din, the OpenOoD benchmark defines a set
of semantically near and far OoD datasets from it Ta-
ble 1. Additionally, we tested the response to covari-
ate shift from CIFAR-10 with the corruptions dataset
CIFAR-10-C [16]. This is a dataset consisting of cor-
rupted versions of CIFAR-10 images, which serves as a



common benchmark for evaluating robustness to covari-
ate shifts. It includes a variety of corruption types, such
as noise, blur, and weather distortions, applied at varying
levels of severity.
Architectures. To keep the consistency with OpenOoD
evaluations, the main results have been calculated using
the same architectures used in the benchmark, shown in
Tab. 1. We also evaluate on a non-residual based convolu-
tional neural network, EFFICIENTNET-B7, for which we
select convolutional, fully-connected, batch normaliza-
tion and average pooling layers. Finally, following recent
trends in machine learning, we evaluate ViT-B-16 [10], a
transformer-based [40] architecture. ViTs utilize multi-
head self-attention layers, and their feed-forward sub-
layers consist of fully-connected layers. Our experiments
focus on the selection of these fully-connected layers for
BHL.
Training. OpenOoD provides three pretrained ResNet18
checkpoints for CIFAR-10, CIFAR-100, and IMA-
GENET200 as Din, and a single pretrained ResNet50
checkpoint for IMAGENET, all trained using standard
SoftMax loss. Additionally, we trained 3 checkpoints for
both CIFAR-10 and CIFAR-100 as Din using the hid-
den regularization approach.

5.2. Analysis of OoD with intermediate layers
In Table 2, CIFAR-10 is selected as Din. EBO refers
to the standard energy-based OoD detection mechanism
applied directly at the logit level, while BHL shows the
energy-based OoD detection using the best performing
hidden layer. The results presented for BHL are averaged
across the best hidden layer identified in each run, which
tends to slightly vary between runs. For every Dout the re-
sults are strongly improved by (at least) one hidden layer’s
response. It is important to mention that the results pre-
sented only consider the internal behavior of the network,
while an algorithm which correctly weighs the importance
of a layer for OoD detection would also take the head of
the model into consideration, potentially merging the best
results of the two rows.
Energy aggregation. The last rows of Table 2 present
the results of the aggregation methods (Ag-EBO) pro-
posed in Section 4. The row above displays the results of
MDSEns [24], taken from the OpenOoD benchmark [43].
Each of our proposed aggregation methods achieves
higher AUROC compared to MDSEns [24], an ensemble
method that exploits Mahalanobis distance on hidden lay-
ers. The lower results for MDSEns might be related to
their assumption of class-conditional distribution of the
hidden features being Gaussian. Dfar

out datasets, such as
MNIST, SVHN, and TEXTURE, demonstrate improved
performance with the KNN aggregation approach com-
pared to EBO. However, none of these methods are ro-
bust enough on average to consistently outperform rely-
ing exclusively on the head logits. This indicates that the
layer-selection problem remains unsolved and cannot yet
be effectively simplified into an aggregation mechanism.

CIFAR-10 CIFAR-100
Far ID Acc. Far ID Acc.

EBO [26]* 84.86 82.33 67.86 54.83

BHL* 90.42 82.33 86.98 54.83
R-EBO* 98.48 78.2 94.06 50.05

Table 3. AUROC scores of EBO, BHL and R-EBO with
CIFAR-10 as Din, averaged over multiple runs. EBO and BHL
exploit identical checkpoints, retrained (*) for direct compara-
bility with R-EBO.

Dataset EBO [26] BHL R-EBO

BRIGHTNESS 56.51 82.98 79.8
CONTRAST 92.39 99.92 96.99
DEFOCUS BLUR 84.65 97.26 85.44
ELASTIC 73.24 87.36 85.11
FOG 71.3 96.7 94.38
FROST 76.83 91.4 91.08
GAUSSIAN BLUR 89.8 98.86 75.96
GAUSSIAN NOISE 84.39 99.65 99.16
GLASS BLUR 85.77 88.45 98.13
IMPULSE NOISE 89.04 99.98 97.71
JPEG 73.33 87.87 61.47
MOTION BLUR 75.78 93.51 72.77
PIXELATE 80.02 94.17 99.66
SATURATE 57.47 90.97 81.8
SHOT NOISE 84.93 99.38 98.78
SNOW 71.85 89.11 74.95
SPATTER 71.0 90.33 83.69
SPECKLE NOISE 85.29 98.96 98.66
ZOOM BLUR 79.36 96.61 66.11

Table 4. AUROC scores of EBO, BHL, and R-EBO with
CIFAR-10 as Din against corruption datasets.

Energy regularization. Table 3 presents the results
of regularization against other SoTA methods that ex-
ploit Dseen

out . The margin values are set to min=−25 and
mout=−7, following the original EBO setup [26]. In or-
der to test the trade-off in hidden layer regularization com-
pared to a completely post-hoc hidden layer analysis, we
selected CIFAR-10 and CIFAR-100 as Din and IMA-
GENET as Dseen

out . We then trained 5 runs using only LCE ,
and 5 runs using LCE + LR-EBO. We opted not to use the
checkpoints given by OpenOoD to guarantee a fair com-
parison between the two losses. Therefore, the EBO re-
sults are not comparable with the ones presented in other
tables, and are marked with (∗) accordingly. Moreover,
only results related to Far-OoD are presented, since Near-
OoD includes TIN, which is based on IMAGENET.

As expected, the regularization of intermediate layers



CIFAR-10 CIFAR-100 ImageNet-200 ImageNet-1K
Near Far Near Far Near Far Near Far

ResNet18/50 EBO 87.58 91.21 80.91 79.77 82.50 90.86 75.89 89.47
BHL 90.25 96.00 71.57 86.08 86.72 76.13 79.04 89.75

EfficientNet-B7 EBO 97.39 98.91 87.46 86.91 75.02 86.53 65.16 81.65
BHL 87.43 99.74 84.21 99.80 78.83 93.02 85.24 94.49

ViT-B-16 EBO 90.91 93.9 88.81 87.23 69.72 83.49 62.93 78.71
BHL 79.38 96.14 81.38 97.98 62.19 81.40 74.06 88.43

Table 5. EBO and BHL compared on different models.

strongly improves the OoD detection capabilities of the
model on both cases. However, this comes at the cost
of a slight decrease in ID accuracy, due to the additional
LR-EBO loss.
Covariate shift. Table 4 presents the detailed OoD re-
sults of CIFAR-10 against every corruption type present
in CIFAR-10-C. As with the semantic shift, we observe
that covariate shift is better identified by the hidden lay-
ers rather than by the final logits. Table 4 also presents
R-EBO results under covariate shift conditions, evaluated
using the same checkpoints from Table 3. The findings
suggest that regularizing layers with a semantically dis-
tinct Dseen

out does not consistently enhance the identifica-
tion of covariate shift.

5.3. Analysis on different architectures
Table 5 presents the complete results for EBO and
BHL, averaged over multiple runs, using RESNET18/50,
EFFICIENTNET-B7, and VIT-B-16 as backbones. The
findings are consistent with earlier observations: BHL
improves performance in most setups, except for certain
Near OoD cases.

6. Discussion and Limitations

Our findings show that intermediate representations are
capable of discriminating out-of-distribution samples bet-
ter than the logits. Both semantic, in the form of unseen
classes, and covariate shift, in the form of image corrup-
tions, are strongly captured by intermediate layers. How-
ever, a robust selection criterion for which layer to use
is still an open question, since the proposed aggregation
method underperforms compared to simpler logit-based
alternatives.

Regularization of the intermediate layer’s energies im-
proves the results even further, albeit with a trade-off in
ID accuracy. We suspect that the influence of Dseen

out leads
to sub-optimal filters for the discrimination of ID classes,
thus motivating further research involving regularization
which exploits Din only. Additionally, regularization us-
ing synthetic generated data [45] applied to intermediate
layers could also be a promising direction, as it would re-
duce dependence on specific datasets, promote privacy-
preservation, and enhance the generalization.

Finally, the findings on this paper pave the way for real-
time optimized out-of-distribution detection, enabling the
identification of OoD samples in earlier layers during net-
work propagation. By detecting such samples promptly,
the system can flag them and halt further processing, re-
ducing computational overhead and improving efficiency.
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