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Abstract

UV map estimation is used in computer vision for detailed

analysis of human posture or activity. Previous methods

assign pixels to body model vertices by comparing pixel

descriptors independently, without enforcing global co-

herence or plausibility in the UV map. We propose Pose-

Constrained Continuous Surface Embeddings (PC-CSE),

which integrates estimated 2D human pose into the pixel-

to-vertex assignment process. The pose provides global

anatomical constraints, ensuring that UV maps remain

coherent while preserving local precision. Evaluation on

DensePose COCO demonstrates consistent improvement,

regardless of the chosen 2D human pose model. Whole-

body poses offer better constraints by incorporating addi-

tional details about the hands and feet. Conditioning UV

maps with human pose reduces invalid mappings and en-

hances anatomical plausibility. In addition, we highlight

inconsistencies in the ground-truth annotations.

1. Introduction

Analysis of human pose is an essential part of many com-

puter vision problems and is used in a number of appli-

cations, including recognition of human activity, gestures

and interaction, detection of people and their intent in au-

tonomous driving scenarios, etc.

Information about the human body can be estimated

at different levels of resolution. The simplest is the de-

tection of a bounding box that surrounds the person de-

picted. This can be more precisely delineated by body

segmentation. Pose estimation, which estimates the loca-

tions of some body keypoints, provides another level of

granularity. The most detailed is provided by UV map es-

timation (UVME), where every image pixel is mapped to

the surface of a generalized human body. The surface is

represented as a mesh with a fixed set of vertices.

The state-of-the-art methods for these tasks [10, 20, 27]

rely on supervised learning, which possibly requires a

large amount of annotated data. The cost and effort to an-

notate the data for human detection, segmentation, pose

Figure 1. The Continuous Surface Embedding method (CSE)

[20] (left) vs. Pose-Constrained CSE (right). The CSE method

assigns each pixel of body segmentation to a vertex, and thus UV

coordinate, on a canonical body shape mesh. The CSE assigns

each pixel independently, leading to artifacts such as limb du-

plication (yellow circles). PC-CSE uses pose constraints during

UV map estimation, producing smoother maps and eliminating

artifacts. The UV values at individual pixels are visualized by

color coding. The location of a given color on the canonical sur-

face is shown in the inset image at the top left.

estimation, and UV map estimation increases with the

complexity of the underlying task. UVME is arguably the

most complex of these tasks and, therefore, the most data-

hungry.

In a recent paper, a method for UVME called Continu-

ous Surface Embeddings (CSE) was introduced [20]. The

accuracy of the method is good, but it also has limitations.

Due to the disparity between the resolution of the input

image and the relatively small number of vertices, this

method cannot perform one-to-one matching. Since each

pixel is mapped independently of the others, the method

can assign the same body part to multiple locations in the

image or produce undesirable artifacts. Examples can be

seen in Fig. 1 and 3.

In this paper, our objective is to leverage the methods

for pose estimation, which have been in development for

a considerable amount of time, to make UVME more ac-

curate. We take advantage of their robustness and design,

which guarantees no duplicate assignments. We introduce

the concept of pose-induced proximal regions which con-

strain the mapping to a particular body part and propagate

these constraints to the corresponding pixels.
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We present a novel method called Pose-Constrained

CSE (PC-CSE) that demonstrates the effectiveness of

these concepts. It makes UV maps more coherent with es-

sentially no loss of efficiency besides the need to calculate

the human pose. PC-CSE shows consistent improvement

over unconstrained UV maps. We conducted a detailed

ablation study to justify our design choices and explain

the improvement in performance.

2. Related Work

Human Pose Estimation (HPE) and UV Map Estimation

(UVME) are closely related tasks. UVME provides more

detailed and comprehensive information, while HPE ben-

efits from a longer history of research, larger datasets, and

greater robustness. In this work, we condition UVME pre-

dictions on HPE due to HPE’s superior reliability. To es-

tablish context, we first discuss related work on HPE be-

fore moving to UVME advancements.

Data. Progress in human pose and gesture understand-

ing relies heavily on large-scale datasets. The COCO

dataset [16], with over 200,000 annotated images of peo-

ple, is the most widely used, supporting tasks like object

detection, instance segmentation, and pose estimation. Its

annotations have been extended to whole-body keypoints

[12] and UV map annotations [8]. Other datasets, such

as MPII [3], CrowdPose [15], and OCHuman [28], tar-

get specific challenges like crowded scenes or people in

close proximity. While these datasets have significantly

advanced research, there is limited research on their over-

all annotation quality [22].

Current 2D Human Pose Estimation (HPE) methods

are categorized into top-down, bottom-up, and hybrid ap-

proaches. Top-down methods [18, 23, 27] first detect indi-

viduals using off-the-shelf person detectors, followed by

pose estimation for each detected instance. ViTPose [27]

represents the state-of-the-art in this category. Bottom-

up methods [4, 6, 21] predict all keypoints simultaneously

and group them into individual poses, making them more

effective in crowded scenarios, such as those encountered

in OCHuman [28]. Hybrid approaches [29] combine ele-

ments of both strategies, striking a balance between accu-

racy and efficiency under challenging conditions.

UV Map Estimation (UVME) has seen steady

progress in recent years. DenseReg [7] formulates UVME

as a regression task and trains a fully convolutional neural

network for human face extraction using facial landmarks.

DensePose [8], a milestone in UVME, collects a dataset of

many body-to-surface annotations and adapts the Mask R-

CNN architecture [9] for person detection, segmentation

and UV map estimation in a cascade. Subsequent works

focus on seeking correspondences in sequences of images

[19, 24], utilize DensePose as an intermediate representa-

tion for other advanced tasks, such as 3D body reconstruc-

tion [2, 14], or use it as the ground truth [11].

DensePose relies on splitting the body template into

small partitions (“charts”) and performs a simultaneous

regression of the target body part and the UV coordi-

nate within the respective partition. Continuous Sur-

face Embeddings (CSE) [20] follows up on DensePose

by eliminating the need for artificial slicing of the tem-

plate. Instead, CSE holds trainable descriptors (embed-

dings) of the template surface and guides a neural net-

work to regress these embeddings per pixel in a con-

trastive manner. The UV map is determined by finding

the closest surface embedding of every pixel. Overall,

CSE simplifies the DensePose framework while making

it generalizable to other natural objects. Both DensePose

and CSE are tightly bound to the mesh of the SMPL [17],

a parametrized 3D model of the human body.

BodyMap [10] further refines CSE by addressing body

details such as hair and clothing, providing high-fidelity

results while relying on CSE descriptors internally. Al-

though it claims state-of-the-art performance, its code has

not been released to the public. Recently, foundational

models like Sapiens [13] have emerged in human-centric

vision tasks. Trained on vast amounts of unannotated data,

these models achieve state-of-the-art performance across

various downstream tasks. However, they are resource-

intensive and have yet to demonstrate significant advance-

ments, specifically in UV map estimation.

3. Method

Our method is built on top of the CSE method [20], a

feed-forward neural network based on the Mask R-CNN

architecture [9]. Although it performs human detection,

segmentation and UV map estimation in a cascade, we

are concerned only with the latter and consider bounding

boxes and segmentation as input determined by an exter-

nal method.

The network outputs pixel descriptors, or pixel embed-

dings. During training, contrastive learning is employed

to determine both the best weights and the values of ver-

tex embeddings, each linked to one of the vertices of the

SMPL mesh [17]. The resulting UV map is established by

mapping every input pixel embedding to the most similar

vertex embedding (in terms of cosine similarity), associ-

ating every image pixel with a mesh vertex (and its UV

coordinates).

Formally, let I be the input image, x ∈ I a (fore-

ground) image pixel, Φx(I) ∈ R
D embedding of the pixel

x provided by the neural network Φ (where D is the em-

bedding dimensionality), M the mesh (set of vertices),

i ∈ M a vertex index, and Ei ∈ R
D normalized embed-

ding of the vertex i. The mapping from pixels to vertices

using CSE [20] can be expressed as:

i∗x = argmax
i∈M

⟨Ei,Φx(I)⟩ . (1)

Consistent with the standard definition of mapping,

CSE always maps exactly one vertex to every foreground

pixel. However, the reverse is not necessarily true. Typi-

cally, the resolution of the input image is sufficiently high

such that the pixel count significantly surpasses the ver-

tex count on the mesh, resulting in multiple pixels being



(a) PC-CSE requires a bounding box

and a segmentation mask as an input.

VitPose-l [27] is used for pose esti-

mation in this example. Front-view

skeleton is in the inset image.
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(b) Proximal regions of body parts. Only pixels in the segmentation

mask and the green areas may be assigned to the body parts denoted

in the top right. Head and undetected body parts are unconstrained

(bottom right). The highlighted point can be assigned to the back, chest,

head, and both the left and the right thigh but not to other parts.

(c) The PC-CSE UV map is consis-

tent with the estimated pose, unlike

the CSE [20] estimate. The difference

is shown in Fig. 3.

Figure 2. Pose-constrained CSE (PC-CSE) takes an estimated bounding box, segmentation mask, and 2D human pose (a) as input. It

computes proximal regions (b) for each body part and assigns pixels to SMPL [17] vertices to generate a UV map. Unlike the CSE [20],

PC-CSE constrains pixel assignments using proximal regions, ensuring the resulting UV map aligns with the estimated pose (c).

frequently associated with the same vertex.

Arguably, this does not pose a problem in itself. For ex-

ample, it is acceptable for neighboring pixels to map to the

same vertex, as they can lie so close to each other on the

actual body that the discretization of the mesh cannot dis-

tinguish between them. Nevertheless, a fully independent

assignment of vertices to foreground pixels makes CSE

generally prone to implausible pose predictions, as it has

no other means to avoid them but to rely on the strength

of its prior. Qualitative research confirms our hypothesis,

as we observe situations stemming from the general prob-

lem, such as CSE assigning the same body part to more

than one image region (e.g., two hands are declared left),

UV map discontinuities and various artifacts (see Fig. 3).

At this point, we examine the features of human pose

estimation (HPE) algorithms. These estimators predict the

locations of various landmarks on the human body, called

keypoints, such as skeletal joints or facial landmarks. In

particular, skeletal joints form a primitive human skeleton,

the shape of which is very similar to that of our 3D human

representation (Fig. 2a). Furthermore, each keypoint is,

by design, assigned to at most one image coordinate. This

constitutes the key advantage of HPE over CSE, as dupli-

cate assignments of body parts become impossible.

3.1. Conditioning CSE by pose

We believe that using a human pose estimation model as

a secondary expert during inference and enforcing con-

sistency of the two representations is a promising path

for avoiding errors in predicted UV maps and improv-

ing their quality. Therefore, we propose our new method

called Pose-Constrained Continuous Surface Embed-

dings (PC-CSE). The key enhancement is the introduc-

tion of pose-induced constraints whose purpose is to limit

the mapping of every pixel to only pre-selected body re-

gions. It does not involve any architectural change to CSE

and does not require its retraining or fine-tuning.

The constraints are rules that determine to which ver-

tices of the mesh each foreground pixel is allowed to

map. Which pixels are constrained by which rule de-

pends on the inferred pose. We first define the relation

between the pose representation and the target mesh. We

use the COCO skeleton [16] as the default pose represen-

tation. It consists of 17 keypoints (Fig. 2a): 12 skeletal

joints (wrists, elbows, shoulders, hips, knees, and ankles

in pairs) and 5 facial landmarks (eyes, ears, and nose).

These keypoints can be linked into arms, forearms, thighs,

shins, and a quadrilateral defined by shoulders and hips.

We refer to these connections as the principal bones.

In addition, we explore the whole-body skeleton [12].

This representation with 133 keypoints extends the COCO

skeleton by introducing extra keypoints for hands, feet,

and face. This poses an advantage over the basic version

because hands and feet are somewhat distant from the re-

spective keypoints and can deviate from the limb axis.

The canonical mesh can now be partitioned into subsets

of vertices. Each partition should roughly correspond to

one principal bone. We create 15 mesh partitions of SMPL

– arms, forearms, hands, thighs, shins, and feet in pairs,

the front and back of the torso, and head – by merging

segments of SMPL body segmentation [1, 17]. We divide

the torso by the sagittal plane to distinguish between the

front and back of it.

The scope of constraints within the image is specified



by expanding (“inflating”) the inferred skeleton composed

of the principal bones. Each principal bone delineates its

proximal region, each defined as a set of pixels with a cer-

tain maximum pixel distance from the bone (Fig. 2b). The

optimal distance obviously relies on the apparent size of

the person (which varies with its distance from the cam-

era) and needs to be determined for each person sepa-

rately. We try to estimate it using an algorithm that also

depends on the pose; it is described in detail in Sec. 3.2.

The capsular shape of the proximal regions is most ap-

propriate for the limbs, i.e., arms, forearms, thighs, and

shins. Concerning the front and back of the torso, we first

merge the central quadrilateral (i.e., between the shoulders

and hips) with the regions around its sides, which we also

define as having a capsule-like shape. Then, we analyze

the mutual position of its corners to discriminate between

the frontal and dorsal view. If the orientation of the key-

points implies the frontal view of the person, we subtract

the quadrilateral from the back, and vice versa (see the

rightmost column of Fig. 2b).

Nonetheless, the basic COCO skeleton does not ade-

quately support precise localization of the hands (fingers)

and feet (toes). Various strategies can be employed to

manage this. With the whole-body skeleton, the proxi-

mal regions for these body parts can span the extra key-

points. As a fallback when using the basic skeleton, we

propose circular proximal regions around the closest key-

point (wrist for hands, ankle for feet) twice as wide as the

capsular ones. Both these options are discussed in the ex-

periments (Sec. 5). Otherwise, a conservative approach is

to merge body parts with the nearest bone or leave them

unconstrained, but this does not fully leverage the capabil-

ities of our method. In addition, we do not outline a ded-

icated proximal region for the head, but we let all pixels

map to it. We consider the head to be easily recognizable,

and our primary goal is to resolve duplications between

paired limbs.

The proximal regions induce semantic labeling of im-

age pixels by template partitions. Every pixel is labeled

according to the proximal regions to which it belongs. If

multiple proximal regions overlap, the pixels within the

intersection are labeled with all corresponding labels. If

a pixel falls outside all proximal regions, it gets all possi-

ble labels (thus, it keeps the original prediction). When a

body part is missing (that is, either of its keypoints is not

provided by the HPE model), we allow mapping to it from

any foreground pixel. The purpose of this rule is to pre-

vent inaccurate refinements where, for example, a forearm

is partially visible, but one of its ends lies outside the im-

age. As described earlier, we always apply this rule to the

head as well.

As a result, each pixel receives information about

its target body part(s) implied by the pose-induced con-

straints and the embedding provided by the original CSE.

We now modify the original procedure (Eq. (1)) to con-

sider the constraints as well. Instead of yielding the vertex

with the highest similarity of all mesh vertices, we limit

the output space to one of those vertices that belong to

the body partitions defined by the constraints. The chosen

vertex (its embedding) should still have the highest simi-

larity to the pixel embedding, but only vertices from the

limited subset of the whole mesh should be considered.

Formally, let p ∈ P be the partition label (index),

Mp ⊂ M the vertices of the partition p, L : I → P(P ) \
{∅} a function mapping a pixel to a set of allowed parti-

tions. Equation (1) now becomes:

i∗x = arg max
i∈ML(x)

⟨Ei,Φx(I)⟩ , (2)

where

ML(x) =
⋃

p∈L(x)

Mp. (3)

Alternatively, let B(x, p) be the binary flag (0 or 1) in-

dicating whether partition p is allowed in pixel x, V (x, p)
the vertex from partition p with the highest similarity to

pixel x, S(x, p) the similarity of vertex V (x, p) to pixel

x and S′(x, p) our adjusted similarity. We compute these

matrices as follows:

B(x, p) = Jp ∈ L(x)K, (4)

V (x, p) = arg max
i∈Mp

⟨Ei,Φx(I)⟩ , (5)

S(x, p) = max
i∈Mp

⟨Ei,Φx(I)⟩ , (6)

S′ = S ⊙B. (7)

Equation (2) is then equivalent to:

i∗x = V (x, argmax
p∈P

S′(x, p)). (8)

We believe that this approach is more practical for imple-

mentation as it avoids computing unions of mesh parti-

tions (Eq. (3)) and storing them in memory.

3.2. Determining proximal regions

As an intermediate step, PC-CSE expands the inferred hu-

man skeleton so that its shape approximately matches the

silhouette (segmentation) of the person. The exact expan-

sion range is a trade-off. Small proximal regions might not

adjust the UV map at full width. Large proximal regions

can cause significant overlaps with each other, making

pose-induced constraints less effective. In extreme cases,

the expansion range can be chosen as zero, resulting in no

correction made, or it can be chosen so high that every

proximal region covers the whole body. We note that in

both cases, the new prediction would be the same as, and

thus not worse than, the original prediction.

The expansion range should roughly correspond to the

width (thickness) of the person’s limbs, expressed in pixel

units. We further refer to it as the bone width (∆) and as-

sume that it is proportional to other measures of the body,

in particular the person’s height. Typically, information

about body measures is accessible only in controlled envi-

ronments where the camera model and relative location of



the object and camera are known. However, this require-

ment would significantly limit our method and render it

useless for data “in the wild”.

Thus, we introduce a technique for estimating these

measures based only on information about the person’s

pose. The prerequisite is knowledge of the actual (3D)

lengths of the principal bones determined by the pose es-

timation model. We obtain these distances from SMPL

[17]. During inference, we measure the distances in the

pixel space and normalize (divide) them by their distance

in the 3D space. Each measurement serves as an estimate

of one SMPL model unit length in pixels, assuming that

the bone is parallel to the projection plane.

We then apply simple trigonometry-based reasoning

to choose the most credible estimate. Given a straight

unit-length stick parallel to the ground plane, its appar-

ent length is maximal when it is parallel to the projection

plane, too, and decreases when rotating the stick around

the vertical axis (down to zero when both ends visually

merge to the same point). In our domain, sticks are the

principal bones of different lengths. Normalizing the dis-

tances by the respective lengths makes the estimates pro-

portional only to the cosine of the angle with the projective

plane. Since cosine is a decreasing function of angle (for

α ∈ [0◦, 90◦]), the bone having the smallest angle (ide-

ally zero) with the projection plane will correspond to the

highest value. Therefore, the best estimate is the maxi-

mum.

Arguably, this estimate cannot be considered perfect

since we have no guarantee that the assumption of paral-

lelism actually holds. However, we are interested in de-

termining the size of proximal regions, which do not need

to match the shape of the person exactly. In fact, a minor

overestimation of the size is not a problem because we do

not deal with pixels in the background anyway, and it can

also help us handle people with different body mass.

Therefore, we determine the best multiplication factor

by tuning it using the validation data. The results are pre-

sented in the ablation study (Sec. 5.3).

4. Data

In our experiments, we rely on the DensePose COCO

dataset [8]. This dataset contains about 50 thousand anno-

tated people on a subset of images from the COCO dataset

[16]. In addition to the bounding box coordinates, in-

stance segmentation mask, and keypoints (skeleton), the

ground-truth information about every instance includes

the body segmentation mask and a set of dense correspon-

dences (over 5 million annotated points in total).

The dataset is divided into train and validation splits

with a ratio of about 95/5.

4.1. Assessing the quality of annotations

During our research, we repeatedly encountered incor-

rectly annotated instances in DensePose COCO. There-

fore, as part of our efforts, we conducted research on their

Figure 3. CSE [20] (left) vs. PC-CSE conditioned by estimated

pose (right). Pose constraints ensure smoother UV maps and

prevent limb duplication within a single image. A frontal view of

the SMPL model [17] is shown to help assess the UV estimation.



overall quality. We define miscellaneous metrics that ex-

press the consistency of an instance’s ground truth data.

(For more details, see supplementary.) Then, we manu-

ally inspect the lowest-ranking instances and identify the

most common problems:

1. Annotators of dense correspondences confuse the left

and right parts of the body. In most cases, only one pair

of body parts is confused, while the rest are annotated

correctly.

2. Dense correspondences of thighs and shins are even

more confused. Some instances are annotated as hav-

ing only the left or only the right leg, or annotations of

one leg have mixed laterality.

3. Keypoint annotators more often confuse left and right

per limb or the orientation of the entire body rather than

a single pair of keypoints.

4. When multiple people at least partially overlap with a

bounding box, the annotated instance is different from

the one that matches the dimensions of the bounding

box.

5. Body segmentation masks are incomplete; not all body

parts are segmented.

6. Bounding boxes lack the “is crowd” label. These

are supposed to annotate many people at once (i.e., a

crowd) and should not be associated with dense or key-

point annotations.

We do not make any corrections to the ground truth,

but we remove dense annotations that we consider wrong.

We assess the precision per body part, not individually per

point. If a body part shows any of the above problems,

we remove all associated points regardless of laterality.

As a result, we remove ca. 1.5% points from the dataset,

concerning ca. 7.5% instances. (For the validation subset,

the numbers are somewhat higher: 2.4% points on 11.2%

instances.)

5. Experiments

In the following, we evaluate PC-CSE by simulating its

use in practice. We take the R 101 FPN DL soft s1x

CSE model from the detectron2 toolbox [26] and consider

it to be the baseline method. We run inference on im-

ages from the validation subset of the DensePose COCO

dataset (Sec. 4) and obtain the baseline bounding boxes,

instance segmentation, and pixel embeddings.

Then, we use the bounding boxes as input for top-down

HPE models, which we obtain from the mmpose toolbox

[5]. We choose several HPE models that differ in per-

formance and provide different representations of human

pose (see Sec. 3.1). Finally, we combine all outputs and

apply our PC-CSE method and compare the accuracy of

the newly produced UV maps to that of the baseline ones.

5.1. Evaluation metrics

We follow the modified COCO challenge protocol [16]

that evaluates the match between predictions and ground-

truth instances using Geodesic Point Similarity (GPS)

HPE method HPE UV map UV map†

None — 66.2 68.8

ViTPose-b [27] 75.8 66.8 69.3

ViTPose-h [27] 79.1 67.0 69.6

ViTPose-h wb 78.6 67.3 69.8

RTMPose-l [18] 75.8 67.0 69.5

RTMPose-l wb [18] 69.5 66.7 69.3

Table 1. AP results on the COCO dataset. Constraining UV

map estimation with 2D pose improves performance. More ac-

curate poses lead to better UV maps. Using the whole-body (wb)

skeleton further enhances performance due to better hand and

foot constraints. Note that 2D Human Pose Estimation (HPE) is

evaluated on a different COCO subset than UV map evaluation.

Results marked with (†) are evaluated on data with ignored in-

correct annotations, as detailed in Sec. 4.1.
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Figure 4. Ablation on bone width ∆ defined in Sec. 3.2.

RTMPose-l wb [18] is used for pose constraints. Too thin bones

restrict UV Map too much and hinder performance on border

pixels. Excessively thick bone estimates do not restrict UV Map

sufficiently and reduce the performance gain. Note that perfor-

mance with proximal regions with large regions ∆ converges to

the baseline method. In the extreme case when all bones are as

big as the whole picture, no constraints are applied. The best

value is 0.08.

and computes the algorithm’s Average Precision (AP) by

thresholding the GPS score [8]. We report the Average

Precision for both the original dataset and the dataset with-

out incorrect annotations (see Sec. 4.1).

5.2. Results

Table 1 compares pose-constrained CSE (PC-CSE) with

the original CSE [20]. The results are reported in the

COCO val dataset for comparability with previous work.

Furthermore, we evaluated performance on the COCO val

data set while ignoring incorrect annotations, as described

in Sec. 4.1.

The first row of Tab. 1 shows the performance of CSE

[20] without pose constraints. We reproduced these re-



sults and observed a 2.6 AP improvement when ignoring

incorrect annotations. This gain remains consistent across

all experiments.

Subsequent rows show results with pose constraints

from ViTPose [27] and RTMPose [18], using different

model variants. Regardless of the HPE model, applying

pose-conditioned constraints consistently improves per-

formance. As expected, the performance gain depends on

the quality of the HPE model. ViTPose-h (huge) outper-

forms ViTPose-b (base) in HPE and achieves slightly bet-

ter UV map accuracy. However, the difference is minor.

Note that HPE is evaluated on a larger subset of COCO

images than UV maps.

To assess the impact of the whole-body (wb) skele-

ton, we trained ViTPose-h wb on the COCO-WholeBody

dataset [12]. It achieves 67.3 AP on COCO-WholeBody

and 78.6 AP on COCO, compared to 79.1 AP for

ViTPose-h. While the whole-body poses are less accu-

rate, the inclusion of fingers and toes compensates for this

in specific body regions.

Results for RTMPose [18] follow a similar trend. Us-

ing estimated poses improves the performance of the UV

map between models, although exact gains differ. For

instance, RTMPose-l matches ViTPose-b in HPE perfor-

mance, but achieves slightly higher UV map accuracy.

However, this difference is negligible.

RTMPose-l wb shows a much weaker HPE perfor-

mance but comparable UV map accuracy. Although the

inclusion of fingers and toes benefits the hand and foot re-

gions, the reduced accuracy of other keypoints diminishes

overall gains, making the trade-off less favorable.

While conditioning UV map predictions on pose sig-

nificantly improves consistency, this translates to only a

modest 1 AP point increase in overall performance due

to several factors. The most significant issue is segmen-

tation errors — pixels outside the segmentation mask are

not assigned UV map estimates, leading to penalties. An

example is shown in image Fig. 6. Detection errors also

impact performance; if a person is not detected, no UV

estimation can be performed.

Achieving 100 AP is challenging due to the limitations

of ground truth annotations, which are human estimates

often obscured by clothing. In images with loose cloth-

ing, these annotations can be highly imprecise, making

it difficult to determine whether discrepancies stem from

ground truth errors or model predictions. As a result, im-

ages with GPS around 80 already represent strong esti-

mates, as shown in Fig. 6.

Examples of significant improvements over the base-

line are shown in Fig. 1 and Fig. 3. These include artifact

removal, better continuity between limbs, and elimination

of redundant body part assignments in baseline UV maps.

5.3. Ablation study

The efficiency of PC-CSE depends on a proper outline of

the proximal regions, as described in Sec. 3.2. To en-

sure overall robustness, we determine the best value of
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Figure 5. Image-wise performance difference of baseline

CSE [20] and PC-CSE with poses from ViTPose-h wb. Perfor-

mance is measured by GPS, frequency is in log scale. Positive

means better performance of PC-CSE. PC-CSE causes only a

few performance drops while improving more other cases, some

of them dramatically, and keeping the rest about the same.

the bone width hyperparameter ∆ by validation. We use

the RTMPose-l wb model [18] and repeat the same ex-

periment while varying the value of the hyperparameter.

Note that we use the clean validation dataset that does not

contain the incorrect annotations identified (Sec. 4.1).

The results, shown in Fig. 4, confirm our expectations.

With an increasing value of the hyperparameter, the preci-

sion increases and reaches the maximum when it is equal

to 0.08. Increasing it further, we observe a gradual de-

crease in precision down to the baseline. This supports

our earlier statement (Sec. 3.2) about the best value being

a compromise and the consequences arising from a subop-

timal choice. Extremely small and large values do not give

our method the opportunity to have the desired impact.

Note that our experiments generally assume that the

method for estimating a person’s measures (Sec. 3.2) from

their pose is accurate. We do not conduct any quantitative

experiments on this matter, but we attempt to verify it us-

ing qualitative analysis (see supplementary material).

In addition, we provide a detailed analysis of the vari-

ation in performance metrics for each evaluated sample.

An example histogram, generated for ViTPose-h wb, is

shown in Fig. 5. We notice that the model maintains base-

line precision on the vast majority of data samples and

observe only a few performance drops, which are mainly

caused by failure in the underlying pose inference. The

worst are depicted in Fig. 6. However, these failures

are largely compensated for by more common, sometimes

drastic, improvements (shown in Fig. 3).

6. Conclusions

We presented Pose-Constrained CSE (PC-CSE), a method

that conditions UV map estimation using human pose.

PC-CSE leverages the robustness of 2D human pose es-



78.6 84.4

Figure 6. Images with GPS (geodesic point similarity) around

0.8. Evaluation points are shown in white. Selected wrongly

estimated points (similarity < 0.5), slightly wrong (similarity

0.5 – 0.9), and correct (similarity > 0.9). Typical errors are iso-

lated wrong points among correct ones (left, hip), segmentation

errors (left, red circle), and border points (right, legs). Loose

clothing complicates annotation and estimation (right).

timation to provide global constraints, improving the con-

sistency of UV map predictions produced by CSE [20].

The original CSE [20] assigns pixels to vertices inde-

pendently, which can lead to errors, such as assigning the

same body part to multiple locations in the image and dis-

continuities in the same body part, as shown in Fig. 3.

PC-CSE introduces global supervision through pose con-

straints, ensuring that while pixel assignments remain in-

dependent, the global pose structure improves the consis-

tency of the UV map. This results in more coherent UV

maps, free from artifacts and duplicated limbs.

Key findings are:

1. Conditioning UV maps by pose, even with rudimentary

constraints, provides consistent improvements, though

overall performance gains remain modest.

2. The choice of pose estimation model architecture has a

negligible impact on the results.

3. Whole-body skeletons enable more precise constraints

for hands and feet, yielding small improvements over

body-only skeletons without additional computational

costs.

4. COCO DensePose annotations are not entirely reliable;

at least 1.5% of the points are inconsistent with pose

keypoints or are otherwise inaccurate. The accuracy

of points under loose clothing remains uncertain as we

could neither confirm nor disprove their precision.

Limitations. The primary limitation of PC-CSE lies

in its reliance on precise pose estimation. The method as-

sumes that 2D human pose estimation (HPE) models are

robust to challenges such as extreme poses, occlusions,

Figure 7. Three images with the largest performance decrease –

CSE (left), pose estimate (middle), PC-CSE (right). Pose condi-

tioning reduces performance when the pose estimation fails. De-

spite the drop, the third most negatively affected image (bottom)

shows only a 0.5% decrease, highlighting that pose condition-

ing negatively impacts only a few images while improving many

others.

and image deformations, which can condition UV map

estimation effectively. However, if the estimated pose is

inaccurate, the constrained UV map will also be incorrect.

The most common errors occur in multi-body scenarios.

Another limitation arises when two body parts are in

close proximity. For instance, when a person is sitting

with crossed legs, pose constraints for both legs might

overlap, preventing PC-CSE from correcting the original

CSE estimates. Although PC-CSE does not resolve such

issues, it does not degrade overall performance.

Future work. The constraints implemented by us are

very coarse, as they are satisfied by letting the pixel map

somewhere on the given body part. The corrections could

become even more precise by taking the distance from

its endpoints (keypoints) or the orientation of the body

(frontal/dorsal) into account. In addition, there is sub-

stantial redundancy in the HPE and CSE representations,

while the HPE algorithms are more advanced. The CSE

method could be redesigned by building it on top of HPE

and changing its objective to provide UV map estimation

given a pose estimate (and not just the image). We also

plan to use the method for UV maps on animals using

SMAL [30].
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[14] Eric-Tuan Lê, Antonis Kakolyris, Petros Koutras, Himmy

Tam, Efstratios Skordos, George Papandreou, Riza Alp

Guler, and Iasonas Kokkinos. Meshpose: Unifying dense-

pose and 3d body mesh reconstruction. 2024 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2405–2414, 2024. 2

[15] Jiefeng Li, Can Wang, Hao Zhu, Yihuan Mao, Haoshu

Fang, and Cewu Lu. Crowdpose: Efficient crowded scenes

pose estimation and a new benchmark. 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 10855–10864, 2018. 2

[16] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James

Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C. Lawrence Zitnick. Microsoft coco: Common objects

in context. In European Conference on Computer Vision,

2014. 2, 3, 5, 6, 1

[17] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-

ard Pons-Moll, and Michael J. Black. SMPL: A skinned

multi-person linear model. ACM Transactions on Graph-

ics, (Proc. SIGGRAPH Asia), 34(6):248:1–248:16, 2015.

2, 3, 5

[18] Peng Lu, Tao Jiang, Yining Li, Xiangtai Li, Kai Chen, and

Wenming Yang. Rtmo: Towards high-performance one-

stage real-time multi-person pose estimation. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1491–1500, 2024. 2,

6, 7

[19] Natalia Neverova, James Thewlis, Riza Alp Güler, Iasonas
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Human Pose-Constrained UV Map Estimation

Supplementary Material

A. Annotation data quality assessment

In Sec. 4.1, we conduct research on the quality of anno-
tations from the DensePose COCO dataset [8, 16]. In or-
der to efficiently identify the majority of erroneous an-
notations without having to manually examine the entire
dataset, we take the following approach.

We establish several metrics to quantify the level of
(in)consistency or “(im)plausibility” of each annotated ex-
ample:

• Proportion of the body segmentation covered by the in-
stance mask. By definition, the body mask should be
completely covered by the instance mask. This allows
revealing problems 4 and 6, as enumerated in Sec. 4.1.

• Proportion of the area of the instance or body mask and
the bounding box. Ideally, the mask should cover a sig-
nificant portion of the bounding box.
This allows revealing problems 4, 5, and 6.

• Proportion of point-wise annotations within the instance
or body mask. Human segmentation should ideally con-
tain all (visible) keypoint annotations and dense corre-
spondences, which concern the body, too. Likewise, this
allows revealing problems 4, 5, and 6.

• Ratio of median points-to-bone distances.
We group ground-truth dense correspondences by body
part and compute their median distance to the respec-
tive bone defined by ground-truth keypoint annotations
(bone selection is done analogously to our mesh parti-
tioning procedure, which exploits its resemblance to the
COCO skeleton; see Sec. 3.1). We add up median dis-
tances for the same body part of either laterality. Then,
we repeat the same procedure with the laterality of the
keypoints flipped, and obtain another score. The ulti-
mate value of the metric is the ratio of the two sums.
When this value is high (≫ 1), it indicates a possi-
bly confused laterality of keypoints or dense correspon-
dences.
This allows revealing problems 1 and 3.

• Inference error. We run inference on all images from the
dataset and compute the mean geodesic distance (error)
per body part. High inference error usually indicates de-
ficiencies in the model’s performance, but, especially on
training data, it might also help reveal annotation errors.
We took advantage of repeated retraining and evaluation
of the inference model (“human in the loop”) as it could
initially have been overfitted to annotation errors.
This allows revealing problems 1 and 2.

We sort all annotations from the least consistent and
manually examine them in this order until annotations
with no apparent problems start to prevail. This process
is carried out individually for each defined metric.
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Figure 8. Ablation on height estimation. We infer pose from
a dance video from [11] at 10 frames per second and estimate
the dancing person’s height in pixels (red) using the algorithm in
Sec. 3.2. The variable exhibits some noise due to pose changes,
but remains within the interval of a few tens of pixels at all times.
The bigger noise at the end of the video is caused by more ex-
treme poses.

B. Ablation study on height estimation
Our PC-CSE relies on estimating the proper outline of
each constraint’s region. In Sec. 3.2, we describe the algo-
rithm we use to approximate the person’s body measure-
ments in pixel units of the image using only its inferred
pose. The precision of such an algorithm can usually be
determined by comparing the actual values and their al-
gorithmic estimate on many images. We do not conduct
such an experiment because of the lack of ground-truth
data, but we verify its performance by taking a different
approach.

The goal is to demonstrate that the estimate is not dra-
matically influenced by pose variations. However, images
of people “in the wild” usually also differ in the distance
of the person from the camera, as well as the underlying
camera parameters. For a sensible comparison, these two
factors need to remain constant. We notice that this re-
quirement is met, for example, by short videos of people
dancing in front of the camera uploaded to social networks
such as TikTok [25].

Therefore, we take advantage of the TikTokDataset
[11] and select several videos where a person performs
a dance in front of a static camera without moving around
the place. We run pose inference per video frame and
record the height estimate. An example chart recording
the progress of one video is shown in Fig. 8. The vari-
able does exhibit some noise, approximately on the scale
of tens of pixels, which can be attributed to pose varia-
tions and noise in the pose estimation, but it remains cen-
tered on its mean value throughout. We note that the ac-
tual noise influencing the estimate of bone width (∆) is
much smaller since the bone width is a small fraction of
the person’s height.
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