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Abstract—A Brain-Computer Interface (BCI) translates a per-
son’s intent, derived from brain signals, into control commands
for various applications. This work focuses on Motor Imagery-
based BCI (MI-BCI), specifically emphasizing sensorimotor-
rhythm (SMR) and MI as the relevant task. While improve-
ments have been made in classification algorithms and signal
acquisition, human factors influencing user-BCI compatibility
remain underexplored. User performance in MI-BCI systems
is impacted by personal, psychological, and neurophysiological
factors, leading to a phenomenon termed “BCI illiteracy”. In
this work, we aim to address BCI illiteracy through a systematic,
standardized study, incorporating various human factors to
enhance user performance by developing a neural network model
predicting a trainability score and a training regime. To achieve
this, the MI-BCI systems use population-specific indicators and
task-based modulators, integrating anatomical, psychological,
and neurophysiological information (EEG, biosignals). The pro-
posed model-based personalization approach offers reproducible,
innovative, and open-source training protocols to boost BCI
performance avoiding prolonged and ineffective training sessions.
The ultimate goal is to eliminate BCI illiteracy as a barrier to
compatibility between users and BCI systems.

Index Terms—BCI-Illitaracy, Deep learning, individualization

I. INTRODUCTION

Past research has identified predictors of performance in
Motor Imagery (MI)-based Brain-Computer Interface (BCI)
systems, primarily focusing on neurophysiological and psy-
chological factors. Noteworthy neurophysiological predictors
were extensively reviewed by [1], with studies like [2] high-
lighting the predictive value of resting sensorimotor-rhythm
(SMR) amplitudes. Psychological factors, such as mood, mo-
tivation, focus of control, and fear, have also been linked
to MI-BCI performance [3][4]. Additional studies established
correlations between attention span, personality, motivation,
spatial abilities, and MI-BCI performance [5]. Recent work by
[6] associated Event-Related Desynchronization (ERD) with
age, education level, management impression, and anxiety,
emphasizing the need to consider such factors in designing
ERD-based MI-BCIs. A comprehensive review by [7] pro-
posed strategic approaches to address performance variations
and enhance BCI reliability. In a distinct effort,[8] investigated
the impact of the Most Discriminant Frequency Band (MDFB)
selected during MI-BCI calibration. Their findings suggested a

correlation between user-specific frequency band characteris-
tics and classification accuracy, emphasizing the importance of
understanding the learning characteristics of both human users
and machines. Despite these individual efforts, a systematic
approach integrating all identified factors is currently lacking
in the pursuit of improving overall user performance in BCI
systems.

Extensive research has already concentrated on identifying
specific factors that impact the accuracy of performance in
Motor Imagery (MI)-based Brain-Computer Interface (BCI)
systems. While some investigators have explored potential
reasons for suboptimal BCI performance from the user’s
perspective, others have dedicated their efforts to enhancing
machine learning algorithms or diversifying hardware types.
Nevertheless, the question regarding the underlying causes of
user incompatibility with BCI systems remains unresolved.
Therefore, it is imperative to undertake a systematic, stan-
dardized, and well-operationalized research project to address
inquiries pertaining to the influence of specific human factors
on BCI performance. The primary objective of the proposed
framework is to embark on this research endeavor, ultimately
aiming to establish a person-specific trainability score that can
be employed in subsequent studies to enhance BCI perfor-
mance from its inception. Specifically, our focus is on the
development of a neural network model capable of predicting
a trainability score for MI-based BCI systems. This prediction
will be based on population-specific indicators and task-based
modulators. The significant advantage lies in the potential
to create an individualized BCI paradigm for each person,
leveraging their unique features to ensure optimal outcomes
with minimal training time. Essentially, the proposed model
represents a groundbreaking step toward innovative activation
protocols, introducing a model-based personalization approach
for driving a BCI.

II. GAPS IN MI-BCI RESEARCH

Researchers identified some critical aspects affecting MI-
BCIs correct operation in general[9]. These aspects (referred
to as components of MI-BCI) include signal measurement (ac-
quisition hardware), classification and recognition algorithms,
and user-BCI compatibility. A holistic approach is used to
compute the performance in a MI-BCI system, which captures
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the resultant of performances of each of its components.
Thus, the failure or inefficiency in any individual component
could significantly affect the efficiency of the MI-BCI system.
Researchers have attempted to identify the problems associated
with each of these components and, further, worked towards
addressing them to improve the efficiency of a MI-BCI system.
Specifically, a great deal of research has been directed towards
(1) improving the EEG acquisition system by developing cost-
effective, portable, wireless, and easy mounting EEG devices
to operate in low power setting, and (2) developing state-of-
the-art methods for processing and decoding information from
EEG signal. However, the efforts made towards understanding
and improving user-BCI compatibility are still very sparse.
The pictorial representation of these components are given in
Figure.1.

A. Poor understanding of BCI-Illiteracy and its influencers

The BCI illiteracy could come under the umbrella of ”user-
BCI compatibility” and is defined as a condition where users
of BCI technology fail to reach proficiency in using a BCI
with in a standard training period. According to the literature,
nearly 15–30% of BCI users could be labeled as BCI illiterate
[10][11]. The cause behind the incompatibility due to BCI-
illiteracy may not be always because of the deficit innate to
the user, rather could also be driven by the incapability of
the system to tailor its functionality according to the user. For
example, the poor performance of the user can be a result
of (1) user being unable to receive input from the system
(stimulus, feedback, or information about the state of the BCI)
or being potentially scared by the stimulus, (2) user being
unable to focus on the required mental task because of a high
mental workload or an increase in fatigue, (3) variability in
user-centric factors such as mood, stress, engagement, and
level of attention etc. Thus, it is imperative to include these fast
performance predictors, based on anatomical, psychological,
and neurophysiological information of the user, to estimate
likelihood of incompatibility. Then a user-specific training
protocol could be proposed to alleviate incompatibility situ-
ation in case of MI-BCI. As suggested by recent literature
[12][13][14][15][16], a BCI paradigm that is compatible with
all participants does not exist. Moreover, it must be adapted
to the users’ needs by following a user-centered design and
individual features (e.g., personality, age, mood, motivation,
etc.) which should be taken into account.

Fig. 1. Components of MI-BCI

B. Adherence to a single training protocol for all the partic-
ipants

Conventionally, the MI-BCI training paradigm adapts a
fixed training protocol that is administered uniformly to all
subjects. However, considering the significant individual dif-
ferences in the ability of skill training, necessary for MI-
BCI adaptation, it is expected that performance outcomes may
vary among individuals when subjected to a fixed training
regimen. Thus, an individualized approach in defining training
regime could be a viable solution to avoid poor performance
in using MI-BCI systems. According to literature, the skill
training is often linked to the demographics (e.g., age, gender),
cognitive ability and prior experience [7][17]. Thus, it is
important to take these factors into consideration for defining
an individualized BCI-trainig approach.

The main goal of this work is to design a framework (1)
to predict the likelihood of user incompatibility for a MI-
BCI paradigm (referred as trainability score) and (2) to define
the intensity of MI-BCI-training in a user-specific manner for
maximizing the user performance (and avoiding incompati-
bility). (3) By collecting data of more than 100 participants,
establishing a publicly open database.

III. PROPOSED METHOD

This work proposes a personalized framework for address-
ing MI-based BCI training problems by predicting the pos-
sibility of incompatibility and then pre-deciding the intensity
of training paradigm for the user while considering its de-
mographics and physiological factors into consideration for
optimizing his/her MI-BCI performance. The framework, a
neural network architecture, takes demographics, neurophysi-
ological, psychological factors as input, and gives trainability
score and the personalized training paradigm for user. The
pictorial representation of the framework is given in Figure.2.

Here, we will consider a participant pool of 80-100 healthy
individuals in the age group of 18-60 years, including all gen-
ders. These participants will be exposed to multiple trials over
a period of 4 weeks during with their neurophysiological data
(EEG, EMG, HR), demographics and psychological informa-
tion will be collected. Their performance in all the trials will be
recorded. All the data collected during the trials will be used to
train the neural network model that can take the demographic
information, psychological states, physiological measurements
and performance in a trial to predict the performance of a
subsequent trial. This data collection protocol, given in Fig.3,
will be performed over different sessions divided into runs of
approximately 7 minutes each [18][19]. To record enough data
samples for the DL model one session will include 8 runs, and
each run itself is divided into trials, with 30 per class (i.e., per
MI-task). One trial typically lasts 8s. Figure 3 illustrates the
timings and parts of one trial. The MI task will include 3
classes namely, imagination of foot, right hand and left hand.
The study will be conducted with a prior approval from local
ethics committee of the University of Technology Graz. The
participants will give their written and informed consent prior
to their enrollment in the study.
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Fig. 2. Data collection paradigm

A. Modulators influencing MI-BCI performance

As evident from the literature, several modulators act simul-
taneously to influence the MI-BCI performance of the user. In
this study, we categorize these modulators into three classes,
(1) demographic factors, (2) psychological factors and, (3)
neurophysiological factors (Figure 3). In demographic factors,

Fig. 3. Modulators of User-BCI compatibility in MI-BCI

age and gender have already been identified to have an impact
on driving BCIs or even on the ability to perform a motor
imagery task. In a recent study [20], we investigated how hand-
edness impacts brain activity in motor-related areas and found
significant differences in brain activity between left- and right-
handed participants during MI. In psychological factors, atten-
tion, memory load, fatigue, and competing cognitive processes
[21][22] [23][24]]influence instantaneous brain dynamics. In
addition, states like empathy might influence BCI performance
as shown by [15]. Motivation is also related to P300-BCI
performance [3]. Hammer et al. [25] for example found that
abilities in visuo-motor coordination and the ability to concen-
trate on a task were correlated with BCI performance. Others
[26] reported on the correlation between motor imagery ability
(measured by questionnaires) and following BCI performance.
Psychological information will be collected through different
questionnaires. For example, to evaluate the imagery ability

of persons the “Vividness of Movement Imagery Question-
naire (VMIQ-2)” will be used. Personality factors will be
retrieved by “B5T Big Five personality test” and with the
“STADI”, anxiety and depression can be recorded both as
a state and as a trait. Furthermore, the “Intrinsic Motiva-
tion Inventory (IMI)” assesses participants’ interest/enjoyment,
perceived competence, effort, value/usefulness, felt pressure
and tension, and perceived choice while performing a given
activity, thus yielding six subscale scores. The Perceived Stress
Scale (PSS) will be used for measuring the perception of
stress. It is a measure of the degree to which situations in one’s
life are appraised as stressful. In neurophysiological factors,
physiological predictors such as spectral entropy and power
spectral density, derived from resting state EEG recordings are
correlated with BCI performance [27][28][29][30]. In addition,
the baselines of resting state networks (RSNs) are dynamic and
modify any cortical signature instantaneously [31]. An effi-
cient BCI system must be robust to such inherent physiological
fluctuations over time to enable more generalized systems
[32]. Ahn et al. [13] for example reported that high theta
and low alpha is the pattern for BCI-illiteracy and that frontal
gamma correlated with BCI performance. Another important
neurophysiological predictor for a participant’s performance
in operating an MI-based BCI was developed by [10]. They
found that the alpha rhythm shows a positive correlation
with online BCI performance. This so-called Blankertz SMR-
predictor is currently one of the most replicated and reliable
neurophysiological predictors of MI-BCI performance. Fur-
thermore, Halder et al. [33] observed a correlation between
structural integrity and myelination quality of deep white
matter structures and BCI performance. We will integrate the
execution task to compare related ERDS patterns with those
of MI as a further possible predictor from neurophysiology
based on EEG.

B. Model and training objective

A data-driven exploration of individual information and
physiological data will be carried out with the help of se-
quential processing deep learning methods. We will use neural
network model which are designed to process sequential data
such as time series, natural language etc. Different variants
of the deep neural network will be considered in the study.
These architectures can learn from input data and predict
values for the future steps. We will train these models to
predict performance scores of a participant of MI tasks from
the modulators and performance scores of previous tasks.
The effects of motor imagery training can be maximized
by personalized experimental designs based on the outcome
of the NN model. For example, designing individual sched-
ules, choosing adequate task complexity, instructions, and,
in clinical populations, adapting the models for individual
impairment.

IV. CONCLUSION AND FUTURE WORK

In this work, we introduced a novel theoretical framework
for addressing MI based BCI user training problems by pre-
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Fig. 4. Flowchart of personalized model for MI-BCI training

dicting the possibility of incompatibility and then pre-deciding
the intensity of training paradigm for users. The framework
will be a neural network-based architecture and considers
demographics, neurophysiological, psychological factors of
the user as input to decide a personalized training regime for
the user. In the course of execution of this work, we will cover
a large sample size with varying age, gender, cognitive ability,
handedness and physiological activation. The data collected
during the implementation phase will be made available in
an open-source platform. Moreover, in future, this endeavor
might lay the groundwork for crafting a personalized training
paradigm that is both efficient in time utilization and does not
compromise user performance.
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[14] Kübler, A., Nijboer, F., & Kleih, S. (2020). Hearing the needs of clinical
users. Handbook of clinical neurology, 168, 353-368.
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