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Preface

Dear Colleagues,

Welcome to the 28th Computer Vision Winter Workshop (CVWW 2025). This year, the workshop
is organized by the Institute of Visual Computing (IVC) at Graz University of Technology, and takes place in
Graz, Austria, from February 12 to 14, 2025. The Computer Vision Winter Workshop is an annual international
event supported by leading research groups from Ljubljana, Prague, Vienna, and Graz. It serves as a platform
for researchers and PhD students to connect, exchange ideas, and foster collaboration, driving innovation in
the field of computer vision. Topics of interest include image analysis, 3D vision, biometrics, human-computer
interaction, vision for robotics, machine learning, and applied computer vision, among others.

This year, we received 29 submissions from various countries and institutions, including 10 contributed
papers. The selection process, overseen by the Chairs, involved a rigorous double-blind review conducted by the
Program Committee, comprising 40 esteemed experts in computer vision and machine learning. Each submission
was reviewed by three experts, who provided detailed feedback on the strengths and weaknesses of the papers to
ensure a fair and thorough evaluation. As a result of this process, 6 original contributed papers were accepted
for publication and presented at oral sessions in the workshop. In addition to the contributed presentations, we
are honored to host 17 invited talks featuring insights from both seasoned and early-career researchers. These
were carefully selected by the Chairs in consultation with the Program Committee. A highlight of this year’s
program is the keynote by Prof. Björn Ommer from Ludwig Maximilian University of Munich.

We would like to express our deepest gratitude to the reviewers for their meticulous and high-quality feed-
back, which provided valuable insights to the authors and contributed significantly to the success of CVWW
2025. We extend our heartfelt thanks to Prof. Björn Ommer for his keynote talk. Our gratitude also goes to
the mayor of the city of Graz for her sponsorship. Additionally, we are pleased to highlight outstanding work
through an award sponsored by the Faculty of Computer Science and Biomedical Engineering (CSBME) at
Graz University of Technology.

We hope the 28th edition of the Computer Vision Winter Workshop will be a productive and enjoyable event,
sparking new ideas and fostering meaningful collaborations. Thank you for joining us!

Friedrich Fraundorfer, Thomas Pock, and Horst Possegger

CVWW General Chairs 2025

Official Sponsors

We gratefully acknowledge the support of our partners:

City of Graz Faculty of Computer Science and
Biomedical Engineering (CSBME)
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Workshop Organization

The 28th Computer Vision Winter Workshop, held in Graz from February 12–14, 2025, was organized by the
Institute of Visual Computing (IVC)—formerly known as the Institute of Computer Graphics and
Vision (ICG)—at Graz University of Technology. The workshop’s topics of interest encompassed a wide range
of areas in computer vision, including but not limited to:

• Pattern Recognition
• Computer Vision
• Deep Learning
• Object Detection and Recognition
• Object Categorization
• 3D Vision, Stereo, and Structure from Motion
• Scene Modeling and Understanding
• Image and Video Retrieval
• Video Analysis and Event Recognition

• Statistical Methods and Learning
• Motion and Tracking
• Cognitive Vision
• Biometrics
• Face and Gesture Analysis
• Medical Image Processing
• Performance Evaluation
• Safety and Security
• Embedded Computer Vision

General Chairs

Friedrich Fraundorfer � � � �

Thomas Pock � � � �

Horst Possegger � � � �

Workshop Administration

Horst Possegger

Financial Administration

Charlotte Mayer
Horst Possegger
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Program Committee

The Program Committee for CVWW 2025 comprised 40 esteemed experts in computer vision and machine
learning. Their valuable feedback contributed significantly to the success of the workshop. The Conference
Chairs are grateful for the meticulous and high-quality feedback, provided by all members of the Program
Committee:

Csaba Beleznai Austrian Institute of Technology
Verena Widhalm Austrian Institute of Technology

Jan Čech Czech Technical University
Ondřej Chum Czech Technical University

Pavel Krsek Czech Technical University
Jiří Matas Czech Technical University

Oleksandr Shekhovtsov Czech Technical University
Siniša Šteković ENPC ParisTech
Dániel Baráth ETH Zurich

Levente Hajder Eötvös Loránd University
Christian Fruhwirth-Reisinger Graz University of Technology

Robert Harb Graz University of Technology
Georg Krispel Graz University of Technology

Dušan Malić Graz University of Technology
Marc Masana Graz University of Technology

Jakub Micorek Graz University of Technology
Lukas Radl Graz University of Technology

David Schinagl Graz University of Technology
Michael Steiner Graz University of Technology

Martin Zach Graz University of Technology
Jun Zhang Graz University of Technology

Roland Perko Joanneum Research
Samuel Schulter NEC Laboratories America

Luka Čehovin Zajc University of Ljubljana
Matej Dobrevski University of Ljubljana

Žiga Emeršič University of Ljubljana
Matej Kristan University of Ljubljana
Alan Lukežič University of Ljubljana

Luka Šajn University of Ljubljana
Domen Tabernik University of Ljubljana

Peter M. Roth University of Veterinary Medicine Vienna
Lea Bogensperger University of Zurich

Margrit Gelautz Vienna University of Technology
Pedro Hermosilla Casajus Vienna University of Technology

Martin Kampel Vienna University of Technology
Florian Kleber Vienna University of Technology

Andreas Kriegler Vienna University of Technology
Robert Sablatnig Vienna University of Technology

Markus Vincze Vienna University of Technology
Sebastian Zambanini Vienna University of Technology
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Keynote Talk

Translating Diffusion Image Models to Other Modalities
Prof. Björn Ommer

Ludwig Maximilian University of Munich

Recently, generative models for learning image representations have seen unprecedented
progress. Approaches such as diffusion models and transformers have been widely adopted
for various tasks related to visual synthesis, modification, analysis, retrieval, and beyond.
Despite their enormous potential, current generative approaches have their own specific
limitations. We will discuss how recently popular strategies such as flow matching can
significantly enhance efficiency and democratize AI by empowering smaller models.
The main part of the talk will then investigate effective ways to utilize pretrained diffusion-
based image synthesis models for different tasks and modalities. Therefore, we will ef-
ficiently translate powerful generative image representations to different modalities and
show evaluations on other tasks.

Short Speaker Biography

Prof. Björn Ommer is a full professor at the Ludwig Maximilian University of Munich (LMU) where he heads
the Computer Vision & Learning (CompVis) Group. Previously, he was a full professor in the Department
of Mathematics and Computer Science of Heidelberg University. At Heidelberg, he also served as one of the
directors of the Interdisciplinary Center for Scientific Computing (IWR) and of the Heidelberg Collaboratory for
Image Processing (HCI). The CompVis Group focuses on fundamental research in computer vision and machine
learning, with applications spanning diverse fields such as the digital humanities and life sciences.

Björn Ommer studied computer science with a minor in physics at the University of Bonn. He earned his
Ph.D. in computer science from ETH Zurich, where his dissertation, ”Learning the Compositional Nature of
Objects for Visual Recognition”, was honored with the ETH Medal. Following this, he worked as a postdoctoral
researcher in Jitendra Malik’s Computer Vision Group at UC Berkeley.

He is a member of the Bavarian AI Council and serves as an associate editor for IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), having previously held the same role for Pattern Recognition
Letters. Björn is an ELLIS Fellow, faculty member of the ELLIS Unit Munich, affiliated with the Helmholtz
Foundation, and a principal investigator at the Munich Center for Machine Learning (MCML). He has held
prominent roles at leading conferences, serving as Program Chair for GCPR, Senior Area Chair and Area Chair
for CVPR, ICCV, ECCV, and NeurIPS, and as a workshop and tutorial organizer at these venues. In 2023,
Björn delivered the opening keynote at NeurIPS. His work on Stable Diffusion has been nominated for the
German Future Prize of the President of Germany, and in 2024, he was awarded the German AI Prize.
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Invited Presentations

CVWW 2025 hosted 17 invited talks featuring insights from both seasoned and early-career researchers. The
following speakers were carefully selected by the Chairs in consultation with the Program Committee:

Klára Janoušková Czech Technical University in Prague

Miroslav Purkrábek Czech Technical University in Prague

Jan Škvrna Czech Technical University in Prague

Alena Smutná Czech Technical University in Prague

Levente Hajder Eötvös Loránd University

Christian Fruhwirth-Reisinger Graz University of Technology

Dušan Malić Graz University of Technology

Lukas Radl Graz University of Technology

Matic Fučka University of Ljubljana

Blaž Rolih University of Ljubljana

Peter Rot University of Ljubljana

Leon Todorov University of Ljubljana

Jovana Videnović University of Ljubljana

Filip Wolf University of Ljubljana

Anja Delić University of Zagreb

Ivan Martinović University of Zagreb

Tingyu Lin Vienna University of Technology
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Graz, Austria, February 12–14, 2025

A Data-Centric Approach to 3D Semantic Segmentation of Railway Scenes

Nicolas Münger Max Ronecker Xavier Diaz Michael Karner
SETLabs Research GmbH

Elsenheimerstraße 55, 80687 München, Germany
{firstname.lastname}@setlabs.de

Daniel Watzenig
Graz University of Technology

Inffeldgasse 16/II, 8010 Graz, Austria
daniel.watzenig@tugraz.at

Jan Skaloud
EPFL - Swiss Federal Technology Institute of Lausanne

GR A2 392 (Bâtiment GR) , 1015 Lausanne , Switzerland
jan.skaloud@epfl.ch

Abstract

LiDAR-based semantic segmentation is critical for au-
tonomous trains, requiring accurate predictions across
varying distances. This paper introduces two targeted
data augmentation methods designed to improve seg-
mentation performance on the railway-specific OSDaR23
dataset. The person instance pasting method enhances
segmentation of pedestrians at distant ranges by inject-
ing realistic variations into the dataset. The track spar-
sification method redistributes point density in LiDAR
scans, improving track segmentation at far distances with
minimal impact on close-range accuracy. Both meth-
ods are evaluated using a state-of-the-art 3D semantic
segmentation network, demonstrating significant improve-
ments in distant-range performance while maintaining
robustness in close-range predictions. We establish the
first 3D semantic segmentation benchmark for OSDaR23,
demonstrating the potential of data-centric approaches to
address railway-specific challenges in autonomous train
perception.

1. Introduction

Rail transport offers a sustainable alternative to other
transportation modes, emitting significantly lower car-
bon emissions [11]. Its continued development, espe-
cially through autonomous train operation (ATO), is crit-
ical to achieving climate goals like those in the European
Union’s Green Deal. ATO, defined from GoA0 (manual)
to GoA4 (fully automated) [24], addresses labor short-
ages, increases operational flexibility and reliability, and
optimizes service frequency. The Lausanne metro M2

Figure 1. Example of a segmented pointcloud from the OS-
DaR23 dataset [30]

line, a GoA4 system, demonstrates these benefits through
higher frequency and adaptability. However, while fully
automated systems work well in controlled settings, such
as metro lines, implementing GoA3–4 in open rail net-
works is challenging due to unpredictable obstacles and
the absence of physical barriers. Ensuring safety in open
rail ATO is therefore a key research area.

Robust perception systems are essential for obstacle
detection and hazard identification in ATO. LiDAR (Light
Detection and Ranging) suits these tasks by providing rich
3D geometric information [21]. LiDAR semantic segmen-
tation, assigning a class to each 3D point, enables de-
tailed environmental understanding. In autonomous driv-
ing, 3D object detection [6, 7, 18, 23, 25, 26] and se-
mantic segmentation [1, 17, 19, 27, 38] are well-studied
across many modalities. However, applying these tech-
niques to autonomous train operation has received less at-
tention, partly due to limited public datasets. The OS-
DaR23 dataset [30] addresses this gap by providing data

DOI: 10.3217/978-3-99161-022-9-001

This work is licensed under cb CC BY 4.0, excluding materials attributed to other sources or explicitly excluded.

5

https://doi.org/10.3217/978-3-99161-022-9-001
https://creativecommons.org/licenses/by/4.0/


for various railway perception tasks (Fig. 1). This paper
applies deep learning-based 3D semantic segmentation to
LiDAR point clouds in the railway domain using OS-
DaR23. We focus on safety-critical classes, emphasizing
long-range segmentation accuracy due to trains’ substan-
tial braking distances. We also adopt a data-centric ap-
proach, introducing domain-specific data augmentations
to improve robustness and performance.

Contributions
This paper introduces targeted data augmentation methods
for LiDAR semantic segmentation in the railway domain,
evaluated on the real-world OSDaR23 dataset.
1. Comprehensive evaluation of a state-of-the-art 3D se-

mantic segmentation network on OSDaR23, including
dataset analysis.

2. A person instance pasting augmentation method to en-
hance pedestrian segmentation at distant ranges.

3. A track sparsification augmentation method to improve
track segmentation by redistributing point density.

4. Report the first 3D semantic segmentation results on
the OSDaR23 dataset.

2. Background

This background section provides a general overview of
point cloud segmentation, followed by segmentation and
augmentation techniques specific to the railway domain.

2.1. Point cloud semantic segmentation

Semantic segmentation assigns a class label to each el-
ement of the input. While image-based segmentation
assigns labels to pixels, point cloud segmentation must
handle unordered, unstructured 3D points. Deep learn-
ing has become the standard approach, surpassing tra-
ditional techniques [35]. Methods are typically catego-
rized into view-based, voxel-based, and point-based ap-
proaches, each imposing structure onto the raw data dif-
ferently.

View-based methods
View-based methods project the point cloud into one or
multiple 2D images, leveraging established image-based
segmentation. SnapNet [4] generates RGB-depth snap-
shots from various viewpoints, applies a CNN for label-
ing, and back-projects labels to 3D. CENet [8] uses spher-
ical projection and channels (x, y, z, d, r) for each pixel.
Larger image widths improve performance but slow infer-
ence. However, these methods lose some 3D geometric
fidelity due to projection.

Voxel-based methods
Voxel-based methods discretize the point cloud into a vol-
umetric grid and apply 3D CNNs. PVKD [14], for ex-
ample, builds on Cylinder3D [41] and employs a teacher-
student framework, achieving similar accuracy at lower
latency. Despite structuring the data, voxelization intro-
duces resolution limits and can demand high memory.

View-based

Voxel-based

Point-based

Figure 2. Schematic representation of three main deep learning-
based methods for semantic segmentation of point cloud data.
Adapted from [36].

Point-based methods
Point-based methods directly process points without ex-
plicit restructuring. PointNet [21] introduced MLP-based
features and max-pooling for permutation invariance.
Transformers, as in Point Transformer [39] and its im-
proved PTV3 [33], leverage self-attention for robust per-
formance. This preserves data fidelity but can be slower.

In summary, view-based and voxel-based methods ef-
fectively impose structure at the cost of fidelity, while
point-based methods maintain full data integrity but may
be computationally more demanding.

Fig. 2 shows an example for each of the three ap-
proaches.

2.2. Railway-domain focused segmentation
Prior work on railway point cloud segmentation focused
mainly on infrastructure inspection. [28] segmented tun-
nel scenes into ground, lining, wiring, and rails using KP-
Conv [31] and PointNet [21]. Similarly, [13] employed a
PointNet++ [22]-based architecture to classify rails, ca-
bles, and traffic signals. These efforts used non-public
datasets and older architectures, and did not target au-
tonomous train operation.

In contrast, the automotive field has benefited from
large-scale, publicly available datasets like Waymo Open
Dataset [29], nuScenes [5], and SemanticKITTI [2].
Comparable resources remain scarce in the railway do-
main. Existing sets, such as WHU-Railway3D [12] and
Rail3D [15], focus on infrastructure and rely on multi-
frame reconstructions, not reflecting real-time conditions.
OSDaR23 [30] addresses this gap with single-frame Li-
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DAR data and classes relevant to autonomous rail oper-
ation, enabling models tailored to open railway environ-
ments.

2.3. Data augmentation methods for point clouds
Data-centric AI aims to enhance model performance by
improving data quality and diversity rather than solely re-
fining architectures. In point cloud segmentation, data
augmentation (DA) introduces variations—such as rota-
tions, translations, and sparsifications—to enrich training
data and improve generalization [9, 20, 40].

Part-aware augmentation [10] applies transformations
to specific object regions (e.g., sparsifying parts of cars or
pedestrians), reducing reliance on dense shapes and aiding
recognition at longer distances. PolarMix [34] integrates
entire LiDAR scans by angular swapping or instance-level
rotate-pasting, increasing variability at both scene and ob-
ject levels. Both methods have demonstrated notable per-
formance gains in 3D tasks and inspire the DA techniques
explored in this work.

3. Initial Analysis
In this section, we evaluate the baseline performance of
Point Transformer V3 (PTV3) on the OSDaR23 dataset.
Since the dataset has seen limited use in prior research,
its suitability for semantic segmentation tasks, along with
potential performance bottlenecks, remains unclear. This
analysis aims to establish a baseline understanding of the
model’s strengths and limitations, highlighting key chal-
lenges such as class imbalance and long-range predic-
tion issues. These findings will guide subsequent efforts
to enhance model performance through targeted improve-
ments.

3.1. Baseline
For our baseline, we require a modern, high-performing
semantic segmentation model suited for LiDAR point
clouds. Point Transformer V3 (PTV3)[33] is the current
top performer on the SemanticKITTI benchmark, demon-
strating strong segmentation accuracy with reasonable in-
ference speed. Although relatively new and less cited, it
builds on the widely adopted Point Transformer[32, 39]
architecture, making it a robust choice for our experi-
ments.

3.2. Dataset and Experiment setup
We conduct our experiments on OSDaR23 [30], a single-
frame, multi-sensor LiDAR dataset collected in various
railway scenarios. As shown in Table 1, OSDaR23 has a
higher average point density per frame than popular au-
tomotive datasets [2, 5, 29], but covers fewer total frames
and primarily captures the forward view of the locomotive
instead of a full 360° surround.

Although OSDaR23 provides 22 annotated classes,
several contain few points, resulting in class imbalance
(Fig. 3a). To address this, we merge or discard cer-
tain classes (Table 2) and remove overlapping annotations

(e.g., switch on track). Figure 3b shows the resulting dis-
tribution after class mapping.

All experiments follow the official train, validation,
and test splits. We adapt data augmentations to the
forward-facing LiDAR viewpoint, limiting large rota-
tions/flips and applying sensor-specific intensity normal-
ization. We train Point Transformer V3 (PTV3) with
a learning rate of 0.001, using both cross-entropy and
Lovász-Softmax loss [3].

3.3. Baseline Performance
We begin by examining the baseline model’s overall seg-
mentation performance on the validation set. As shown in
Table 3, the model (PTV3) achieves a mean IoU (mIoU) of
74.49%, indicating solid overall accuracy across classes.
However, this summary metric masks performance issues
at longer ranges.

Fig. 4 shows the recall map for the class track. For
each planar grid cell of 1x1 meter, the recall is computed.
The values are obtained over all frames of the validation
set, providing an overview of the performances given the
spatial location. In the ranges close to the sensor the re-
call is generally high. Beyond x=60m, however, the recall
quickly degrades. This means the network has good ca-
pabilities at identifying the track points at close range but
misses points further.

Similarly, person segmentation suffers at longer
ranges, as reflected in the range IoU (rIoU) results (Ta-
ble 4). Although performance is strong at mid-range (40–
60 m), it drops significantly beyond 60 m. This decline
correlates with fewer training samples at longer distances,
indicating that data scarcity limits long-range accuracy.

In summary, while the baseline model performs well
overall, it struggles to maintain performance at longer
distances for key classes like track and person. Insuffi-
cient training data in these ranges is a likely contributor
to weaker performance, motivating the need for data aug-
mentation and other strategies to improve long-range seg-
mentation results.

4. Methodology

This section outlines the data-centric strategies developed
to address the dataset-related limitations identified in the
baseline analysis. Our methodology focuses on two key
augmentations: track sparsification and person instance
pasting, tailored to the characteristics of the OSDaR23
dataset.

4.1. Tracks sparsification
Building on the part-aware data augmentation method
[10], a new strategy was developed to improve track pre-
diction accuracy at farther ranges.

Dense parts of track instances are sparsified by adapt-
ing the number of points per range for each track instance.
The goal is to equalize point density by reducing points
near the sensors to match the density farther away. This is

7



Table 1. Comparison of OSDaR23 to other popular autonomous driving point cloud datasets.

SemanticKITTI [2] NuScenes [5] Waymo [29] OSDaR23 [30]
Avg. Points/Frame 120K 34K 177K 204K
Ann. LiDAR frames 15K 40K 230K 1.5K
# LiDAR sources 1 1 5 6
360° field of view ✓ ✓ ✓ ✗

(a) Points per class of the OSDaR23 dataset before mapping.
(b) Points per class of the OSDaR23 dataset after mapping (background
omitted).

Figure 3. Comparison of OSDaR23 class distributions before and after mapping.

Table 2. Class mapping for OSDaR23.

Original classes Mapped class
person, crowd person
train, wagons train
bicycle, animal, signal bridge background
transition, track track
road vehicle road vehicle
catenary pole catenary pole
signal pole, signal signal
buffer stop buffer stop
switch discarded

achieved by evaluating the number of points within a win-
dow of width W at a distance d from the origin, where
Cmax represents the point count in the farthest range.
Closer ranges are then randomly downsampled to match
Cmax, ensuring uniform density.

Let Ptrack,i[d−W,d] denote the set of points belonging
to the ith track instance in the planar distance range [d −
W,d],. The variables W (window width) and Cmax can

Figure 4. Recall for the class track across the validation set.
High recall is observed close to the sensor, with performance
decreasing beyond 60 m.

be adjusted based on sensor specifications and use case
requirements. The pseudocode for the transformation is
provided in Algorithm 1.

This procedure is applied to all track instances in a
frame. Fig. 5 shows a point cloud before and after the
transformation. In this example, the window width W is
set to 10 meters, and Cmax is set to 80 meters. The desired
density is determined within the range [Cmax −W,Cmax]
(70–80 meters). Points beyond 70 meters remain un-
changed, while those closer than 70 meters are signifi-
cantly downsampled.

4.2. Person Instance Pasting
Inspired by PolarMix [34], we developed a methodology
to paste person instances from one frame into another dur-
ing training. This approach diversifies pedestrian samples
by increasing their population. Unlike PolarMix, where

Algorithm 1 Track Instance Sparsification

Input: Pt,i (points of track i), dmax (upper range), W
(window width)
Output: Downsampled Pt,i

Di ← planar distances from origin for Pt,i

dmax ← min(dmax,max(Di))
Cmax ← count points in [dmax −W,dmax)
while dmax > 0 do

dmax ← dmax −W
C ← count points in [dmax −W,dmax)
if C > Cmax then

Remove C − Cmax points from Pt,i

end if
end while
Return Pt,i

8



Table 3. Summary results for the baseline experiment on the validation dataset.

IoU (validation set) mIoU
background person train road vehicle track catenary pole signal buffer stop Overall

96.84 69.65 86.39 70.09 82.89 47.40 48.80 93.86 74.49

Table 4. Baseline range-based IoU for the person class and ap-
proximate number of training instances.

Distance range IoU [%] (Val) #Instances (Train)
0–20 m 80.40 ≈ 5900

20–40 m 69.73 ≈ 3500
40–60 m 81.23 ≈ 500
60–80 m 31.36 ≈ 350

80–100 m 45.17 ≈ 100

objects are rotated around the vehicle without individ-
ual transformations, our method accounts for the forward-
facing point clouds in OSDaR23, which differ from the
360-degree coverage in datasets like SemanticKITTI. A
simple rotation would place instances outside the field of
view, necessitating significant adaptation of the original
methodology.

As in PolarMix, Scan A denotes the frame undergoing
transformation, and Scan B denotes the randomly selected
frame from the training set containing at least one person
instance.

Each instance of Scan B goes through a set of individ-
ual transformations, applied in this order:
1. Flipping along the X axis with 0.5 probability.
2. Random rotation around the instance’s center along the

Z axis, within the range [-180°, 180°].
3. Random shift along the Y axis, within the range [-2m,

2m].
4. Random shift towards the back of the scene, along the

X axis.
5. Shifting along the Z axis so as to be at a realistic height.

An example for scan A and B and the produced result

Figure 5. Effect of the tracks sparsification transformation on
scene 3 fire site 3.1, frame 58 from the OSDaR23 dataset.

is shown in Fig. 6.

For the X-axis shift, instances are translated further
from the sensor to balance the distribution, with density
adjustments based on the histogram of points per instance.
The instance is downsampled to match the expected point
count N , sampled randomly within [N−0.1N,N+0.1N ].

For the Z-axis shift, instances are adjusted to align with
the ground. The ground height is estimated as the mean
height of points in Scan A under the instance’s bounding
box. Special cases include estimating the ground height
from railway tracks when no points overlap or ignoring
unrealistic heights (e.g., above 150 cm).

After applying the transformation, the augmented
dataset shows a more balanced distribution of person in-
stances across ranges, particularly in previously sparse ar-
eas as shown in Fig 7.

Scan A

Scan B

Resulting Scan

23

1

Catenary pole

Person

Track
Road vehicle

Signal

Background

1
3

2

Figure 6. Visualisation of the person instances pasting transfor-
mation. Best viewed zoomed in.
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5. Results

This section presents the results of applying the data aug-
mentation (DA) methods during training, with varying
proportions of affected samples. Models are first evalu-
ated on the validation set to select the best for each task,
which are then tested on the test set.

To reduce the foreground bias of IoU, we propose the
mean range IoU (mean rIoU), which assigns equal impor-
tance to IoUs across all ranges. Let rIoUi represent the
range IoU for bin i. The mean rIoU is defined as:

mean rIoU =
1

N

N∑
i=1

rIoUi (1)

where rIoUi is computed for points in the range
[rmin,i, rmax,i[, with rmin,i and rmax,i as bin boundaries,
and N as the number of bins.

5.1. Track sparsification
This section evaluates the impact of the track sparsifica-
tion DA method, tested with two density selection dis-
tances (DSD): 70-80m and 40-50m. The augmentation
was applied with varying probabilities (p) during training,
with range IoUs computed at 20m intervals from 0-100m.
The baseline corresponds to p = 0 (no augmentation),
while p = 1 applies the transformation to all training sam-
ples.

The ablation study identifies the best augmentation
probabilities as p = 0.6 for DSD 70-80m and p = 0.9 for
DSD 40-50m. Table 5 summarizes the results. The model
with DSD 40-50m at p = 0.9 achieves the highest mean
rIoU (59.49%), improving performance in ranges 40-60m
and 60-80m by over 7 percentage points compared to the
baseline. Both augmented models show improvements in
the farthest range (80-100m), while maintaining strong
performance near the origin. The baseline achieves the
highest rIoU in 0-20m but with minimal difference (0.01
percentage points).

The selected model (DSD 40-50m, p = 0.9) also im-
proves recall at farther distances, as shown in Fig. 8, while
maintaining comparable performance closer to the origin.
The results demonstrate that the track sparsification DA

Figure 7. New distribution of samples with the person instance
pasting DA applied on all frames from the train set.

method effectively enhances performance at greater dis-
tances when applied with the identified optimal probabili-
ties.

5.2. Person instances pasting

This section evaluates the impact of the person instances
pasting DA method using two approaches: online aug-
mentation and offline dataset inflation. Online augmen-
tation applies transformations to training samples in real-
time, modifying data on-the-fly during training. Offline
augmentation pre-processes the dataset by adding trans-
formed samples, increasing its size before training. For
person instance pasting, online augmentation randomly
pastes instances during training, while offline augmenta-
tion generates augmented frames beforehand and incorpo-
rates them into the dataset.

In online augmentation, the probability (p) determines
the likelihood of applying transformations to a sample
during each training iteration. Higher p dynamically in-
creases the number of augmented samples in each epoch.

In offline augmentation, the dataset size is expanded by
adding transformed samples, controlled by the augmenta-
tion ratio (α). For instance, α = 1.0 doubles the dataset
by adding a transformed version of each sample, while
α = 0.5 increases the size by 50%.

Again an ablation study is conducted to determine the
optimal values for p and α. The best models are se-
lected based on mean rIoU: p = 0.8 for online DA and
α = 0.1 for offline DA. Table 5 compares these mod-
els with the baseline. Both approaches show significant
improvements in the farthest ranges (60-100m). The on-
line method achieves an 18.56 percentage-point increase
in range 60-80m and a 12.59-percentage-point increase in
range 80-100m over the baseline. Similarly, the offline
method improves range 80-100m by 13.53 percentage-
point. For closer ranges (0-60m), the differences are min-
imal, with variations below 3 percentage points. The on-
line DA trained model (p = 0.8) achieves the highest
mean rIoU (66.99%) and is the overall best model for this
task.

5.3. Results on Test Set

The best-performing models identified during validation
were evaluated on the test set to assess their generalization
to new data.

Figure 8. Recall difference between the best model and model
with no augmentation on the validation set.
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Table 5. Summary metrics for baseline and best models of track sparsification and person instance pasting (validation set).

mean rIoU r0-20 r20-40 r40-60 r60-80 r80-100

Track Sparsification (Density Selection Distances)
baseline 56.52 86.76 82.05 64.98 40.98 7.82
70-80m (best) 58.01 86.64 81.61 64.74 43.15 13.93
40-50m (best) 59.49 86.75 82.19 66.70 48.29 13.50

Person Instances Pasting
baseline 61.57 80.40 69.73 81.23 31.36 45.17
online (best) 66.99 78.66 70.12 78.49 49.92 57.76
offline (best) 66.77 80.98 70.12 79.46 44.59 58.70

Table 6. Summary of test set results. TS: track sparsification, PIP: person instance pasting (online). For each method, the best-
performing model from the validation set is used.

IoU (test set) mIoU

background person train
road

vehicle track
catenary

pole signal
buffer
stop

Baseline 97.09 77.98 59.87 72.06 81.29 71.01 56.83 0.53 64.58
TS (best) 97.03 77.27 57.33 73.51 80.60 75.67 53.27 0.29 64.37

PIP online (best) 97.02 77.21 57.47 77.33 81.34 75.83 52.25 0.81 64.91

5.3.1. Class Track
The best model for track sparsification (TS, DSD 40-50m,
p = 0.9) improves rIoUs in ranges beyond 40m, with a
5 percentage-point increase in 80-100m compared to the
baseline. However, a slight decrease in the 0-20m range
is observed, attributed to the network focusing on sparsi-
fied far-range points during training, potentially neglect-
ing the dense close-range regions. Recall maps show sig-
nificant gains in 60-90m, reflecting better far-range detec-
tion, while closer ranges see some localized recall reduc-
tion on the locomotive’s sides.

5.3.2. Class Person
The best model for person instance pasting (PIP online,
p = 0.8) achieves substantial improvements in distant
ranges, with increases of 11.42 and 12.59 percentage
points in 60-80m and 80-100m, respectively. However, a
drop of 11.58 points in the 40-60m range is linked to low
diversity in the test set for this range, dominated by repet-
itive samples of a single stationary human instance. These
repetitive samples, while well-segmented across frames,
contribute to cumulative small errors, reducing the rIoU.

5.3.3. Other Classes
Table 6 summarizes the IoUs across all classes. The
baseline model performs best overall for the person class,
while the PIP online model achieves the highest track IoU.
These results highlight that the methods are tailored to im-
prove distant-range performance, leading to trade-offs in
close-range inference. For the buffer stop class, all models
show a near-complete IoU drop (from 93.86% on valida-
tion to <1% on the test set), due to overfitting to similar
training-validation point clouds and poor generalization to
the sparse test set.

5.3.4. Discussion of Results
The TS method enhances far-range performance while
minimally impacting close-range inference, demonstrat-
ing its effectiveness in handling sparsified regions. Future
work could explore variable DSDs for improved adapt-
ability.

The PIP online method significantly boosts distant-
range rIoUs but struggles in low-diversity regions such as
40-60m. Future improvements could include adapting the
intensity field and creating a more diverse instance reg-
istry to enhance generalization.

6. Conclusion

The experiments on OSDaR23 validate the effectiveness
of the proposed targeted data augmentations in improving
segmentation performance at distant ranges, with mini-
mal impact on close-range accuracy. The track sparsifi-
cation and person instance pasting methods address key
challenges in LiDAR-based semantic segmentation for au-
tonomous trains.

Future work could integrate additional sensor data,
such as RGB images, to leverage color information and
enhance performance. Incorporating temporal data, as
demonstrated in methods like MemorySeg [16], could fur-
ther improve predictions by capturing motion and con-
text. Additionally, exploring the inverse of track sparsifi-
cation—densifying distant point clouds using techniques
like [37]—offers another avenue for enhancing segmenta-
tion in sparse regions.

These methods provide a solid foundation for advanc-
ing multimodal, temporal, and augmentation-driven ap-
proaches in semantic segmentation for autonomous train
systems.
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(a) Class track: Range IoUs for baseline and TS model. (b) Class person: Range IoUs for baseline and PIP model.

Figure 9. Comparison of range IoUs on the test set for baseline and the best-performing models: (a) Track sparsification (TS), (b)
Person instance pasting (PIP online).
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Abstract

Accurate 3D object detection is a critical component of

autonomous driving, enabling vehicles to perceive their

surroundings with precision and make informed decisions.

LiDAR sensors, widely used for their ability to provide

detailed 3D measurements, are key to achieving this ca-

pability. However, variations between training and infer-

ence data can cause significant performance drops when

object detection models are employed in different sensor

settings. One critical factor is beam density, as infer-

ence on sparse, cost-effective LiDAR sensors is often pre-

ferred in real-world applications. Despite previous work

addressing the beam-density-induced domain gap, sub-

stantial knowledge gaps remain, particularly concerning

dense 128-beam sensors in cross-domain scenarios.

To gain better understanding of the impact of beam

density on domain gaps, we conduct a comprehensive in-

vestigation that includes an evaluation of different object

detection architectures. Our architecture evaluation re-

veals that combining voxel- and point-based approaches

yields superior cross-domain performance by leveraging

the strengths of both representations. Building on these

findings, we analyze beam-density-induced domain gaps

and argue that these domain gaps must be evaluated in

conjunction with other domain shifts. Contrary to conven-

tional beliefs, our experiments reveal that detectors bene-

fit from training on denser data and exhibit robustness to

beam density variations during inference.

1. Introduction

Autonomous driving has been receiving increasing atten-

tion in recent years, as it has the potential to increase road

safety, traffic efficiency, and reduce emissions. To en-

able the decision-making capabilities of Advanced Driver

Assistance Systems (ADAS) or Automated Driving (AD)

technologies, understanding the vehicle’s immediate en-

vironment is crucial. Light Detection And Ranging (Li-

DAR) technology stands out as a particularly effective so-

lution for this task through its ability to directly measure

three-dimensional distances with high accuracy [27].

(a) (b)
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Figure 1. (a) Low-density and (b) high-density scan of vehi-

cles at a similar distance. (c) Overall and beam-density-induced

domain gap (in % for IOU=0.4) measured by different meth-

ods. The Cross-Domain and Density-Resampling methods fail

to assess either the beam-density-induced or overall domain gap,

while the Training and Inference Domain Gaps provide a com-

plete picture.

LiDAR-based 3D object detection models have demon-

strated impressive performance on established bench-

marks [2, 5, 12, 25, 37]. However, their performance

often drops significantly when applied across different

datasets due to inherent differences between the source

domain and the target domain. Typical examples are vary-

ing sensor configurations between source and target do-

main or adverse weather conditions covered by the tar-

get but not the source data. When these differences are

substantial, the detection model struggles to generalize to

the new domain, introducing a performance gap known as

the domain gap. This challenge is particularly critical in

real-world applications, where a domain gap is almost in-

evitable due to the variability between the training dataset

and the diverse conditions encountered in deployment.

The common way to mitigate domain gaps is the appli-
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cation of domain adaptation methods. Such methods are

oftentimes tailored towards a specific domain difference,

such as different LiDAR resolutions [15, 20, 40] or vary-

ing object size distributions [23, 39, 44]. Thus, to success-

fully apply domain adaptation methods, the most signifi-

cant domain shifts have to be identified first. A structured

domain shift taxonomy is useful in this context, as it helps

to categorize and systematically understand the specific

shifts between domains, enabling the selection or design

of a targeted adaptation technique.

Despite taxonomies of related work [6, 8, 24, 47], no

study includes all the domain shifts between the datasets

under investigation (described in Sec. 3.1). Thus, we in-

troduce a domain shift taxonomy in Tab. 2. Keeping the

goal of domain adaptation in mind, we distinguish be-

tween domain shifts that can effectively be addressed by

domain adaptation methods and those that persist despite

the application of domain adaptation. We call the former

non-persistent and the later persistent domain shifts.

Motivated by the observation that the domain gap

varies significantly when employing different detectors,

we conduct an object detector architecture evaluation.

While prior studies do not give particular attention to a

thoughtful selection of an object detection model [31], we

aim to identify detectors that are inherently robust against

domain changes. By minimizing the initial domain gap,

the reliance on domain adaptation is minimized, ensuring

that the domain adaptation efforts focus on the most chal-

lenging aspects of domain gap. We find that (1) voxel-

based detectors robustly detect objects, but have difficul-

ties at precisely localizing them and (2) point-based detec-

tors excel at localizing objects in cross-domain settings.

Our experiments suggest that optimal cross-domain de-

tection performance is achieved by combining voxel- and

point-based approaches in a two-staged detector.

A particularly important domain shift stems from the

number of LiDAR beams (see Fig. 1). High-density Li-

DAR sensors produce detailed point clouds with a high

number of points, easing the accurate estimation of ob-

ject sizes and positions. Low-density LiDAR sensors,

which are often more affordable and more commonly used

in large-scale deployments, capture fewer points, lead-

ing to sparser point clouds and less reliable detection re-

sults. This difference in beam density creates a domain

shift when models trained on high-density LiDAR data

are applied to low-density data and vice versa. To ana-

lyze the domain gap caused by varying beam densities,

related studies utilize one of two approaches. The first

approach [15] involves multiple datasets employing Li-

DAR sensors with varying beam densities which are sub-

sequently compared. The second approach [8, 31, 40] is

based on downsampling a dense dataset to create sparser

twin-dataset with varying beam density which are subse-

quently compared.

This paper highlights the shortcomings of the exist-

ing methods. First, comparing the domain gap between

two datasets does not guarantee that the observed domain

gap actually stems from varying beam density or is caused

by other domain shifts occurring between the investigated

datasets. The second approach leads to ambiguous results

because it analyzes the effect of beam density in isola-

tion of other domain shifts. In real-world applications,

the beam-density-induced domain gap is always accom-

panied by other effects influencing the domain gap. We

show that the beam-density-caused domain gap has to be

assessed in conjunction with other domain shifts to accu-

rately evaluate its impact in real-world applications. Our

experiments suggest that (1) in contrast to the results of re-

lated studies [8, 10, 31], it is more beneficial to train object

detectors on dense data, independent of the density of the

target data and (2) concerning the inference domain gap,

detectors are robust against a change of up to 64 beams

(see Fig. 1c). Our contributions can be summarized as

follows:

• We introduce a domain shift taxonomy based on macro-

, sensor-, and object-level domain shifts and distinguish

between persistent and non-persistent domain shifts.

• We conduct a detector architecture evaluation where we

compare different detectors by their inherent domain

adaptation abilities.

• We investigate the domain gap induced by varying beam

densities including 128-beam sensors on real-world

datasets with consideration of other domain shifts.

2. Related Work

Object Detection: In LiDAR-based 3D object detection,

architectural choices heavily influence detection perfor-

mance. Voxel-based methods [43, 54], discretize LiDAR

points into 3D grids, allowing for efficient feature ex-

traction through sparse convolutions. Pillar-based meth-

ods [9, 18, 19, 33] convert the point cloud into a 2D

BEV-image, sacrificing height information for computa-

tional efficiency. Operating directly on the raw points,

point-based approaches [28, 30, 52] retain spatial details

without quantization. Recent transformer-based mod-

els [38, 53, 55], provide an alternative to CNN-based

models [3, 49, 50], capturing interactions across larger

spatial regions. Detection heads in object detection are

either anchor-based [21], relying on predefined anchor

sizes, or anchor-free [46], which directly predict object

centers to generate bounding boxes. Two-staged detec-

tors [34, 36, 36] split the detection into a proposal and

refinement stage, often improving accuracy over single-

stage detectors but at a higher computational cost.

Concurrent to our work, Eskandar et al. [8] empirically

test the impact of fundamental architecture choices. How-

ever, they chose different detectors to represent each ar-

chitectural choice. While Eskandar et al. choose Point-

RCNN [34], VoTr [26] and PV-RCNN [35], we select the

faster or better performing object detectors IA-SSD [52],

DSVT [38] and PV-RCNN++ [36] for the point-based,

Transformer-based and two-staged architectures.

Domain Gap Analysis: Recent works have extensively

studied how specific domain shifts contribute to the over-
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all domain gap. Wang et al. [39] analyzed the im-

pact of geographical variations, concluding that differ-

ences in object size distribution can significantly affect

detection performance. Another well-studied factor is

weather [7, 13]: while LiDAR sensors are less suscep-

tible to adverse weather than cameras, conditions such

as snow [17], rain [42], or fog [16] still impair object

detection. Concerning sensor-level domain shifts, Hu et

al. [14] and Fang et al. [10] investigate the impact of dif-

ferent LiDAR mounting positions. There are also some

recent works investigating the effect of varying beam den-

sities [10, 31]. Richter et al. [31] perform a real-world

study comparing a 32-beam and 64-beam LiDAR sensors

utilizing a specially designed dataset, isolating the beam-

density-induced domain gap. However, they do not ana-

lyze beam density in conjunction with other domain shifts

such as geographic location or object size. Fang et al. [10]

perform a systematic study regarding beam density on a

simulated dataset. However, they did not test the transfer-

ability of their findings to real-world datasets.

Domain Adaptation: Domain adaptation methods aim

to improve object detection performance across different

datasets, addressing the challenges introduced by domain

shifts. Broadly, domain adaptation approaches fall into

one of three categories: domain alignment, feature align-

ment, and self-training.

The domain alignment methods SN [39], OT [39] and

SAILOR [23] excel at handling object size discrepancies

by rescaling ground truth bounding boxes during train-

ing or inference. For beam density shifts, methods like

DTS [15], PDDA [20] and LiDAR-CS [10] employ re-

sampling methods to align point cloud densities. ReS-

imAD [48] aligns more complex LiDAR sensor char-

acteristics by reconstructing target scenes and rendering

source-like point clouds. Feature alignment methods [22,

40, 41, 51], another approach, perform domain adaptation

by alignment in feature space instead of aligning the point

clouds directly. In self-training [4, 11, 29, 32, 44, 45],

iterative refinement of pseudo-labels is used to gradually

adapt the detector to the target domain.

While these domain adaptation methods effectively re-

duce the occurring domain gaps, they pay little attention

to the underlying object detector. We show that a thought-

ful selection of the object detector architecture can already

close a portion of the domain gap, which reduces the re-

liance on domain adaptation methods and shifts the focus

to more complex domain shifts which cannot be mitigated

through architecture alone.

3. Preliminary Analysis

Our preliminary analysis lays the groundwork for this

study by addressing three aspects. First, we introduce

the non-public datasets involved in this study and detail

their unique properties. Second, we establish a domain

shift taxonomy, allowing us to systematically assess do-

main differences. Third, we conduct a detector architec-

ture evaluation to identify models that are inherently ro-

Truck Rooftop ZOD

Locations Germany Germany
15 European

Countries

Ann. frames 40k 7.5k 100k

Sequences 2036 251 43468

Top LiDAR
OS2

(128-beam)

VLP 32c

(32-beam)

VLS 128

(128-beam)

Mounting height 3.41m 1.78m 2.01m

Side LiDARs 64-beam 16-beam 16-beam

Front LiDAR 32-beam - -

Avg. pts per frame 178.4k 71.5k 254k

Points per beam 2048 1800 3270

Horizontal res. 0.18° 0.2° 0.11°

License private private CC BY-SA

Table 1. Dataset overview.

bust to domain shifts, providing a foundation for effective

domain adaptation.

3.1. Dataset Introduction

In this paper we leverage three datasets (see Tab. 1

and Fig. 2) for training and evaluation. The Rooftop and

Truck datasets are private while the remaining Zenseact

Open Dataset (ZOD) [1] is open-source. All datasets

are specifically designed for autonomous driving appli-

cations and feature frame-wise LiDAR data. Concern-

ing the dataset size, the Rooftop dataset is the small-

est, with about 7.5k annotated frames, while the Truck

and Zenseact Open datasets are substantially larger with

40k and 100k annotated frames. While the Rooftop and

Truck datasets were both recorded in Germany, the ZOD

contains data from 15 different European countries. An-

other substantial difference concerns the organization of

frames. The Rooftop and Truck datasets are structured

in sequences of 20 or 30 frames per sequence, while the

ZOD consists of single frames, where, on average, only

two frames belong to the same sequence. Regarding the

sensor setup, the main LiDAR also differs between each

dataset. The Zenseact and Truck datasets employ a dense

128-beam LiDAR, each from a different manufacturer,

while the Rooftop dataset employs a sparse 32-beam main

LiDAR. We conduct a detailed analysis of the differences

between the datasets in the subsequent Sec. 3.2.

Some inherent differences between the datasets can be

eliminated by dataset alignment. The size difference can

be aligned rather easily by randomly subsampling of the

larger datasets to match the size of the smallest dataset.

We identified three major dataset alignment measures to

address the frame content: coordinate, range and label-

space alignment.

Coordinate Alignment: Datasets often differ in coordi-

nate systems, leading to potential mismatches between Li-

DAR points and object labels. To address this, we align

all data points and labels with the commonly used sen-

sor coordinate system with a forward-pointing x-axis and
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(a) (b) (c)

Figure 2. Comparison of the (a) Truck, (b) Rooftop and (c) Zenseact datasets. Differences in LiDAR beam density are clearly visible.

Ground-truth objects are marked by red bounding boxes.

Persistent Non-persistent

Macro-

level

Collection Area Type Object Size Statistics

Geographical Location Weather Conditions

Frame Selection

Sensor-

level

Sensor Setup Beam Density

Intensity Value Horizontal Resolution

Rate of Rotation Field of View

Alignment Error

Object-

level

Labeling Quality Label Space Definition

Labeling Zone

Object Definition

Table 2. Domain shift taxonomy. We differentiate between per-

sistent and non-persistent to highlight domain shifts that can ef-

fectively be addressed by either readily available domain adap-

tation methods or dataset alignment measures.

an upward-pointing z-axis. Since sensors are mounted at

different heights, we standardize the origin by aligning it

with the ground plane.

Range Alignment: Standardizing the Field of View

(FOV) across datasets allows the detector to learn consis-

tent object regions. We define a forward detection range

of 123.2 meters to support high-speed safety applications

and limit the horizontal FOV to 120° to match the ZOD’s

labeled region. We mark objects truncated by the cropped

FOV as “ignore” during training and evaluation, which

prevents the generation of a loss from these objects.

Label-Space Alignment: Inherent label-space differ-

ences of the ground-truth annotations between datasets

necessitate a mapping to standardize object classes. We

categorize objects into four primary classes: Vehicle,

Truck, Single-track, and Pedestrian. Single-track vehicles

are composed of bicycle and motorcycles. Larger vehicles

such as vans, trucks and trailers fall under the Truck class.

To handle varying labeling conventions concerning single-

tracked vehicles and their riders, we merge their bounding

boxes encompassing both as a single object. A detailed

mapping of the label-spaces between the three datasets

can be found in the Supplementary.

3.2. Domain Shift Taxonomy

We propose a domain shift taxonomy which allows for

a detailed and systematic investigation of possibly occur-

ring domain shifts between aligned datasets. We distin-

guish between three main categories. Sensor-level do-

main shifts are directly caused by the mode of collection,

while Object-level domain shifts concern the object def-

inition and labeling. The remaining macro-level domain

shifts are mainly caused by differences in dataset content.

Keeping the final goal of domain adaptation in mind, we

additionally differentiate between domain shifts that can

effectively be reduced by domain adaptation methods, the

non-persistent domain shifts, and those that persist despite

domain adaptation methods, which we refer to as persis-

tent domain shifts.

Concerning the persistent domain shifts, we notice a

few macro-level differences. While the ZOD features

a geographically diverse set of recording locations, the

Rooftop and Truck datasets were exclusively recorded in

Germany. Also, the types of areas differ between datasets:

the ZOD features substantially more City frames com-

pared to the remaining two datasets. Finally, we find

differences that likely originate from the frame selection

process for each dataset. We notice that there is a sig-

nificantly lower number of overall objects in the Rooftop

dataset compared to the Truck and Zenseact datasets. Es-

pecially the Pedestrian and Cyclist classes are signifi-

cantly underrepresented such that the missing diversity of

classes would dominate the domain gap. Thus, we resort

to mainly perform dataset-wise comparisons between the

Vehicle classes.

There are also significant differences on a sensor-level.

The Truck dataset has a unique sensor setup as the sensors

are mounted considerably higher compared to the other

two datasets. The high mounting position has the conse-

quence of a large blind spot right in front of the ego ve-

hicle. The installation of an additional forward-facing Li-

DAR addresses this issue, resulting in a four-sensor setup.

In terms of object-level differences, we find disparities

between the datasets caused by deficient labeling. More

specifically, we notice missing ground truth labels for the

Rooftop dataset, especially for distant objects that are hit

by less LiDAR points. The implications are a noisy super-

vision signal for training and a distorted evaluation result

as predominantly hard-to-detect objects are missing. The

ZOD suffers from a similar problem, but hereby, the miss-

ing labels are caused by the labeling procedure. ZOD’s

labeling is based on the camera images. Slight height dif-

ferences between the camera and LiDAR sensors cause

objects to be occluded for the camera while visible for the
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Detector
Backbone

Architecture

Detection

Head
Stages

SECOND [43] Voxel CNN Anchor Single

PointPillar [18] Pillar CNN Anchor Single

IA-SSD [52] Point CNN Point Single

CenterPoint [46] Voxel CNN Center Single

PVRCNN++ [36]
Point-

Voxel
CNN

Center/

Point
Two

DSVT [38] Pillar
Trans-

former
Center Single

Table 3. List of 3D object detection methods and their architec-

tural properties.

LiDAR, resulting in missing labels.

We also identify many non-persistent domain shifts. In

contrast to the previous class of domain shifts, the non-

persistent ones can effectively be reduced or even elimi-

nated by domain adaptation methods. Most prominently,

the datasets employ LiDAR sensors with a differing num-

ber of beams as well as varying beam patterns. Fur-

thermore, the ZOD is more diverse in terms of captured

weather conditions as it also features adverse weather con-

ditions such as fog or snow. We also notice differences

in terms of object sizes. As the ZOD contains frames

recorded in multiple different countries, the intra-dataset

object size variability is higher.

Throughout our analysis, we find numerous domain

shifts between the datasets. Most of the identified shifts

cannot be isolated, making it infeasible to estimate the

impact of individual domain shifts on the overall domain

gap by a simple comparison between datasets. We pro-

vide detailed statistics and domain shift examples in the

Supplementary Material.

3.3. Detector Architecture Evaluation

We identify six key differences among commonly used

object detection architectures and select one object detec-

tor representative of each difference. This approach al-

lows us to assess the impact of each architectural choice.

An overview of the selected object detectors is given

in Tab. 3. In terms of data representation, we choose SEC-

OND [43] to represent voxel-based architectures, Point-

Pillars [18] for the pillar-based representation, and IA-

SSD [52] to represent the class of point-based object de-

tectors. Furthermore, we select CenterPoint [46] to assess

the effect of center-based detection heads. To reason about

the effectiveness of two-staged methods, we employ the

point-voxel-based detector PV-RCNN++ [36]. This de-

tector uses a SECOND-like first-stage to extract bounding

box proposals and a point-feature-based second-stage to

refine the proposals for the final bounding box estimation.

Lastly, we test the impact of different feature extractor

architectures. As Transformer-based architectures have

recently established themselves in the field of 3D object

detection [38], we test their performance in comparison

to the well-established sparse-convolution-based architec-

tures.

4. Approach

To evaluate the impact of the beam density on the cross-

domain performance, we first select a detector architec-

ture that demonstrates robustness across domains. In our

initial experiments, we simply evaluate the trained detec-

tors across domains and group the detection results ac-

cording to the domain shifts of interest. Results are re-

ported in both high- and low-IOU settings to differenti-

ate between localization and detection errors. For our

analysis, we primarily focus on detection errors, which

are assessed using low-IOU experiments, as localization

errors can usually be mitigated through domain adapta-

tion methods targeting object sizes [23, 39]. This cross-

domain comparison operates under the assumption that

the datasets are sufficiently similar to enable meaningful

conclusions. However, as elaborated in Sec. 3.2, this as-

sumption rarely holds due to persistent domain gaps aris-

ing from differences in sensor setups, environmental con-

ditions, and other factors.

In our second set of experiments, we analyze the im-

pact of varying beam densities by isolating it from other

domain shifts. Following the approach of [8, 40], we gen-

erate beam-wise downsampled versions of one dataset. A

detector is trained on each version and subsequently eval-

uated on the other versions of the same dataset. This ap-

proach allows us to focus on the impact of beam density,

independent of other domain-specific properties. How-

ever, in real-world applications, a varying beam density is

usually just one of many domain shifts occurring at test

time. In such cases, other kinds of domain shifts may

completely dominate the domain gap, rendering the ef-

fect of beam density negligible. On the contrary, it could

also be the case that due to the cross-domain application,

other more reliable features are missing, resulting in an in-

creased domain gap caused by varying beam density. Fo-

cusing on a single domain shift in isolation fails to capture

these complex interactions. Thus, more sophisticated ex-

periments with the goal of capturing the domain gap by

a certain domain shift in conjunction with other domain

shifts is necessary.

To address the limitations of isolated domain shift anal-

ysis, we propose an experimental setup designed to ac-

count for interactions between beam density and other do-

main shifts. As in prior experiments, we utilize sparsified

versions of datasets to analyze the impact of beam density,

but this time in conjunction with other datasets. Our setup

divides the domain gap into two components: the training

domain gap, caused by differences in beam density during

training, and the inference domain gap, caused by varia-

tions during evaluation, as described by Richter et al. [31].

To measure the training domain gap, we downsample the

training dataset to create multiple versions, each repre-

senting a specific beam density level. By matching or mis-

matching the beam density with the evaluation dataset, we
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isolate the effects of beam density variation during train-

ing. Similarly, the inference domain gap can be attained

by varying the beam density of the evaluation datasets

while keeping the training datasets unchanged. These

controlled experiments allow us to isolate the specific ef-

fects of beam density in a cross-domain setting. We note

that in real-world applications, it is typically infeasible to

disentangle the training and inference domain gaps, un-

derscoring the relevance of these controlled experiments.

5. Experiments

To demonstrate the effectiveness of our assessment ap-

proach, we conduct experiments on the two private

datasets Rooftop and Truck and the public Zenseact Open

Dataset [1]. We first present our results for the object

detector architecture evaluation, based on which we then

assess the cross-domain and density-resampling domain

gaps. Finally, we compare our training and inference do-

main gaps to the previously determined domain gaps. De-

tailed experiment results and additional information about

implementation and model training can be found in the

Supplementary Material.

5.1. Evaluation Metrics

We use the Intersection-over-Union (IOU)-based metric

3D average precision APS→T to assess the detection per-

formance of an object detection model trained on the

source domain D
S when evaluated on the target domain

D
T . By lowering the IOU threshold, we can addition-

ally disentangle the detection error from the localization

error. Thereby, localization errors are caused by objects

that are detected but not localized accurately enough to be

considered true positives, whereas detection errors repre-

sent entirely missed or wrongly classified objects. Wang

et al. [39] demonstrated that the 3D average precision sig-

nificantly increases when the IOU threshold is reduced

from the commonly used threshold of 0.7 (70%) to ap-

proximately 0.4 (40%). At this threshold, the domain gap

primarily reflects detection errors, which are of greater

practical significance than localization errors. Localiza-

tion errors can often be mitigated using domain adaptation

methods such as ROS [44], SN, or OT [39]. Therefore,

in our evaluation, we primarily focus on a reduced IOU

threshold of 0.4 to better understand detection errors.

While the cross-domain performance is well suited for

comparing different detectors, it does not adequately cap-

ture the generalization ability of a certain detector across

domains, as it is influenced by the inherent difficulty of

the target dataset. To address this limitation, we employ

the domain gap metric [44], which relates cross-domain

performance to the detector’s maximum achievable per-

formance on the target domain (APT→T ). This relative

metric provides a detached view of domain generalization

ability and allows for meaningful comparisons of detec-

tors evaluated on target datasets with varying difficulty

levels. The domain gap DG, expressed as a percentage

of the maximum achievable performance, is defined as

Detector
mAP ↑

IOU=0.7

mAP ↑

IOU=0.4

DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.4

SECOND 30.6 70.4 47.6 16.0

PointPillars 23.0 63.9 56.4 21.5

IA-SSD 34.7 66.1 41.5 18.3

CenterPoint 28.6 68.1 49.7 18.0

PV-RCNN++ 37.2 71.2 42.8 16.2

DSVT 33.4 68.4 47.7 20.1

Table 4. Detector comparison results overview. We calculate the

cross-domain performance by averaging over all cross-domain

results. We report the average domain gap and the cross-domain

performance using the AP metric at the IOU thresholds of 0.7

and 0.4 for the Vehicle class.

DG =
APT→T −APS→T

APT→T

· 100 (1)

5.2. Detector Architecture Evaluation

With the goal of finding a detector that is robust against

domain changes, we examine the impact of each archi-

tectural choice on the overall performance in the cross-

domain setting (see Tab. 4). The first architectural

comparison concerns the voxel and pillar discretization

methods. We find that the voxel-based detector SEC-

OND [43] outperforms the pillar-based PointPillars [18]

by a substantial margin. While PointPillars is the worst-

performing detector across all metrics, SECOND exhibits

surprisingly good performance in the low-IOU settings.

This indicates that SECOND is good at detecting objects

but fails to precisely locate them in 3D space. This dis-

crepancy stems from the quantization process. During

voxelization, the exact geometric structure is lost, hamper-

ing the precise localization of objects. In terms of different

data representations, we also test the point-based detector

IA-SSD [52]. This detector shows a very strong perfor-

mance in the high-IOU setting, indicating that it is also

good at predicting the 3D location of objects. This can be

attributed to the detector’s direct access to the point data.

Subsequently, we test the effects of different detection

heads. More specifically, we compare anchor-heads, as

employed in SECOND or PointPillars, with center-heads,

as introduced in CenterPoint [46]. Contrary to expecta-

tions, center-heads result in degraded performance com-

pared to anchor-heads.

Next, we apply PV-RCNN++ [36] to test the impact of

an additional second stage. This detector outperforms all

others in terms of cross-domain performance while stay-

ing competitive in terms of domain gap. Similar to IA-

SSD, the second stage of PV-RCNN++ benefits from di-

rect access to raw point data, which likely enhances its

performance. We can conclude that, for our experiments,

the addition of a second stage significantly benefits the

object detectors regarding generalization abilities.

Lastly, we examine the effect of Transformer-based

backbones. While DSVT [38] achieves excellent in-

domain results, its cross-domain performance and domain
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Source→Target
avg. DG in %

IOU=0.7 ↓

avg. DG in %

IOU=0.4 ↓

Beam

Density

Dense→Dense 23.9 14.4

Dense→Sparse 36.4 11.1

Sparse→Dense 67.4 23.0

Table 5. Domain gap in percent for the object detector PV-

RCNN++. The different cross-domain settings are grouped and

averaged by beam density. We report the average domain gap

calculated with the AP metric at the IOU thresholds of 0.7 and

0.4 for the Vehicle class.

gap metrics are only moderate. Our experiments suggest

that Transformer-based backbones do not benefit object

detectors in terms of domain generalization.

These findings highlight the critical role of detector

architecture in achieving robust domain generalization.

Comparing the best and worst-performing detectors, we

observe a performance difference of 61.7% in the high-

IOU setting and 11.4% in the low-IOU settings. We fur-

ther find that purely voxel-based detectors excel at detect-

ing objects and the addition of point information drasti-

cally improves the localization error. The object detection

architecture evaluation conducted by Eskandar et al. [8]

yields similar conclusion concerning the effect of point

information. However, our experiments do not support

their finding that Transformer-based backbones improve

cross-domain generalization.

5.3. Cross­domain Results

Beginning our examination of the domain gap induced by

beam density, we conduct a simple cross-domain eval-

uation. As shown in Tab. 5, the sparsely-trained de-

tector (trained on Rooftop) applied on denser datasets

(Sparse→Dense) exhibits approximately twice the do-

main gap compared to applying a densely-trained de-

tector (trained on Truck or ZOD) on a sparse dataset

(Dense→Sparse). This trend persists when isolating the

detection error by evaluating with reduced IOU thresh-

old. In terms of domain generalization, we could conclude

from this initial analysis that for these particular datasets,

it is beneficial to train a detector on the dense datasets as

they generalize towards sparse and dense datasets. As the

effect of beam density is just one of many factors con-

tributing to this observed domain gap, further analysis is

required to make stronger statements.

5.4. Density­resampling Results

We continue by isolating the beam-density-induced do-

main gap in our second set of experiments. To keep track

of the resampled density, we call the original dense dataset

ZOD128 and the sparser variants ZOD64 and ZOD32,

where the index represents the number of beams. As

shown in Tab. 6, the density-resampling analysis con-

trasts with the findings from the cross-domain analysis. In

the high-IOU setting, the sparse-to-dense cases (top-right

of the results matrix) give better results than their dense-

Target

ZOD32 ZOD64 ZOD128

Source
DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.7

ZOD32 - 1.8 5.1

ZOD64 4.3 - 1.9

ZOD128 9.4 0.9 -

DG in % ↓

IOU=0.4

DG in % ↓

IOU=0.4

DG in % ↓

IOU=0.4

ZOD32 - 0.6 2.3

ZOD64 2.7 - 1.6

ZOD128 3.0 -0.9 -

Table 6. Density-caused domain gap for the density-resampling

setting. We report the domain gap calculated with the AP metric

at the IOU thresholds of 0.7 (top) and 0.4 (bottom) for the Vehi-

cle class.

to-sparse counterparts (bottom-left of the results matrix).

More broadly, we notice that the performance differences

between all datasets are comparably small. This indicates

that the detectors generalize very well towards the same

dataset when solely varying the sampling. However, in

real-world applications, variations in sampling is usually

accompanied by other kinds of domain shift. In the fol-

lowing experiments we thus investigate the beam-density-

induced domain shift in the presence of other kinds of do-

main shifts by measuring the training and inference do-

main gaps.

5.5. Training and Inference Domain Gap Results

We first examine the training domain gap in Tab. 8. Com-

pared to the density-resampling setting (recall Tab. 6),

the overall domain gap level is significantly higher, as

many more factors contribute besides the beam density. In

the high-IOU experiments, trends are consistent with the

density-resampling case: larger differences in beam den-

sity lead to larger domain gaps. However, when isolating

the detection error in the low-IOU setting, a different trend

emerges. Densely-trained detectors show overall better

performance for the dense and sparse target datasets, indi-

cating that they are able to detect more objects than their

sparsely-trained counterparts in the cross-domain case.

This setup also allows us to quantify the impact of beam

density on the overall domain gap. When evaluating on

the Rooftop dataset, training on a denser 128-beam dataset

reduces the domain gap from 13.1% to 9.2%, reducing the

domain shift by almost one-third (shown in Fig. 1c).

Next, we analyze the inference domain gap in Tab. 7.

The high-IOU results (top-left of the table) show greater

domain gap variability between the Rooftop and Truck

datasets than within each dataset across beam densities.

This observation supports our earlier assumption about

persistent dataset-caused domain gaps in cross-domain

evaluation settings (recall Sec. 4). Overall, the results in-
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Target

ZOD32 ZOD64 ZOD128 ZOD32 ZOD64 ZOD128

Source
DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.4

DG in % ↓

IOU=0.4

DG in % ↓

IOU=0.4

Rooftop
32

55.0 58.0 67.4 13.9 11.8 13.4

Truck128 28.6 19.0 16.3 16.9 8.5 8.2

AP ↑

IOU=0.7

AP ↑

IOU=0.7

AP ↑

IOU=0.7

AP ↑

IOU=0.4

AP ↑

IOU=0.4

AP ↑

IOU=0.4

Rooftop
32

25.1 26.7 22.4 60.5 69.0 73.0

Truck128 39.7 51.4 57.6 58.4 71.6 77.4

Table 7. Inference domain gap caused by varying beam densities in a cross-domain setting. We report the domain gap (top) and the

cross-domain performance (bottom) using the AP metric at the IOU thresholds of 0.7 (left) and 0.4 (right) for the Vehicle class.

Target

Rooftop
32

Truck128 Rooftop
32

Truck128

Source
DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.4

DG in % ↓

IOU=0.4

ZOD32 38.4 41.5 13.1 28.0

ZOD64 41.2 37.2 11.1 23.7

ZOD128 45.8 32.5 9.2 20.5

Table 8. Training domain gap caused by varying beam densities

in a cross-domain setting. We report the domain gap calculated

with the AP metric at the IOU thresholds of 0.7 (left) and 0.4

(right) for the Vehicle class.

dicate that the detector is relatively robust to beam density,

provided the number of beams does not change drastically.

In the high-IOU experiments, the domain gap increases by

only 3% or less when doubling or halving beam density.

The previous analyses were exclusively done through

the lens of the domain gap metric. For the inference do-

main gap, it is also interesting to examine the performance

values themselves. Especially for the low-IOU setting, we

can see in Tab. 7 that the performance (measured in AP)

increases steadily with an increasing number of beams,

despite the domain gap staying similar. This indicates that

the observed performance gain is caused by easing the de-

tection problem in contrast to better generalizability of the

detectors. As the density increases, more LiDAR rays hit

objects which makes it easier for the object to be detected.

In summary, the results provide a comprehensive view

of the domain gap caused by varying beam densities.

When isolating the effect of varying beam densities

(see Tab. 6), the domain gap appears minor, favoring

sparsely-trained detectors for domain generalization. This

aligns with findings from related studies [8, 10, 31]. How-

ever, when analyzing the training domain gap in conjunc-

tion with other domain shifts, we find that densely-trained

detectors exhibit better domain generalization in terms of

detecting objects (see Tab. 8). Regarding inference do-

main gaps (see Tab. 7), results show that detectors gen-

eralize well as long as beam density changes are modest.

Nonetheless, denser sampling reduces detection difficulty,

leading to better performance irrespective of the detector’s

generalizability.

6. Conclusion

This study presented an investigation of the impact of

beam density on LiDAR object detection performance in

cross-domain scenarios during which we also explored

optimal object detector architectures to address domain

variability effectively. Our object detector architecture

evaluation revealed that combining voxel- and point-based

approaches delivers superior cross-domain performance

by leveraging the complementary strengths of these repre-

sentations. While Transformer-based backbones demon-

strated strong performance in in-domain tasks, their cross-

domain benefits were limited under the conditions tested.

Our findings emphasize the importance of selecting a ro-

bust detector architecture as a prior step to domain adap-

tation.

We further investigated the impact of beam density on

LiDAR object detection performance in cross-domain sce-

narios, offering insights into both training and inference

domain gaps. We found that detectors trained on dense

datasets generalize better across domains, particularly for

detecting objects, where detection error (rather than local-

ization error) is the primary concern. During inference,

detectors showed robustness against moderate beam den-

sity changes, with denser configurations improving per-

formance by reducing the difficulty of the detection task

rather than enhancing generalizability.

A key insight from this study is that domain gaps, in-

cluding those caused by beam density, should not be an-

alyzed in isolation. Instead, we advocate for a holistic

approach to domain adaptation, beginning with the selec-

tion of a detector intrinsically robust to domain changes.

This minimizes the initial domain gap and allows adap-

tation efforts to focus on more complex types of domain

shifts.
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Wang, Ze Yang, and Raquel Urtasun. Towards zero domain

gap: A comprehensive study of realistic LiDAR simulation

for autonomy testing. In Proc. ICCV, 2023. 2

[25] Jiageng Mao, Minzhe Niu, Chenhan Jiang, Hanxue Liang,

Jingheng Chen, Xiaodan Liang, Yamin Li, Chaoqiang Ye,

Wei Zhang, Zhenguo Li, Jie Yu, Hang Xu, and Chunjing

Xu. One million scenes for autonomous driving: ONCE

dataset. In Proc. NeurIPS, 2021. 1

[26] Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi

Feng, Xiaodan Liang, Hang Xu, and Chunjing Xu. Voxel

Transformer for 3D Object Detection. In Proc. ICCV,

2021. 2

[27] Jiageng Mao, Shaoshuai Shi, Xiaogang Wang, and Hong-

sheng Li. 3D Object Detection for Autonomous Driving:

A Review and New Outlooks. In IJCV, 2022. 1

22



[28] Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao

Huang. 3D Object Detection with Pointformer. In Proc.

CVPR, 2021. 2

[29] Xidong Peng, Xinge Zhu, and Yuexin Ma. CL3D: Unsu-

pervised Domain Adaptation for Cross-LiDAR 3D Detec-

tion. In Proc. AAAI, 2023. 3

[30] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J.

Guibas. PointNet: Deep Learning on Point Sets for 3D

Classification and Segmentation. In Proc. CVPR, 2017. 2

[31] Jasmine Richter, F. Faion, Di Feng, Paul Benedikt Becker,

Piotr Sielecki, and Claudius Glaeser. Understanding

the Domain Gap in LiDAR Object Detection Networks.

In Uni-DAS e.V. Workshop Fahrerassistenz und automa-

tisiertes Fahren, 2022. 2, 3, 5, 8

[32] Cristiano Saltori, Stephane Lathuiliere, Nicu Sebe, Elisa

Ricci, and Fabio Galasso. SF-UDA 3d : Source-Free Unsu-

pervised Domain Adaptation for LiDAR-Based 3D Object

Detection. In IEEE 3DV, 2020. 3

[33] Guangsheng Shi, Ruifeng Li, and Chao Ma. PillarNet:

Real-Time and High-Performance Pillar-based 3D Object

Detection. In Proc. ECCV, 2022. 2

[34] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li.

PointRCNN: 3D Object Proposal Generation and Detec-

tion from Point Cloud. In Proc. CVPR, 2019. 2

[35] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jian-

ping Shi, Xiaogang Wang, and Hongsheng Li. PV-RCNN:

Point-Voxel Feature Set Abstraction for 3D Object Detec-

tion. In Proc. CVPR, 2020. 2

[36] Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu

Guo, Jianping Shi, Xiaogang Wang, and Hongsheng Li.

PV-RCNN++: Point-Voxel Feature Set Abstraction With

Local Vector Representation for 3D Object Detection. In

IJCV, 2022. 2, 5, 6

[37] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aure-

lien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin

Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan,

Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev,

Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi,

Sheng Zhao, Shuyang Cheng, Yu Zhang, Jonathon Shlens,

Zhifeng Chen, and Dragomir Anguelov. Scalability in per-

ception for autonomous driving: Waymo open dataset. In

Proc. CVPR, 2020. 1

[38] Haiyang Wang, Chen Shi, Shaoshuai Shi, Meng Lei, Sen

Wang, Di He, Bernt Schiele, and Liwei Wang. DSVT:

Dynamic Sparse Voxel Transformer with Rotated Sets. In

Proc. CVPR, 2023. 2, 5, 6

[39] Yan Wang, Xiangyu Chen, Yurong You, Li Erran, Bharath

Hariharan, Mark Campbell, Kilian Q. Weinberger, and

Wei-Lun Chao. Train in Germany, Test in The USA: Mak-

ing 3D Object Detectors Generalize. In Proc. CVPR, 2020.

2, 3, 5, 6

[40] Yi Wei, Zibu Wei, Yongming Rao, Jiaxin Li, Jie Zhou, and

Jiwen Lu. LiDAR Distillation: Bridging the Beam-Induced

Domain Gap for 3D Object Detection. In Proc. ECCV,

2022. 2, 3, 5

[41] Maciej K Wozniak, Mattias Hansson, Marko Thiel, and

Patric Jensfelt. Uada3d: Unsupervised adversarial domain

adaptation for 3d object detection with sparse lidar and

large domain gaps. IEEE RA-L, 2024. 3

[42] Qiangeng Xu, Yin Zhou, Weiyue Wang, Charles R. Qi, and

Dragomir Anguelov. SPG: Unsupervised Domain Adapta-

tion for 3D Object Detection via Semantic Point Genera-

tion. In Proc. ICCV, 2021. 3

[43] Yan Yan, Yuxing Mao, and Bo Li. SECOND: Sparsely Em-

bedded Convolutional Detection. Sensors, 18(10), 2018. 2,

5, 6

[44] Jihan Yang, Shaoshuai Shi, Zhe Wang, Hongsheng Li, and

Xiaojuan Qi. ST3D: Self-training for Unsupervised Do-

main Adaptation on 3D Object Detection. In Proc. CVPR,

2021. 2, 3, 6

[45] Jihan Yang, Shaoshuai Shi, Zhe Wang, Hongsheng Li, and

Xiaojuan Qi. ST3D++: Denoised Self-Training for Unsu-

pervised Domain Adaptation on 3D Object Detection. In

IEEE TPAMI, 2022. 3

[46] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Cen-
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An Investigation of Beam Density on LiDAR Object Detection Performance

Supplementary Material

1. Dataset Introduction

In the following, we provide the detailed label map

(see Tab. 1) from Chap. 3.1 and elaborate some of the

domain shifts mentioned in Chap. 3.2 in more detail.

We begin by showcasing the effect of geographically di-

verse locations in Fig. 1. The observed country-level

size bias combined with a dataset-specific size-bias re-

sults in different average object sizes between the datasets

(see Fig. 2). Fig. 3 shows differences in recording lo-

cations. We can see that the ZOD contains significantly

more City frames compared to the other two datasets. As

a consequence, a detector trained on the ZOD is more

likely to assign objects that typically associated with City

frames, such as Cyclists, to ambiguous objects than detec-

tors trained on the other datasets. An example of this phe-

nomenon is depicted in Fig. 4, where the detector trained

on the ZOD detects a Cyclist, while the other detectors

correctly detect a Truck. The bias introduced by the frame

selection procedure can be seen in Fig. 5. The Rooftop

dataset contains, on average, less objects per frame than

the other two datasets. This difference is especially severe

for the classes Pedestrian and Cyclist. Finally, we give

an example for imperfect labeling of the Rooftop dataset

in Fig. 6. The camera image shows a black car, which is

captured by 8 points in the LiDAR image. However, no

bounding box is assigned in the LiDAR frame.

Figure 1. Average length of vehicles for different countries in

the ZOD.

2. Experiments

2.1. Implementation Details

In the following, we summarize some implementation de-

tails which are shared across the object detection models.

Figure 2. Comparison of average object sizes for the classes Car,

Pedestrian and Cyclist for ZOD (green), Truck dataset (blue) the

Rooftop dataset (orange). Object sizes of the Rooftop dataset are

significantly larger on average.

Figure 3. Recording area statistics.

Figure 4. Example of a misclassification of an ambiguous object

on a highway. The detector trained on the ZOD (green bound-

ing box) is more likely to assign the class Cyclist to the am-

biguous object compared to the detector trained on the Rooftop

dataset (blue bounding box), which correctly identifies the object

as Truck (red bounding box).

Codebase. All models were implemented in the code-

base 3DTrans1, which is an extension of the open-source

1https://github.com/PJLab-ADG/3DTrans

DOI: 10.3217/978-3-99161-022-9-002
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Detector

Label-Space

Dataset

Label-Space

Truck Rooftop Zenseact Open Dataset

Vehicle
Vehicle Drivable Car Vehicle Drivable Car Vehicle Car

Vehicle Drivable Van Vehicle Drivable Van Vehicle Van

Truck

LargeVehicle Bus LargeVehicle Bus Vehicle Bus

LargeVehicle TruckCab LargeVehicle TruckCab

Trailer Trailer Vehicle Trailer

LargeVehicle Truck LargeVehicle Truck

Vehicle Truck

Vehicle TramTrain

Vehicle HeavyEquip

Cyclist
Vehicle Ridable Motorcycle Vehicle Ridable Motorcycle VulnerableVehicle Motorcycle

Vehicle Ridable Bicycle Vehicle Ridable Bicycle VulnerableVehicle Bicycle

Pedestrian Human Human Pedestrian

DontCare

Dont Care PPObject

Other PPObject Stroller

PPObject BikeTrailer

Vehicle PMD

Table 1. Label-space mapping between the detector label-space and the dataset label-spaces.

Figure 5. Class statistics.

3D object detecton codebase OpenPCDet [5]. Models de-

veloped in OpenPCDet can seamlessly be integrated into

3DTrans. All the models were already implemented in

3DTrans for the Waymo Open Dataset [4], with the ex-

ception of DSVT, which had to be adopted from the offi-

cial OpenPCDet codebase. The ZOD dataloader has been

implemented based the provided developement kit2. The

dataloaders for the Rooftop and Truck datasets were im-

plemented from scratch. Our implementations are based

on PyTorch 2.1 and SpConv [1] version 2.3.6 for CUDA

12.0.

Hardware. We conducted the development and testing

of the models on a workstation featuring a single RTX

4090 GPU. We trained the final models on a GPU with

four RTX A6000 GPUs.

2https://github.com/zenseact/zod

Schedule and Optimization. We train all object de-

tectors on each dataset for 100 epochs. All the models

employ the ADAM optimizer [2] and use a OneCycle

learning-rate scheduler [3] with varying learning rate, mo-

mentum and weight-decay parameters depending on the

model.

Data Representation. The voxel-based methods SEC-

OND, CenterPoint, PV-RCNN++, and DSVT require

a discretization of the point cloud into a voxel-

representation before the object detection models can be

applied. To this end, we adapt a voxel size of (0.1m, 0.1m,

0.15m) following the implementation of PV-RCNN++.

For the pillar-based method PointPillars, we use a pillar-

size of (0.32m, 0.32m, 6.0m).

2.2. Detector Architecture Search

In Tab. 2, we provide the raw data used to calculate the av-

eraged results for the domain gap and performance, which

we base our detector architecture selection on. These re-

sults are also used to conduct the initial cross-domain ex-

periment in Sec. 5.3.

2.3. Domain Gap Results

In Tab. 3 and Tab. 4 we provide the performance values

in Average Precision based on which the domain gaps in

Sec. 5.4 and 5.5 are calculated.

Supplementary Material
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Figure 6. Example of missing ground truth label for the Rooftop dataset. The 3D bounding box of the red boxed car is missing even

though it is clearly visible in the image and LiDAR data.

Target

Truck Rooftop
Zenseact

Open Dataset

Source Detector

AP ↑

IOU

0.7/0.4

AP ↑

IOU

0.7/0.4

AP ↑

IOU

0.7/0.4

Truck

SECOND 55.5/84.9 39.2/73.6 46.9/74.7

PointPillars 49.7/82.4 32.7/67.3 33.5/67.7

IA-SSD 58.6/82.4 41.3/69.5 53.9/72.1

CenterPoint 54.5/82.4 36.9/75.7 43.6/74.2

PV-RCNN++ 65.5/86.4 45.5/74.0 57.6/77.4

DSVT 60.4/86.3 41.0/72.1 53.2/77.3

Rooftop

SECOND 16.7/60.5 58.3/84.6 16.9/66.9

PointPillars 13.6/56.3 51.8/82.3 13.6/65.1

IA-SSD 20.6/59.9 55.1/82.2 29.9/71.7

CenterPoint 13.9/54.4 58.3/84.0 11.7/58.9

PV-RCNN++ 21.0/58.3 61.4/84.3 22.4/73.0

DSVT 20.9/55.2 64.6/86.4 19.9/62.6

Zenseact

Open

Dataset

SECOND 36.7/69.7 27.0/76.8 61.2/82.0

PointPillars 25.3/59.5 19.1/67.6 56.7/79.8

IA-SSD 33.7/54.0 28.7/69.3 63.8/78.6

CenterPoint 38.7/69.8 26.9/75.5 57.7/82.7

PV-RCNN++ 44.2/68.6 32.7/75.8 68.7/84.3

DSVT 38.1/66.2 27.6/77.0 66.4/84.3

Table 2. Detector comparison in terms of the cross-domain per-

formance. We report the performance using the AP metric at an

IOU threshold of 0.7/0.4 for the Vehicle class.
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ZOD32 ZOD64 ZOD128

Source
AP ↑

IOU=0.7

AP ↑
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ZOD128 50.4 62.9 68.7

AP ↑

IOU=0.4

AP ↑

IOU=0.4

AP ↑

IOU=0.4

ZOD32 70.3 77.8 82.3

ZOD64 68.4 78.3 82.9

ZOD128 68.2 79.0 84.3

Table 3. Density-caused domain gap for the density-resampling

setting. We report the performance with the AP metric at the

IOU thresholds of 0.7 (top) and 0.4 (bottom) for the Vehicle

class.

Target

Rooftop
32

Truck128 Rooftop
32

Truck128

Source
AP ↑

IOU=0.7

AP ↑

IOU=0.7

AP ↑
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AP ↑
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Table 4. Training domain gap caused by varying beam densities

in a cross-domain setting. We report cross-domain performance

with the AP metric at the IOU thresholds of 0.7 (left) and 0.4

(right) for the Vehicle class.
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Abstract

UV map estimation is used in computer vision for detailed

analysis of human posture or activity. Previous methods

assign pixels to body model vertices by comparing pixel

descriptors independently, without enforcing global co-

herence or plausibility in the UV map. We propose Pose-

Constrained Continuous Surface Embeddings (PC-CSE),

which integrates estimated 2D human pose into the pixel-

to-vertex assignment process. The pose provides global

anatomical constraints, ensuring that UV maps remain

coherent while preserving local precision. Evaluation on

DensePose COCO demonstrates consistent improvement,

regardless of the chosen 2D human pose model. Whole-

body poses offer better constraints by incorporating addi-

tional details about the hands and feet. Conditioning UV

maps with human pose reduces invalid mappings and en-

hances anatomical plausibility. In addition, we highlight

inconsistencies in the ground-truth annotations.

1. Introduction

Analysis of human pose is an essential part of many com-

puter vision problems and is used in a number of appli-

cations, including recognition of human activity, gestures

and interaction, detection of people and their intent in au-

tonomous driving scenarios, etc.

Information about the human body can be estimated

at different levels of resolution. The simplest is the de-

tection of a bounding box that surrounds the person de-

picted. This can be more precisely delineated by body

segmentation. Pose estimation, which estimates the loca-

tions of some body keypoints, provides another level of

granularity. The most detailed is provided by UV map es-

timation (UVME), where every image pixel is mapped to

the surface of a generalized human body. The surface is

represented as a mesh with a fixed set of vertices.

The state-of-the-art methods for these tasks [10, 20, 27]

rely on supervised learning, which possibly requires a

large amount of annotated data. The cost and effort to an-

notate the data for human detection, segmentation, pose

Figure 1. The Continuous Surface Embedding method (CSE)

[20] (left) vs. Pose-Constrained CSE (right). The CSE method

assigns each pixel of body segmentation to a vertex, and thus UV

coordinate, on a canonical body shape mesh. The CSE assigns

each pixel independently, leading to artifacts such as limb du-

plication (yellow circles). PC-CSE uses pose constraints during

UV map estimation, producing smoother maps and eliminating

artifacts. The UV values at individual pixels are visualized by

color coding. The location of a given color on the canonical sur-

face is shown in the inset image at the top left.

estimation, and UV map estimation increases with the

complexity of the underlying task. UVME is arguably the

most complex of these tasks and, therefore, the most data-

hungry.

In a recent paper, a method for UVME called Continu-

ous Surface Embeddings (CSE) was introduced [20]. The

accuracy of the method is good, but it also has limitations.

Due to the disparity between the resolution of the input

image and the relatively small number of vertices, this

method cannot perform one-to-one matching. Since each

pixel is mapped independently of the others, the method

can assign the same body part to multiple locations in the

image or produce undesirable artifacts. Examples can be

seen in Fig. 1 and 3.

In this paper, our objective is to leverage the methods

for pose estimation, which have been in development for

a considerable amount of time, to make UVME more ac-

curate. We take advantage of their robustness and design,

which guarantees no duplicate assignments. We introduce

the concept of pose-induced proximal regions which con-

strain the mapping to a particular body part and propagate

these constraints to the corresponding pixels.
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We present a novel method called Pose-Constrained

CSE (PC-CSE) that demonstrates the effectiveness of

these concepts. It makes UV maps more coherent with es-

sentially no loss of efficiency besides the need to calculate

the human pose. PC-CSE shows consistent improvement

over unconstrained UV maps. We conducted a detailed

ablation study to justify our design choices and explain

the improvement in performance.

2. Related Work

Human Pose Estimation (HPE) and UV Map Estimation

(UVME) are closely related tasks. UVME provides more

detailed and comprehensive information, while HPE ben-

efits from a longer history of research, larger datasets, and

greater robustness. In this work, we condition UVME pre-

dictions on HPE due to HPE’s superior reliability. To es-

tablish context, we first discuss related work on HPE be-

fore moving to UVME advancements.

Data. Progress in human pose and gesture understand-

ing relies heavily on large-scale datasets. The COCO

dataset [16], with over 200,000 annotated images of peo-

ple, is the most widely used, supporting tasks like object

detection, instance segmentation, and pose estimation. Its

annotations have been extended to whole-body keypoints

[12] and UV map annotations [8]. Other datasets, such

as MPII [3], CrowdPose [15], and OCHuman [28], tar-

get specific challenges like crowded scenes or people in

close proximity. While these datasets have significantly

advanced research, there is limited research on their over-

all annotation quality [22].

Current 2D Human Pose Estimation (HPE) methods

are categorized into top-down, bottom-up, and hybrid ap-

proaches. Top-down methods [18, 23, 27] first detect indi-

viduals using off-the-shelf person detectors, followed by

pose estimation for each detected instance. ViTPose [27]

represents the state-of-the-art in this category. Bottom-

up methods [4, 6, 21] predict all keypoints simultaneously

and group them into individual poses, making them more

effective in crowded scenarios, such as those encountered

in OCHuman [28]. Hybrid approaches [29] combine ele-

ments of both strategies, striking a balance between accu-

racy and efficiency under challenging conditions.

UV Map Estimation (UVME) has seen steady

progress in recent years. DenseReg [7] formulates UVME

as a regression task and trains a fully convolutional neural

network for human face extraction using facial landmarks.

DensePose [8], a milestone in UVME, collects a dataset of

many body-to-surface annotations and adapts the Mask R-

CNN architecture [9] for person detection, segmentation

and UV map estimation in a cascade. Subsequent works

focus on seeking correspondences in sequences of images

[19, 24], utilize DensePose as an intermediate representa-

tion for other advanced tasks, such as 3D body reconstruc-

tion [2, 14], or use it as the ground truth [11].

DensePose relies on splitting the body template into

small partitions (“charts”) and performs a simultaneous

regression of the target body part and the UV coordi-

nate within the respective partition. Continuous Sur-

face Embeddings (CSE) [20] follows up on DensePose

by eliminating the need for artificial slicing of the tem-

plate. Instead, CSE holds trainable descriptors (embed-

dings) of the template surface and guides a neural net-

work to regress these embeddings per pixel in a con-

trastive manner. The UV map is determined by finding

the closest surface embedding of every pixel. Overall,

CSE simplifies the DensePose framework while making

it generalizable to other natural objects. Both DensePose

and CSE are tightly bound to the mesh of the SMPL [17],

a parametrized 3D model of the human body.

BodyMap [10] further refines CSE by addressing body

details such as hair and clothing, providing high-fidelity

results while relying on CSE descriptors internally. Al-

though it claims state-of-the-art performance, its code has

not been released to the public. Recently, foundational

models like Sapiens [13] have emerged in human-centric

vision tasks. Trained on vast amounts of unannotated data,

these models achieve state-of-the-art performance across

various downstream tasks. However, they are resource-

intensive and have yet to demonstrate significant advance-

ments, specifically in UV map estimation.

3. Method

Our method is built on top of the CSE method [20], a

feed-forward neural network based on the Mask R-CNN

architecture [9]. Although it performs human detection,

segmentation and UV map estimation in a cascade, we

are concerned only with the latter and consider bounding

boxes and segmentation as input determined by an exter-

nal method.

The network outputs pixel descriptors, or pixel embed-

dings. During training, contrastive learning is employed

to determine both the best weights and the values of ver-

tex embeddings, each linked to one of the vertices of the

SMPL mesh [17]. The resulting UV map is established by

mapping every input pixel embedding to the most similar

vertex embedding (in terms of cosine similarity), associ-

ating every image pixel with a mesh vertex (and its UV

coordinates).

Formally, let I be the input image, x ∈ I a (fore-

ground) image pixel, Φx(I) ∈ R
D embedding of the pixel

x provided by the neural network Φ (where D is the em-

bedding dimensionality), M the mesh (set of vertices),

i ∈ M a vertex index, and Ei ∈ R
D normalized embed-

ding of the vertex i. The mapping from pixels to vertices

using CSE [20] can be expressed as:

i∗x = argmax
i∈M

⟨Ei,Φx(I)⟩ . (1)

Consistent with the standard definition of mapping,

CSE always maps exactly one vertex to every foreground

pixel. However, the reverse is not necessarily true. Typi-

cally, the resolution of the input image is sufficiently high

such that the pixel count significantly surpasses the ver-

tex count on the mesh, resulting in multiple pixels being
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(a) PC-CSE requires a bounding box

and a segmentation mask as an input.

VitPose-l [27] is used for pose esti-

mation in this example. Front-view

skeleton is in the inset image.

Right hand

Right forearm

Left foot Back

Left thigh

ChestRight shinLeft forearm

Left arm

Left shin

Head

Left hand Right foot

Right arm Right thigh

(b) Proximal regions of body parts. Only pixels in the segmentation

mask and the green areas may be assigned to the body parts denoted

in the top right. Head and undetected body parts are unconstrained

(bottom right). The highlighted point can be assigned to the back, chest,

head, and both the left and the right thigh but not to other parts.

(c) The PC-CSE UV map is consis-

tent with the estimated pose, unlike

the CSE [20] estimate. The difference

is shown in Fig. 3.

Figure 2. Pose-constrained CSE (PC-CSE) takes an estimated bounding box, segmentation mask, and 2D human pose (a) as input. It

computes proximal regions (b) for each body part and assigns pixels to SMPL [17] vertices to generate a UV map. Unlike the CSE [20],

PC-CSE constrains pixel assignments using proximal regions, ensuring the resulting UV map aligns with the estimated pose (c).

frequently associated with the same vertex.

Arguably, this does not pose a problem in itself. For ex-

ample, it is acceptable for neighboring pixels to map to the

same vertex, as they can lie so close to each other on the

actual body that the discretization of the mesh cannot dis-

tinguish between them. Nevertheless, a fully independent

assignment of vertices to foreground pixels makes CSE

generally prone to implausible pose predictions, as it has

no other means to avoid them but to rely on the strength

of its prior. Qualitative research confirms our hypothesis,

as we observe situations stemming from the general prob-

lem, such as CSE assigning the same body part to more

than one image region (e.g., two hands are declared left),

UV map discontinuities and various artifacts (see Fig. 3).

At this point, we examine the features of human pose

estimation (HPE) algorithms. These estimators predict the

locations of various landmarks on the human body, called

keypoints, such as skeletal joints or facial landmarks. In

particular, skeletal joints form a primitive human skeleton,

the shape of which is very similar to that of our 3D human

representation (Fig. 2a). Furthermore, each keypoint is,

by design, assigned to at most one image coordinate. This

constitutes the key advantage of HPE over CSE, as dupli-

cate assignments of body parts become impossible.

3.1. Conditioning CSE by pose

We believe that using a human pose estimation model as

a secondary expert during inference and enforcing con-

sistency of the two representations is a promising path

for avoiding errors in predicted UV maps and improv-

ing their quality. Therefore, we propose our new method

called Pose-Constrained Continuous Surface Embed-

dings (PC-CSE). The key enhancement is the introduc-

tion of pose-induced constraints whose purpose is to limit

the mapping of every pixel to only pre-selected body re-

gions. It does not involve any architectural change to CSE

and does not require its retraining or fine-tuning.

The constraints are rules that determine to which ver-

tices of the mesh each foreground pixel is allowed to

map. Which pixels are constrained by which rule de-

pends on the inferred pose. We first define the relation

between the pose representation and the target mesh. We

use the COCO skeleton [16] as the default pose represen-

tation. It consists of 17 keypoints (Fig. 2a): 12 skeletal

joints (wrists, elbows, shoulders, hips, knees, and ankles

in pairs) and 5 facial landmarks (eyes, ears, and nose).

These keypoints can be linked into arms, forearms, thighs,

shins, and a quadrilateral defined by shoulders and hips.

We refer to these connections as the principal bones.

In addition, we explore the whole-body skeleton [12].

This representation with 133 keypoints extends the COCO

skeleton by introducing extra keypoints for hands, feet,

and face. This poses an advantage over the basic version

because hands and feet are somewhat distant from the re-

spective keypoints and can deviate from the limb axis.

The canonical mesh can now be partitioned into subsets

of vertices. Each partition should roughly correspond to

one principal bone. We create 15 mesh partitions of SMPL

– arms, forearms, hands, thighs, shins, and feet in pairs,

the front and back of the torso, and head – by merging

segments of SMPL body segmentation [1, 17]. We divide

the torso by the sagittal plane to distinguish between the

front and back of it.

The scope of constraints within the image is specified
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by expanding (“inflating”) the inferred skeleton composed

of the principal bones. Each principal bone delineates its

proximal region, each defined as a set of pixels with a cer-

tain maximum pixel distance from the bone (Fig. 2b). The

optimal distance obviously relies on the apparent size of

the person (which varies with its distance from the cam-

era) and needs to be determined for each person sepa-

rately. We try to estimate it using an algorithm that also

depends on the pose; it is described in detail in Sec. 3.2.

The capsular shape of the proximal regions is most ap-

propriate for the limbs, i.e., arms, forearms, thighs, and

shins. Concerning the front and back of the torso, we first

merge the central quadrilateral (i.e., between the shoulders

and hips) with the regions around its sides, which we also

define as having a capsule-like shape. Then, we analyze

the mutual position of its corners to discriminate between

the frontal and dorsal view. If the orientation of the key-

points implies the frontal view of the person, we subtract

the quadrilateral from the back, and vice versa (see the

rightmost column of Fig. 2b).

Nonetheless, the basic COCO skeleton does not ade-

quately support precise localization of the hands (fingers)

and feet (toes). Various strategies can be employed to

manage this. With the whole-body skeleton, the proxi-

mal regions for these body parts can span the extra key-

points. As a fallback when using the basic skeleton, we

propose circular proximal regions around the closest key-

point (wrist for hands, ankle for feet) twice as wide as the

capsular ones. Both these options are discussed in the ex-

periments (Sec. 5). Otherwise, a conservative approach is

to merge body parts with the nearest bone or leave them

unconstrained, but this does not fully leverage the capabil-

ities of our method. In addition, we do not outline a ded-

icated proximal region for the head, but we let all pixels

map to it. We consider the head to be easily recognizable,

and our primary goal is to resolve duplications between

paired limbs.

The proximal regions induce semantic labeling of im-

age pixels by template partitions. Every pixel is labeled

according to the proximal regions to which it belongs. If

multiple proximal regions overlap, the pixels within the

intersection are labeled with all corresponding labels. If

a pixel falls outside all proximal regions, it gets all possi-

ble labels (thus, it keeps the original prediction). When a

body part is missing (that is, either of its keypoints is not

provided by the HPE model), we allow mapping to it from

any foreground pixel. The purpose of this rule is to pre-

vent inaccurate refinements where, for example, a forearm

is partially visible, but one of its ends lies outside the im-

age. As described earlier, we always apply this rule to the

head as well.

As a result, each pixel receives information about

its target body part(s) implied by the pose-induced con-

straints and the embedding provided by the original CSE.

We now modify the original procedure (Eq. (1)) to con-

sider the constraints as well. Instead of yielding the vertex

with the highest similarity of all mesh vertices, we limit

the output space to one of those vertices that belong to

the body partitions defined by the constraints. The chosen

vertex (its embedding) should still have the highest simi-

larity to the pixel embedding, but only vertices from the

limited subset of the whole mesh should be considered.

Formally, let p ∈ P be the partition label (index),

Mp ⊂ M the vertices of the partition p, L : I → P(P ) \
{∅} a function mapping a pixel to a set of allowed parti-

tions. Equation (1) now becomes:

i∗x = arg max
i∈ML(x)

⟨Ei,Φx(I)⟩ , (2)

where

ML(x) =
⋃

p∈L(x)

Mp. (3)

Alternatively, let B(x, p) be the binary flag (0 or 1) in-

dicating whether partition p is allowed in pixel x, V (x, p)
the vertex from partition p with the highest similarity to

pixel x, S(x, p) the similarity of vertex V (x, p) to pixel

x and S′(x, p) our adjusted similarity. We compute these

matrices as follows:

B(x, p) = Jp ∈ L(x)K, (4)

V (x, p) = arg max
i∈Mp

⟨Ei,Φx(I)⟩ , (5)

S(x, p) = max
i∈Mp

⟨Ei,Φx(I)⟩ , (6)

S′ = S ⊙B. (7)

Equation (2) is then equivalent to:

i∗x = V (x, argmax
p∈P

S′(x, p)). (8)

We believe that this approach is more practical for imple-

mentation as it avoids computing unions of mesh parti-

tions (Eq. (3)) and storing them in memory.

3.2. Determining proximal regions

As an intermediate step, PC-CSE expands the inferred hu-

man skeleton so that its shape approximately matches the

silhouette (segmentation) of the person. The exact expan-

sion range is a trade-off. Small proximal regions might not

adjust the UV map at full width. Large proximal regions

can cause significant overlaps with each other, making

pose-induced constraints less effective. In extreme cases,

the expansion range can be chosen as zero, resulting in no

correction made, or it can be chosen so high that every

proximal region covers the whole body. We note that in

both cases, the new prediction would be the same as, and

thus not worse than, the original prediction.

The expansion range should roughly correspond to the

width (thickness) of the person’s limbs, expressed in pixel

units. We further refer to it as the bone width (∆) and as-

sume that it is proportional to other measures of the body,

in particular the person’s height. Typically, information

about body measures is accessible only in controlled envi-

ronments where the camera model and relative location of
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the object and camera are known. However, this require-

ment would significantly limit our method and render it

useless for data “in the wild”.

Thus, we introduce a technique for estimating these

measures based only on information about the person’s

pose. The prerequisite is knowledge of the actual (3D)

lengths of the principal bones determined by the pose es-

timation model. We obtain these distances from SMPL

[17]. During inference, we measure the distances in the

pixel space and normalize (divide) them by their distance

in the 3D space. Each measurement serves as an estimate

of one SMPL model unit length in pixels, assuming that

the bone is parallel to the projection plane.

We then apply simple trigonometry-based reasoning

to choose the most credible estimate. Given a straight

unit-length stick parallel to the ground plane, its appar-

ent length is maximal when it is parallel to the projection

plane, too, and decreases when rotating the stick around

the vertical axis (down to zero when both ends visually

merge to the same point). In our domain, sticks are the

principal bones of different lengths. Normalizing the dis-

tances by the respective lengths makes the estimates pro-

portional only to the cosine of the angle with the projective

plane. Since cosine is a decreasing function of angle (for

α ∈ [0◦, 90◦]), the bone having the smallest angle (ide-

ally zero) with the projection plane will correspond to the

highest value. Therefore, the best estimate is the maxi-

mum.

Arguably, this estimate cannot be considered perfect

since we have no guarantee that the assumption of paral-

lelism actually holds. However, we are interested in de-

termining the size of proximal regions, which do not need

to match the shape of the person exactly. In fact, a minor

overestimation of the size is not a problem because we do

not deal with pixels in the background anyway, and it can

also help us handle people with different body mass.

Therefore, we determine the best multiplication factor

by tuning it using the validation data. The results are pre-

sented in the ablation study (Sec. 5.3).

4. Data

In our experiments, we rely on the DensePose COCO

dataset [8]. This dataset contains about 50 thousand anno-

tated people on a subset of images from the COCO dataset

[16]. In addition to the bounding box coordinates, in-

stance segmentation mask, and keypoints (skeleton), the

ground-truth information about every instance includes

the body segmentation mask and a set of dense correspon-

dences (over 5 million annotated points in total).

The dataset is divided into train and validation splits

with a ratio of about 95/5.

4.1. Assessing the quality of annotations

During our research, we repeatedly encountered incor-

rectly annotated instances in DensePose COCO. There-

fore, as part of our efforts, we conducted research on their

Figure 3. CSE [20] (left) vs. PC-CSE conditioned by estimated

pose (right). Pose constraints ensure smoother UV maps and

prevent limb duplication within a single image. A frontal view of

the SMPL model [17] is shown to help assess the UV estimation.
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overall quality. We define miscellaneous metrics that ex-

press the consistency of an instance’s ground truth data.

(For more details, see supplementary.) Then, we manu-

ally inspect the lowest-ranking instances and identify the

most common problems:

1. Annotators of dense correspondences confuse the left

and right parts of the body. In most cases, only one pair

of body parts is confused, while the rest are annotated

correctly.

2. Dense correspondences of thighs and shins are even

more confused. Some instances are annotated as hav-

ing only the left or only the right leg, or annotations of

one leg have mixed laterality.

3. Keypoint annotators more often confuse left and right

per limb or the orientation of the entire body rather than

a single pair of keypoints.

4. When multiple people at least partially overlap with a

bounding box, the annotated instance is different from

the one that matches the dimensions of the bounding

box.

5. Body segmentation masks are incomplete; not all body

parts are segmented.

6. Bounding boxes lack the “is crowd” label. These

are supposed to annotate many people at once (i.e., a

crowd) and should not be associated with dense or key-

point annotations.

We do not make any corrections to the ground truth,

but we remove dense annotations that we consider wrong.

We assess the precision per body part, not individually per

point. If a body part shows any of the above problems,

we remove all associated points regardless of laterality.

As a result, we remove ca. 1.5% points from the dataset,

concerning ca. 7.5% instances. (For the validation subset,

the numbers are somewhat higher: 2.4% points on 11.2%

instances.)

5. Experiments

In the following, we evaluate PC-CSE by simulating its

use in practice. We take the R 101 FPN DL soft s1x

CSE model from the detectron2 toolbox [26] and consider

it to be the baseline method. We run inference on im-

ages from the validation subset of the DensePose COCO

dataset (Sec. 4) and obtain the baseline bounding boxes,

instance segmentation, and pixel embeddings.

Then, we use the bounding boxes as input for top-down

HPE models, which we obtain from the mmpose toolbox

[5]. We choose several HPE models that differ in per-

formance and provide different representations of human

pose (see Sec. 3.1). Finally, we combine all outputs and

apply our PC-CSE method and compare the accuracy of

the newly produced UV maps to that of the baseline ones.

5.1. Evaluation metrics

We follow the modified COCO challenge protocol [16]

that evaluates the match between predictions and ground-

truth instances using Geodesic Point Similarity (GPS)

HPE method HPE UV map UV map†

None — 66.2 68.8

ViTPose-b [27] 75.8 66.8 69.3

ViTPose-h [27] 79.1 67.0 69.6

ViTPose-h wb 78.6 67.3 69.8

RTMPose-l [18] 75.8 67.0 69.5

RTMPose-l wb [18] 69.5 66.7 69.3

Table 1. AP results on the COCO dataset. Constraining UV

map estimation with 2D pose improves performance. More ac-

curate poses lead to better UV maps. Using the whole-body (wb)

skeleton further enhances performance due to better hand and

foot constraints. Note that 2D Human Pose Estimation (HPE) is

evaluated on a different COCO subset than UV map evaluation.

Results marked with (†) are evaluated on data with ignored in-

correct annotations, as detailed in Sec. 4.1.

8 · 10−2 0.4 0.6 0.8 1 1.2
68.75

69

69.25

69.5

69.75

Bone width ∆

C
O

C
O

v
al

A
P

No constraints

PC-CSE

Figure 4. Ablation on bone width ∆ defined in Sec. 3.2.

RTMPose-l wb [18] is used for pose constraints. Too thin bones

restrict UV Map too much and hinder performance on border

pixels. Excessively thick bone estimates do not restrict UV Map

sufficiently and reduce the performance gain. Note that perfor-

mance with proximal regions with large regions ∆ converges to

the baseline method. In the extreme case when all bones are as

big as the whole picture, no constraints are applied. The best

value is 0.08.

and computes the algorithm’s Average Precision (AP) by

thresholding the GPS score [8]. We report the Average

Precision for both the original dataset and the dataset with-

out incorrect annotations (see Sec. 4.1).

5.2. Results

Table 1 compares pose-constrained CSE (PC-CSE) with

the original CSE [20]. The results are reported in the

COCO val dataset for comparability with previous work.

Furthermore, we evaluated performance on the COCO val

data set while ignoring incorrect annotations, as described

in Sec. 4.1.

The first row of Tab. 1 shows the performance of CSE

[20] without pose constraints. We reproduced these re-
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sults and observed a 2.6 AP improvement when ignoring

incorrect annotations. This gain remains consistent across

all experiments.

Subsequent rows show results with pose constraints

from ViTPose [27] and RTMPose [18], using different

model variants. Regardless of the HPE model, applying

pose-conditioned constraints consistently improves per-

formance. As expected, the performance gain depends on

the quality of the HPE model. ViTPose-h (huge) outper-

forms ViTPose-b (base) in HPE and achieves slightly bet-

ter UV map accuracy. However, the difference is minor.

Note that HPE is evaluated on a larger subset of COCO

images than UV maps.

To assess the impact of the whole-body (wb) skele-

ton, we trained ViTPose-h wb on the COCO-WholeBody

dataset [12]. It achieves 67.3 AP on COCO-WholeBody

and 78.6 AP on COCO, compared to 79.1 AP for

ViTPose-h. While the whole-body poses are less accu-

rate, the inclusion of fingers and toes compensates for this

in specific body regions.

Results for RTMPose [18] follow a similar trend. Us-

ing estimated poses improves the performance of the UV

map between models, although exact gains differ. For

instance, RTMPose-l matches ViTPose-b in HPE perfor-

mance, but achieves slightly higher UV map accuracy.

However, this difference is negligible.

RTMPose-l wb shows a much weaker HPE perfor-

mance but comparable UV map accuracy. Although the

inclusion of fingers and toes benefits the hand and foot re-

gions, the reduced accuracy of other keypoints diminishes

overall gains, making the trade-off less favorable.

While conditioning UV map predictions on pose sig-

nificantly improves consistency, this translates to only a

modest 1 AP point increase in overall performance due

to several factors. The most significant issue is segmen-

tation errors — pixels outside the segmentation mask are

not assigned UV map estimates, leading to penalties. An

example is shown in image Fig. 6. Detection errors also

impact performance; if a person is not detected, no UV

estimation can be performed.

Achieving 100 AP is challenging due to the limitations

of ground truth annotations, which are human estimates

often obscured by clothing. In images with loose cloth-

ing, these annotations can be highly imprecise, making

it difficult to determine whether discrepancies stem from

ground truth errors or model predictions. As a result, im-

ages with GPS around 80 already represent strong esti-

mates, as shown in Fig. 6.

Examples of significant improvements over the base-

line are shown in Fig. 1 and Fig. 3. These include artifact

removal, better continuity between limbs, and elimination

of redundant body part assignments in baseline UV maps.

5.3. Ablation study

The efficiency of PC-CSE depends on a proper outline of

the proximal regions, as described in Sec. 3.2. To en-

sure overall robustness, we determine the best value of
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Figure 5. Image-wise performance difference of baseline

CSE [20] and PC-CSE with poses from ViTPose-h wb. Perfor-

mance is measured by GPS, frequency is in log scale. Positive

means better performance of PC-CSE. PC-CSE causes only a

few performance drops while improving more other cases, some

of them dramatically, and keeping the rest about the same.

the bone width hyperparameter ∆ by validation. We use

the RTMPose-l wb model [18] and repeat the same ex-

periment while varying the value of the hyperparameter.

Note that we use the clean validation dataset that does not

contain the incorrect annotations identified (Sec. 4.1).

The results, shown in Fig. 4, confirm our expectations.

With an increasing value of the hyperparameter, the preci-

sion increases and reaches the maximum when it is equal

to 0.08. Increasing it further, we observe a gradual de-

crease in precision down to the baseline. This supports

our earlier statement (Sec. 3.2) about the best value being

a compromise and the consequences arising from a subop-

timal choice. Extremely small and large values do not give

our method the opportunity to have the desired impact.

Note that our experiments generally assume that the

method for estimating a person’s measures (Sec. 3.2) from

their pose is accurate. We do not conduct any quantitative

experiments on this matter, but we attempt to verify it us-

ing qualitative analysis (see supplementary material).

In addition, we provide a detailed analysis of the vari-

ation in performance metrics for each evaluated sample.

An example histogram, generated for ViTPose-h wb, is

shown in Fig. 5. We notice that the model maintains base-

line precision on the vast majority of data samples and

observe only a few performance drops, which are mainly

caused by failure in the underlying pose inference. The

worst are depicted in Fig. 6. However, these failures

are largely compensated for by more common, sometimes

drastic, improvements (shown in Fig. 3).

6. Conclusions

We presented Pose-Constrained CSE (PC-CSE), a method

that conditions UV map estimation using human pose.

PC-CSE leverages the robustness of 2D human pose es-
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78.6 84.4

Figure 6. Images with GPS (geodesic point similarity) around

0.8. Evaluation points are shown in white. Selected wrongly

estimated points (similarity < 0.5), slightly wrong (similarity

0.5 – 0.9), and correct (similarity > 0.9). Typical errors are iso-

lated wrong points among correct ones (left, hip), segmentation

errors (left, red circle), and border points (right, legs). Loose

clothing complicates annotation and estimation (right).

timation to provide global constraints, improving the con-

sistency of UV map predictions produced by CSE [20].

The original CSE [20] assigns pixels to vertices inde-

pendently, which can lead to errors, such as assigning the

same body part to multiple locations in the image and dis-

continuities in the same body part, as shown in Fig. 3.

PC-CSE introduces global supervision through pose con-

straints, ensuring that while pixel assignments remain in-

dependent, the global pose structure improves the consis-

tency of the UV map. This results in more coherent UV

maps, free from artifacts and duplicated limbs.

Key findings are:

1. Conditioning UV maps by pose, even with rudimentary

constraints, provides consistent improvements, though

overall performance gains remain modest.

2. The choice of pose estimation model architecture has a

negligible impact on the results.

3. Whole-body skeletons enable more precise constraints

for hands and feet, yielding small improvements over

body-only skeletons without additional computational

costs.

4. COCO DensePose annotations are not entirely reliable;

at least 1.5% of the points are inconsistent with pose

keypoints or are otherwise inaccurate. The accuracy

of points under loose clothing remains uncertain as we

could neither confirm nor disprove their precision.

Limitations. The primary limitation of PC-CSE lies

in its reliance on precise pose estimation. The method as-

sumes that 2D human pose estimation (HPE) models are

robust to challenges such as extreme poses, occlusions,

Figure 7. Three images with the largest performance decrease –

CSE (left), pose estimate (middle), PC-CSE (right). Pose condi-

tioning reduces performance when the pose estimation fails. De-

spite the drop, the third most negatively affected image (bottom)

shows only a 0.5% decrease, highlighting that pose condition-

ing negatively impacts only a few images while improving many

others.

and image deformations, which can condition UV map

estimation effectively. However, if the estimated pose is

inaccurate, the constrained UV map will also be incorrect.

The most common errors occur in multi-body scenarios.

Another limitation arises when two body parts are in

close proximity. For instance, when a person is sitting

with crossed legs, pose constraints for both legs might

overlap, preventing PC-CSE from correcting the original

CSE estimates. Although PC-CSE does not resolve such

issues, it does not degrade overall performance.

Future work. The constraints implemented by us are

very coarse, as they are satisfied by letting the pixel map

somewhere on the given body part. The corrections could

become even more precise by taking the distance from

its endpoints (keypoints) or the orientation of the body

(frontal/dorsal) into account. In addition, there is sub-

stantial redundancy in the HPE and CSE representations,

while the HPE algorithms are more advanced. The CSE

method could be redesigned by building it on top of HPE

and changing its objective to provide UV map estimation

given a pose estimate (and not just the image). We also

plan to use the method for UV maps on animals using

SMAL [30].
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Human Pose-Constrained UV Map Estimation

Supplementary Material

A. Annotation data quality assessment

In Sec. 4.1, we conduct research on the quality of anno-
tations from the DensePose COCO dataset [8, 16]. In or-
der to efficiently identify the majority of erroneous an-
notations without having to manually examine the entire
dataset, we take the following approach.

We establish several metrics to quantify the level of
(in)consistency or “(im)plausibility” of each annotated ex-
ample:

• Proportion of the body segmentation covered by the in-
stance mask. By definition, the body mask should be
completely covered by the instance mask. This allows
revealing problems 4 and 6, as enumerated in Sec. 4.1.

• Proportion of the area of the instance or body mask and
the bounding box. Ideally, the mask should cover a sig-
nificant portion of the bounding box.
This allows revealing problems 4, 5, and 6.

• Proportion of point-wise annotations within the instance
or body mask. Human segmentation should ideally con-
tain all (visible) keypoint annotations and dense corre-
spondences, which concern the body, too. Likewise, this
allows revealing problems 4, 5, and 6.

• Ratio of median points-to-bone distances.
We group ground-truth dense correspondences by body
part and compute their median distance to the respec-
tive bone defined by ground-truth keypoint annotations
(bone selection is done analogously to our mesh parti-
tioning procedure, which exploits its resemblance to the
COCO skeleton; see Sec. 3.1). We add up median dis-
tances for the same body part of either laterality. Then,
we repeat the same procedure with the laterality of the
keypoints flipped, and obtain another score. The ulti-
mate value of the metric is the ratio of the two sums.
When this value is high (≫ 1), it indicates a possi-
bly confused laterality of keypoints or dense correspon-
dences.
This allows revealing problems 1 and 3.

• Inference error. We run inference on all images from the
dataset and compute the mean geodesic distance (error)
per body part. High inference error usually indicates de-
ficiencies in the model’s performance, but, especially on
training data, it might also help reveal annotation errors.
We took advantage of repeated retraining and evaluation
of the inference model (“human in the loop”) as it could
initially have been overfitted to annotation errors.
This allows revealing problems 1 and 2.

We sort all annotations from the least consistent and
manually examine them in this order until annotations
with no apparent problems start to prevail. This process
is carried out individually for each defined metric.
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Figure 8. Ablation on height estimation. We infer pose from
a dance video from [11] at 10 frames per second and estimate
the dancing person’s height in pixels (red) using the algorithm in
Sec. 3.2. The variable exhibits some noise due to pose changes,
but remains within the interval of a few tens of pixels at all times.
The bigger noise at the end of the video is caused by more ex-
treme poses.

B. Ablation study on height estimation
Our PC-CSE relies on estimating the proper outline of
each constraint’s region. In Sec. 3.2, we describe the algo-
rithm we use to approximate the person’s body measure-
ments in pixel units of the image using only its inferred
pose. The precision of such an algorithm can usually be
determined by comparing the actual values and their al-
gorithmic estimate on many images. We do not conduct
such an experiment because of the lack of ground-truth
data, but we verify its performance by taking a different
approach.

The goal is to demonstrate that the estimate is not dra-
matically influenced by pose variations. However, images
of people “in the wild” usually also differ in the distance
of the person from the camera, as well as the underlying
camera parameters. For a sensible comparison, these two
factors need to remain constant. We notice that this re-
quirement is met, for example, by short videos of people
dancing in front of the camera uploaded to social networks
such as TikTok [25].

Therefore, we take advantage of the TikTokDataset
[11] and select several videos where a person performs
a dance in front of a static camera without moving around
the place. We run pose inference per video frame and
record the height estimate. An example chart recording
the progress of one video is shown in Fig. 8. The vari-
able does exhibit some noise, approximately on the scale
of tens of pixels, which can be attributed to pose varia-
tions and noise in the pose estimation, but it remains cen-
tered on its mean value throughout. We note that the ac-
tual noise influencing the estimate of bone width (∆) is
much smaller since the bone width is a small fraction of
the person’s height.
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Abstract

Incremental Learning scenarios do not always represent
real-world inference use-cases, which tend to have less
strict task boundaries, and exhibit repetition of common
classes and concepts in their continual data stream. To
better represent these use-cases, new scenarios with par-
tial repetition and mixing of tasks are proposed, where the
repetition patterns are innate to the scenario and unknown
to the strategy. We investigate how exemplar-free incre-
mental learning strategies are affected by data repetition,
and we adapt a series of state-of-the-art approaches to
analyse and fairly compare them under both settings. Fur-
ther, we also propose a novel method (Horde), able to dy-
namically adjust an ensemble of self-reliant feature ex-
tractors, and align them by exploiting class repetition.
Our proposed exemplar-free method achieves competi-
tive results in the classic scenario without repetition, and
state-of-the-art performance in the one with repetition.

1. Introduction
As autonomous agents and models in production systems
are exposed to continuous streams of information, they are
required to adapt to dynamic data distributions with poten-
tially multiple tasks and integrate new information over
time [3, 28, 43]. The practice of retraining the complete
system whenever new data is available becomes unfeasi-
ble as the storage, computation and privacy constraints
for data streams increase [31, 35, 39]. To address these
constraints, incremental learning (IL) or continual learn-
ing has emerged as a promising approach [4].

IL aims to learn a model sequentially through a se-
quence of tasks introducing disjoint sets of information at
each training step [8, 27, 42]. Generally, these scenarios
enforce a strict no-repetition constraint [7] allowing ac-
cess to the data distribution only once in the task sequence.
Unlike humans, who can learn nearly inference-free be-
tween tasks, neural networks suffer from a phenomenon
called catastrophic forgetting [10, 12]. When models are
optimized sequentially on novel tasks, a swift forgetting
of previously learned tasks is observed. To mitigate this

forgetting, a delicate balance between preserving learned
task knowledge (stability) and the ability to adapt to new
information (plasticity) has to be reached, which is known
as the stability-plasticity dilemma [29]. A popular ap-
proach to address this is to cache a representative subset of
previously encountered data points in a buffer and replay
them during the following training sessions [38, 41, 42].
Although such rehearsal addresses catastrophic forgetting
effectively, data privacy concerns have been raised [14],
and the scalability of an exemplar buffer in long-tailed in-
cremental sequences is questionable [42] due to the large
computational cost of complete retraining and significant
storage requirements.

Nonetheless, the strict enforcement of no-class repeti-
tion becomes unrealistic for many real-world applications,
as continuous streams are bound to repeat certain informa-
tion [7] or be affected by semantic or covariate shifts [30].
For example in industrial defect detection, certain com-
mon defects and defect-free samples will repeat through-
out production. The occurrence of repetition is further
amplified in environments where an agent has the free-
dom to reexperience elements which are contained within
the overall environment design. Thus the effects of catas-
trophic forgetting are likely exaggerated as an uncontrol-
lable form of rehearsal occurs naturally. Previous incre-
mental learning research has largely explored catastrophic
forgetting under the assumption that new information has
a single opportunity to be learned, since each class is only
available within a single task throughout the sequence.
The introduction of repetition into these scenarios enables
the selection of more broad incremental training tasks and
highlights the different dynamics within the plasticity-
stability dilemma of learning new tasks while maintaining
current knowledge [7]. The focus on catastrophic forget-
ting without repetition may limit the development of more
realistic incremental learning agents, which involve differ-
ent complex objectives like forward transfer [24] and effi-
ciency for computational limitations in edge devices [9].

As such, we want to loosen the no-repetition constraint
and explore the effects of natural repetition. To explore
these new settings and effects, our contributions are:
1. a new variation of the class-incremental learning
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CIFAR 50/10 scenario introducing class repetition,
2. benchmarking a broad selection of state-of-the-art

exemplar-free class-incremental learning methods and
investigate the effects of innate data repetition and their
resiliency to repetition frequency bias,

3. a novel incremental learning method (Horde) that
builds an ensemble of independent feature extractors
for stability and utilizes pseudo-feature projection for
plasticity (see Fig. 1).

2. Related Work

Class-incremental learning (CIL) addresses the challenge
of training a model sequentially on a series of tasks, with-
out access to previous or future data [36]. When training
without any constraints, models fail to retain knowledge
from previous tasks – a problem known as catastrophic
forgetting [10, 12]. Usually, each incremental task con-
tains a disjoint set of new classes, which increases the
difficulty of discriminating between those which have not
been learned together under the same task [8]. A key chal-
lenge in incremental learning lies in keeping the balance
of the stability-plasticity dilemma [29], critical for mit-
igating catastrophic forgetting while ensuring the adapt-
ability of the model to new tasks.

Incremental learning approaches include: weight reg-
ularization [2, 20], which preserves important weights
by estimating their importance; knowledge distilla-
tion [18, 22], which focuses on protecting task represen-
tations rather than weights; rehearsal [38], which replay
stored exemplars from previous tasks; mask-based ap-
proaches [26], which use task-specific masks to isolate pa-
rameters that can be updated; and dynamic network struc-
tures [11, 32], which expand the model architecture by
adding new or contracting existing modules for each task.
In this work, we concentrate on weight-regularization,
knowledge distillation and dynamic network structure-
based methods. These are the approaches that work on
task-agnostic scenarios (do not require a task-ID during
inference) and promote privacy preservation (do not store
samples).

Incremental learning with repetition. In many prac-
tical applications (automated failure inspection, medical
imaging, robotics), pattern repetition naturally arises, yet
traditional CIL approaches assume that each class is en-
countered only once, imposing a strict no-repetition con-
straint [7]. This constraint focuses on the prevention of
catastrophic forgetting but also diverges from real-world
scenarios where classes may reappear or shift over time.
To address this, Hemati et. al [15, 16] propose an ex-
tension to the class-incremental learning scenario which
models the repetition of individual classes outside of a
single task. Unlike joint incremental or rehearsal-based
learning, this repetition is innate to the learning scenario
and cannot be adjusted. This emphasizes an experience-
based scenario [41], which favours shorter training tasks
that can sometimes only cover a part of the class distri-

Figure 1. Overview of our proposed method (Horde). Each data
sample is processed by an ensemble of independent feature ex-
tractors. The features from all extractors are concatenated before
being passed into a unified head that can accommodate the dy-
namic input size through pseudo-feature projection.

bution. Moreover, covering scenarios that lie between the
classic offline incremental and the online ones.

Class-incremental learning with repetition has received
increased interest in the research community, being a cen-
tral element in the challenge tracks of the last two CLVI-
SION challenge tracks at CVPR 2023 and 2024 [1, 16]. In
the 2023 edition, we competed with a base variant of our
proposed method, although without elements for control-
ling ensemble growth (see Sec. 3.1), self-supervision (see
Sec. D) or applicability to variable network architectures.

Class prototypes and pseudo-features. To en-
force stability and alleviate class-recency biases in
the classifier [27], Exemplar-Free Class Incremental
Learning (EFCIL) methods [33, 40, 46–48] utilize class
prototypes to simulate unavailable classes. These proto-
types capture statistical properties of embedding represen-
tations of each class, which are usually modeled as a mul-
tivariate Gaussian distribution [40, 46, 47]. Specifically,
the statistics typically include the mean and covariance of
feature representations for each class, allowing to gener-
ate pseudo-features when class data is not available. To
extract representations, the neural network is divided into
two modules. A feature extractor (FE) that projects the in-
put samples into their corresponding embedding represen-
tation; and a classifier head that uses these embeddings to
solve the classification task. Therefore, prototype-based
methods can generate embeddings even when no samples
from past classes are available during subsequent tasks by
sampling the stored distributions of each class. The sam-
pled embedding representations are rehearsed alongside
the current task data, thus promoting stability and miti-
gating class-recency bias. However, in order to maintain
valid approximations of class distributions, the feature ex-
tractor needs to be either frozen or heavily regularized to
prevent changes or drifts in the extracted features. Unlike
rehearsal-based approaches, the use of prototypes does not
violate data privacy due to the non-linearly projected rep-
resentation in the embedding space [44, 47].

Feature translation. Instead of sampling the distribution
approximated by class prototypes, FeTrIL [33] proposes
to translate the features of available data classes to un-
available ones directly. Given a feature extractor f(x; θ)
being trained on current data {(xi, yi)}, its output em-
bedding F is efficiently translated from one of the current
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classes to the desired previously learned class c ∈ Y as

F̂c = f(xi; θ) + µc − µyi , (1)

where µc and µyi
represent the means of the old and cur-

rent classes, respectively. The feature translation modifies
the classifier, however, the feature extractor is requires to
be frozen after the initial training so that the class means
can be reliably extracted. This limits the continual learn-
ing process as the initial task constrains the diversity and
robustness of the features that can be learned for new
classes [4, 33]. In our proposed approach, we relax this
restriction by allowing an ensemble of smaller feature ex-
tractors to be learned. This allows for unknown class pro-
totypes to be estimated through pseudo-feature projection
until the repetition of classes allows for an accurate ex-
traction of class prototypes.

3. Method
In incremental learning scenarios with repetition, the reap-
pearance of classes introduces uncertainty in task se-
quences, requiring strategies that handle dynamic class
distributions. Our approach aims to: (a) capture infor-
mation from the current task, (b) integrate it with knowl-
edge from previously seen tasks, and (c) ensure the abil-
ity to discriminate between all encountered classes so
far. To achieve this, we leverage zero-forgetting feature
extractors (FEs), which are aggregated in an ensemble
to overcome the limitation of a completely fixed feature
space. Through this aggregation, we form a flexible fea-
ture representation space that can adapt (expand or con-
tract) based on the incremental learning sequence (see
Fig. 1 for an overview of the proposed method structure).

To effectively utilize this dynamic embedding space,
we address the challenge of missing classes by con-
structing prototypes for all encountered classes. Class
prototypes are used to train a unifying classification
layer through an adjusted feature translation mechanism,
termed pseudo-feature projection, ensuring continuous
adaptation and robust performance across all classes.
Concretely, the learning approach is divided into two
steps: (1st) based on the difficulty of the current task and
depending on how well new classes can fit into the en-
semble embedding space, the ensemble is expanded with
a new feature extractor (described in Sec. 3.1); (2nd) once
the embedding space has been fixed for the current task,
class prototypes are extracted and the unified classification
layer is trained through the pseudo-feature projection (de-
scribed in Sec. 3.2). These steps are performed for every
incremental task and are summarized in Figure 2.

3.1. Feature Extractor Ensemble
The proposed aggregation framework consists of multi-
ple individual feature extractors (FEs), each trained on a
specific task and then frozen to preserve the learned rep-
resentations. The motivation for this zero-forgetting strat-
egy is to enforce stability, avoiding any catastrophic for-
getting on the ensemble while providing some plasticity

(a) Step 1: The ensemble of feature extractors is adjusted based on
the current task through either the addition or update of a self-reliant
feature extractor. This step is only performed when estimated as nec-
essary via a heuristic criteria.

(b) Step 2: Class prototypes are extracted or updated from the current
task data. Incomplete class prototypes (those estimated before Step 1
extends or modifies a feature extractor) are updated and data for un-
available classes is simulated by pseudo-feature projection. An un-
biased classification head is finetuned from the current training data
and the projected features of unavailable classes.

Figure 2. Overview of the steps our proposed method (Horde)
performs for each incremental task.

through the extension of the ensemble. Unlike FeTrIL,
which freezes a single feature extractor after the initial
training, the extension of the feature space through the
ensemble relieves the dependence of an expressive initial
feature extractor. The goal of each feature extractor is to
build a diverse and expressive feature space that empha-
sizes high-quality representations rather than optimizing
the performance of the individual incremental task. Fur-
ther, we adopt the self-learning loss from PASS [47]. This
self-learning loss enhances the learned feature representa-
tion by simultaneously classifying image orientation and
categories (each image class now has 4 augmented labels
depending on the image orientation). To further improve
regularization on the feature space topology, we incor-
porate a metric learning head with contrastive loss [34]
and hard-negative mining [37]. This promotes spherical-
shaped clusters in the embedding space, which improves
class discrimination between known and unknown distri-
butions [25]. Additionally, the sphere-shaped structure
aligns well with the properties of a multivariate Gaussian
distribution, which relates to the pseudo-feature projection
we propose. An ablation study of the effects of individ-
ual components is provided in the supplementary material
(see Sec. D).

Ensemble Growth. To control the growth of the ensem-
ble, we set a predefined budget B for the maximum num-
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ber of FEs. For each incremental task, a decision is made
whether the concatenated embedding space should be ad-
justed based on the following criteria:

• constant feature representation: when the current en-
semble embedding representation is sufficient to handle
the incremental task, no new FE is trained. New classes
are learned using the existing ensemble representations
without requiring additional feature extraction capacity.

• dynamic feature adaption: when the current ensemble
of FEs cannot adequately represent the new task due to
a significant change in the data distribution, task com-
plexity or overlap with previous classes, a new FE is
added.

To capture these criteria and guide the growth of the en-
semble, we propose two heuristics to guide the modifica-
tion of the ensemble (see Step 1 in Fig. 2a):
• Class Set Maximisation (Hordem): this heuristic aims

to maximize the diversity of classes represented across
the ensemble. Specifically, it ensures that each FE con-
tributes to representing as much of a distinct set of
classes as possible

max
⋃
i∈B

∣∣c ∈ F i
∣∣ , (2)

thereby increasing the overall coverage of the class
space across all feature extractors. This maximization is
tested at the start of each incremental task. Thus, when
a larger class set is possible with the current incremen-
tal task data, a new FE is trained. The new FE either is
added or replaces one in the ensemble.

• Task Error Rate (Hordec): At the start of the incre-
mental task, the error rate e on the current incremental
data is computed (before training). It is obtained from
the confusion matrix (CM) by calculating the ratio of
wrong predictions over all other predictions:

e =
1

|Y|
∑
c∈Y

( ∑
j ̸=c CMc,j∑
i CMc,i

)
. (3)

If e is too high, the incremental data cannot be classified
with the current ensemble effectively. Therefore, we in-
troduce a threshold or budget of the ensemble B which
signals the need to train a new feature extractor based on
e. After training the unified head (Step 2), an improve-
ment score is calculated as the difference between the
error rate at Step 1 (before any training is performed)
and after Step 2. If the budget B has been exceeded the
FE with the lowest improvement score is replaced.

3.2. Unified Classification Layer
To unify the feature representations from the ensemble
and enable task-agnostic classification, we utilize a fully-
connected layer. This layer has dynamic input and out-
put sizes depending on the growth of the ensemble and

the number of incrementally learned classes. To mitigate
task-recency bias [8], we train this unified head using both
data from the current task and projected class prototype
features through our proposed pseudo-feature projection.
Pseudo-feature projection. Pseudo-feature projection,
inspired by FeTrIL [33], extends feature translation by in-
corporating both the mean and standard deviation of class
prototypes. This enhances the sampling of dimensions, re-
duces the chance of overlapping classes in the embedding
space and leads to more accurate feature replay. With this
projection, a data point from one class may be projected
to a pseudo-feature representation of any other previously
learned class. Our proposed projection extends the one
from FeTrIL on Eq. (1) as

F̂c = µc +
f(xi; θ)− µyi

σyi

· σc , (4)

where F̂c represents the pseudo-features of the latent rep-
resentation of a data point (xi,yi) which is projected from
the original class yi to the desired class c. This trans-
formation leverages the class prototypes; specifically the
mean µyi

and standard deviation σyi
to modify the latent

representation f(xi; θ). Class prototypes are updated dur-
ing Step 2, before training the unified classification layer
and after the ensemble has been adjusted.

We represent a complete class prototype as the con-
catenation of the individual class statistics from each FE
in the ensemble:

µc = (µc,1, . . . ,µc,n),
σc = (σc,1, . . . ,σc,n),

(5)

where n determines the current size of the ensemble.
Throughout the incremental sequence, the ensemble can
be expanded until the feature extractor budget is exhausted
(n≤B). Once this limit has been reached, individual fea-
ture extractors need to be finetuned or replaced and their
corresponding class prototype (µc,i, σc,i) is reset.

Class prototypes of certain classes may be incomplete
for newly added or modified FEs. When class statistics
are unknown for a specific FE, estimates are required for
pseudo-feature projection to calculate µ̂c,f and σ̂c,f . In
the absence of statistical information, we fix the standard
deviation to σ̂c,f = 1. This decision is based on the fact
that the estimation of µ̂c,f already provides sufficient vari-
ance. Therefore, for the estimation of the mean compo-
nent µ̂c,f we propose three heuristics:

1. zeros: clamping all µ̂c,f estimations to 0

µ̂c,f = 0 , (6)

2. random: randomly sample µ̂c,f from a multivariate
normal distribution

µ̂c,f ∼ N (0;Σ) , (7)

3. original features: estimate µ̂c,f with the original rep-
resentation of the transforming sample and use them
without modification

µ̂c,f = f(xi; θ) . (8)
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Est. Method T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Avg. Acc. ↑
zeros 73.3 39.9 32.9 35.2 25.2 25.4 24.9 19.2 18.3 19.1 17.1 30.0

random-1.0 73.3 39.9 32.9 35.2 25.2 25.4 24.8 19.2 18.3 19.0 17.2 30.0
random-3.0 73.3 47.0 37.9 38.0 29.0 31.3 30.0 22.9 21.9 22.5 22.5 34.2
random-5.0 73.3 52.5 42.7 44.4 33.6 34.5 33.8 25.2 25.9 26.3 26.4 38.0
random-10.0 73.3 59.2 50.8 52.7 43.5 43.4 40.2 31.4 31.8 31.8 31.7 44.5
random-15.0 73.3 61.7 53.5 54.2 45.6 46.1 42.0 35.8 36.1 • 34.8 • 34.4 47.0
random-20.0 73.3 62.5 55.5 54.8 • 47.3 47.0 42.9 36.5 35.5 34.8 • 34.4 47.7
random-30.0 73.3 62.9 • 55.9 55.1 • 48.8 • 47.6 43.7 • 36.8 36.0 34.8 • 34.7 • 48.1 •
random-40.0 73.3 62.6 58.0 • 54.8 • 46.9 47.8 • 44.9 • 38.6 • 36.5 • 35.9 • 34.9 • 48.6 •
random-50.0 73.3 64.1 • 57.2 54.8 • 47.6 • 47.9 • 42.0 37.6 • 33.8 34.8 • 34.4 48.0
random-75.0 73.3 62.1 57.9 • 54.5 46.2 45.4 40.7 35.6 34.1 33.7 33.6 47.0

random-100.0 73.3 62.6 56.5 53.9 46.5 45.8 40.7 34.4 34.2 33.8 33.4 46.8

original features 73.3 64.3 • 61.3 • 60.8 • 55.1 • 53.7 • 52.7 • 46.8 • 47.1 • 46.3 • 45.2 • 55.2 •

Table 1. Results for class prototype estimation when the corresponding class prototype is not available during training. The evaluation
is performed on a CIL 50/10 setup with Slim-Resnet-18 only. 1st •, 2nd • and 3rd • best metrics are marked accordingly.

We evaluate the proposed feature estimation heuristics
in an empirical experiment on a class-incremental learn-
ing scenario with no repetition. The results on CIFAR
50/10 trained on a Slim-Resnet-18 are listed in Table 1
(see Sec. 4 for more details). This scenario requires the es-
timation of class prototype components (e.g., mean, vari-
ance) at each incremental task and the estimation is essen-
tial for the classification. The original features estimation
performed best, and this heuristic is the one used in all
subsequent experiments.

In EFCIR scenarios, the repetition of classes within
incremental tasks enhances the performance of pseudo-
feature projection as it aligns individual FE representation
spaces by eliminating the need for estimating class pro-
totype components. During class repetition they can be
directly calculated from the available task.

4. Experimental Setup

Most incremental learning methods expect a different set
of classes with all dataset samples for each class available
when learning its corresponding task. However, when
class repetition is introduced, the complexity of poten-
tial scenarios increases significantly, and where sequence
length and repetition frequency become additional vari-
ables. To address this, we propose an analysis into the ef-
fects of class repetition within a setting that shares many
characteristics of traditional incremental learning but in-
corporates longer sequences with class repetition. Code
for the proposed scenarios and methods is available1.

Overall, the proposed experiments aim to analyze a)
the performance of IL methods in scenarios without repe-
tition (baseline), b) the performance of CIL with small in-
cremental tasks and class repetition, and c) the resilience
of the methods against bias deviations in repetition fre-
quency.

Ideally, we expect the average accuracy of our pro-
posed method to be on par with state-of-the-art methods

1www.github.com/Tsebeb/cvww_cir_horde

on (a) and to outperform them in (b) and (c). To validate
this, method performance will be ranked based on average
accuracy for all scenarios (a – c).

4.1. Compared Methods
We benchmark a total of 14 methods, which include
two rehearsal-based approaches, five incremental learn-
ing methods, five state-of-the-art exemplar-free class-
incremental learning (EFCIL) methods, and two variants
of our proposed approach. The two rehearsal-based meth-
ods are excluded from the ranking and serve as an up-
per baseline (Joint [8]) and a reference point (Weight-
Alignment (WA) [45]; n = 2000).

The five incremental learning methods consist of
two baseline methods (Freezing (FZ) and Finetun-
ing (FT) [27]), and three classic IL methods Elas-
tic Weight Consolidation (EWC) [20], Memory Aware
Synapses (MAS) [2] and Learning without Forget-
ting (LWF) [22]. These three methods were not origi-
nally proposed for CIL, thus, requiring the use of a task-
ID at inference time. However, they are easily and com-
monly adaptable to task-agnostic settings. As such, we
performed a grid search for their optimal hyperparameters
based on the CIL 50/10 setting and used these for the rep-
etition settings.

The five state-of-the-art, rehearsal-free, protoype-
based methods comprise: Prototype Augmentation and
Self-Supervision (PASS) [47], Class-Incremental Learn-
ing with Dual Supervision (IL2A) [46], Self-Sustaining
Representation Expansion (SSRE) [48], Prototype Rem-
iniscence and Augmented Asymmetric Knowledge Ag-
gregation (PRAKA) [40] and Feature Translation for
Exemplar-free Class Incremental Learning (FeTrIL) [33].
These methods were originally reported on the CIL CI-
FAR 50/10 setting. Therefore, since the proposed repeti-
tion scenarios are closely related to this setting, we use the
hyperparameters proposed by the original authors.

Finally, we evaluate our proposed method with both
ensemble growth heuristics (Hordem and Hordec). A de-
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tailed overview of the used hyperparameters is provided
in the supplementary material (see Sec. C).

4.2. Model Architecture
All methods employ the same base feature extractor, a
ResNet-18 [13] model that has been adjusted to the CI-
FAR input dimensions [46, 47]. For our approach, which
utilizes an ensemble of feature extractors, we employ
a slimmed-down variant of ResNet-18 for incremental
tasks. This variant reduces the number of channels/filters
for convolutions while preserving the network’s depth (see
supplementary material Sec. B). With this reduced archi-
tecture, we construct an ensemble consisting of one full
ResNet-18 and nine Slim-ResNet-18 models (making our
budget B=10). This configuration results in a total num-
ber of parameters and computational requirements (see
Table 2) that are roughly equivalent to those of knowl-
edge distillation approaches (or importance weight esti-
mation [2, 20, 23]).

4.3. Scenarios
Experiments are conducted on the CIFAR-100
dataset [21], employing data augmentation in line
with other CIL methods [40, 46]. These augmentations
consist of a 4-pixel zero padding of the input image and a
random cropping to the original 32 × 32 size. Followed
by a random horizontal flip, image brightness jitter and
image normalization.

To evaluate the effects of repetition on CIL methods,
we organize the experiments in three scenarios. First, a
baseline is established by evaluating (a) all methods on an
incremental learning scenario without repetition.

(a) CIL 50/10. The classic task-agnostic class-
incremental scenario consisting of an initial training
session with 50 classes and followed by 10 incremen-
tal tasks, each containing five novel classes.

Second, we evaluate (b) performance on a modified CIL
scenario where classes repeat in the task sequence. Specif-
ically, the scenario is built by replacing the discrete incre-
mental tasks with clear boundaries from CIL 50/10 with
small (2,000 training samples per task) incremental tasks
that can contain class repetition. Each class, old or new,
has the same probability of being in an incremental task.

(b) EFCIR-U 50/100. Similarly to the CIL 50/10 sce-
nario, the initial training also covers 50 classes. An
essential element of repetition is a mixture of new
and already seen samples. Therefore, we only pro-
vide 50% of the available training data samples for
the initial training. Following the initial task, the sce-
nario consists of 99 small, incremental tasks, with a
limit of 2,000 training samples each. Both the initial
50 and incremental 50 classes have a fixed probabil-
ity of 15% of being discovered or repeated in an in-
cremental task so that tasks do not contain too many
classes on average. The number of samples per class
in a task are balanced as in the CIL 50/10 scenario.

Model # Parameters

ResNet-18 11.307.956
Slim ResNet-18 1.109.240

Knowledge Distillation 22.615.912
Ensemble (ours) 21.291.116

Table 2. Number of parameters for different architectures.

In the third scenario, the aim is to assess the IL method’s
(c) resilience against biases in repetition frequency. To
establish this bias during scenario creation we propose to
draw the repetition probability of each class from a Beta
Distribution [19]. An illustration of the repetition bias is
provided in the supplementary material Sec. E.

(c) EFCIR-B 50/100. To test the resiliency against rep-
etition frequency, we sample individual class rep-
etition probabilities p ∼ Beta(α, β) with parame-
ters α= 3.5 and β = 20.0. This way, the expecta-
tion E[Beta(3.5, 20.0)]≈0.15 is similar to the uni-
form EFCIR-U scenario, implying that on average
the same number of classes are present in each task.

In scenarios with repeated classes, the optimal learning
rate and number of epochs depend on various factors (e.g.
method, number of training samples, length of incremen-
tal sequence) and are highly influential. To address this,
we split 10% of the available training data as a validation
set. For all methods, we apply early stopping [5, 34] us-
ing this validation data for the classes present in the task.
We monitor the validation loss (including regularization
and auxiliary losses of the method) and allow for a pa-
tience period of 5 epochs. If no improvement is observed,
we perform a learning rate decay step. Each decay step
reduces the learning rate by a factor of 0.1, the model
weights are reset to the best checkpoint before patience,
and we do not perform more than 2 decay steps.
Evaluation. All scenarios are ranked by the average ac-
curacy [8, 27, 33, 36, 47] achieved over the complete task
sequence. Average accuracy is calculated by evaluating
the model on the CIFAR test set based on the classes that
have been seen up to each task. Complementary to the
average accuracy, average forgetting [6, 8, 27] is also re-
ported, which measures the drop in accuracy over the task
sequence. Experimental results are averaged over 5 seeds.

5. Results
The summarized results of the experiments are listed in
Table 3. Detailed plots and tables of the accuracy progres-
sion for all methods in each proposed scenario are pro-
vided in the supplementary material (Sec. G).
Scenario (a) CIL 50/10. The conducted baseline exper-
iment confirms the reported results from other works [8,
40, 46, 47]. We observe a significant performance gain of
approximately 10-15% in average accuracy over the task

43



(a) CIL 50/10 (b) EFCIR-U 50/100 (c) EFCIR-B 50/100
Method Avg. A ↑ Avg. f ↓ Avg. A ↑ Avg. f ↓ Avg. A ↑ Avg. f ↓

Joint 73.9 - 69.8 - 68.9 -
WA [45] 42.7 ± 2.3 • 33.2 ± 1.4 • 50.4 ± 0.2 • 16.7 ± 2.4 • 49.2 ± 0.7 • 18.0 ± 1.6 •

FT 14.2 ± 1.0 • 57.8 ± 1.2 • 36.2 ± 2.1 • 25.6 ± 2.7 • 34.2 ± 2.0 • 29.0 ± 2.6 •
FZ 52.6 ± 1.4 • 19.7 ± 0.9 • 40.2 ± 3.9 • 20.0 ± 1.6 • 41.7 ± 3.1 • 22.5 ± 1.8 •

EWC [20] 45.9 ± 2.9 • 25.7 ± 1.4 • 47.7 ± 3.2 • 13.5 ± 1.5 • 45.5 ± 3.2 • 17.8 ± 1.8 •
MAS [2] 45.9 ± 2.9 • 25.8 ± 1.4 • 49.3 ± 2.6 • 12.0 ± 1.8 • 47.2 ± 2.3 • 16.1 ± 2.1 •
LwF [22] 47.9 ± 1.8 • 24.1 ± 0.8 • 45.7 ± 1.9 • 15.9 ± 2.8 • 43.5 ± 0.8 • 19.8 ± 4.1 •
PASS [47] 62.1 ± 1.9 • 14.1 ± 0.4 • 30.2 ± 2.0 • 35.3 ± 2.1 • 30.6 ± 1.4 • 38.3 ± 1.6 •

PRAKA [40] 63.1 ± 2.5 • 11.8 ± 2.2 • 43.1 ± 2.1 • 22.3 ± 2.3 • 42.7 ± 3.2 • 25.6 ± 1.8 •
IL2A [46] 54.2 ± 1.4 • 19.1 ± 1.3 • 26.3 ± 3.0 • 32.2 ± 2.9 • 27.2 ± 2.5 • 37.2 ± 1.7 •
SSRE [48] 53.0 ± 2.7 • 13.0 ± 0.8 • 29.2 ± 3.5 • 25.4 ± 2.1 • 26.5 ± 2.2 • 26.4 ± 2.1 •
FeTrIL [33] 61.4 ± 0.4 • 13.6 ± 0.8 • 46.5 ± 0.7 • 22.9 ± 0.7 • 46.9 ± 0.9 • 23.8 ± 1.2 •
Hordem 62.9 ± 1.2 • 15.2 ± 0.7 • 54.4 ± 0.7 • 16.4 ± 1.5 • 54.3 ± 0.4 • 17.7 ± 1.0 •
Hordec 62.9 ± 1.2 • 15.3 ± 0.6 • 53.4 ± 0.7 • 17.6 ± 1.6 • 53.1 ± 0.4 • 18.5 ± 1.1 •

Table 3. Average Accuracy (Avg. A) and average Forgetting (Avg. f ) for all 3 proposed scenarios. The listed results are averaged over
5 seeds (except incremental Joint). The 3 best results are marked with a gold •, silver • and bronze • medal respectively.

sequence when comparing the state-of-the-art rehearsal-
free (EFCIL) methods with EWC, MAS and LwF. While
our proposed method is particularly designed towards rep-
etition scenarios, where the estimation of class prototype
components is not always required, it remains compet-
itive in disjoint, no-repetition scenarios as well, show-
ing comparable performance to the best EFCIL meth-
ods [33, 40, 46, 47].

Scenario (b) EFCIR-U. Introducing class repetition in
small incremental tasks into the scenario leads to signifi-
cant performance differences. Weight-regularization ap-
proaches and vanilla finetuning typically underperform
compared to knowledge distillation or class prototype-
based approaches in EFCIL [40]. However, in this sce-
nario with repetition, we observe greatly improved perfor-
mance for FT, EWC and MAS. The results for these meth-
ods surpass even the results from the CIL 50/10 scenario
by leveraging data repetition effectively (see Fig. 3). In
contrast, EFCIL methods (PASS, IL2A, SSRE, PRAKA)
that rely on both class prototype rehearsal and knowledge
distillation show a performance degradation under repe-
tition. This decline is not observed in methods that use
either knowledge distillation (LwF) or class prototype re-
hearsal with frozen feature extractors (FeTrIL, Ours).

We hypothesize that the estimation of class prototypes
with incomplete class data distribution in the former meth-
ods leads to a suboptimal feature embedding space, which
is then propagated through the incremental task sequence
via knowledge distillation. Frozen feature extractors, on
the other hand, avoid this issue since their representations
remain fixed after the initial training, preventing catas-
trophic drift in the embedding space during the task se-
quence. This raises the question whether the assumption
that the complete training data distribution of an individ-
ual class – as in traditional class-incremental learning – is
a realistic assumption for continual learning scenarios.

Figure 3. Accuracy curves for scenario (b) with equiprobable
repetition frequency. Weight-regularized methods (solid) benefit
directly from short tasks with class repetition, while prototype-
based approaches (dashed) degrade in accuracy as the sequence
advances.

Our ensemble-based approach (Horde), with both en-
semble growth heuristics, establishes a new state-of-the-
art for the repetition settings. Notably, when comparing
our method with the closely related FeTrIL approach, we
observe a performance increase under repetition. This
suggests that our approach could extend the feature space
of the base feature extractor by incorporating class com-
binations from smaller feature extractors. Over time, rep-
etition aligns these representations, enabling the model to
learn a unified classification head on a more diverse rep-
resentation space provided by the ensemble.

The strong performance gains for weight-regularized
approaches are only observed when the cross-entropy loss
during training is limited to the classes that are present
within the current task. Practically, this is achieved by
freezing all weights associated with classes outside of the
current task [27]. Figures 4 and 5 illustrate the conse-
quences of backpropagating the loss through all weights
of the classification head. In this case, regardless of
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(a) Cross-entropy loss gradient applied to all class weights in the
classification head. Significant task recency bias is visible (the diag-
onal is significantly higher, with sharp drops after each task).

(b) Cross-entropy loss gradient applied to only current task class
weights in the classification head. Much of the task recency bias is
alleviated by freezing the classifier weights for unavailable classes.

Figure 4. Depiction of the task accuracy progression of MAS over the scenario (b) sequence (averaged over 5 seeds). Accuracy
is evaluated on the test set for the classes represented in the corresponding incremental training data within a task. Note, that for
repetition there is always a certain overlap within tasks.

Figure 5. Accuracy results for finetuning and weight-
regularization based methods. Solid lines indicate the backprop-
agation of the cross-entropy loss over all classes leading to catas-
trophic class recency bias. Dashed lines indicate the freezing of
the weights related to the output of non-current classes.

whether weight-regularization is applied to the feature ex-
tractor, a strong class recency bias emerges in the classifi-
cation head. As a result, the accuracy of all three methods
collapses, with the model essentially forgetting classes
proportionally to how long they were seen last (see Fig. 4).
However, when the weights for unavailable classes in the
classification head are frozen, a significant performance
improvement is observed, as the model retains its ability
to distinguish across earlier tasks without being overly bi-
ased towards the most recent ones.

Scenario (c) EFCIR-B. The bias in repetition frequency
appears to have only a minor effect on the average accu-
racy of the approaches. All tested methods achieve similar
results or experience only a slight drop of up to ∼2% in
average accuracy. This suggests that repetition frequency
bias is a relatively minor challenge in the EFCIR-B 50/100
scenario. However, it is important to note that this setting

only evaluates adjustments in repetition frequency while
the sample distribution within a training task is kept bal-
anced. Therefore, further investigation is needed to assess
whether an imbalanced training data distribution in con-
junction with biased repetition frequency would increase
the difficulty. We leave this exploration to future work.

6. Conclusion

In this work, we conducted an exploratory evaluation of
CIL methods in exemplar-free class-incremental learning
with repetition scenarios and investigated their resiliency
to biases in the repetition frequency of classes.

In the evaluated repetition scenarios, EFCIL meth-
ods that rely on class prototypes (PASS, PRAKA, IL2A,
SSRE) severely underperform and are unable to ben-
efit from the repetition of classes. Notably, weight-
regularization-based approaches perform exceptionally
well in repetition scenarios provided that training with
cross-entropy is restricted to the classes present in each
task, thereby mitigating the risk of class-recency bias in
the classification head. The results from the repetition fre-
quency bias from a beta distribution show only minimal
performance differences, with either no effect on average
accuracy or a slight drop of up to 2%. Thus, a bias in
repetition frequency alone without a biased sample distri-
bution within a training task is insufficient for significant
classification bias.

Furthermore, we introduce a novel ensemble learning
technique that takes advantage of class repetition. This
method combines a dynamic set of independent feature
extractors, which are aligned through a unified head in a
process we call pseudo-feature projection. The proposed
method demonstrates competitive performance in tradi-
tional no-repetition settings and establishes a new state-
of-the-art for scenarios with repetition.
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Incremental Learning with Repetition via Pseudo-Feature Projection

Supplementary Material

A. Pseudo Code
The algorithm for the proposed Horde method can be sep-
arated into two parts: (1st) the training of an individual
feature extractor (FE), which is listed in Algorithm 1 and
(2nd) the overall assembly of the ensemble and training
of the unified head through pseudo-feature projection (see
Algorithm 2). The training of a feature extractor (1st part)
can be freely adjusted (loss, network architecture) as long
as a frozen feature extractor that can produce an embed-
ding is the result.

Algorithm 1 FE Training

1: Initialize CE and ML Head
2: Initialize new FE (or transfer learned weights)
3: for training epoch do
4: for X;Y in Dataloader do
5: X;Y ← SelfSupervision(X;Y )
6: Extract X̂ ← FE(X)
7: Predict Ŷ ← HeadCE(X̂)
8: Project A← HeadML(X̂)
9: Calculate LCE (from Y and Ŷ )

10: Calculate LML (with Hard Neg. Pairs on A)
11: Backprop LCE + LML
12: end for
13: end for
14: Remove CE and ML head
15: Freeze FE

Algorithm 2 IL through pseudo-feature projection

1: for task do
2: if Growth Condition (Hordem or Hordec) then
3: Train FE (Algorithm 1)
4: Add / Replace FE in ensemble
5: end if
6: Calculate µc and σc for all current classes c
7: for training epoch do ▷ Only Unified head
8: for Batch do
9: Calculate LCE

10: Generate F̂c from current Batch
11: Calculate LCE;P for F̂c

12: Backprop LCE + LCE;P
13: end for
14: end for
15: end for

B. Details about the Model Architecture
The individual layers of a ResNet-18 are listed in Table 4
and a structural overview is depicted in Figure 6. There
is no difference in the depth of the network or the type

ResNet-18

Cb = 20 for SlimResNet18 and Cb = 64 for ResNet-18

Layer Stride Dimension

Conv 3× 3 1 Cb × 32× 32
BatchNorm - Cb × 32× 32

ReLU - Cb × 32× 32
BasicBlock Cin = Cb, Cout = Cb 1 Cb × 32× 32

BasicBlock Cin = Cb, Cout = 2 · Cb 2 2× Cb × 16× 16
BasicBlock Cin = 2 · Cb, Cout = 3 · Cb 2 3× Cb × 8× 8
BasicBlock Cin = 3 · Cb, Cout = 4 · Cb 2 4× Cb × 4× 4

AvgPool 4× 4 1 4× Cb × 1× 1
Linear (Classification Head) - #classes

Table 4. The network structure is identical for both ResNet-18
and its SlimResNet-18 variant, besides a reduction in the number
of base channels Cb.
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Figure 6. Visualization of the structure of a ResNet-18 [13].

of layers between the ResNet-18 and the Slim-ResNet-18.
The only difference is the number of base filters Cb for
the convolutions in the Basic Blocks. The Slim-ResNet-
18 uses Cb=20 while the full ResNet-18 uses Cb=64.
This influences the number of channels for the following
operations so that a compression to approximately a tenth
of the original size can be achieved.

C. Method Hyperparameters
The hyperparameters for all compared methods are listed
in Table 5. For EWC, MAS and LWF, we perform a grid-
search over their main hyperparameters on the CIL 50/10
scenario, and the one achieving the highest average accu-
racy are fixed for the repetition tasks. The remaining hy-
perparameters are the ones recommended by their original
authors for the corresponding scenario.

D. Feature Extractor Training Components
Table 6 provides an overview of the effects of each com-
ponent in the Feature Extractor and its effect on the aver-
age accuracy in the CIL scenario (a). The results have
been averaged over 5 seeds. Both the self-supervision
from PASS [47] as well as the training with the metric
learning head are beneficial based on the overall average
accuracy. The metric learning head alone without a cross-
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Method Hyperparameter
FT -
FZ freeze after 1st task

Joint -
WA [45] 2000 exemplars, τ = 2, patience = 10

EWC [20] λ = 40000, α = 0.1
MAS [2] λ = 10, α = 0.1
LwF [22] λ = 30, τ = 2

PASS [47] τCE = 0.1, τKD = 2, λkd = 10.0, λaug = 10.0
IL2A [46] τCE = 0.1, λKD = 10.0, λseman = 10.0, #mixups = 4

PRAKA [40] τCE = 0.1, λaug = 15.0, λKD = 15.0
SSRE [48] τCE = 0.1, λaug = 10.0, λKD = 1.0
FeTrIL [33] AugMix [17] pre-train, fc head, 1-cosine translation
Horde (ours) original features estimation, CE & ML Head, self-supervision, 1 Resnet18, 9 Slim Resnet18s

Table 5. Overview of approach-specific hyperparameters

CE-Head ML-Head Self-Supervision [47] Avg. Acc ↑
✓ ✗ ✗ 56.91± 0.88 •
✗ ✓ ✗ 7.72± 0.85 •
✓ ✓ ✗ 58.68± 0.79 •
✓ ✗ ✓ 60.62± 1.21 •
✗ ✓ ✓ 9.76± 1.15 •
✓ ✓ ✓ 63.09± 1.19 •

Table 6. Ablation study results on different variations of FE
training. 1st •, 2nd • and 3rd • best metrics are marked ac-
cordingly.

entropy head is however insufficient for the training of a
feature extractor.

E. Scenario Visualization

In the proposed experiments we differentiate between a
fairly balanced repetition scenario and a biased scenario.
The difference between the two repetition frequencies is
visualized in Fig. 7 and Fig. 8. On average both scenarios
have 15 classes in each incremental task.

F. Longer Task Sequence

The results from scenario (b) indicate a strong accuracy
recovery/trend for weight regularization techniques. We
further evaluate with even longer task sequences where
the number of incremental tasks is increased from 99
to 149. The accuracy on later tasks is very strong on
weight-regularization techniques as the overall accuracy
trend continues. However, it is important to note that,
already in the 100 task scenario, all available training
data is used in the task sequence at least once, thus fur-
ther tasks can only repeat samples and no longer pro-
vide any new/incremental training data. Although EWC
and MAS both achieve a significant higher final accuracy
in the longer task sequence, they are still slightly worse
in terms of average accuracy across the whole sequence,

Figure 7. Class distribution visualization of scenario (b), with
uniform class occurrence frequency. Each colored block indi-
cates that the class is sampled in the corresponding task.

Figure 8. Class distribution visualization of scenario (c), with
biased (beta) class occurrence frequency. Each colored block
indicates that the class is sampled in the corresponding task.

since they are less stable in the initial tasks of the se-
quence. The compared average accuracies for the 100 and
150 task scenarios, as well as final test accuracy after the
task sequence, are listed in Table 7. Furthermore, the ac-
curacy progression is visualized in Figure 9.
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Method Avg. A100 Avg. A150 final A100 final A150

FT 36.2± 2.1 • 39.3± 2.1 • 42.3± 2.7 • 46.9± 1.1 •
EWC 47.7± 3.2 • 51.4± 0.9 • 54.4± 2.5 • 57.2± 0.7 •
MAS 49.3± 2.6 • 52.5± 0.8 • 55.6± 2.2 • 59.0± 0.3 •

Hordec 54.4± 0.7 • 53.2± 1.6 • 55.1± 0.7 • 54.4± 0.4 •
Hordem 53.4± 0.7 • 53.8± 0.9 • 54.0± 1.1 • 53.4± 1.9 •

Table 7. Comparison between unbiased repetition scenarios of 100 and 150 tasks. While our proposed method is more stable, especially
in the initial phases of training. The trend of weight regularization methods continues and the final accuracy continues to increase.

Figure 9. Average Accuracy over an even longer repetition scenario to analyse the trends between different methods. The performance
increase of weight-regularization techniques continue

G. Scenario Results
The following figures visualize the detailed Average Ac-
curacy development over the incremental task sequence.
For each method the mean and one standard deviation
have been plotted. The results for the class-incremental
scenario (a) are listed in Table 8 and visualized in Fig-
ure 10. The unbiased repetition results fo scenario (b) can
be found in Table 9 and Figure 11. The results of the bi-
ased class-repetition scenario (c) are shown in Table 10
and Figure 12.
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Figure 10. Accuracy development over the task sequence of scenario (a).

Figure 11. Accuracy development over the task sequence of scenario (b).

Figure 12. Accuracy development over the task sequence of scenario (c).
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Method A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Avg. A ↑ Avg. f ↓
WA 76.0 ± 1.5 60.4 ± 3.5 50.0 ± 5.4 40.7 ± 7.7 38.3 ± 6.7 35.1 ± 6.5 36.4 ± 5.7 35.2 ± 4.7 31.9 ± 3.7 32.4 ± 3.5 33.5 ± 4.5 42.7 ± 2.3 33.3 ± 1.5

FT 72.1 ± 1.7 21.3 ± 5.5 10.8 ± 2.9 9.0 ± 0.8 7.3 ± 0.4 7.0 ± 0.5 6.4 ± 0.3 6.1 ± 0.5 5.8 ± 0.3 5.5 ± 0.2 5.1 ± 0.3 14.2 ± 1.0 57.9 ± 1.2
FZ 72.1 ± 1.7 63.7 ± 2.7 60.3 ± 1.4 55.8 ± 3.2 54.4 ± 2.5 50.0 ± 1.4 47.3 ± 0.5 46.2 ± 1.9 43.9 ± 1.8 42.2 ± 1.5 39.9 ± 0.9 52.4 ± 1.4 19.7 ± 0.9

EWC 71.7 ± 1.6 61.6 ± 3.5 56.5 ± 2.6 50.9 ± 4.2 47.7 ± 4.0 42.4 ± 5.0 38.9 ± 3.3 38.4 ± 3.5 34.7 ± 2.8 32.6 ± 3.5 29.7 ± 2.5 45.9 ± 3.0 25.8 ± 1.5
MAS 71.7 ± 1.6 61.4 ± 3.6 55.9 ± 3.6 50.4 ± 5.3 48.4 ± 3.3 42.6 ± 3.8 39.4 ± 4.1 38.2 ± 3.6 34.1 ± 3.2 32.5 ± 3.0 30.5 ± 1.7 45.9 ± 2.9 25.8 ± 1.4
LwF 72.1 ± 1.7 65.2 ± 2.7 60.3 ± 2.0 54.4 ± 3.1 50.2 ± 3.1 46.4 ± 2.9 42.1 ± 2.2 37.9 ± 2.2 34.9 ± 1.3 32.7 ± 1.4 30.7 ± 1.1 47.9 ± 1.8 24.2 ± 0.8

PASS 76.2 ± 2.0 • 71.8 ± 2.6 • 68.2 ± 2.3 • 65.5 ± 2.6 • 63.2 ± 2.0 60.8 ± 1.5 59.1 ± 1.8 57.0 ± 1.7 55.4 ± 1.9 53.8 ± 1.7 52.1 ± 1.7 62.1 ± 1.9 14.1 ± 0.5
PRAKA 74.9 ± 4.7 71.8 ± 3.4 • 68.8 ± 3.1 • 66.6 ± 2.4 • 63.9 ± 2.6 • 61.9 ± 1.6 • 60.5 ± 2.6 • 58.7 ± 2.1 • 57.2 ± 1.9 • 55.6 ± 2.2 • 54.4 ± 2.4 • 63.1 ± 2.6 • 11.8 ± 2.3 •

IL2A 73.2 ± 0.8 67.5 ± 1.8 63.3 ± 1.5 59.4 ± 1.8 56.2 ± 1.1 52.4 ± 1.7 49.6 ± 2.1 46.6 ± 2.3 44.6 ± 2.4 42.6 ± 1.5 40.7 ± 1.4 54.2 ± 1.4 19.0 ± 1.3
SSRE 65.9 ± 2.6 59.6 ± 2.6 56.9 ± 4.0 55.4 ± 2.7 52.5 ± 2.9 51.6 ± 2.3 50.3 ± 3.2 49.0 ± 2.9 47.9 ± 2.7 46.7 ± 2.6 45.6 ± 2.4 52.9 ± 2.7 13.0 ± 0.8 •
FeTrIL 75.0 ± 1.2 70.6 ± 0.9 67.4 ± 0.9 64.9 ± 1.1 62.6 ± 0.6 60.2 ± 0.5 58.7 ± 0.5 56.5 ± 0.5 55.0 ± 0.5 53.2 ± 0.4 51.6 ± 0.6 61.4 ± 0.4 13.6 ± 0.8 •
Hordem 78.1 ± 1.7 • 71.6 ± 1.3 • 67.5 ± 1.6 65.3 ± 2.8 • 63.6 ± 1.0 • 61.6 ± 1.2 • 60.5 ± 1.5 • 57.5 ± 1.2 • 56.4 ± 1.1 • 55.7 ± 1.0 • 54.0 ± 1.5 • 62.9 ± 1.2 • 15.2 ± 0.7
Hordec 78.2 ± 1.7 • 71.2 ± 1.4 67.7 ± 1.9 • 65.2 ± 2.8 63.4 ± 0.8 • 61.8 ± 1.2 • 60.2 ± 1.9 • 57.9 ± 1.0 • 56.6 ± 1.1 • 55.9 ± 1.1 • 53.8 ± 0.4 • 62.9 ± 1.2 • 15.3 ± 0.7

Table 8. Results for the baseline CIL 50/10 scenario (a). 1st •, 2nd • and 3rd • best metrics are marked accordingly.

Method A0 A10 A20 A40 A60 A80 A99 Avg. A ↑ Avg. f ↓
WA 67.1 ± 2.4 52.2 ± 0.8 50.6 ± 1.1 49.9 ± 0.7 49.1 ± 0.8 49.6 ± 0.9 49.2 ± 0.8 50.4 ± 0.2 16.7 ± 2.4

FT 61.8 ± 4.3 25.8 ± 2.3 28.1 ± 2.2 35.7 ± 3.9 39.3 ± 3.8 40.0 ± 0.9 42.3 ± 2.7 36.2 ± 2.1 25.6 ± 2.7
FZ 60.1 ± 4.8 37.9 ± 3.7 37.9 ± 3.4 40.4 ± 3.5 38.9 ± 5.5 40.5 ± 3.6 40.0 ± 3.6 40.2 ± 4.0 20.0 ± 1.6

EWC 61.1 ± 4.1 37.4 ± 3.1 39.5 ± 3.3 46.7 ± 3.3 50.4 ± 3.5 52.1 ± 2.5 54.4 ± 2.5 • 47.7 ± 3.2 13.5 ± 1.5 •
MAS 61.3 ± 4.1 38.2 ± 2.6 41.6 ± 2.5 48.6 ± 2.7 • 52.0 ± 3.3 • 53.6 ± 1.9 • 55.6 ± 2.2 • 49.3 ± 2.6 • 12.0 ± 1.8 •
LwF 61.6 ± 4.2 44.5 ± 3.0 43.6 ± 2.2 44.7 ± 1.5 45.7 ± 2.0 46.1 ± 1.9 45.6 ± 1.7 45.7 ± 1.9 15.9 ± 2.8 •
PASS 65.5 ± 2.7 35.4 ± 1.8 32.9 ± 1.2 31.4 ± 2.1 28.8 ± 2.2 24.6 ± 4.6 20.4 ± 3.1 30.2 ± 1.9 35.3 ± 2.2

PRAKA 65.4 ± 3.3 48.1 ± 3.5 • 47.2 ± 2.9 • 46.4 ± 3.7 42.2 ± 3.0 36.3 ± 2.7 30.6 ± 1.0 43.1 ± 2.1 22.3 ± 2.4
IL2A 58.5 ± 5.8 29.5 ± 3.3 27.1 ± 3.0 26.3 ± 2.3 24.8 ± 3.0 22.5 ± 2.6 21.3 ± 2.3 26.3 ± 3.0 32.2 ± 2.9
SSRE 54.5 ± 5.3 28.7 ± 2.7 27.9 ± 2.8 28.2 ± 3.4 28.5 ± 2.8 28.3 ± 4.1 28.8 ± 3.7 29.2 ± 3.5 25.4 ± 2.1
FeTrIL 69.3 ± 1.1 • 47.5 ± 0.9 46.2 ± 1.0 45.2 ± 1.4 45.4 ± 1.1 45.0 ± 1.5 45.2 ± 0.3 46.5 ± 0.7 22.9 ± 0.7

Hordem 70.8 ± 1.7 • 50.4 ± 1.1 • 51.7 ± 1.0 • 53.4 ± 1.1 • 54.8 ± 1.1 • 55.5 ± 1.3 • 55.1 ± 0.7 • 54.4 ± 0.7 • 16.4 ± 1.5
Hordec 70.9 ± 1.9 • 50.9 ± 1.0 • 51.7 ± 0.9 • 52.1 ± 0.7 • 53.6 ± 1.2 • 53.4 ± 1.4 • 54.0 ± 1.1 53.4 ± 0.7 • 17.6 ± 1.6

Table 9. Results for the EFCIR-U scenario (b). 1st •, 2nd • and 3rd • best metrics are marked accordingly.

Method A0 A10 A20 A40 A60 A80 A99 Avg. A ↑ Avg. f ↓
WA 67.2 ± 1.8 52.4 ± 1.2 50.6 ± 1.1 48.6 ± 1.1 47.9 ± 1.6 47.5 ± 0.8 46.8 ± 1.6 49.2 ± 0.7 18.0 ± 1.6

FT 63.2 ± 4.3 25.3 ± 4.5 29.2 ± 3.0 32.6 ± 3.2 35.4 ± 1.5 37.2 ± 0.9 39.3 ± 2.7 34.2 ± 2.0 29.0 ± 2.6
FZ 64.2 ± 4.3 41.3 ± 3.4 39.9 ± 3.0 41.0 ± 3.5 41.0 ± 3.2 41.5 ± 2.9 40.9 ± 2.8 41.7 ± 3.1 22.5 ± 1.9

EWC 63.2 ± 4.3 38.6 ± 3.5 39.6 ± 4.6 44.2 ± 4.1 46.3 ± 3.2 48.1 ± 3.0 49.9 ± 3.2 45.5 ± 3.2 17.8 ± 1.8 •
MAS 63.2 ± 4.3 39.7 ± 3.5 41.6 ± 3.1 45.9 ± 3.7 49.0 ± 2.1 • 49.9 ± 1.2 • 51.9 ± 2.0 • 47.1 ± 2.3 • 16.1 ± 2.1 •
LwF 63.2 ± 4.3 44.8 ± 2.0 42.9 ± 2.1 42.7 ± 1.6 42.6 ± 0.7 42.0 ± 1.9 41.0 ± 2.2 43.5 ± 0.8 19.8 ± 4.1

PASS 68.9 ± 2.0 36.7 ± 1.9 33.6 ± 1.9 31.0 ± 1.2 28.9 ± 1.9 24.4 ± 2.4 18.9 ± 2.4 30.6 ± 1.4 38.3 ± 1.6
PRAKA 68.2 ± 2.2 50.7 ± 2.7 • 48.6 ± 1.7 • 47.3 ± 2.5 • 41.6 ± 4.3 32.3 ± 3.7 28.0 ± 3.6 42.6 ± 3.2 25.6 ± 1.9

IL2A 64.4 ± 4.1 31.9 ± 2.4 29.7 ± 2.6 26.9 ± 3.8 25.2 ± 2.6 22.3 ± 2.6 20.2 ± 2.7 27.2 ± 2.5 37.2 ± 1.7
SSRE 52.9 ± 4.1 27.2 ± 2.4 25.5 ± 1.7 25.2 ± 1.6 24.9 ± 2.3 24.9 ± 3.2 25.4 ± 1.5 26.5 ± 2.2 26.4 ± 2.1
FeTrIL 70.7 ± 1.5 • 49.1 ± 0.9 47.4 ± 0.5 45.1 ± 1.6 45.5 ± 1.8 45.2 ± 1.6 45.0 ± 1.5 46.9 ± 0.9 23.8 ± 1.2

Hordem 72.0 ± 0.8 • 52.2 ± 1.1 • 53.0 ± 0.6 • 54.0 ± 0.9 • 54.0 ± 1.2 • 55.1 ± 0.8 • 54.6 ± 0.7 • 54.3 ± 0.4 • 17.7 ± 1.0 •
Hordec 71.7 ± 0.8 • 52.5 ± 0.7 • 52.1 ± 0.7 • 51.7 ± 0.7 • 52.7 ± 1.4 • 53.2 ± 0.8 • 53.7 ± 0.4 • 53.1 ± 0.4 • 18.5 ± 1.1

Table 10. Results for the EFCIR-B scenario (c). 1st •, 2nd • and 3rd • best metrics are marked accordingly.
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Abstract

In real-world applications, machine learning models must
reliably detect Out-of-Distribution (OoD) samples to pre-
vent unsafe decisions. Current OoD detection methods
often rely on analyzing the logits or the embeddings of
the penultimate layer of a neural network. However, little
work has been conducted on the exploitation of the rich
information encoded in intermediate layers. To address
this, we analyze the discriminative power of intermedi-
ate layers and show that they can positively be used for
OoD detection. Therefore, we propose to regularize in-
termediate layers with an energy-based contrastive loss,
and by grouping multiple layers in a single aggregated
response. We demonstrate that intermediate layer activa-
tions improves OoD detection performance by running a
comprehensive evaluation across multiple datasets.

1. Introduction

When a model is exposed to data which does not belong to
the distribution it was originally trained on, it is desirable
that it can detect it and respond appropriately. Therefore,
it is beneficial for a machine learning framework to in-
clude an Out-of-Distribution (OoD) detection mechanism,
especially in real-world scenarios. Without it, the model
might produce unreliable or even dangerous outputs when
confronted with data from an unfamiliar distribution, lead-
ing to potential failures in critical applications such as au-
tonomous driving, healthcare, or financial systems [1, 42].
Deep neural networks perform well in many applications
but can be overly confident with unseen classes [30]. A
key feature would be the ability to avoid providing (over-
confident) predictions for unknown classes. Implement-
ing this safety mechanism should not interfere with the
intended tasks of the model, such as correctly classify-
ing the samples from the In-Distribution (ID) data [42].
However, achieving a balance between ID performance
and OoD detection, presents significant challenges. Fur-
thermore, OoD detection mechanisms ought to perform
efficiently, without imposing an excessive computational

Feature extractor

Logits

OoD samples

✅

ID samples

Figure 1. Intermediate representations are often more informa-
tive than the logits when dealing with OoD detection.

overhead or diminishing the capacity of the model when
performing on the original task. Although recent advances
have lead to promising strategies [25, 27, 42], develop-
ing methods that achieve this dual goal remains a pressing
challenge for the design of trustworthy, scalable AI sys-
tems [7].

Building on these challenges, deep learning mod-
els have emerged as a powerful solution, becoming the
preferred framework for constructing complex training
pipelines [9]. These models address the need for effec-
tive OoD detection by leveraging their hierarchical archi-
tectures, which enable the learning and encoding of mid-
level features [31], which are representations that bridge
low-level patterns such as edges and textures to high-level
abstract feature maps such as object parts and semantic
categories [12]. In computer vision, these features are in-
herently diverse, capturing the hierarchical nature of the
input data. This diversity not only makes them able to
generalize to tasks within the original in-distribution but
also highly transferable to new, related tasks. This has
been shown within transfer learning scenarios [11].

For OoD detection, most methods rely on penultimate
layer embeddings or on the logits of the model [42]. The
potential of leveraging ensembles of intermediate layer
embeddings remains under-explored [24]. We argue that
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mid-level features alone can act as reliable stand-alone
OoD-indicators. For instance, inputs with semantically
unrelated characteristics compared to the training data
may trigger unusual activations in specific layers, serving
as an early warning of abnormality.

We pose that specific hidden layers can be effectively
isolated and used to enhance OoD detection, performing
better than the final layer. However, leveraging these in-
termediate representations may yield different results de-
pending on the type of shift from ID data -— whether se-
mantic or covariate. Also, this may result in varying ef-
fects depending on how close or distant the ID and OoD
distributions are.

Building on this insight, we test with an aggregated
approach, which leverages hidden-layer information in a
layer-agnostic manner. This method avoids relying on
specific layers, which enables a more robust and general-
ized use of the network’s intermediate representations for
OoD tasks. Further, we also propose an approach that reg-
ularizes selected hidden layers through an energy-based
contrastive loss, improving OoD detection by leveraging
their intermediate representations. The goal is to promote
the information encoded in the hidden spaces to be dis-
tributed such that OoD detection is more efficient, and
without disrupting the ID task performance.

Therefore, our contributions are summarized as:

• we establish that the embeddings of hidden layers are
valuable for OoD detection,

• we introduce a layer-agnostic aggregated (Ag-EBO) ap-
proach that leverages intermediate representations,

• we propose a modular strategy to enhance robustness by
regularizing specific layers (R-EBO).

The article is structured as follows: Sec. 2 presents a
current overview of the OoD field, while Sec. 3 introduces
the preliminaries needed for the study in Sec. 4, which
shows that intermediate layers contain useful information
for the OoD detection task. An overview of the proposed
ways of exploiting this capabilities, with detailed results
is presented in Sec. 5. Finally, in Sec. 6 we discuss some
limitations of the proposed approaches and the main take-
aways.

2. Related Work
In this paper, we concentrate on two main families
of Out-of-Distribution methods: post-hoc and training-
based [25, 42].
Post-hoc methods are applied after the model has been
trained and typically involve analyzing its predictions or
intermediate representations to identify whether an input
is OoD [14, 17, 41]. These methods often focus on com-
putational efficiency and adaptability to pre-trained mod-
els, as they avoid retraining [25].
Training-based methods modify the training process,
sometimes completely restructuring the model to accom-
modate OoD detection [6, 20, 34]. These methods often

come at the cost of higher training complexity, and might
dilute the efforts to obtain an optimal ID training accu-
racy [25, 28]. Additionally, exposure to outliers (real or
generated) can be done to improve generalization [39].
Baselines. A classic baseline for OoD is considered to be
Maximum Softmax Probability (MSP) [17], a simple ap-
proach that relies on the logit scores to identify OoD sam-
ples. However, a major limitation of this approach is the
tendency of models to produce overconfident predictions
on anomalous data, leading to poor performance [14].
Temperature scaling [14] is a simple post-hoc way of tack-
ling the overconfidence issue, where logits are scaled by a
temperature T , but its results are not optimal [43].
OoD and intermediate layers. Some methods lever-
age intermediate embeddings within the network. How-
ever, most do it to refine the head’s detection capabilities,
rather than for direct OoD detection. ASH [8] enhances
the network’s OoD detection capabilities through activa-
tion masking of hidden layers. Similarly, ReAct [32] pro-
poses to rectify the embeddings of the penultimate layer
to reduce overconfidence. However, despite leveraging
intermediate embeddings to an extent, the final detection
decisions in both methods rely solely on the output log-
its. Mahalanobis distance-based method (MDSEns) [24]
uses features from hidden layers to compute distances
from the known distribution. However, this approach re-
lies on the assumption that the class-conditional distribu-
tions of hidden layer features are Gaussian, which may
not hold true for complex datasets and deep network ar-
chitectures [36]. Head2Toe [11] leverages intermediate
representations by training a classifier head on concate-
nated embeddings from multiple hidden layers to improve
generalization during transfer learning. This enables the
refinement of existing OoD detection techniques through
the utilization of hidden layer structures.

3. Out-of-Distribution Detection
3.1. Problem statement
In Out-of-Distribution (OoD) detection, the objective is
to differentiate between samples generated by the same
distribution as the in-distribution dataset, Din, and those
originating from a different, out-of-distribution dataset,
Dout. Due to the complexity and variance of image-based
data, the concept of the amount of out-of-distributioness
of samples is inherently challenging to define. However,
two primary types of distributional shifts are commonly
identified [35]:
• Semantic (or Concept) shifts: they arise when new

classes appear at test time. For instance, encountering
an image of a dog after the model has been trained on
pictures of cats and mice.

• Covariate shifts: occur when the style or attributes of
samples change within the same class. Examples in-
clude image corruptions [16], such as artifacts, blurs
or noise, and domain changes [18, 38], such as shifting
from natural photographs to artistic paintings.
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Both semantic and covariate shifts can occur with varying
levels of severity depending on the problem, and can also
appear entangled within a distribution shift. Given a fixed
Din, we refer to near and far OoD datasets as those that
are semantically closer to or further from it, respectively.

Moreover, depending on the OoD detection applica-
tion, different shifts might be considered within the spec-
trum that comprises between novelty and anomaly detec-
tion [28]. The first relates to distribution shift that might
need to be explicitly added to the model, while the second
is usually added in a more implicit way, in order to effi-
ciently use the capacity of the model. In this paper, we
do not distinguish samples based on the suitability for fur-
ther learning, but instead aim to analyze these shifts from
a perspective of distribution similarity.
Terminology. Consider a neural network f(x; θ) with in-
put x and parameters θ, and trained to classify C classes.
The architecture of the network is defined as a series of L
layers with intermediate functions such that:

y = f(x; θ) = (fθL
L ◦ fθL−1

L−1 ◦ · · · ◦ fθ1
1 )(x),

where the output y is a vector of C logits representing
the unnormalized prediction over the classes. Therefore,
the intermediate representations or embeddings of a given
layer l are defined as:

al = (fl ◦ · · · ◦ f1)(x).

To determine whether an input x belongs to Din or Dout,
a score function S(x), is usually derived from the neural
network. This score reflects the confidence of the model
in the input belonging to the expected in-distribution. A
threshold T is applied to classify the input such that:

g(x) =

{
x ∈ Din if S(x) ≥ T
x ∈ Dout if S(x) < T.

The threshold can be adjusted depending on the desired
balance between sensitivity and specificity for OoD de-
tection.
Metrics. In order to evaluate the strength of a method,
two essentials metrics are AUROC, the Area Under the
Receiver Operating Characteristic (the higher the better)
and FPR@TPR95, the False Positive Rate when the True
Positive Rate is 95% (the lower the better).

3.2. Energy-based out-of-distribution detection.
Energy-based models [23] have demonstrated to be effec-
tive as post-hoc OoD detectors. The free energy function
E(x; f) is defined as:

E(x; f) = −T log

C∑
c=1

ef
c(x)/T , (1)

where T is the temperature, for temperature scaling [14].
When T = 1, it simplifies to the negative log of the de-
nominator of the softmax function, which represents the

normalization factor in the softmax computation. In this
case, the energy function effectively captures the aggre-
gate contribution of all logits, weighted by their exponen-
tial, to produce a measure of confidence over the entire
output distribution. The Energy-Based OoD (EBO) [26]
detection approach uses the free energy associated to each
input to determine whether it is ID or OoD, where the
higher the energy is, the more likely the sample is OoD.
JEM [13] is another energy-based approach that improves
the calibration (the mismatch between accuracy and con-
fidence) of the model.

4. OoD with Intermediate Layers
4.1. Motivation
As data moves through the trained layers of the network,
the represented features become more complex, from
edges and simple texture patterns to higher-level represen-
tations or combinations of intermediate features [31]. Our
assumption is that the use of these intermediate represen-
tations can improve out-of-distribution detection. There-
fore, we take EBO [26] as a starting point and analyze
how discriminative the different layers of the model are
for OoD detection. To quantify the capacity of hidden lay-
ers in the OoD task, we introduce a hypothetical method
called Best Hidden Layer (BHL), which utilizes an ora-
cle to identify the optimal hidden layer for OoD detec-
tion. Therefore, since it requires access to the distribu-
tion ground truth, it is proposed as an a-posteriori analysis
strategy.

Following classic setups, we train a classification
model on Din, using the standard cross-entropy loss LCE.
Then, we evaluate on test data from both Din and Dout, ex-
tracting the embeddings from the intermediate layers for
each sample. Here, the free energy from Eq. (1) is a nat-
ural candidate to use on the logits. However, the function
can also take the embeddings al from any other layer l.
Thus, we propose to extract the energy score:

El(x) = −T log
∑
i

ea
i
l(x)/T , (2)

where the unit indices i correspond to the output of the
l-th layer.

We extract and analyze the energy of each layer, re-
gardless of its type, such as convolutional, batch normal-
ization, or fully connected. We observe that certain inter-
mediate layers consistently outperform the network logits
from the original EBO approach. This effect is shown in
Figure 2 for semantic shift, which presents the AUROC
scores evaluated across all layers of a ResNet18 [15] for
CIFAR-10 [22] as Din and near and far OoD as Dout.
Some high-performing layers exhibit unexpected behavior
by assigning lower energy values to Dout samples instead
of Din samples. This leads to two possibilities: assigning
OoD to lower energy samples or to higher energy samples.
Among the two, the “correct” possibility is reflected in the
reported results.
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Figure 2. AUROC scores for OoD detection for each intermedi-
ate layer of ResNet18 are presented. The network is pretrained
on CIFAR-10 (Din) and evaluated against the corresponding
Dnear

out and Dfar
out datasets. Results are averaged across datasets

in both categories.

Covariate shift OoD detection also shows significant
improvement when considering intermediate layers rather
than relying solely on the network’s output logits. To test
it, we look at the performance of different layers when
the OoD represents the in-distribution shifted by differ-
ent corruptions (CIFAR-10-C [16], see Sec. 5.1). Fig-
ure 3 shows that throughout the depth of the network,
several layers outperform yet again the head. Initial lay-
ers, which provide low-level features such as edges or lo-
cal histogram projections, seem to be good candidates for
OoD detection when covariate shift is present, since it rep-
resents a transformation on the in-distribution.

Despite the clear benefits from using some of the lay-
ers, determining which one to use for OoD detection un-
der different shifts is still challenging due to different
Dout distributions or modes having a tendency to elicit
the strongest responses in different layers. This variabil-
ity means that no single layer is universally optimal for
detecting all types of OoD inputs effectively. It must be
noted that, on average for semantic shifts, the optimal lay-
ers are observed to reside more towards the later layers
of the network (see Fig. 2). However, this is not enough
to identify a good one-fits-all layer, or to find a straight-
forward selection criteria. We try to circumvent this issue
by proposing two strategies to leverage the information
from the intermediate layer representation spaces:
• aggregating all intermediate responses into a single uni-

fied response (described in Sec. 4.2);
• strictly regularize selected layers to enforce generaliza-

tion over different distributions (described in Sec. 4.3).

4.2. Energy aggregation (Ag-EBO)

To develop a fully layer-agnostic post-hoc method that
leverages all the potential from intermediate embeddings,
we propose to aggregate the energy values extracted from
all L layers simultaneously. Thus, for each input x, we

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
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Figure 3. AUROC scores for each intermediate layer of
ResNet18 pretrained on CIFAR-10 as Din and evaluated
against different corruptions (CIFAR-10-C). Results are aver-
aged over all corruption types and seeds.

construct a vector of energies:

E(x) = (E1(x), . . . , EL(x)),

which groups the energy contributions of each layer into
a unified representation. The dimension of this vector is
significantly smaller than the total hidden dimension of
the network, making it scalable and suitable for use with
most common OoD methods. However, for the interme-
diate layer to be considered, it is desirable that it offers
better results than just relying on the logits or on the em-
beddings from the penultimate layer.

We tested with some straightforward approaches from
literature, presented in the next paragraphs. Two
of the following three methods need a reference for
the ID data, therefore we use the set of energies
Ẽ = Etrain

in = {E(x) |x∈Dtrain
in }, extracted from Dtrain

in .

Mahalanobis distance. The score SMD(x) depends on
the Mahalanobis distance [24] of E(x):

SMD(x) = min
µc∈Ẽ

√
(E(x)− µc)

⊤
Σ−1

c (E(x)− µc),

where µc and Σc are the mean vector and covariance ma-
trix of the energy vectors for class c in Dtrain

in , respectively.

K-nearest neighbor. The score SKNN(x) is based on the
distance of E(x) to its K nearest neighbors [33]:

SKNN(x) =
1

K

K∑
i=1

∥∥∥E(x)−Ei

∥∥∥
2
,

where {E1, . . . ,EK} ⊂ Ẽ are the K nearest neighbors
of E(x) in the in-distribution training set, measured using
the Euclidean distance.

Reconstruction Error. The score SVAE(x) is computed
as the reconstruction error of E(x) using a small Varia-
tional Autoencoder [21]:

SVAE(x) =
∥∥∥E(x)− Ê(x)

∥∥∥
2
,
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CIFAR-10 [22] CIFAR-100 [22] ImageNet200 [4] ImageNet [4]

Architecture RESNET18 [30] RESNET18 RESNET18 RESNET50 [30]

Input Size 32×32×3 32×32×3 224×224×3 224×224×3

Near-OoD CIFAR-100 CIFAR-10 SSB-HARD [43] SSB-HARD
TINYIMAGENET [4] TINYIMAGENET NINCO [2] NINCO

Far-OoD

TEXTURE [3] TEXTURE TEXTURE TEXTURE
MNIST [5] MNIST INATURALIST [19] INATURALIST
SVHN [29] SVHN OPENIMAGEO [37] OPENIMAGEO

PLACES365 [44] PLACES365 - -

Corruptions CIFAR-10-C [16] - - -

Table 1. Setup description for each ID dataset.

CIFAR-100 TIN Near OoD MNIST Places365 SVHN Texture Far OoD

EBO [26] 86.36 88.80 87.58 94.32 89.25 91.79 89.47 91.21

BHL 88.23 92.26 90.25 99.89 92.13 98.46 93.5 96.00

MDSEns [24] 61.29 59.57 60.43 99.17 66.56 77.40 52.47 73.90

Ag-EBO w/ MD 66.03 67.03 66.53 99.05 63.73 94.25 93.32 87.59
Ag-EBO w/ KNN 83.69 86.5 85.09 92.81 86.01 89.64 87.46 88.98
Ag-EBO w/ VAE 80.42 83.11 81.77 89.31 83.27 88.25 84.13 86.24

Table 2. AUROC scores of MDSEns, EBO, BHL and three aggregation methods with CIFAR-10 as Din, averaged over 3 runs.

where Ê(x) is the reconstruction of E(x). Higher recon-
struction error indicates that the input is likely to be out-
of-distribution.

4.3. Energy regularization (R-EBO)
Regularizing intermediate layers directly provides an ef-
fective approach to addressing the intermediate layer se-
lection problem. Ideally, by enforcing a strong energy-
based discriminative behavior within the hidden layers,
we promote their reliability, allowing them to be used con-
fidently without additional selection mechanisms.

EBO [26] introduces an energy-bounded learning loss
Lenergy to push the network to assign low energy values to
ID samples (and viceversa for OoD). Since their approach
operates at the logits level, this loss is applied exclusively
to the model’s head. In contrast, our proposed strategy ex-
tends the scope of this loss by applying it to each hidden
convolutional layer during training, computing and back-
propagating all the losses simultaneously. Given an ID
dataset Dtrain

in and an OoD seen dataset Dtrain
out (for outlier

exposure), the energy regularization loss for the l-th hid-
den layer is defined as:

Lenergy,l = Exin∼Dtrain
in

[max(0, El(xin)−min)]
2

+ Exout∼Dtrain
out

[max(0,mout − El(xout)]
2 ,

(3)

where min and mout are two margins, serving as the upper
bound for the energy of the ID data and the lower bound
for the energy of the seen OoD data, respectively. We

define the total loss as:

LR-EBO =

L∑
l=1

Lenergy,l , (4)

where the same constant margin values for min and mout
are used across all layers, although each can be ex-
plored independently. In the original EBO paper [26],
LEBO = Lenergy,EL

, where L is the last layer of the net-
work. Furthermore, the decision to reduce the free ID en-
ergy and increase the OoD energy in intermediate layers is
a design choice. Alternative regularization strategies can
also be considered.

5. Experimental results
5.1. Implementation details

Datasets. The datasets used in this study were selected
based on the guidelines of the OpenOoD benchmark [43],
which offers a comprehensive and well-documented col-
lection of state-of-the-art (SoTA) methods across various
OoD scenarios. Also, the results presented here have
been extracted from its continuously updated report, to en-
sure alignment with the latest developments in the field.
For each Din, the OpenOoD benchmark defines a set
of semantically near and far OoD datasets from it Ta-
ble 1. Additionally, we tested the response to covari-
ate shift from CIFAR-10 with the corruptions dataset
CIFAR-10-C [16]. This is a dataset consisting of cor-
rupted versions of CIFAR-10 images, which serves as a
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common benchmark for evaluating robustness to covari-
ate shifts. It includes a variety of corruption types, such
as noise, blur, and weather distortions, applied at varying
levels of severity.
Architectures. To keep the consistency with OpenOoD
evaluations, the main results have been calculated using
the same architectures used in the benchmark, shown in
Tab. 1. We also evaluate on a non-residual based convolu-
tional neural network, EFFICIENTNET-B7, for which we
select convolutional, fully-connected, batch normaliza-
tion and average pooling layers. Finally, following recent
trends in machine learning, we evaluate ViT-B-16 [10], a
transformer-based [40] architecture. ViTs utilize multi-
head self-attention layers, and their feed-forward sub-
layers consist of fully-connected layers. Our experiments
focus on the selection of these fully-connected layers for
BHL.
Training. OpenOoD provides three pretrained ResNet18
checkpoints for CIFAR-10, CIFAR-100, and IMA-
GENET200 as Din, and a single pretrained ResNet50
checkpoint for IMAGENET, all trained using standard
SoftMax loss. Additionally, we trained 3 checkpoints for
both CIFAR-10 and CIFAR-100 as Din using the hid-
den regularization approach.

5.2. Analysis of OoD with intermediate layers
In Table 2, CIFAR-10 is selected as Din. EBO refers
to the standard energy-based OoD detection mechanism
applied directly at the logit level, while BHL shows the
energy-based OoD detection using the best performing
hidden layer. The results presented for BHL are averaged
across the best hidden layer identified in each run, which
tends to slightly vary between runs. For every Dout the re-
sults are strongly improved by (at least) one hidden layer’s
response. It is important to mention that the results pre-
sented only consider the internal behavior of the network,
while an algorithm which correctly weighs the importance
of a layer for OoD detection would also take the head of
the model into consideration, potentially merging the best
results of the two rows.
Energy aggregation. The last rows of Table 2 present
the results of the aggregation methods (Ag-EBO) pro-
posed in Section 4. The row above displays the results of
MDSEns [24], taken from the OpenOoD benchmark [43].
Each of our proposed aggregation methods achieves
higher AUROC compared to MDSEns [24], an ensemble
method that exploits Mahalanobis distance on hidden lay-
ers. The lower results for MDSEns might be related to
their assumption of class-conditional distribution of the
hidden features being Gaussian. Dfar

out datasets, such as
MNIST, SVHN, and TEXTURE, demonstrate improved
performance with the KNN aggregation approach com-
pared to EBO. However, none of these methods are ro-
bust enough on average to consistently outperform rely-
ing exclusively on the head logits. This indicates that the
layer-selection problem remains unsolved and cannot yet
be effectively simplified into an aggregation mechanism.

CIFAR-10 CIFAR-100
Far ID Acc. Far ID Acc.

EBO [26]* 84.86 82.33 67.86 54.83

BHL* 90.42 82.33 86.98 54.83
R-EBO* 98.48 78.2 94.06 50.05

Table 3. AUROC scores of EBO, BHL and R-EBO with
CIFAR-10 as Din, averaged over multiple runs. EBO and BHL
exploit identical checkpoints, retrained (*) for direct compara-
bility with R-EBO.

Dataset EBO [26] BHL R-EBO

BRIGHTNESS 56.51 82.98 79.8
CONTRAST 92.39 99.92 96.99
DEFOCUS BLUR 84.65 97.26 85.44
ELASTIC 73.24 87.36 85.11
FOG 71.3 96.7 94.38
FROST 76.83 91.4 91.08
GAUSSIAN BLUR 89.8 98.86 75.96
GAUSSIAN NOISE 84.39 99.65 99.16
GLASS BLUR 85.77 88.45 98.13
IMPULSE NOISE 89.04 99.98 97.71
JPEG 73.33 87.87 61.47
MOTION BLUR 75.78 93.51 72.77
PIXELATE 80.02 94.17 99.66
SATURATE 57.47 90.97 81.8
SHOT NOISE 84.93 99.38 98.78
SNOW 71.85 89.11 74.95
SPATTER 71.0 90.33 83.69
SPECKLE NOISE 85.29 98.96 98.66
ZOOM BLUR 79.36 96.61 66.11

Table 4. AUROC scores of EBO, BHL, and R-EBO with
CIFAR-10 as Din against corruption datasets.

Energy regularization. Table 3 presents the results
of regularization against other SoTA methods that ex-
ploit Dseen

out . The margin values are set to min=−25 and
mout=−7, following the original EBO setup [26]. In or-
der to test the trade-off in hidden layer regularization com-
pared to a completely post-hoc hidden layer analysis, we
selected CIFAR-10 and CIFAR-100 as Din and IMA-
GENET as Dseen

out . We then trained 5 runs using only LCE ,
and 5 runs using LCE + LR-EBO. We opted not to use the
checkpoints given by OpenOoD to guarantee a fair com-
parison between the two losses. Therefore, the EBO re-
sults are not comparable with the ones presented in other
tables, and are marked with (∗) accordingly. Moreover,
only results related to Far-OoD are presented, since Near-
OoD includes TIN, which is based on IMAGENET.

As expected, the regularization of intermediate layers
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CIFAR-10 CIFAR-100 ImageNet-200 ImageNet-1K
Near Far Near Far Near Far Near Far

ResNet18/50 EBO 87.58 91.21 80.91 79.77 82.50 90.86 75.89 89.47
BHL 90.25 96.00 71.57 86.08 86.72 76.13 79.04 89.75

EfficientNet-B7 EBO 97.39 98.91 87.46 86.91 75.02 86.53 65.16 81.65
BHL 87.43 99.74 84.21 99.80 78.83 93.02 85.24 94.49

ViT-B-16 EBO 90.91 93.9 88.81 87.23 69.72 83.49 62.93 78.71
BHL 79.38 96.14 81.38 97.98 62.19 81.40 74.06 88.43

Table 5. EBO and BHL compared on different models.

strongly improves the OoD detection capabilities of the
model on both cases. However, this comes at the cost
of a slight decrease in ID accuracy, due to the additional
LR-EBO loss.
Covariate shift. Table 4 presents the detailed OoD re-
sults of CIFAR-10 against every corruption type present
in CIFAR-10-C. As with the semantic shift, we observe
that covariate shift is better identified by the hidden lay-
ers rather than by the final logits. Table 4 also presents
R-EBO results under covariate shift conditions, evaluated
using the same checkpoints from Table 3. The findings
suggest that regularizing layers with a semantically dis-
tinct Dseen

out does not consistently enhance the identifica-
tion of covariate shift.

5.3. Analysis on different architectures
Table 5 presents the complete results for EBO and
BHL, averaged over multiple runs, using RESNET18/50,
EFFICIENTNET-B7, and VIT-B-16 as backbones. The
findings are consistent with earlier observations: BHL
improves performance in most setups, except for certain
Near OoD cases.

6. Discussion and Limitations

Our findings show that intermediate representations are
capable of discriminating out-of-distribution samples bet-
ter than the logits. Both semantic, in the form of unseen
classes, and covariate shift, in the form of image corrup-
tions, are strongly captured by intermediate layers. How-
ever, a robust selection criterion for which layer to use
is still an open question, since the proposed aggregation
method underperforms compared to simpler logit-based
alternatives.

Regularization of the intermediate layer’s energies im-
proves the results even further, albeit with a trade-off in
ID accuracy. We suspect that the influence of Dseen

out leads
to sub-optimal filters for the discrimination of ID classes,
thus motivating further research involving regularization
which exploits Din only. Additionally, regularization us-
ing synthetic generated data [45] applied to intermediate
layers could also be a promising direction, as it would re-
duce dependence on specific datasets, promote privacy-
preservation, and enhance the generalization.

Finally, the findings on this paper pave the way for real-
time optimized out-of-distribution detection, enabling the
identification of OoD samples in earlier layers during net-
work propagation. By detecting such samples promptly,
the system can flag them and halt further processing, re-
ducing computational overhead and improving efficiency.
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Abstract

The perception system is a critical component of Ad-
vanced Driver Assistance Systems (ADAS) and Automated
Driving (AD), playing a pivotal role in reducing traffic ac-
cidents caused by human error. For ADAS/AD systems to
be seamlessly integrated into everyday life, it is essential
to ensure the reliable operation of their perception sys-
tems, even under challenging conditions such as adverse
weather. This paper presents a novel perception pipeline
for real-time object detection with YOLOv3 across diverse
weather scenarios. The pipeline incorporates adaptive
model selection based on current conditions to optimize
detection performance dynamically. To address the com-
putational limitations of embedded systems in constraint
environments, we propose a three-step approach: (1) re-
duction of YOLOv3 complexity using L1 regularization
for feature selection, followed by (2) weight pruning and
(3) knowledge distillation to recover precision lost in ear-
lier steps. This results in lightweight models up to 70%
smaller than the base model while maintaining high preci-
sion through knowledge distillation. Finally, the optimized
models are evaluated on resource-constrained embedded
devices, including the NVIDIA Jetson AGX Orin, NVIDIA
Jetson Nano, and Raspberry Pi 4, demonstrating robust
and efficient performance under real-world conditions.

1. Introduction

Advanced Driver-Assistance Systems (ADAS) play a cru-
cial role in enhancing road safety by mitigating risks as-
sociated with human error [2], which remains a leading
cause of traffic accidents. According to the European
Commission’s 2021 accident report [8], approximately
100,000 traffic accidents involving personal injury oc-
curred in the EU, with 20% resulting in fatalities. Hu-
man factors such as distraction, fatigue, or delayed reac-

Figure 1. The detection examples demonstrate the need for adap-
tation in real-time. The second row shows detections with the
clear weather model on a foggy image, while the last row shows
detections with our adaptive perception pipeline on a foggy im-
age. Fog was injected artificially into the clear weather image.

tions account for a significant proportion of these inci-
dents. ADAS technologies have the potential to prevent
many of these accidents or at least reduce their severity,
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making their development and deployment critical.
Traditional ADAS functionalities, such as forward col-

lision warning, automatic emergency braking, and traffic
sign recognition, rely predominantly on rule-based sys-
tems. While effective in specific scenarios, these systems
are highly application-specific and lack adaptability to di-
verse environments or evolving requirements. With the
advent of deep learning, ADAS have gained significant
versatility and accuracy, enabling tasks such as object de-
tection, scene understanding, and environment perception.
These capabilities form the foundation for both ADAS
and automated driving (AD), where reliable detection of
traffic participants is essential for safe and efficient oper-
ation. Despite the advancements brought by deep learn-
ing, these methods often require large-scale, meticulously
annotated datasets to perform reliably. The process of
collecting, storing, and labeling such data poses signifi-
cant challenges. Memory and processing constraints fur-
ther complicate the ability to save and review all recorded
scenes, particularly in dynamic environments. Determin-
ing which scenes should be labeled for training or analy-
sis is a complex task that relies on exhaustive data explo-
ration, increasing time and resource costs.

A practical approach to this challenge is deploying
lightweight, real-time object detection systems directly on
the recording platforms. These systems serve as an ini-
tial filter to pre-select scenes containing relevant objects
or events for further processing. By focusing on critical
areas of interest, such as scenes with traffic participants
or specific environmental conditions, such systems reduce
the burden of exhaustive data storage and labeling while
ensuring that the most informative samples are identified.
Although accuracy is not the primary goal in this context,
detectors with higher precision naturally lead to better-
informed data selection decisions, ultimately enhancing
the performance of subsequent deep learning pipelines.

In this paper, we propose a perception pipeline that dy-
namically adapts to various weather conditions via model
selection and runs in real-time on embedded platforms
with constrained resources. In particular, we train a
YOLO [26] expert for each weather scenario, i.e., clear,
rain, and fog to deal with occurring distribution shifts.
While inference, a weather domain classifier decides
which model to use. The proposed expert selection de-
sign ensures precise detections in dynamic environments,
as shown in Fig. 1. To reach real-time performance on
embedded devices, we follow two strategies: 1) model
pruning and 2) tiny models. In both cases, we perform
knowledge distillation from the base model to achieve ad-
equate performance. Our contributions are as follows:

• We propose a real-time perception pipeline, depicted in
Fig. 2, deployable on various embedded devices. This
pipeline tackles distribution shifts by first recognizing
the domain and, secondly, switching to an appropriate
expert model.

• With a sparse training and pruning procedure, we reduce
model size and complexity to perform real-time per-

ception on edge devices. Afterward, we distill knowl-
edge [15] from the base model to regain the precision
lost in the pruning process.

• Finally, we perform exhaustive evaluations in clear and
adverse weather conditions and provide a detailed run-
time and memory analysis on various edge devices.

2. Related work

Object detection. The localization and classification of
objects is a crucial task in many challenging real-world
applications like robotics [13, 30] or autonomous driv-
ing [1]. It becomes even more challenging when applied
in constrained environments like embedded devices [33],
especially when real-time processing is required. To
that end, object detection has been extensively researched
in the past. Examples are EfficientDet [31], DEtection
TRansformer (DETR) [4], or CenterNet [10]. Object de-
tectors can be separated into two categories: By a two-
stage detector using region proposals [12, 27] or by a
one-stage detector with a unified network architecture that
treats object detection as a regression problem [19, 20]. In
our pipeline, we apply the YOLO [26] object detector. It
has a lightweight architecture that applies only a single
stage and provides satisfactory results. With appropriate
optimization, it can run in real time on embedded devices.

Distribution shifts. In Machine Learning, we draw
training samples from a distribution ptrain that we assume
to be independent and identically distributed (i.i.d.). Fur-
ther, we assume our inference data to be drawn from the
same or at least very similar distribution pinference. How-
ever, since not all samples of a highly dynamic environ-
ment are known in advance, e.g., training on clear weather
and inference on rainy weather, unknown samples in-
evitably lead to a distribution shift such that pinference ̸=
ptrain. The need for adaptive model selection arises
to handle adverse weather conditions properly. Pérez-
Gállego et al. [23] tackle model selection for quantifica-
tion tasks. Due to distribution shifts in data for quantifi-
cation problems, they employ dynamic quantifier ensem-
ble selection to select a model trained on a dataset most
similar to the given test sample. To effectively select a
model that precisely predicts the next sample in time se-
ries forecasting on data streams, Boulegane et al. [3] em-
ploy Multi-Target Regression (MTR). Given an ensemble
of models, they assume that for temporal data streams,
each model in the ensemble is an expert in some area of
the stream. To select the model, they simultaneously as-
sess each model in an ensemble based on its ability to pro-
duce a good result for the given test sample.

DILAM [18] addresses distribution shifts using incre-
mental learning through activation matching to prevent
catastrophic forgetting. They store affine transformations
(scale γ and shift β) of batch normalization layers [16]
in a memory bank. For each target domain, the mod-
els are adapted, and their corresponding affine transfor-
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Figure 2. The Pipeline framework consists of two stages: data acquisition (top) and perception (bottom). In the data acquisition stage
(ROS-master), a sensor setup composed of multiple cameras and other sensors captures road images. The second stage (ROS-node),
receives the data, recognizes the current domain, and performs object detection with an expert domain model. Image marked with [1]
was adapted from 1.

mations are stored in a memory bank. During inference,
their plug-and-play framework seamlessly substitutes the
model’s current transformations with the pre-stored trans-
formations specific to the target domain based on a learned
domain classifier. However, changing weights during run-
time as in [18] is inefficient. For embedded devices, mod-
els are converted to TensorRT, which makes changing pa-
rameters during runtime inefficient. Instead, we adopted
model selection, which ensures better real-time perfor-
mance and responsiveness on embedded devices.

Model compression. The need for model compression
arises due to the immense network parameters in recent
detection architectures. Due to memory and processing
power restrictions, state-of-the-art models are unsuitable
for edge devices. Reducing the model complexity and,
thus, model size requires less memory to store the model.
This enables us to store the model directly on the much
faster on-chip memory, compared to the slow off-chip
DRAM, a large storage area outside the CPU [28].

LeCun et al. [17] first show that a network can be
pruned by removing weights that do not significantly af-
fect the models’ performance. However, this approach is
an unstructured pruning technique that does not consider
the network structure and its layers. This method is suit-
able for dense layers where the weights are independent.
However, this leads to problems for convolution layers
where kernels share weights across spatial locations. In
contrast to [17], Polyak and Wolf [24] preserve the struc-
ture of the neural network and apply channel-level prun-

1https://www.roadtoautonomy.com/metaverse-waymo-spending/.

ing. They either prune each layer’s input or output chan-
nels. The task is to first identify the importance of each
channel by looking at the activation output variance and
then filter and eliminate insignificant ones. Polyak and
Wolf [24] tackle this issue by eliminating channels with
the least contribution variance. Unlike unstructured prun-
ing [17] or channel-level pruning [24], our approach sim-
plifies pruning by pre-filtering insignificant weights using
an L1 penalty, making structured pruning more effective.

Knowledge distillation. The idea of knowledge distil-
lation [15] is to transfer knowledge from a larger, highly
accurate teacher model to a smaller, less accurate student
model by computing a soft loss with the predictions of the
teacher network on top of the data loss. Sau and Balasub-
ramanian [29] extend knowledge distillation by making a
student network learn from multiple teachers via logit per-
turbation. However, they do not directly employ multiple
teacher networks but inject noise and perturbations into
the teacher outputs. By doing so, they effectively simu-
late multiple teachers. Moreover, injecting noise into the
teacher outputs introduces noise in the loss, thus creating a
regularization effect. Chen et al. [6] extend the knowledge
distillation workflow from [15] by considering activation
responses from intermediate layers of the teacher network.
This guides the student network in the correct direction
and improves its accuracy. Our work draws inspiration
from [6] in using knowledge distillation to improve object
detection. However, instead of using intermediate layer
activations, we focus on distilling knowledge through a
combination of classification and bounding box loss com-
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puted with the final teacher and student outputs.

3. Method
During data recording, on-device filtering of data samples
is crucial to minimize unnecessary memory consumption
and processing costs for subsequent labeling or inspec-
tion. We present our object detection pipeline designed
for diverse weather conditions through adaptive model se-
lection. In addition, we provide a pruning and knowledge
distillation strategy for real-time detection on embedded
devices that creates highly optimized models.

3.1. Perception pipeline
Framework. With our detection pipeline, we aim to de-
tect objects in real-time on embedded devices. It consists
of various YOLOv3 detection models, each an expert for
a specific weather condition (i.e., clear, rain and fog), and
a weather recognition module. After classifying the pre-
vailing weather, the appropriate model for detection is se-
lected and applied. We integrate our pipeline into a frame-
work based on the Robot Operating System (ROS) [25] as
illustrated in Fig. 2. It consists of two stages: data acquisi-
tion (top) and perception (bottom). In the first stage, data
acquisition, a sensor setup composed of multiple cameras
and optional other sensors such as LiDAR acts as the ROS
master, providing sensor recordings as a data stream. The
second stage is a ROS node that receives incoming data
from the previous stage and runs our perception pipeline
on embedded devices like the Jetson AGX Orin, Jetson
Nano, or Raspberry PI 4.

Weather recognition. Similar to Leitner et al. [18], we
reuse layers from the YOLOv3 backbone and employ a
linear classification head to recognize the weather condi-
tions. Therefore, we reduce the additional overhead from
a separate model to a tiny linear layer. Furthermore, to get
a model that performs one single forward pass, we inte-
grate the weather recognition into the forward pass of the
object detection. During the weather recognition model
training, we only adjust the weights of the classification
head and leave the rest of the network frozen.

3.2. Model compression
Embedded devices are constrained in resources and per-
formance. Therefore, model compression is needed to re-
duce the network complexity, speeding up the inference.
As illustrated in Fig. 3, model compression consists of
multiple steps. To effectively reduce the model size, we
first need to eliminate redundant weights from the model.
However, the question of which weights are essential and
which can be safely pruned without affecting the perfor-
mance of the resulting pruned model arises. We start by
looking at our base model, YOLOv3, which follows the
YOLO network architecture and shares a common pattern
throughout the network: a convolution layer followed by a
batch normalization (BN) [16] layer. To effectively lever-
age this structure, we look closer at the BN layers.

Batch normalization (BN) [16] in deep neural networks
improves stability while training and speeds up the con-
vergence of the model. The BN layers first normalize the
input and afterward scale and shift it to reduce internal
covariance shifts [32]. The normalization process of BN
layers is described as follows:

z =
xin − µxin√

σ2
in + ϵ

, (1)

where xin is the output of the previous convolution layers,
µin the mean of xin and σ2

in the variance. By normalizing
the input, we will have zero mean and unit variance. This,
however, decreases the representational power of the net-
work. BN layers introduce γ and β parameters to retain
the representational power. These parameters need to be
learned by the network, where the β parameter learns the
optimal shift for each BN layer and γ the optimal scaling
factor. The output of BN Layers is described as follows:

zout = γ · z + β, (2)

where z is the normalized data [21].

Sparse training. Inspecting Equ. 2 in detail, we can
conclude that a smaller BN scale factor γ indicates less
influence on the corresponding channel in the convolution
layer. Hence, we aim to get a network structure where
only a few key features of the network (high γ) are re-
sponsible for the final detection result while most channels
have a γ close to zero [21]. However, the model should
still learn a meaningful representation and provide highly
accurate detections. Afterward, we can safely prune away
the convolution channels along with the corresponding
scale and shift factors γ and β for channels contributing
minimally to the final detections.

We employ sparse training to get such a sparse network
representation of the YOLOv3 model, where the detec-
tion result depends only on a small number of key features
within the network. Leveraging a technique called proxi-
mal gradients, we compute the gradients w.r.t the regular
YOLOv3 loss function. Afterward, we apply a proximal
operator, namely, a soft-thresholded L1 penalty on the γ
factors of the BN layers. By applying soft thresholding,
we encourage the γ factors to become zero or close to zero
and hence induce sparsity into the network. The final loss
function during sparse training is described as follows:

L =
∑
(x,y)

l(f(x, θ), y) + λ
∑

g(γ), (3)

where l(f(x, θ), y) is the YOLOv3 loss using the param-
eter vector θ and g(γ) is the soft-thresholded L1 penalty
on the BN γ factors described as follows:

g(γ) = sign(γ) ·max(|γ| − τ, 0). (4)

τ denotes the threshold. Every value below this threshold
will be set to zero. The hyperparameter λ represents the
balance between YOLOv3 loss and L1 penalty [21].
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Figure 3. Overview of our method. Firstly, we sparsely train a network to filter unimportant weights. Secondly, the insignificant
weights from the sparse network are pruned. Thirdly, the initial large pre-trained network distills knowledge into the pruned network.
Afterward, we convert this distilled network from PyTorch to ONNX and TensorRT on the embedded device. Finally, we apply the
pruned and converted model within our perception pipeline.

Figure 4. Distribution of BN scale factor γ after sparse training.
Here we can see that not all layers have the same importance.
The earlier layers have high γ values and thus are more impor-
tant than the middle layers. We can also see that nearly most of
the weights of the middle layers go to 0 after sparse training and
hence can be pruned away safely.

Pruning. In the context of neural networks, pruning de-
scribes a technique used to eliminate weights from a net-
work based on their importance selectively. After sparse
training, we can start pruning insignificant weights from
the network. The result is a model reduced in size, which
also increases the inference speed. However, not all lay-
ers of the YOLO network have the same importance as
shown in Fig. 4. Hence, it is crucial to prune weights also
depending on the importance of layers. Following Chu
et al. [7], we flatten all BN γ factor vectors in the network,
concatenate them into one vector, and set a pruning per-

centage to determine a threshold. Every value below this
threshold will be set to zero. Afterward, we remove every
zero weight in bias, scale γ, and shift β vectors. In a sub-
sequent step, we create a mask of the same length as each
layer’s corresponding γ vector. This mask has the value
one if there is a non-zero entry at the corresponding γ vec-
tor index and zero if there is a zero entry. We can safely
prune convolution layers with this mask by removing each
convolution channel, where the corresponding mask entry
is zero [7].

Knowledge distillation. After reducing the complexity
of the model and pruning weights that we have deemed in-
significant in previous sections, the model’s performance
may deteriorate compared to the larger base version of the
network. The reason is that we may have pruned too much
of the network or that weights we had deemed insignifi-
cant since they were relatively small were, in fact, signif-
icant. To counter that, we use a technique called knowl-
edge distillation [6, 15]. Knowledge distillation describes
a technique in Machine Learning where a minor student
network is taught by a more extensive teacher network
how to perform a specific task. In our case, the small stu-
dent network is the pruned version of the base network,
and the teacher network is the base version. We sample
from the training dataset and run this sample through both
the teacher and the student network. In the first step, we
use the student network predictions and ground truth la-
bels to compute the YOLOv3 loss. The second step is to
compute the loss with the predictions of the teacher net-
work. We first transform the teacher predictions into soft
labels using the softmax function and a temperature pa-
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rameter T , which controls the smoothness of the output
distribution [5, 15]. The computation of the soft labels is
described as follows:

tout = σ

(
ezi/T∑N
j=1 e

zj/T

)
i

, (5)

where zi denotes the ith output of the teacher network and
σ the softmax activation function. Using these soft labels
tout, we compute Kullback-Leibler (KL) divergence with
the student class predictions sout as follows:

KLloss =
KL(log(σ(sout)), σ(tout) · T 2

batch size
, (6)

where

KL(P ||Q) =

∫ ∞

−∞
p(x) · log

(
p(x)

q(x)

)
dx. (7)

We use the teacher output in the loss calculation be-
cause the output of the teacher network carries signif-
icant information about relations and similarities of the
predicted output. Objects similar to the actual label will
have high probabilities. For instance, we expect a detec-
tor trained on a dataset with three classes, i.e., car, truck,
pedestrian, to have class label predictions for a car be
close to that of a small truck but far apart from pedestrians.
This example demonstrates a semantic relation between
cars and trucks, which can not be incorporated with only
the ground truth labels for loss calculation. Furthermore,
to also consider the bounding box error, we compute a
box loss with teacher-predicted bounding boxes and stu-
dent bounding boxes as follows:

boxloss =
1

N

N∑
i=1

(BSi −BTi)
2, (8)

where BSi is the ith student bounding box and BTi the
ith teacher bounding box.

Model conversion. It is insufficient to only reduce the
model complexity to deploy object detection models onto
embedded devices. Therefore, we need to change their
structure to use the acceleration provided by embedded
devices efficiently. As illustrated in Fig. 3, after success-
fully compressing the models, the next step is to optimize
them for use on the embedded devices. In this paper,
we achieve this by converting the models into the Ten-
sorRT [9] format that automatically derives essential in-
formation on how to use the underlying GPUs efficiently
or accelerate inference times by restructuring the model.

4. Experiments
The experiments are split into two parts: the performance
of the models tested on a workstation with high-end GPU
and the performance of the models on embedded devices.

First, we provide model performances in terms of preci-
sion and model size. Afterward, we investigate the in-
ference speed of our models measured in FPS on various
embedded devices.

4.1. Dataset
In this paper, we conduct experiments on the KITTI-
Dataset [11]. This dataset provides a comprehensive re-
source for developing and evaluating autonomous driv-
ing systems. The KITTI dataset is recorded in sunny
weather conditions. However, we need additional data
alongside the sunny dataset to conduct experiments for ad-
verse weather conditions. Mai et al. [22] add artificial fog
and Halder et al. [14] add artificial rain to the KITTI-clear
images. KITTI-rain consists of eight severities of rain, and
KITTI-fog consists of seven different severities of fog.

4.2. Implementation details
For our initial training of the YOLOv3 network, we use a
batch size of 32 and a learning rate of 0.0001. We train the
network for 500 epochs in total. For the sparse training,
we set α=0.01, which controls the step size for our prox-
imal gradient, and sr=0.001, which controls the sparsity
level. In the knowledge distillation setup, we use a batch
size of 8 and train for 2000 epochs to give the teacher net-
work enough time to teach the student network.

All models and training scripts are implemented in
Python 3.8 and PyTorch 2.0.1. We train and test our mod-
els on an NVIDIA RTX 4090 GPU. For experiments on
embedded devices, we run the models on three different
platforms: NVIDIA Jetson AGX Orin, NVIDIA Jetson
Nano, and Raspberry PI 4 Model B.

4.3. Baselines
The first step for our experiments is to get baseline models
for validating the performance of our pruned and distilled
models. Table 1 shows the results for our models trained
on their respective domain, e.g., clear, fog 30m, fog 50m,
and rain 200mm/h. From these experiments, we can see
that we achieve a mean average precision of 96.24 at an
IoU threshold of 0.5 (mAP@.5) for a large float32 pre-
cision model (large-32) trained on the clear domain. Fur-
thermore, we observe that the performance of our model
for the most challenging weather condition, fog 30m, is
sufficiently good, with a mAP@.5 of 93.36.

We can see that the model’s mAP does not decrease
significantly when we quantize the weights from float32
precision to float16. Additionally, we can see that the tiny
models denoted as tiny-32 and tiny-16 (for float32 and
float16 precision) have significantly lower mAP than our
large YOLOv3 model. This is because these tiny models
are 86% smaller than their base variants. Considering the
model’s small size, its performance is remarkable.

4.4. Performance evaluation
Before deploying our models on the NVIDIA Jetson AGX
Orin, NVIDIA Jetson Nano, and the Raspberry PI 4

67



Model KITTI-clear KITTI-fog 30m KITTI-fog 50m KITTI-rain 200mm/h model size

large-32 96.24 93.36 94.64 95.72 246.70 MB
large-16 96.26 93.32 94.78 95.81 123.35 MB
tiny-32 70.68 57.58 60.32 67.00 34.8 MB
tiny-16 70.70 57.55 60.26 66.93 17.8 MB

Table 1. Mean average precision at an IoU threshold of 0.5 (mAP@.5), when testing models on their respective domains.

Model B, we need to make sure our model’s performance
measured in Average Precision (AP ) and mean Average
Precision (mAP ) is satisfactory.

Pruned Models. Firstly, we need to mention that sparse
training before pruning is absolutely crucial. The reason is
that before sparse training unimportant weights have not
been identified, therefore leading the pruning process to
eliminate weights that are crucial to do object detection.
During our experiments, we could not recover lost preci-
sion during pruning if we did not perform sparse training
before pruning.

To show the efficiency of our pruning pipeline, which
keeps the structure of the network intact, and our knowl-
edge distillation pipeline, which recovers lost precision
during pruning, we prune our large-32 and large-16 base-
line models with different percentages, i.e., 30%, 50%,
and 70%. Table 2 shows the AP@.5 and the mAP@.5
for models pruned with different percentages and tested
on the KITTI-clear weather domain. We can see that the
Pruned models, denoted as pruned-32-30 and pruned-16-
30, perform well compared to our baseline models named
large-32 and large-16. Both models perform pretty well
on the clear domain with a mAP@.5 of 93.79 and 93.78.
Even if we prune 50% of the network weights, the AP
does not decrease drastically.

In Fig. 4 we can see that the earlier and later layers in
the YOLO network are the most important for the object
detection task after the sparse training. By pruning 70%
of the network, we can observe a significant drop in AP.
This observation indicates that we have already eliminated
significant weights from the earlier and later layers. When
pruning 90% of the weights, our model degenerates and
cannot detect objects anymore.

To increase the performance of the tiny models (tiny-
32 and tiny-16) we apply our proposed knowledge distilla-
tion pipeline to boost its ability to detect objects. By doing
so, we increase the mAP of the YOLOv3-tiny models by
around 12 points, from 70.70 to 82.48. When comparing
this tiny model to our large-32 baseline, we can see that we
only have a 14-point difference in mAP@.5. This preci-
sion is particularly good considering that the tiny model is
86% smaller than the large-32 model.

4.5. Performance on embedded devices
After verifying our models’ results on a regular PC
and reducing the model’s complexity, we deploy them

onto resource- and performance-constrained embedded
devices. In this case, we are mainly interested in the in-
ference speed of our models when tested on the KITTI
dataset. Table 3 shows our results. We can see that for the
large models (246.7 MB), we achieve 93.45 FPS when
running inference on images of size 416× 416 on the Jet-
son AGX Orin. The FPS drops considerably when we de-
ploy the same model onto a smaller embedded device like
the Jetson Nano or Raspberry PI 4. Due to the compact
size and performance constraints of both of these smaller
embedded devices, the performance drops by 97.52% and
99.78%, respectively. To reach the domain of real-time
inference, we need to achieve at least 24 FPS to outper-
form the sensor recording frequency. Pruning 30% of the
network weights increases our FPS from 93.45 to 100.00
on the Jetson Orin. We are more than twice as fast on the
Jetson Nano and the Raspberry PI 4.

To finally reach real-time inference even on the Jetson
Nano, we utilize the YOLOv3-tiny model. This model has
a significantly smaller network architecture. We can see
that this model is 86% smaller than our large-32 model.
With this model, we achieve 23.8 FPS, and by quantizing
the model’s weights to float16, we achieve 31.25 FPS. On
the Raspberry PI 4, we increased the performance by more
than 9 times compared to the large-32 model by using the
tiny model.

Furthermore, we can also see that for the Raspberry PI
4, the float32 precision models are faster than the float16
precision models even though the latter are smaller. This
is because The Raspberry has no GPU and thus does not
provide GPU acceleration. Furthermore, CPUs have na-
tive support for float32 and can, therefore, handle them
more efficiently than float16. Reducing the complexity of
our models leads to a reduction in the number of floating
point operations (FLOPS).

5. Limitations and future work

Our object detection and weather classification model is
limited by how many domains it can effectively work
with. We have trained both the object detection part and
the weather classification part with synthetic data. There-
fore, we will encounter a significant drop in precision
for any domain unavailable at training time. To ensure
the seamless operation of the perception system under a
broader range of adverse weather conditions, including
rain and snow, it is crucial to have large and diverse pub-
licly available datasets. These datasets will support the
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Tested on KITTI-clear
Model Car Van Truck Ped Psit Cyc Tram Misc mAP@.5 Model size

large-32 98.26 98.81 99.28 90.53 90.38 96.30 98.97 97.37 96.24 246.70 MB
large-16 98.26 98.79 99.27 90.60 90.38 96.54 98.93 97.35 96.26 123.35 MB

pruned-32-30 97.84 97.91 98.91 86.11 80.60 93.47 99.03 96.46 93.79 173.40 MB
pruned-16-30 97.82 97.93 98.91 86.14 80.62 93.36 99.03 96.45 93.78 86.70 MB
pruned-32-50 97.22 97.41 98.35 84.80 86.20 91.64 98.40 94.60 93.56 134.00 MB
pruned-16-50 97.20 97.40 98.34 84.61 86.23 91.51 98.41 94.60 93.52 67.00 MB
pruned-32-70 93.28 91.97 93.35 70.61 60.94 77.88 87.32 75.82 81.40 76.30 MB
pruned-16-70 93.24 91.93 93.36 70.39 61.28 77.76 87.20 76.06 81.40 38.15 MB

tiny-32 86.32 74.83 81.97 59.96 59.46 65.15 80.83 56.95 70.68 34.8 MB
tiny-16 86.41 75.07 82.09 60.20 59.00 64.89 80.82 57.12 70.70 17.8 MB

tiny-32-kd 92.71 90.14 93.51 68.66 64.18 78.68 90.87 81.10 82.48 34.8 MB
tiny-16-kd 92.67 90.02 93.55 68.79 66.03 78.61 90.88 81.02 82.70 17.8 MB

Table 2. Average Precision (AP) and mean Average Precision (mAP@.5) for all KITTI classes using models with different pruning
percentages.

Tested on Architecture
Model Jetson AGX Orin Jetson Nano Raspberry PI 4 Model size GFLOPS

large-32 93.45 / 80.65 2.32 / 2.04 0.32 / 0.21 246.70 MB 32.75 / 49.61
large-16 111.11 / 103.09 3.90 / 3.26 0.26 / 0.19 124.30 MB 32.75 / 49.61

pruned-32-30 100.00 / 90.90 5.55 / 4.78 0.61 / 0.49 173.40 MB 14.10 / 21.36
pruned-16-30 116.27 / 108.70 8.69 / 7.29 0.43 / 0.41 86.50 MB 14.10 / 21.36
pruned-32-50 103.09 / 94.33 7.09 / 5.99 0.83 / 0.57 134.00 MB 10.36 / 15.69
pruned-16-50 120.04 / 117.64 10.75 / 9.09 0.72 / 0.48 67.00 MB 10.36 / 15.69
pruned-32-70 111.11 / 100.00 9.90 / 8.00 1.31 / 0.84 76.30 MB 6.31 / 9.55
pruned-16-70 149.25 / 125.03 15.38 / 11.76 1.08 / 0.75 38.15 MB 6.31 / 9.55

tiny-32 181.82 / 142.85 23.80 / 20.19 3.09 / 2.32 34.80 MB 2.75 / 4.15
tiny-16 212.76 / 176.42 31.25 / 27.89 3.04 / 1.53 17.80 MB 2.75 / 4.15

Table 3. Average FPS and model size on different architectures. The values in the Model column consist of the model name, the
precision, and the percentage of weights pruned. The values in the Tested on Architecture column represent the FPS. The first value
denotes the FPS when running inference on images of 416 × 416 pixels; the second value represents the same but with images of
512 × 512 pixels. The FPS values are averaged over 3781 (test set) iterations. The values in the GFLOPs column represent the Giga
Floating Point Operations per Second. Again, the first value denotes inference using an image of size 416 × 416 and the second
represents inference using an image of size 512× 512.

advancement of unsupervised domain adaptation by en-
abling improvements in robust domain recognition and the
refinement of object detection capabilities.

6. Conclusion
In this paper we studied real-time object detection in
diverse weather conditions through adaptive model se-
lection on embedded devices. We particularly focused
on gaining a deeper understanding of model compres-
sion techniques to reduce model complexity and en-
able real-time applications on performance- and resource-
constrained embedded devices. The key findings entail:
• Filtering insignificant network weights is essential to

reduce precision loss during pruning and to make the
model rely on key features for object detection only.

• Knowledge distillation is a suitable technique to regain
the lost precision after pruning.

• Our proposed perception pipeline ensures real-time ob-

ject detection on embedded devices. It recognizes
known domains, selects a suitable model, and performs
robust real-time object detection without interruptions.

These findings emphasize the significance of a structured
approach that reduces model size to increase inference
speed on embedded devices. This enables automatic driv-
ing applications to run robustly in real time and adapt to
adverse weather conditions, such as fog or rain.
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