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Abstract

Incremental Learning scenarios do not always represent
real-world inference use-cases, which tend to have less
strict task boundaries, and exhibit repetition of common
classes and concepts in their continual data stream. To
better represent these use-cases, new scenarios with par-
tial repetition and mixing of tasks are proposed, where the
repetition patterns are innate to the scenario and unknown
to the strategy. We investigate how exemplar-free incre-
mental learning strategies are affected by data repetition,
and we adapt a series of state-of-the-art approaches to
analyse and fairly compare them under both settings. Fur-
ther, we also propose a novel method (Horde), able to dy-
namically adjust an ensemble of self-reliant feature ex-
tractors, and align them by exploiting class repetition.
Our proposed exemplar-free method achieves competi-
tive results in the classic scenario without repetition, and
state-of-the-art performance in the one with repetition.

1. Introduction
As autonomous agents and models in production systems
are exposed to continuous streams of information, they are
required to adapt to dynamic data distributions with poten-
tially multiple tasks and integrate new information over
time [3, 28, 43]. The practice of retraining the complete
system whenever new data is available becomes unfeasi-
ble as the storage, computation and privacy constraints
for data streams increase [31, 35, 39]. To address these
constraints, incremental learning (IL) or continual learn-
ing has emerged as a promising approach [4].

IL aims to learn a model sequentially through a se-
quence of tasks introducing disjoint sets of information at
each training step [8, 27, 42]. Generally, these scenarios
enforce a strict no-repetition constraint [7] allowing ac-
cess to the data distribution only once in the task sequence.
Unlike humans, who can learn nearly inference-free be-
tween tasks, neural networks suffer from a phenomenon
called catastrophic forgetting [10, 12]. When models are
optimized sequentially on novel tasks, a swift forgetting
of previously learned tasks is observed. To mitigate this

forgetting, a delicate balance between preserving learned
task knowledge (stability) and the ability to adapt to new
information (plasticity) has to be reached, which is known
as the stability-plasticity dilemma [29]. A popular ap-
proach to address this is to cache a representative subset of
previously encountered data points in a buffer and replay
them during the following training sessions [38, 41, 42].
Although such rehearsal addresses catastrophic forgetting
effectively, data privacy concerns have been raised [14],
and the scalability of an exemplar buffer in long-tailed in-
cremental sequences is questionable [42] due to the large
computational cost of complete retraining and significant
storage requirements.

Nonetheless, the strict enforcement of no-class repeti-
tion becomes unrealistic for many real-world applications,
as continuous streams are bound to repeat certain informa-
tion [7] or be affected by semantic or covariate shifts [30].
For example in industrial defect detection, certain com-
mon defects and defect-free samples will repeat through-
out production. The occurrence of repetition is further
amplified in environments where an agent has the free-
dom to reexperience elements which are contained within
the overall environment design. Thus the effects of catas-
trophic forgetting are likely exaggerated as an uncontrol-
lable form of rehearsal occurs naturally. Previous incre-
mental learning research has largely explored catastrophic
forgetting under the assumption that new information has
a single opportunity to be learned, since each class is only
available within a single task throughout the sequence.
The introduction of repetition into these scenarios enables
the selection of more broad incremental training tasks and
highlights the different dynamics within the plasticity-
stability dilemma of learning new tasks while maintaining
current knowledge [7]. The focus on catastrophic forget-
ting without repetition may limit the development of more
realistic incremental learning agents, which involve differ-
ent complex objectives like forward transfer [24] and effi-
ciency for computational limitations in edge devices [9].

As such, we want to loosen the no-repetition constraint
and explore the effects of natural repetition. To explore
these new settings and effects, our contributions are:
1. a new variation of the class-incremental learning
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CIFAR 50/10 scenario introducing class repetition,
2. benchmarking a broad selection of state-of-the-art

exemplar-free class-incremental learning methods and
investigate the effects of innate data repetition and their
resiliency to repetition frequency bias,

3. a novel incremental learning method (Horde) that
builds an ensemble of independent feature extractors
for stability and utilizes pseudo-feature projection for
plasticity (see Fig. 1).

2. Related Work

Class-incremental learning (CIL) addresses the challenge
of training a model sequentially on a series of tasks, with-
out access to previous or future data [36]. When training
without any constraints, models fail to retain knowledge
from previous tasks – a problem known as catastrophic
forgetting [10, 12]. Usually, each incremental task con-
tains a disjoint set of new classes, which increases the
difficulty of discriminating between those which have not
been learned together under the same task [8]. A key chal-
lenge in incremental learning lies in keeping the balance
of the stability-plasticity dilemma [29], critical for mit-
igating catastrophic forgetting while ensuring the adapt-
ability of the model to new tasks.

Incremental learning approaches include: weight reg-
ularization [2, 20], which preserves important weights
by estimating their importance; knowledge distilla-
tion [18, 22], which focuses on protecting task represen-
tations rather than weights; rehearsal [38], which replay
stored exemplars from previous tasks; mask-based ap-
proaches [26], which use task-specific masks to isolate pa-
rameters that can be updated; and dynamic network struc-
tures [11, 32], which expand the model architecture by
adding new or contracting existing modules for each task.
In this work, we concentrate on weight-regularization,
knowledge distillation and dynamic network structure-
based methods. These are the approaches that work on
task-agnostic scenarios (do not require a task-ID during
inference) and promote privacy preservation (do not store
samples).

Incremental learning with repetition. In many prac-
tical applications (automated failure inspection, medical
imaging, robotics), pattern repetition naturally arises, yet
traditional CIL approaches assume that each class is en-
countered only once, imposing a strict no-repetition con-
straint [7]. This constraint focuses on the prevention of
catastrophic forgetting but also diverges from real-world
scenarios where classes may reappear or shift over time.
To address this, Hemati et. al [15, 16] propose an ex-
tension to the class-incremental learning scenario which
models the repetition of individual classes outside of a
single task. Unlike joint incremental or rehearsal-based
learning, this repetition is innate to the learning scenario
and cannot be adjusted. This emphasizes an experience-
based scenario [41], which favours shorter training tasks
that can sometimes only cover a part of the class distri-

Figure 1. Overview of our proposed method (Horde). Each data
sample is processed by an ensemble of independent feature ex-
tractors. The features from all extractors are concatenated before
being passed into a unified head that can accommodate the dy-
namic input size through pseudo-feature projection.

bution. Moreover, covering scenarios that lie between the
classic offline incremental and the online ones.

Class-incremental learning with repetition has received
increased interest in the research community, being a cen-
tral element in the challenge tracks of the last two CLVI-
SION challenge tracks at CVPR 2023 and 2024 [1, 16]. In
the 2023 edition, we competed with a base variant of our
proposed method, although without elements for control-
ling ensemble growth (see Sec. 3.1), self-supervision (see
Sec. D) or applicability to variable network architectures.

Class prototypes and pseudo-features. To en-
force stability and alleviate class-recency biases in
the classifier [27], Exemplar-Free Class Incremental
Learning (EFCIL) methods [33, 40, 46–48] utilize class
prototypes to simulate unavailable classes. These proto-
types capture statistical properties of embedding represen-
tations of each class, which are usually modeled as a mul-
tivariate Gaussian distribution [40, 46, 47]. Specifically,
the statistics typically include the mean and covariance of
feature representations for each class, allowing to gener-
ate pseudo-features when class data is not available. To
extract representations, the neural network is divided into
two modules. A feature extractor (FE) that projects the in-
put samples into their corresponding embedding represen-
tation; and a classifier head that uses these embeddings to
solve the classification task. Therefore, prototype-based
methods can generate embeddings even when no samples
from past classes are available during subsequent tasks by
sampling the stored distributions of each class. The sam-
pled embedding representations are rehearsed alongside
the current task data, thus promoting stability and miti-
gating class-recency bias. However, in order to maintain
valid approximations of class distributions, the feature ex-
tractor needs to be either frozen or heavily regularized to
prevent changes or drifts in the extracted features. Unlike
rehearsal-based approaches, the use of prototypes does not
violate data privacy due to the non-linearly projected rep-
resentation in the embedding space [44, 47].

Feature translation. Instead of sampling the distribution
approximated by class prototypes, FeTrIL [33] proposes
to translate the features of available data classes to un-
available ones directly. Given a feature extractor f(x; θ)
being trained on current data {(xi, yi)}, its output em-
bedding F is efficiently translated from one of the current



classes to the desired previously learned class c ∈ Y as

F̂c = f(xi; θ) + µc − µyi , (1)

where µc and µyi
represent the means of the old and cur-

rent classes, respectively. The feature translation modifies
the classifier, however, the feature extractor is requires to
be frozen after the initial training so that the class means
can be reliably extracted. This limits the continual learn-
ing process as the initial task constrains the diversity and
robustness of the features that can be learned for new
classes [4, 33]. In our proposed approach, we relax this
restriction by allowing an ensemble of smaller feature ex-
tractors to be learned. This allows for unknown class pro-
totypes to be estimated through pseudo-feature projection
until the repetition of classes allows for an accurate ex-
traction of class prototypes.

3. Method
In incremental learning scenarios with repetition, the reap-
pearance of classes introduces uncertainty in task se-
quences, requiring strategies that handle dynamic class
distributions. Our approach aims to: (a) capture infor-
mation from the current task, (b) integrate it with knowl-
edge from previously seen tasks, and (c) ensure the abil-
ity to discriminate between all encountered classes so
far. To achieve this, we leverage zero-forgetting feature
extractors (FEs), which are aggregated in an ensemble
to overcome the limitation of a completely fixed feature
space. Through this aggregation, we form a flexible fea-
ture representation space that can adapt (expand or con-
tract) based on the incremental learning sequence (see
Fig. 1 for an overview of the proposed method structure).

To effectively utilize this dynamic embedding space,
we address the challenge of missing classes by con-
structing prototypes for all encountered classes. Class
prototypes are used to train a unifying classification
layer through an adjusted feature translation mechanism,
termed pseudo-feature projection, ensuring continuous
adaptation and robust performance across all classes.
Concretely, the learning approach is divided into two
steps: (1st) based on the difficulty of the current task and
depending on how well new classes can fit into the en-
semble embedding space, the ensemble is expanded with
a new feature extractor (described in Sec. 3.1); (2nd) once
the embedding space has been fixed for the current task,
class prototypes are extracted and the unified classification
layer is trained through the pseudo-feature projection (de-
scribed in Sec. 3.2). These steps are performed for every
incremental task and are summarized in Figure 2.

3.1. Feature Extractor Ensemble
The proposed aggregation framework consists of multi-
ple individual feature extractors (FEs), each trained on a
specific task and then frozen to preserve the learned rep-
resentations. The motivation for this zero-forgetting strat-
egy is to enforce stability, avoiding any catastrophic for-
getting on the ensemble while providing some plasticity

(a) Step 1: The ensemble of feature extractors is adjusted based on
the current task through either the addition or update of a self-reliant
feature extractor. This step is only performed when estimated as nec-
essary via a heuristic criteria.

(b) Step 2: Class prototypes are extracted or updated from the current
task data. Incomplete class prototypes (those estimated before Step 1
extends or modifies a feature extractor) are updated and data for un-
available classes is simulated by pseudo-feature projection. An un-
biased classification head is finetuned from the current training data
and the projected features of unavailable classes.

Figure 2. Overview of the steps our proposed method (Horde)
performs for each incremental task.

through the extension of the ensemble. Unlike FeTrIL,
which freezes a single feature extractor after the initial
training, the extension of the feature space through the
ensemble relieves the dependence of an expressive initial
feature extractor. The goal of each feature extractor is to
build a diverse and expressive feature space that empha-
sizes high-quality representations rather than optimizing
the performance of the individual incremental task. Fur-
ther, we adopt the self-learning loss from PASS [47]. This
self-learning loss enhances the learned feature representa-
tion by simultaneously classifying image orientation and
categories (each image class now has 4 augmented labels
depending on the image orientation). To further improve
regularization on the feature space topology, we incor-
porate a metric learning head with contrastive loss [34]
and hard-negative mining [37]. This promotes spherical-
shaped clusters in the embedding space, which improves
class discrimination between known and unknown distri-
butions [25]. Additionally, the sphere-shaped structure
aligns well with the properties of a multivariate Gaussian
distribution, which relates to the pseudo-feature projection
we propose. An ablation study of the effects of individ-
ual components is provided in the supplementary material
(see Sec. D).

Ensemble Growth. To control the growth of the ensem-
ble, we set a predefined budget B for the maximum num-



ber of FEs. For each incremental task, a decision is made
whether the concatenated embedding space should be ad-
justed based on the following criteria:

• constant feature representation: when the current en-
semble embedding representation is sufficient to handle
the incremental task, no new FE is trained. New classes
are learned using the existing ensemble representations
without requiring additional feature extraction capacity.

• dynamic feature adaption: when the current ensemble
of FEs cannot adequately represent the new task due to
a significant change in the data distribution, task com-
plexity or overlap with previous classes, a new FE is
added.

To capture these criteria and guide the growth of the en-
semble, we propose two heuristics to guide the modifica-
tion of the ensemble (see Step 1 in Fig. 2a):
• Class Set Maximisation (Hordem): this heuristic aims

to maximize the diversity of classes represented across
the ensemble. Specifically, it ensures that each FE con-
tributes to representing as much of a distinct set of
classes as possible

max
⋃
i∈B

∣∣c ∈ F i
∣∣ , (2)

thereby increasing the overall coverage of the class
space across all feature extractors. This maximization is
tested at the start of each incremental task. Thus, when
a larger class set is possible with the current incremen-
tal task data, a new FE is trained. The new FE either is
added or replaces one in the ensemble.

• Task Error Rate (Hordec): At the start of the incre-
mental task, the error rate e on the current incremental
data is computed (before training). It is obtained from
the confusion matrix (CM) by calculating the ratio of
wrong predictions over all other predictions:

e =
1

|Y|
∑
c∈Y

( ∑
j ̸=c CMc,j∑
i CMc,i

)
. (3)

If e is too high, the incremental data cannot be classified
with the current ensemble effectively. Therefore, we in-
troduce a threshold or budget of the ensemble B which
signals the need to train a new feature extractor based on
e. After training the unified head (Step 2), an improve-
ment score is calculated as the difference between the
error rate at Step 1 (before any training is performed)
and after Step 2. If the budget B has been exceeded the
FE with the lowest improvement score is replaced.

3.2. Unified Classification Layer
To unify the feature representations from the ensemble
and enable task-agnostic classification, we utilize a fully-
connected layer. This layer has dynamic input and out-
put sizes depending on the growth of the ensemble and

the number of incrementally learned classes. To mitigate
task-recency bias [8], we train this unified head using both
data from the current task and projected class prototype
features through our proposed pseudo-feature projection.
Pseudo-feature projection. Pseudo-feature projection,
inspired by FeTrIL [33], extends feature translation by in-
corporating both the mean and standard deviation of class
prototypes. This enhances the sampling of dimensions, re-
duces the chance of overlapping classes in the embedding
space and leads to more accurate feature replay. With this
projection, a data point from one class may be projected
to a pseudo-feature representation of any other previously
learned class. Our proposed projection extends the one
from FeTrIL on Eq. (1) as

F̂c = µc +
f(xi; θ)− µyi

σyi

· σc , (4)

where F̂c represents the pseudo-features of the latent rep-
resentation of a data point (xi,yi) which is projected from
the original class yi to the desired class c. This trans-
formation leverages the class prototypes; specifically the
mean µyi

and standard deviation σyi
to modify the latent

representation f(xi; θ). Class prototypes are updated dur-
ing Step 2, before training the unified classification layer
and after the ensemble has been adjusted.

We represent a complete class prototype as the con-
catenation of the individual class statistics from each FE
in the ensemble:

µc = (µc,1, . . . ,µc,n),
σc = (σc,1, . . . ,σc,n),

(5)

where n determines the current size of the ensemble.
Throughout the incremental sequence, the ensemble can
be expanded until the feature extractor budget is exhausted
(n≤B). Once this limit has been reached, individual fea-
ture extractors need to be finetuned or replaced and their
corresponding class prototype (µc,i, σc,i) is reset.

Class prototypes of certain classes may be incomplete
for newly added or modified FEs. When class statistics
are unknown for a specific FE, estimates are required for
pseudo-feature projection to calculate µ̂c,f and σ̂c,f . In
the absence of statistical information, we fix the standard
deviation to σ̂c,f = 1. This decision is based on the fact
that the estimation of µ̂c,f already provides sufficient vari-
ance. Therefore, for the estimation of the mean compo-
nent µ̂c,f we propose three heuristics:

1. zeros: clamping all µ̂c,f estimations to 0

µ̂c,f = 0 , (6)

2. random: randomly sample µ̂c,f from a multivariate
normal distribution

µ̂c,f ∼ N (0;Σ) , (7)

3. original features: estimate µ̂c,f with the original rep-
resentation of the transforming sample and use them
without modification

µ̂c,f = f(xi; θ) . (8)



Est. Method T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Avg. Acc. ↑
zeros 73.3 39.9 32.9 35.2 25.2 25.4 24.9 19.2 18.3 19.1 17.1 30.0

random-1.0 73.3 39.9 32.9 35.2 25.2 25.4 24.8 19.2 18.3 19.0 17.2 30.0
random-3.0 73.3 47.0 37.9 38.0 29.0 31.3 30.0 22.9 21.9 22.5 22.5 34.2
random-5.0 73.3 52.5 42.7 44.4 33.6 34.5 33.8 25.2 25.9 26.3 26.4 38.0
random-10.0 73.3 59.2 50.8 52.7 43.5 43.4 40.2 31.4 31.8 31.8 31.7 44.5
random-15.0 73.3 61.7 53.5 54.2 45.6 46.1 42.0 35.8 36.1 • 34.8 • 34.4 47.0
random-20.0 73.3 62.5 55.5 54.8 • 47.3 47.0 42.9 36.5 35.5 34.8 • 34.4 47.7
random-30.0 73.3 62.9 • 55.9 55.1 • 48.8 • 47.6 43.7 • 36.8 36.0 34.8 • 34.7 • 48.1 •
random-40.0 73.3 62.6 58.0 • 54.8 • 46.9 47.8 • 44.9 • 38.6 • 36.5 • 35.9 • 34.9 • 48.6 •
random-50.0 73.3 64.1 • 57.2 54.8 • 47.6 • 47.9 • 42.0 37.6 • 33.8 34.8 • 34.4 48.0
random-75.0 73.3 62.1 57.9 • 54.5 46.2 45.4 40.7 35.6 34.1 33.7 33.6 47.0

random-100.0 73.3 62.6 56.5 53.9 46.5 45.8 40.7 34.4 34.2 33.8 33.4 46.8

original features 73.3 64.3 • 61.3 • 60.8 • 55.1 • 53.7 • 52.7 • 46.8 • 47.1 • 46.3 • 45.2 • 55.2 •

Table 1. Results for class prototype estimation when the corresponding class prototype is not available during training. The evaluation
is performed on a CIL 50/10 setup with Slim-Resnet-18 only. 1st •, 2nd • and 3rd • best metrics are marked accordingly.

We evaluate the proposed feature estimation heuristics
in an empirical experiment on a class-incremental learn-
ing scenario with no repetition. The results on CIFAR
50/10 trained on a Slim-Resnet-18 are listed in Table 1
(see Sec. 4 for more details). This scenario requires the es-
timation of class prototype components (e.g., mean, vari-
ance) at each incremental task and the estimation is essen-
tial for the classification. The original features estimation
performed best, and this heuristic is the one used in all
subsequent experiments.

In EFCIR scenarios, the repetition of classes within
incremental tasks enhances the performance of pseudo-
feature projection as it aligns individual FE representation
spaces by eliminating the need for estimating class pro-
totype components. During class repetition they can be
directly calculated from the available task.

4. Experimental Setup

Most incremental learning methods expect a different set
of classes with all dataset samples for each class available
when learning its corresponding task. However, when
class repetition is introduced, the complexity of poten-
tial scenarios increases significantly, and where sequence
length and repetition frequency become additional vari-
ables. To address this, we propose an analysis into the ef-
fects of class repetition within a setting that shares many
characteristics of traditional incremental learning but in-
corporates longer sequences with class repetition. Code
for the proposed scenarios and methods is available1.

Overall, the proposed experiments aim to analyze a)
the performance of IL methods in scenarios without repe-
tition (baseline), b) the performance of CIL with small in-
cremental tasks and class repetition, and c) the resilience
of the methods against bias deviations in repetition fre-
quency.

Ideally, we expect the average accuracy of our pro-
posed method to be on par with state-of-the-art methods

1www.github.com/Tsebeb/cvww_cir_horde

on (a) and to outperform them in (b) and (c). To validate
this, method performance will be ranked based on average
accuracy for all scenarios (a – c).

4.1. Compared Methods
We benchmark a total of 14 methods, which include
two rehearsal-based approaches, five incremental learn-
ing methods, five state-of-the-art exemplar-free class-
incremental learning (EFCIL) methods, and two variants
of our proposed approach. The two rehearsal-based meth-
ods are excluded from the ranking and serve as an up-
per baseline (Joint [8]) and a reference point (Weight-
Alignment (WA) [45]; n = 2000).

The five incremental learning methods consist of
two baseline methods (Freezing (FZ) and Finetun-
ing (FT) [27]), and three classic IL methods Elas-
tic Weight Consolidation (EWC) [20], Memory Aware
Synapses (MAS) [2] and Learning without Forget-
ting (LWF) [22]. These three methods were not origi-
nally proposed for CIL, thus, requiring the use of a task-
ID at inference time. However, they are easily and com-
monly adaptable to task-agnostic settings. As such, we
performed a grid search for their optimal hyperparameters
based on the CIL 50/10 setting and used these for the rep-
etition settings.

The five state-of-the-art, rehearsal-free, protoype-
based methods comprise: Prototype Augmentation and
Self-Supervision (PASS) [47], Class-Incremental Learn-
ing with Dual Supervision (IL2A) [46], Self-Sustaining
Representation Expansion (SSRE) [48], Prototype Rem-
iniscence and Augmented Asymmetric Knowledge Ag-
gregation (PRAKA) [40] and Feature Translation for
Exemplar-free Class Incremental Learning (FeTrIL) [33].
These methods were originally reported on the CIL CI-
FAR 50/10 setting. Therefore, since the proposed repeti-
tion scenarios are closely related to this setting, we use the
hyperparameters proposed by the original authors.

Finally, we evaluate our proposed method with both
ensemble growth heuristics (Hordem and Hordec). A de-

www.github.com/Tsebeb/cvww_cir_horde


tailed overview of the used hyperparameters is provided
in the supplementary material (see Sec. C).

4.2. Model Architecture
All methods employ the same base feature extractor, a
ResNet-18 [13] model that has been adjusted to the CI-
FAR input dimensions [46, 47]. For our approach, which
utilizes an ensemble of feature extractors, we employ
a slimmed-down variant of ResNet-18 for incremental
tasks. This variant reduces the number of channels/filters
for convolutions while preserving the network’s depth (see
supplementary material Sec. B). With this reduced archi-
tecture, we construct an ensemble consisting of one full
ResNet-18 and nine Slim-ResNet-18 models (making our
budget B=10). This configuration results in a total num-
ber of parameters and computational requirements (see
Table 2) that are roughly equivalent to those of knowl-
edge distillation approaches (or importance weight esti-
mation [2, 20, 23]).

4.3. Scenarios
Experiments are conducted on the CIFAR-100
dataset [21], employing data augmentation in line
with other CIL methods [40, 46]. These augmentations
consist of a 4-pixel zero padding of the input image and a
random cropping to the original 32 × 32 size. Followed
by a random horizontal flip, image brightness jitter and
image normalization.

To evaluate the effects of repetition on CIL methods,
we organize the experiments in three scenarios. First, a
baseline is established by evaluating (a) all methods on an
incremental learning scenario without repetition.

(a) CIL 50/10. The classic task-agnostic class-
incremental scenario consisting of an initial training
session with 50 classes and followed by 10 incremen-
tal tasks, each containing five novel classes.

Second, we evaluate (b) performance on a modified CIL
scenario where classes repeat in the task sequence. Specif-
ically, the scenario is built by replacing the discrete incre-
mental tasks with clear boundaries from CIL 50/10 with
small (2,000 training samples per task) incremental tasks
that can contain class repetition. Each class, old or new,
has the same probability of being in an incremental task.

(b) EFCIR-U 50/100. Similarly to the CIL 50/10 sce-
nario, the initial training also covers 50 classes. An
essential element of repetition is a mixture of new
and already seen samples. Therefore, we only pro-
vide 50% of the available training data samples for
the initial training. Following the initial task, the sce-
nario consists of 99 small, incremental tasks, with a
limit of 2,000 training samples each. Both the initial
50 and incremental 50 classes have a fixed probabil-
ity of 15% of being discovered or repeated in an in-
cremental task so that tasks do not contain too many
classes on average. The number of samples per class
in a task are balanced as in the CIL 50/10 scenario.

Model # Parameters

ResNet-18 11.307.956
Slim ResNet-18 1.109.240

Knowledge Distillation 22.615.912
Ensemble (ours) 21.291.116

Table 2. Number of parameters for different architectures.

In the third scenario, the aim is to assess the IL method’s
(c) resilience against biases in repetition frequency. To
establish this bias during scenario creation we propose to
draw the repetition probability of each class from a Beta
Distribution [19]. An illustration of the repetition bias is
provided in the supplementary material Sec. E.

(c) EFCIR-B 50/100. To test the resiliency against rep-
etition frequency, we sample individual class rep-
etition probabilities p ∼ Beta(α, β) with parame-
ters α= 3.5 and β = 20.0. This way, the expecta-
tion E[Beta(3.5, 20.0)]≈0.15 is similar to the uni-
form EFCIR-U scenario, implying that on average
the same number of classes are present in each task.

In scenarios with repeated classes, the optimal learning
rate and number of epochs depend on various factors (e.g.
method, number of training samples, length of incremen-
tal sequence) and are highly influential. To address this,
we split 10% of the available training data as a validation
set. For all methods, we apply early stopping [5, 34] us-
ing this validation data for the classes present in the task.
We monitor the validation loss (including regularization
and auxiliary losses of the method) and allow for a pa-
tience period of 5 epochs. If no improvement is observed,
we perform a learning rate decay step. Each decay step
reduces the learning rate by a factor of 0.1, the model
weights are reset to the best checkpoint before patience,
and we do not perform more than 2 decay steps.
Evaluation. All scenarios are ranked by the average ac-
curacy [8, 27, 33, 36, 47] achieved over the complete task
sequence. Average accuracy is calculated by evaluating
the model on the CIFAR test set based on the classes that
have been seen up to each task. Complementary to the
average accuracy, average forgetting [6, 8, 27] is also re-
ported, which measures the drop in accuracy over the task
sequence. Experimental results are averaged over 5 seeds.

5. Results
The summarized results of the experiments are listed in
Table 3. Detailed plots and tables of the accuracy progres-
sion for all methods in each proposed scenario are pro-
vided in the supplementary material (Sec. G).
Scenario (a) CIL 50/10. The conducted baseline exper-
iment confirms the reported results from other works [8,
40, 46, 47]. We observe a significant performance gain of
approximately 10-15% in average accuracy over the task



(a) CIL 50/10 (b) EFCIR-U 50/100 (c) EFCIR-B 50/100
Method Avg. A ↑ Avg. f ↓ Avg. A ↑ Avg. f ↓ Avg. A ↑ Avg. f ↓

Joint 73.9 - 69.8 - 68.9 -
WA [45] 42.7 ± 2.3 • 33.2 ± 1.4 • 50.4 ± 0.2 • 16.7 ± 2.4 • 49.2 ± 0.7 • 18.0 ± 1.6 •

FT 14.2 ± 1.0 • 57.8 ± 1.2 • 36.2 ± 2.1 • 25.6 ± 2.7 • 34.2 ± 2.0 • 29.0 ± 2.6 •
FZ 52.6 ± 1.4 • 19.7 ± 0.9 • 40.2 ± 3.9 • 20.0 ± 1.6 • 41.7 ± 3.1 • 22.5 ± 1.8 •

EWC [20] 45.9 ± 2.9 • 25.7 ± 1.4 • 47.7 ± 3.2 • 13.5 ± 1.5 • 45.5 ± 3.2 • 17.8 ± 1.8 •
MAS [2] 45.9 ± 2.9 • 25.8 ± 1.4 • 49.3 ± 2.6 • 12.0 ± 1.8 • 47.2 ± 2.3 • 16.1 ± 2.1 •
LwF [22] 47.9 ± 1.8 • 24.1 ± 0.8 • 45.7 ± 1.9 • 15.9 ± 2.8 • 43.5 ± 0.8 • 19.8 ± 4.1 •
PASS [47] 62.1 ± 1.9 • 14.1 ± 0.4 • 30.2 ± 2.0 • 35.3 ± 2.1 • 30.6 ± 1.4 • 38.3 ± 1.6 •

PRAKA [40] 63.1 ± 2.5 • 11.8 ± 2.2 • 43.1 ± 2.1 • 22.3 ± 2.3 • 42.7 ± 3.2 • 25.6 ± 1.8 •
IL2A [46] 54.2 ± 1.4 • 19.1 ± 1.3 • 26.3 ± 3.0 • 32.2 ± 2.9 • 27.2 ± 2.5 • 37.2 ± 1.7 •
SSRE [48] 53.0 ± 2.7 • 13.0 ± 0.8 • 29.2 ± 3.5 • 25.4 ± 2.1 • 26.5 ± 2.2 • 26.4 ± 2.1 •
FeTrIL [33] 61.4 ± 0.4 • 13.6 ± 0.8 • 46.5 ± 0.7 • 22.9 ± 0.7 • 46.9 ± 0.9 • 23.8 ± 1.2 •
Hordem 62.9 ± 1.2 • 15.2 ± 0.7 • 54.4 ± 0.7 • 16.4 ± 1.5 • 54.3 ± 0.4 • 17.7 ± 1.0 •
Hordec 62.9 ± 1.2 • 15.3 ± 0.6 • 53.4 ± 0.7 • 17.6 ± 1.6 • 53.1 ± 0.4 • 18.5 ± 1.1 •

Table 3. Average Accuracy (Avg. A) and average Forgetting (Avg. f ) for all 3 proposed scenarios. The listed results are averaged over
5 seeds (except incremental Joint). The 3 best results are marked with a gold •, silver • and bronze • medal respectively.

sequence when comparing the state-of-the-art rehearsal-
free (EFCIL) methods with EWC, MAS and LwF. While
our proposed method is particularly designed towards rep-
etition scenarios, where the estimation of class prototype
components is not always required, it remains compet-
itive in disjoint, no-repetition scenarios as well, show-
ing comparable performance to the best EFCIL meth-
ods [33, 40, 46, 47].

Scenario (b) EFCIR-U. Introducing class repetition in
small incremental tasks into the scenario leads to signifi-
cant performance differences. Weight-regularization ap-
proaches and vanilla finetuning typically underperform
compared to knowledge distillation or class prototype-
based approaches in EFCIL [40]. However, in this sce-
nario with repetition, we observe greatly improved perfor-
mance for FT, EWC and MAS. The results for these meth-
ods surpass even the results from the CIL 50/10 scenario
by leveraging data repetition effectively (see Fig. 3). In
contrast, EFCIL methods (PASS, IL2A, SSRE, PRAKA)
that rely on both class prototype rehearsal and knowledge
distillation show a performance degradation under repe-
tition. This decline is not observed in methods that use
either knowledge distillation (LwF) or class prototype re-
hearsal with frozen feature extractors (FeTrIL, Ours).

We hypothesize that the estimation of class prototypes
with incomplete class data distribution in the former meth-
ods leads to a suboptimal feature embedding space, which
is then propagated through the incremental task sequence
via knowledge distillation. Frozen feature extractors, on
the other hand, avoid this issue since their representations
remain fixed after the initial training, preventing catas-
trophic drift in the embedding space during the task se-
quence. This raises the question whether the assumption
that the complete training data distribution of an individ-
ual class – as in traditional class-incremental learning – is
a realistic assumption for continual learning scenarios.

Figure 3. Accuracy curves for scenario (b) with equiprobable
repetition frequency. Weight-regularized methods (solid) benefit
directly from short tasks with class repetition, while prototype-
based approaches (dashed) degrade in accuracy as the sequence
advances.

Our ensemble-based approach (Horde), with both en-
semble growth heuristics, establishes a new state-of-the-
art for the repetition settings. Notably, when comparing
our method with the closely related FeTrIL approach, we
observe a performance increase under repetition. This
suggests that our approach could extend the feature space
of the base feature extractor by incorporating class com-
binations from smaller feature extractors. Over time, rep-
etition aligns these representations, enabling the model to
learn a unified classification head on a more diverse rep-
resentation space provided by the ensemble.

The strong performance gains for weight-regularized
approaches are only observed when the cross-entropy loss
during training is limited to the classes that are present
within the current task. Practically, this is achieved by
freezing all weights associated with classes outside of the
current task [27]. Figures 4 and 5 illustrate the conse-
quences of backpropagating the loss through all weights
of the classification head. In this case, regardless of



(a) Cross-entropy loss gradient applied to all class weights in the
classification head. Significant task recency bias is visible (the diag-
onal is significantly higher, with sharp drops after each task).

(b) Cross-entropy loss gradient applied to only current task class
weights in the classification head. Much of the task recency bias is
alleviated by freezing the classifier weights for unavailable classes.

Figure 4. Depiction of the task accuracy progression of MAS over the scenario (b) sequence (averaged over 5 seeds). Accuracy
is evaluated on the test set for the classes represented in the corresponding incremental training data within a task. Note, that for
repetition there is always a certain overlap within tasks.

Figure 5. Accuracy results for finetuning and weight-
regularization based methods. Solid lines indicate the backprop-
agation of the cross-entropy loss over all classes leading to catas-
trophic class recency bias. Dashed lines indicate the freezing of
the weights related to the output of non-current classes.

whether weight-regularization is applied to the feature ex-
tractor, a strong class recency bias emerges in the classifi-
cation head. As a result, the accuracy of all three methods
collapses, with the model essentially forgetting classes
proportionally to how long they were seen last (see Fig. 4).
However, when the weights for unavailable classes in the
classification head are frozen, a significant performance
improvement is observed, as the model retains its ability
to distinguish across earlier tasks without being overly bi-
ased towards the most recent ones.

Scenario (c) EFCIR-B. The bias in repetition frequency
appears to have only a minor effect on the average accu-
racy of the approaches. All tested methods achieve similar
results or experience only a slight drop of up to ∼2% in
average accuracy. This suggests that repetition frequency
bias is a relatively minor challenge in the EFCIR-B 50/100
scenario. However, it is important to note that this setting

only evaluates adjustments in repetition frequency while
the sample distribution within a training task is kept bal-
anced. Therefore, further investigation is needed to assess
whether an imbalanced training data distribution in con-
junction with biased repetition frequency would increase
the difficulty. We leave this exploration to future work.

6. Conclusion

In this work, we conducted an exploratory evaluation of
CIL methods in exemplar-free class-incremental learning
with repetition scenarios and investigated their resiliency
to biases in the repetition frequency of classes.

In the evaluated repetition scenarios, EFCIL meth-
ods that rely on class prototypes (PASS, PRAKA, IL2A,
SSRE) severely underperform and are unable to ben-
efit from the repetition of classes. Notably, weight-
regularization-based approaches perform exceptionally
well in repetition scenarios provided that training with
cross-entropy is restricted to the classes present in each
task, thereby mitigating the risk of class-recency bias in
the classification head. The results from the repetition fre-
quency bias from a beta distribution show only minimal
performance differences, with either no effect on average
accuracy or a slight drop of up to 2%. Thus, a bias in
repetition frequency alone without a biased sample distri-
bution within a training task is insufficient for significant
classification bias.

Furthermore, we introduce a novel ensemble learning
technique that takes advantage of class repetition. This
method combines a dynamic set of independent feature
extractors, which are aligned through a unified head in a
process we call pseudo-feature projection. The proposed
method demonstrates competitive performance in tradi-
tional no-repetition settings and establishes a new state-
of-the-art for scenarios with repetition.
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Incremental Learning with Repetition via Pseudo-Feature Projection

Supplementary Material

A. Pseudo Code
The algorithm for the proposed Horde method can be sep-
arated into two parts: (1st) the training of an individual
feature extractor (FE), which is listed in Algorithm 1 and
(2nd) the overall assembly of the ensemble and training
of the unified head through pseudo-feature projection (see
Algorithm 2). The training of a feature extractor (1st part)
can be freely adjusted (loss, network architecture) as long
as a frozen feature extractor that can produce an embed-
ding is the result.

Algorithm 1 FE Training

1: Initialize CE and ML Head
2: Initialize new FE (or transfer learned weights)
3: for training epoch do
4: for X;Y in Dataloader do
5: X;Y ← SelfSupervision(X;Y )
6: Extract X̂ ← FE(X)
7: Predict Ŷ ← HeadCE(X̂)
8: Project A← HeadML(X̂)
9: Calculate LCE (from Y and Ŷ )

10: Calculate LML (with Hard Neg. Pairs on A)
11: Backprop LCE + LML
12: end for
13: end for
14: Remove CE and ML head
15: Freeze FE

Algorithm 2 IL through pseudo-feature projection

1: for task do
2: if Growth Condition (Hordem or Hordec) then
3: Train FE (Algorithm 1)
4: Add / Replace FE in ensemble
5: end if
6: Calculate µc and σc for all current classes c
7: for training epoch do ▷ Only Unified head
8: for Batch do
9: Calculate LCE

10: Generate F̂c from current Batch
11: Calculate LCE;P for F̂c

12: Backprop LCE + LCE;P
13: end for
14: end for
15: end for

B. Details about the Model Architecture
The individual layers of a ResNet-18 are listed in Table 4
and a structural overview is depicted in Figure 6. There
is no difference in the depth of the network or the type

ResNet-18

Cb = 20 for SlimResNet18 and Cb = 64 for ResNet-18

Layer Stride Dimension

Conv 3× 3 1 Cb × 32× 32
BatchNorm - Cb × 32× 32

ReLU - Cb × 32× 32
BasicBlock Cin = Cb, Cout = Cb 1 Cb × 32× 32

BasicBlock Cin = Cb, Cout = 2 · Cb 2 2× Cb × 16× 16
BasicBlock Cin = 2 · Cb, Cout = 3 · Cb 2 3× Cb × 8× 8
BasicBlock Cin = 3 · Cb, Cout = 4 · Cb 2 4× Cb × 4× 4

AvgPool 4× 4 1 4× Cb × 1× 1
Linear (Classification Head) - #classes

Table 4. The network structure is identical for both ResNet-18
and its SlimResNet-18 variant, besides a reduction in the number
of base channels Cb.
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Figure 6. Visualization of the structure of a ResNet-18 [13].

of layers between the ResNet-18 and the Slim-ResNet-18.
The only difference is the number of base filters Cb for
the convolutions in the Basic Blocks. The Slim-ResNet-
18 uses Cb=20 while the full ResNet-18 uses Cb=64.
This influences the number of channels for the following
operations so that a compression to approximately a tenth
of the original size can be achieved.

C. Method Hyperparameters
The hyperparameters for all compared methods are listed
in Table 5. For EWC, MAS and LWF, we perform a grid-
search over their main hyperparameters on the CIL 50/10
scenario, and the one achieving the highest average accu-
racy are fixed for the repetition tasks. The remaining hy-
perparameters are the ones recommended by their original
authors for the corresponding scenario.

D. Feature Extractor Training Components
Table 6 provides an overview of the effects of each com-
ponent in the Feature Extractor and its effect on the aver-
age accuracy in the CIL scenario (a). The results have
been averaged over 5 seeds. Both the self-supervision
from PASS [47] as well as the training with the metric
learning head are beneficial based on the overall average
accuracy. The metric learning head alone without a cross-

DOI: 10.3217/978-3-99161-022-9-004

This work is licensed under cb CC BY 4.0, excluding materials attributed to other sources or explicitly excluded.

https://doi.org/10.3217/978-3-99161-022-9-004
https://creativecommons.org/licenses/by/4.0/


Method Hyperparameter
FT -
FZ freeze after 1st task

Joint -
WA [45] 2000 exemplars, τ = 2, patience = 10

EWC [20] λ = 40000, α = 0.1
MAS [2] λ = 10, α = 0.1
LwF [22] λ = 30, τ = 2

PASS [47] τCE = 0.1, τKD = 2, λkd = 10.0, λaug = 10.0
IL2A [46] τCE = 0.1, λKD = 10.0, λseman = 10.0, #mixups = 4

PRAKA [40] τCE = 0.1, λaug = 15.0, λKD = 15.0
SSRE [48] τCE = 0.1, λaug = 10.0, λKD = 1.0
FeTrIL [33] AugMix [17] pre-train, fc head, 1-cosine translation
Horde (ours) original features estimation, CE & ML Head, self-supervision, 1 Resnet18, 9 Slim Resnet18s

Table 5. Overview of approach-specific hyperparameters

CE-Head ML-Head Self-Supervision [47] Avg. Acc ↑
✓ ✗ ✗ 56.91± 0.88 •
✗ ✓ ✗ 7.72± 0.85 •
✓ ✓ ✗ 58.68± 0.79 •
✓ ✗ ✓ 60.62± 1.21 •
✗ ✓ ✓ 9.76± 1.15 •
✓ ✓ ✓ 63.09± 1.19 •

Table 6. Ablation study results on different variations of FE
training. 1st •, 2nd • and 3rd • best metrics are marked ac-
cordingly.

entropy head is however insufficient for the training of a
feature extractor.

E. Scenario Visualization

In the proposed experiments we differentiate between a
fairly balanced repetition scenario and a biased scenario.
The difference between the two repetition frequencies is
visualized in Fig. 7 and Fig. 8. On average both scenarios
have 15 classes in each incremental task.

F. Longer Task Sequence

The results from scenario (b) indicate a strong accuracy
recovery/trend for weight regularization techniques. We
further evaluate with even longer task sequences where
the number of incremental tasks is increased from 99
to 149. The accuracy on later tasks is very strong on
weight-regularization techniques as the overall accuracy
trend continues. However, it is important to note that,
already in the 100 task scenario, all available training
data is used in the task sequence at least once, thus fur-
ther tasks can only repeat samples and no longer pro-
vide any new/incremental training data. Although EWC
and MAS both achieve a significant higher final accuracy
in the longer task sequence, they are still slightly worse
in terms of average accuracy across the whole sequence,

Figure 7. Class distribution visualization of scenario (b), with
uniform class occurrence frequency. Each colored block indi-
cates that the class is sampled in the corresponding task.

Figure 8. Class distribution visualization of scenario (c), with
biased (beta) class occurrence frequency. Each colored block
indicates that the class is sampled in the corresponding task.

since they are less stable in the initial tasks of the se-
quence. The compared average accuracies for the 100 and
150 task scenarios, as well as final test accuracy after the
task sequence, are listed in Table 7. Furthermore, the ac-
curacy progression is visualized in Figure 9.
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Method Avg. A100 Avg. A150 final A100 final A150

FT 36.2± 2.1 • 39.3± 2.1 • 42.3± 2.7 • 46.9± 1.1 •
EWC 47.7± 3.2 • 51.4± 0.9 • 54.4± 2.5 • 57.2± 0.7 •
MAS 49.3± 2.6 • 52.5± 0.8 • 55.6± 2.2 • 59.0± 0.3 •

Hordec 54.4± 0.7 • 53.2± 1.6 • 55.1± 0.7 • 54.4± 0.4 •
Hordem 53.4± 0.7 • 53.8± 0.9 • 54.0± 1.1 • 53.4± 1.9 •

Table 7. Comparison between unbiased repetition scenarios of 100 and 150 tasks. While our proposed method is more stable, especially
in the initial phases of training. The trend of weight regularization methods continues and the final accuracy continues to increase.

Figure 9. Average Accuracy over an even longer repetition scenario to analyse the trends between different methods. The performance
increase of weight-regularization techniques continue

G. Scenario Results
The following figures visualize the detailed Average Ac-
curacy development over the incremental task sequence.
For each method the mean and one standard deviation
have been plotted. The results for the class-incremental
scenario (a) are listed in Table 8 and visualized in Fig-
ure 10. The unbiased repetition results fo scenario (b) can
be found in Table 9 and Figure 11. The results of the bi-
ased class-repetition scenario (c) are shown in Table 10
and Figure 12.
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Figure 10. Accuracy development over the task sequence of scenario (a).

Figure 11. Accuracy development over the task sequence of scenario (b).

Figure 12. Accuracy development over the task sequence of scenario (c).
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Method A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Avg. A ↑ Avg. f ↓
WA 76.0 ± 1.5 60.4 ± 3.5 50.0 ± 5.4 40.7 ± 7.7 38.3 ± 6.7 35.1 ± 6.5 36.4 ± 5.7 35.2 ± 4.7 31.9 ± 3.7 32.4 ± 3.5 33.5 ± 4.5 42.7 ± 2.3 33.3 ± 1.5

FT 72.1 ± 1.7 21.3 ± 5.5 10.8 ± 2.9 9.0 ± 0.8 7.3 ± 0.4 7.0 ± 0.5 6.4 ± 0.3 6.1 ± 0.5 5.8 ± 0.3 5.5 ± 0.2 5.1 ± 0.3 14.2 ± 1.0 57.9 ± 1.2
FZ 72.1 ± 1.7 63.7 ± 2.7 60.3 ± 1.4 55.8 ± 3.2 54.4 ± 2.5 50.0 ± 1.4 47.3 ± 0.5 46.2 ± 1.9 43.9 ± 1.8 42.2 ± 1.5 39.9 ± 0.9 52.4 ± 1.4 19.7 ± 0.9

EWC 71.7 ± 1.6 61.6 ± 3.5 56.5 ± 2.6 50.9 ± 4.2 47.7 ± 4.0 42.4 ± 5.0 38.9 ± 3.3 38.4 ± 3.5 34.7 ± 2.8 32.6 ± 3.5 29.7 ± 2.5 45.9 ± 3.0 25.8 ± 1.5
MAS 71.7 ± 1.6 61.4 ± 3.6 55.9 ± 3.6 50.4 ± 5.3 48.4 ± 3.3 42.6 ± 3.8 39.4 ± 4.1 38.2 ± 3.6 34.1 ± 3.2 32.5 ± 3.0 30.5 ± 1.7 45.9 ± 2.9 25.8 ± 1.4
LwF 72.1 ± 1.7 65.2 ± 2.7 60.3 ± 2.0 54.4 ± 3.1 50.2 ± 3.1 46.4 ± 2.9 42.1 ± 2.2 37.9 ± 2.2 34.9 ± 1.3 32.7 ± 1.4 30.7 ± 1.1 47.9 ± 1.8 24.2 ± 0.8

PASS 76.2 ± 2.0 • 71.8 ± 2.6 • 68.2 ± 2.3 • 65.5 ± 2.6 • 63.2 ± 2.0 60.8 ± 1.5 59.1 ± 1.8 57.0 ± 1.7 55.4 ± 1.9 53.8 ± 1.7 52.1 ± 1.7 62.1 ± 1.9 14.1 ± 0.5
PRAKA 74.9 ± 4.7 71.8 ± 3.4 • 68.8 ± 3.1 • 66.6 ± 2.4 • 63.9 ± 2.6 • 61.9 ± 1.6 • 60.5 ± 2.6 • 58.7 ± 2.1 • 57.2 ± 1.9 • 55.6 ± 2.2 • 54.4 ± 2.4 • 63.1 ± 2.6 • 11.8 ± 2.3 •

IL2A 73.2 ± 0.8 67.5 ± 1.8 63.3 ± 1.5 59.4 ± 1.8 56.2 ± 1.1 52.4 ± 1.7 49.6 ± 2.1 46.6 ± 2.3 44.6 ± 2.4 42.6 ± 1.5 40.7 ± 1.4 54.2 ± 1.4 19.0 ± 1.3
SSRE 65.9 ± 2.6 59.6 ± 2.6 56.9 ± 4.0 55.4 ± 2.7 52.5 ± 2.9 51.6 ± 2.3 50.3 ± 3.2 49.0 ± 2.9 47.9 ± 2.7 46.7 ± 2.6 45.6 ± 2.4 52.9 ± 2.7 13.0 ± 0.8 •
FeTrIL 75.0 ± 1.2 70.6 ± 0.9 67.4 ± 0.9 64.9 ± 1.1 62.6 ± 0.6 60.2 ± 0.5 58.7 ± 0.5 56.5 ± 0.5 55.0 ± 0.5 53.2 ± 0.4 51.6 ± 0.6 61.4 ± 0.4 13.6 ± 0.8 •
Hordem 78.1 ± 1.7 • 71.6 ± 1.3 • 67.5 ± 1.6 65.3 ± 2.8 • 63.6 ± 1.0 • 61.6 ± 1.2 • 60.5 ± 1.5 • 57.5 ± 1.2 • 56.4 ± 1.1 • 55.7 ± 1.0 • 54.0 ± 1.5 • 62.9 ± 1.2 • 15.2 ± 0.7
Hordec 78.2 ± 1.7 • 71.2 ± 1.4 67.7 ± 1.9 • 65.2 ± 2.8 63.4 ± 0.8 • 61.8 ± 1.2 • 60.2 ± 1.9 • 57.9 ± 1.0 • 56.6 ± 1.1 • 55.9 ± 1.1 • 53.8 ± 0.4 • 62.9 ± 1.2 • 15.3 ± 0.7

Table 8. Results for the baseline CIL 50/10 scenario (a). 1st •, 2nd • and 3rd • best metrics are marked accordingly.

Method A0 A10 A20 A40 A60 A80 A99 Avg. A ↑ Avg. f ↓
WA 67.1 ± 2.4 52.2 ± 0.8 50.6 ± 1.1 49.9 ± 0.7 49.1 ± 0.8 49.6 ± 0.9 49.2 ± 0.8 50.4 ± 0.2 16.7 ± 2.4

FT 61.8 ± 4.3 25.8 ± 2.3 28.1 ± 2.2 35.7 ± 3.9 39.3 ± 3.8 40.0 ± 0.9 42.3 ± 2.7 36.2 ± 2.1 25.6 ± 2.7
FZ 60.1 ± 4.8 37.9 ± 3.7 37.9 ± 3.4 40.4 ± 3.5 38.9 ± 5.5 40.5 ± 3.6 40.0 ± 3.6 40.2 ± 4.0 20.0 ± 1.6

EWC 61.1 ± 4.1 37.4 ± 3.1 39.5 ± 3.3 46.7 ± 3.3 50.4 ± 3.5 52.1 ± 2.5 54.4 ± 2.5 • 47.7 ± 3.2 13.5 ± 1.5 •
MAS 61.3 ± 4.1 38.2 ± 2.6 41.6 ± 2.5 48.6 ± 2.7 • 52.0 ± 3.3 • 53.6 ± 1.9 • 55.6 ± 2.2 • 49.3 ± 2.6 • 12.0 ± 1.8 •
LwF 61.6 ± 4.2 44.5 ± 3.0 43.6 ± 2.2 44.7 ± 1.5 45.7 ± 2.0 46.1 ± 1.9 45.6 ± 1.7 45.7 ± 1.9 15.9 ± 2.8 •
PASS 65.5 ± 2.7 35.4 ± 1.8 32.9 ± 1.2 31.4 ± 2.1 28.8 ± 2.2 24.6 ± 4.6 20.4 ± 3.1 30.2 ± 1.9 35.3 ± 2.2

PRAKA 65.4 ± 3.3 48.1 ± 3.5 • 47.2 ± 2.9 • 46.4 ± 3.7 42.2 ± 3.0 36.3 ± 2.7 30.6 ± 1.0 43.1 ± 2.1 22.3 ± 2.4
IL2A 58.5 ± 5.8 29.5 ± 3.3 27.1 ± 3.0 26.3 ± 2.3 24.8 ± 3.0 22.5 ± 2.6 21.3 ± 2.3 26.3 ± 3.0 32.2 ± 2.9
SSRE 54.5 ± 5.3 28.7 ± 2.7 27.9 ± 2.8 28.2 ± 3.4 28.5 ± 2.8 28.3 ± 4.1 28.8 ± 3.7 29.2 ± 3.5 25.4 ± 2.1
FeTrIL 69.3 ± 1.1 • 47.5 ± 0.9 46.2 ± 1.0 45.2 ± 1.4 45.4 ± 1.1 45.0 ± 1.5 45.2 ± 0.3 46.5 ± 0.7 22.9 ± 0.7

Hordem 70.8 ± 1.7 • 50.4 ± 1.1 • 51.7 ± 1.0 • 53.4 ± 1.1 • 54.8 ± 1.1 • 55.5 ± 1.3 • 55.1 ± 0.7 • 54.4 ± 0.7 • 16.4 ± 1.5
Hordec 70.9 ± 1.9 • 50.9 ± 1.0 • 51.7 ± 0.9 • 52.1 ± 0.7 • 53.6 ± 1.2 • 53.4 ± 1.4 • 54.0 ± 1.1 53.4 ± 0.7 • 17.6 ± 1.6

Table 9. Results for the EFCIR-U scenario (b). 1st •, 2nd • and 3rd • best metrics are marked accordingly.

Method A0 A10 A20 A40 A60 A80 A99 Avg. A ↑ Avg. f ↓
WA 67.2 ± 1.8 52.4 ± 1.2 50.6 ± 1.1 48.6 ± 1.1 47.9 ± 1.6 47.5 ± 0.8 46.8 ± 1.6 49.2 ± 0.7 18.0 ± 1.6

FT 63.2 ± 4.3 25.3 ± 4.5 29.2 ± 3.0 32.6 ± 3.2 35.4 ± 1.5 37.2 ± 0.9 39.3 ± 2.7 34.2 ± 2.0 29.0 ± 2.6
FZ 64.2 ± 4.3 41.3 ± 3.4 39.9 ± 3.0 41.0 ± 3.5 41.0 ± 3.2 41.5 ± 2.9 40.9 ± 2.8 41.7 ± 3.1 22.5 ± 1.9

EWC 63.2 ± 4.3 38.6 ± 3.5 39.6 ± 4.6 44.2 ± 4.1 46.3 ± 3.2 48.1 ± 3.0 49.9 ± 3.2 45.5 ± 3.2 17.8 ± 1.8 •
MAS 63.2 ± 4.3 39.7 ± 3.5 41.6 ± 3.1 45.9 ± 3.7 49.0 ± 2.1 • 49.9 ± 1.2 • 51.9 ± 2.0 • 47.1 ± 2.3 • 16.1 ± 2.1 •
LwF 63.2 ± 4.3 44.8 ± 2.0 42.9 ± 2.1 42.7 ± 1.6 42.6 ± 0.7 42.0 ± 1.9 41.0 ± 2.2 43.5 ± 0.8 19.8 ± 4.1

PASS 68.9 ± 2.0 36.7 ± 1.9 33.6 ± 1.9 31.0 ± 1.2 28.9 ± 1.9 24.4 ± 2.4 18.9 ± 2.4 30.6 ± 1.4 38.3 ± 1.6
PRAKA 68.2 ± 2.2 50.7 ± 2.7 • 48.6 ± 1.7 • 47.3 ± 2.5 • 41.6 ± 4.3 32.3 ± 3.7 28.0 ± 3.6 42.6 ± 3.2 25.6 ± 1.9

IL2A 64.4 ± 4.1 31.9 ± 2.4 29.7 ± 2.6 26.9 ± 3.8 25.2 ± 2.6 22.3 ± 2.6 20.2 ± 2.7 27.2 ± 2.5 37.2 ± 1.7
SSRE 52.9 ± 4.1 27.2 ± 2.4 25.5 ± 1.7 25.2 ± 1.6 24.9 ± 2.3 24.9 ± 3.2 25.4 ± 1.5 26.5 ± 2.2 26.4 ± 2.1
FeTrIL 70.7 ± 1.5 • 49.1 ± 0.9 47.4 ± 0.5 45.1 ± 1.6 45.5 ± 1.8 45.2 ± 1.6 45.0 ± 1.5 46.9 ± 0.9 23.8 ± 1.2

Hordem 72.0 ± 0.8 • 52.2 ± 1.1 • 53.0 ± 0.6 • 54.0 ± 0.9 • 54.0 ± 1.2 • 55.1 ± 0.8 • 54.6 ± 0.7 • 54.3 ± 0.4 • 17.7 ± 1.0 •
Hordec 71.7 ± 0.8 • 52.5 ± 0.7 • 52.1 ± 0.7 • 51.7 ± 0.7 • 52.7 ± 1.4 • 53.2 ± 0.8 • 53.7 ± 0.4 • 53.1 ± 0.4 • 18.5 ± 1.1

Table 10. Results for the EFCIR-B scenario (c). 1st •, 2nd • and 3rd • best metrics are marked accordingly.
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