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ABSTRACT
Brain-Computer Interface (BCI) performance suffer from
various variability sources, including intra-subject factors
such as mental fatigue. While frequently measured using
subjective reports, mental fatigue can also be assessed via
blink parameters extracted from electro-oculography sig-
nals. To our knowledge, no study has yet evaluated blink
parameters during motor imagery (MI) BCI use to assess
the potential development of mental fatigue. In this study,
the blinks of 23 MI-BCI participants were analyzed con-
currently with subjective reports and BCI performance.
Our results showed that blink parameters were correlated
with neither MI-BCI performance nor subjective reports.
However, they revealed a positive correlation between
time-on-task and both blinks number and mean duration.
Similarly, subjective fatigue was correlated with time-on-
task. This suggests that blinks parameters may be useful
for BCI user monitoring, although their relationship with
BCI performance and fatigue needs further studies. Alto-
gether, this study paves the way towards a better under-
standing of mental fatigue during BCI use, and in finding
solutions to mitigate it.

INTRODUCTION

Intra-user Brain-Computer Interface (BCI) performance
is known to fluctuate due to the interaction of several
potential sources of variability including context, time
and day, as well as user engagement and fatigue [1–6].
Mental fatigue1 has been long known to impact human
performance and engagement in general [7], and has
started to be studied regarding both active and passive
BCI performance in the last decade [8, 9]. The measures
that were used to evaluate user fatigue in those previous
studies were mostly focused on electroencephalography
(EEG) metrics, as well as subjective (i.e. questionnaires)
and behavioral metrics.

Yet, to the best of our knowledge, the ocular behav-
ior metrics that can be extracted from the electro-
oculography (EOG) signal – and which are widely used

1a.k.a., reduced alertness, which arises from growing time-on-task.

for mental fatigue and vigilance characterization [10, 11]
– have never been used to study fatigue during active
BCI operation. Such metrics include blink number,
blink duration, opening and closing velocity, as well as
opening and closing duration [12–14].

Given the lacks identified in the literature, in order to
better understand the development of user fatigue dur-
ing the execution of active BCI tasks, and more precisely
during Motor Imagery (MI) BCI tasks, the present study
investigates the evolution of blinks and their parameters
across MI-BCI runs based on EOG signal analysis. To do
so, a standard motor imagery BCI protocol was used, in
which participants also had to answer questionnaires to
gather subjective reports of fatigue. It was expected that
(i) blink number and duration would increase with runs.
It was also expected that (ii) blink number and parameters
would correlate with BCI performance and subjective re-
ports. The remainder of this paper presents the data used,
the analysed performed, the results obtained and their in-
terpretation.

MATERIALS AND METHODS

Participants:
Twenty-tree (23) participants completed the BCI ex-
periment (10 women/13 men), aged 28.4 ± 6.2 y.o.
Recruitment was limited to volunteer participants aged
18-60 years old, with no history of neurological or
psychiatric disorders, normal (or corrected) vision and
naive MI-BCI users, i.e. using a MI-BCI system for the
first time. Before participating in each study, participants
gave informed consent. The study has been approved
and reviewed by Inria’s ethics committee, the COERLE
(Approval number: 2020-32).

Protocol:
The experiment consisted of 3 experimental MI-BCI
sessions (completed on 3 different days) per participant.
A brief pre-session questionnaire was assessed at the
beginning of each session to measure the participant
altertness. However we did not use this questionnaire for
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this study. Participants were then asked to perform two
short working memory tasks to serve as EEG training
data for a future offline passive BCI study unrelated to
the present paper. The MI-BCI training and use then
started.

The training protocol used for this experiment follows
the standard left and right hand MI-BCI protocol from
TU Graz [15], which comprises two phases: (1) motor
imagery practice to collect data for calibrating machine
learning algorithms (runs 1–4), and (2) closed-loop user-
training with real-time classifier feedback (runs 5–12).
After each of the 12 runs, participants were instructed to
rate their mental state using a 1-10 scale of selected items
from the NASA Task Load Index (NASA-TLX) question-
naire [16] (mental demand, effort and frustration levels),
as well as their subjective mental fatigue. Note that other
items of the NASA-TLX were not used in order to keep
the number of questions to a minimum. The general ex-
periment workflow is illustrated in Figure 1.

Figure 1: Experimental protocol. The orange circles correspond
to the minutes that each part takes. In green rectangles are
the questionnaires, in pastel orange rectangles are the experi-
menter’s instructions, in pink rectangles are the technical pro-
cesses with the cap, in yellow are the EEG recordings.

Figure 2: Organisation and timing of a single MI-BCI trial.

During each run, participants performed 16 trials (8 per
MI-task, presented in a random order) each trial lasting
8s. First a green cross appeared (t = 0s) on the screen,
then an acoustic signal (t = 2s) announced the appearance
of a red arrow (t = 3s). The arrow pointed towards the
task to be performed. (e.g., towards the left for left hand
MI) and remained displayed for 1.25s. From t = 4.25s,
the visual feedback was continuously provided (a blue
bar varying in length according to the classifier output).
The feedback lasted for 3.75s and was updated at 16Hz,
using a 1s sliding window. Positive feedback only was
displayed.

Then the screen turned black again after 8 seconds until

the next trial begin, starting randomly between 1.5 to
3.5 seconds later. (see Figure 2). At the end of the ses-
sion, participants filled-in the post-experiment NeXT-Q
questionnaire [17] (around 5 min). Then, the cap was
removed and participants were debriefed (around 8 min).

EEG and EOG data acquisition:
Participants sat comfortably in a chair in front of a
computer screen. EEG data was acquired using 42 active
scalp electrodes (i.e., F3, Fz, F4, FC5, FC3, FC1, FCz,
FC2, FC4, FC6, C3, C1, Cz, C2, C4, CP5, CP3, CP1,
CPz, CP2, CP4, CP6, P3, Pz, P4, AF3, AFZ, AF4, FC7,
FC8, C5, C6, TP9, TP7, TP8, TP10, PO7, POz, O1, Oz,
O2, PO8, 10-20 system), referenced to the left earlobe,
the ground electrode being placed in FPz position.
The electrooculography (EOG) signals of one eye was
recorded using three active electrodes. Two of them were
located below and above the eye (EOG1 and EOG3) and
one was located on the side of the left eye (EOG2). We
also recorded the electromyographic (EMG) signals of
both hands using two active electrodes located 2.5 cm
below the skinfold on each wrist. Physiological signals
were measured using two g.USBAmp amplifiers (g.tec,
Austria), sampled at 512 Hz, and processed online using
the open-source BCI platform OpenViBE [18]. The
recording room was dimly-lit. The raw signals were
recorded without any hardware filters.

Online BCI Performances:
The metric used for quantifying BCI performances is
the online Trial-wise Accuracy (TAcc), i.e. the default
performance metric provided online in the MI-BCI
scenarios of OpenViBE. TAcc measures the accuracy of
trial classifications, with each trial categorized as either
correctly or incorrectly classified. The classification
outcome for each trial is computed by summing the
signed classifier outputs over all epochs during the trial
feedback period (from t = 4.25 s to t = 8 s of the trial).
A trial is considered correctly classified if the sum sign
matches the required trial label (negative for left hand MI
and positive for right hand MI), otherwise, it is consid-
ered incorrect. For this experiment, online classification
was performed using Common Spatial Pattern (CSP) (3
filter pairs) band power features in 8-30 Hz and a Linear
Discriminant Analysis (LDA) classifier. TAcc for each
run was calculated as the percentage of trials accurately
classified using this methodology. Notably, this metric
utilizes LDA outputs instead of discrete classification
outputs for each epoch. Therefore, TAcc also reflects the
length of the feedback bar participants observed, as it is
proportional to the classifier output. Participants were in-
structed to train to achieve not only correct classifications
but also maximize the length of this feedback bar. Thus,
TAcc considers both aspects, providing a comprehensive
assessment of BCI performance.

EOG signal analysis:
EOG signals were analysed with MNE Python [19],
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a popular EEG and EOG data analysis toolbox that
provides extensive event detection and feature extraction
capabilities, and with NeuroKit2 a Python toolbox for
neurophysiological signal processing with advanced
artefact detection and removal [20].

The processing of EOG signals, to detect blinks and
extract their parameters, was the following, for each run:
(1) Bipolar channel: Creation of a bipolar EOG channel,
EOG1-EOG3, focusing on vertical EOG signals which
should capture blinks to enhance the blink peak detection
with MNE.
(2) Cleaning: Cleaning the bipolar EOG channel using
NEUROKIT eog_clean() function to prepare for eye
blink detection.
(3) Event detection: Detecting EOG events using MNE:
with the preprocessing.find_eog_events() function, to
detect EOG events in the cleaned bipolar EOG channel.
While this function typically enables precise identifi-
cation of eye movements and blinks, its performance
may be compromised by the presence of high amplitude
artifacts, especially when the signal contains significant
noise or bifurcated artifacts. Indeed, such function uses a
threshold on EOG amplitude to detect blinks, this thresh-
old being estimated according to the EOG minimum
and maximum values. To address this challenge, we
implemented a preprocessing step aimed at enhancing
the robustness of EOG event detection.
(4) Winsorization: Specifically, we applied win-
sorization to the raw EOG signal, exclusively on runs
that exhibited significant artifacts. Winsorization is a
technique that limits the influence of extreme values
(here higher than the 95 percentile of the EOG signal)
by replacing them with less extreme values (here the
95 percentile), thereby reducing the impact of outliers
on subsequent analyses. Doing so, we were able to
accurately identify and quantify the overall number
blink events within each run, as confirmed with visual
analysis.
(5) Additional epoching: In addition to the overall
number of blinks per run, we also epoched the runs to
estimate the number of blinks occurring only during
the motor imagery task. This thus provided us with the
number of blinks during MI tasks per run.
(6) Blink features: Then we extracted blink features,
describing the characteristics of the blinks, shedding
light on underlying physiological processes and potential
mechanisms contributing to fatigue. More precisely
We used Neurokit eog_features() function to extract
EOG-related features from each blink of the cleaned
bipolar EOG channel. These features included the blink
duration and the blink Velocity (of eyes closing velocity
denoted as pAVR and eyes opening velocity denoted
nAVR), i.e., the speed at which blinks occur.

Statistical analyses to study the relationship between
blinks parameters, time-on-task, MI-BCI performance
and subjective mental states:

Our goal was to study whether we could identify re-
lationships between the parameters extracted from the
blinks (number of blinks, duration and velocity) and
MI-BCI performance, time-on-task (here measured as
the run index, which increases with time-on-task) and/or
subjective mental states, notably mental fatigue.

To assess these potential relationships, we used repeated
measures correlation (rmcorr) analyses, to determine the
common within-individual association for paired mea-
sures assessed multiple times for multiple individuals.
[21]. Here the repeated measures per subject were the
measures collected across all 8 feedback runs per session
(repeated measures across runs). A total of 27 correlation
analyses were performed: 4 between the number of over-
all blinks and the 4 mental states, 4 between MI-BCI per-
formance and the 4 mental states, 4 between the number
of blinks (overall and in MI tasks only) and time-on-task
or MI-BCI performances, 6 between blinks duration and
the 4 mental states, MI-BCI performances and time-on-
task, and 8 between the mean blink velocity (pAVR and
nAVR), and the 4 mental states and 1 between subjec-
tive fatigue and time-on-task. Thus, all p-values for these
analyses are reported as corrected for multiple compar-
ison with False Discovery Rate (FDR) across these 27
tests.

RESULTS

Relationship between subjective mental fatigue and
time-on-task:
There was a positive correlation between time-on-task (as
measured by the run index) and the subjective mental fa-
tigue, showing that participants tend to report being in-
creasingly more tired as time-on-task with the BCI in-
creases (see Figure 3).

Figure 3: Repeated measure correlation between time-on-task
(measured using run index) and the mental fatigue per partici-
pant, r=0.2, p<0.00001 (one colour per participant).

Relationship between BCI performances and mental
states:
No significant correlation was observed between mental
fatigue, mental demand, and effort with online perfor-
mance measures. However, a slight negative correlation
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was detected (r = −0.138, p<0.005) between the perfor-
mance and the frustration per participant, indicating that
participants with good performance tend to be less frus-
trated (see Figure 4).

Figure 4: Negative repeated measure correlation per partici-
pants between BCI performance in % and the frustration mea-
sured by NASA-TLX, r=−0.1386, p<0.005 (one colour per
participant).

Relationships between number of blinks and BCI per-
formance or mental states:
No significant correlations were found between the
number of blinks observed during the runs and online
performance. Similarly, there were no significant cor-
relations detected between the number of blinks and
the four different subjective mental states (i.e., mental
fatigue, mental demand, effort, and frustration) assessed.

Relationships between blinks parameters and BCI per-
formance or mental states:
First, it should be noted that Neurokit was not able
to extract automatically the blink parameters from all
blinks. Out of 552 runs, Neurokit was able to extract all
the blink parameters for all the blinks of 380 of those
runs. The subsequent results are thus based on 380 runs.

Our correlation analyses revealed that there were no
significant correlations between between blink velocity
(mean pAVR and mean nAVR) per run and the various
mental states. There was no significant correlation be-
tween the mean duration of blinks and the different men-
tal state, except with frustration. There was a negative
correlation between them (r=−0.15, p<0.01), suggesting
that blink duration decreases when frustration increases
(see Figure 5). There was also no correlation between the
mean duration of blinks and MI-BCI performance.

Relationship between blinks parameters and time-on-
task:
A significant positive correlation was observed between
the overall number of blinks per run and time-on-task
(i.e., with the run index) (r = 0.178, p<0.0005), suggest-
ing that for each session, the number of blinks increased
with time-on-task, i.e., with the number of MI-BCI runs
completed (see Figure 6).

Figure 5: Repeated measure correlation between frustration and
the mean duration of blinks, r=−0.15, p<0.01 (one colour per
participant).

Figure 6: Repeated measure correlation between the overall
number of blinks per run and time-on-task (as measured by the
run index) per participant, r=0.178, p<0.0005 (one colour per
participant).

Similarly there was a positive correlation between the
number of blinks during the MI tasks per run and time-
on-task (i.e., run index) (r = 0.176, p<0.0005), suggest-
ing as well that the number of blinks during MI tasks per
run increased with time-on-task, i.e., with the number of
MI-BCI runs completed, in a given session (see Figure
7).
There was a positive correlation between the mean dura-
tion of blinks in a run and time-on-task (i.e., with the run
index) (r = 0.09, p<0.005), suggesting that blinks are be-
coming increasingly longer with time-on-task, i.e., with
the number of runs completed (see Figure 8).

DISCUSSION

Overall, contrary to our initial hypotheses, we did not find
any significant correlation between the number of blinks
or any of the blinks parameters (duration, opening and
closing velocity) and neither online MI-BCI performance
nor with subjective mental states, including fatigue.
However we could find a significant positive correlation
between the subjective fatigue and time-on-task, suggest-
ing that a BCI session is increasingly more tiring as time-
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Figure 7: Repeated measure correlation between the number
of blinks during the motor imagery task per run, and time-on-
task (as measured by the run index) per participant, r=0.176,
p<0.0005 (one colour per participant).

Figure 8: Repeated measure correlation between the duration
of blinks during the motor imagery task and time-on-task (as
measured by the run index) per participant, r=0.09, p<0.005
(one colour per participant).

on-task increases, which confirms subjective reports from
our participants.
Interestingly enough, while the number of blinks or the
mean blink duration were not correlated with subjective
fatigue, they were both significantly correlated (although
with a weak correlation) with time-on-task, as subjective
fatigue did. In other words, both the number of blinks and
the mean blink duration increased with time-on-task with
a BCI. In the literature, both parameters have been related
with mental fatigue [10, 11], although not only. However,
the fact that they were not correlated with subjective fa-
tigue nor with MI-BCI performance raises a number of
questions. It may be that the number and mean duration
of blinks are rather affected, in this context of MI-BCI,
by visual fatigue (the current BCI protocol being based
on visual cues and feedback) rather than by mental fa-
tigue. Another possible interpretation could be that MI-
BCI performance, blink numbers and duration and sub-
jective fatigue have a more complex relationship, possi-
bly non-linear, that is not captured by the linear correla-
tion analyses we performed. Along these lines, it is inter-
esting to note that subjective fatigue was also not linearly

correlated with MI-BCI performance, even though men-
tal fatigue is known to affect EEG and thus possibly BCI
performance [8]. Alternatively, maybe that subjective fa-
tigue and more objective markers of fatigue such as those
based on EOG as studied here significantly differ from
each other. This will need to be studied in more details in
the future.

An unexpected finding was that blink duration signif-
icantly decreased with increased subjective frustration
during MI-BCI use. A possible interpretation could be
that this frustration is most likely due to poor MI-BCI
performances (since frustration and MI-BCI performance
were also correlated), and that such poor performance
motivates the (frustrated) users to focus more on the task,
leading to shorter blinks.

CONCLUSION

In this paper, our aim was to study whether blink pa-
rameters, such as their number, their duration or veloc-
ity, could be used to monitor fatigue during MI-BCI use,
and to study whether they were related to subjective fa-
tigue, MI-BCI performance and time-on-task during MI-
BCI use. To do so, we analysed the data of of 23 par-
ticipants, who performed 3 sessions of 12 runs each (in-
cluding 8 runs with real-time feedback) of MI-BCI train-
ing. We studied the (linear) relationships between these
participants’ blink parameters estimated from their EOG
signals and their MI-BCI performance, subjective men-
tal states (including fatigue, measured after each run) and
time-on-task.

Altogether, our analyses did not reveal any significant
correlation between these blinks parameters and neither
MI-BCI performance nor subjective mental states. They
did reveal a positive correlation between time-on-task and
both the number of blinks and the mean blink duration.
Similarly, subjective fatigue significantly correlated with
time-on-task.

Overall, while these blink parameters did not prove as ac-
curate as expected to monitor mental fatigue during MI-
BCI use, they do reflect time-on-task and may thus still
be useful to consider for user monitoring during MI-BCI
use. Additionally, the results obtained also call for fur-
ther studies to better understand the link between MI-BCI
performance, subjective measures of fatigue and EOG-
related blink parameters.

Future works could consider additional markers of fa-
tigue, e.g., measures of saccade, which may be more re-
liable for cognitive state monitoring than blinks [14], or
non EOG markers, e.g., cardiac markers or even directly
EEG markers of fatigue [8]. In conclusion, this study
paved the way towards acquiring a better understanding
of mental fatigue in the context of MI-BCI use, and there-
fore in finding solutions to mitigate such fatigue to in-
crease user engagement and performance.
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