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ABSTRACT: In the Brain-computer interface (BCI), the
recognition of movements is useful for controlling exter-
nal devices, such as robotic arms, helping people with
disabilities or performing remote operations in unsafe
places. In this work, we present a new method to build an
online BCI for motor execution classification that takes
into account not only the movements but also the resting
period beging essential to recognize when an individual
is not engaged in any activity. An artificial intelligence
model, EEGnet, was first trained on three classes of left-
and right-hand movements, and resting with 0.43 of ac-
curacy. The same type of network was trained on two
classes by combining the three classes above, thus having
left-right, rest-left, and rest-right, with 0.73, 0.67, 0.63 of
accuracy, respectively. Therefore, the 2-classes EEGnet
were combined in a network tree that is able to correctly
classify not only left- and right-hand movements but also
resting signals to improve the accuracy to 0.55 of these
three classes.

INTRODUCTION

The study of brain-computer interface (BCI) focuses
also on recognizing movements of the hand, upper limb,
wrist, and fingers from human neurophysiological sig-
nals to control external devices such as robotic arms.
Brain signals are obtained through acquisition procedures
that can be characterized as surgical, invasive, or non-
invasive [1]. The noninvasive class includes electroen-
cephalography (EEG), functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), and
near-infrared spectroscopy (NIRS). Among these, EEG
strikes a good compromise between sensitivity, spatial-
temporal resolution, and costs. In the literature, EEG-
based BCI is used to decode a user’s movement intention
known as motor imagery (MI), and as well as to decode
real human movements, motor execution (ME), using Ar-
tificial Intelligence (AI)[2]. The ME deep learning (DL)
algorithms must be trained using EEG datasets. The ME
datasets, available in the literature, collect many types of
movements, ranging from the most complex to the most
intuitive, and DL techniques are applied to classify these
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data. The EEG Motor Movement/Imagery Dataset [3]
was developed by obtaining signals from the BCI2000
64-channel system by choosing 109 volunteer individu-
als who imagined opening and closing left or right hand,
opening and closing both hands or both feet according
to video stimuli, and then they are replicated with the
real movement of the subjects. Another dataset is EEG
Data for Voluntary Finger Tapping Movement which is a
collection of EEG data acquired during voluntary asyn-
chronous index finger tapping by 14 healthy adults. EEG
was recorded using a TruScan Deymed amplifier with 19
channels for three conditions: tap of the right finger, tap
of the left finger, and resting state, with a sampling rate
of 1024 Hz. Each participant performed 120 tests, 40
for each of the three conditions [4]. In the case of on-
line BCI, besides classifying movement, it must also be
identified the no motion phase, also called resting state.
Some work has been published that refers to classifying
rest for MI. In [5] a hybrid model that combines convo-
lutional neural network (CNN) and transformer architec-
tures, ConTraNet, was implemented using their strengths
to improve classification performance in various EEG ap-
plications, including categorization of rest. In [6] the
VS-LSTM model was introduced to classify limb MI us-
ing EEG signals, with a particular focus on distinguish-
ing between motor and resting states. In the study by
[7], novel approaches for ME/MI classifications were in-
troduced, achieving a high level of accuracy. However,
the authors did not take into account the rest period for
classification. In [8], the authors performed the classi-
fication on MI signals, open and close eyes, using Lin-
ear Discriminant analysis (LD), Naive Bayes (NB), and
Support Vector Machine (SVM) classification algorithms
achieving an accuracy of 91.18%, 95.41%, and 99.51%
respectively. Moreover, in [9] the authors classified 2, 3
and 4-classes using EEGnet on MI and rest task, reach-
ing and overall accuracy of 82.43%, 75.07%, and 65.07%
respectively. Also in [10], the authors classified the MI
signals and Rest, reaching an accuracy of 70.64% on 5
classes. This work shows that most of the studies con-
ducted on resting state are carried out for MI, leaving out
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ME. In [11], it can be observed that the two cognitive
processes MI and ME are different. For this reason,the
present work describes the activity of the first stage that
focuses on analyzing the response of the rest signal to
the real movement of the hand (left and right) for the
robotic control arm in rehabilitation [12]. The objec-
tive of this research is to determine the optimal method
for distinguishing EEG data of REST phases from EEG
data of ME by employing a deep learning architecture,
EEGnet[13]. This involves decomposing the three-class
problem (REST, LEFT, RIGHT) into several binary clas-
sifications (REST vs LEFT, REST vs RIGHT, LEFT vs
RIGHT), and addressing this through the construction of
a Network Tree that integrates several EGGnet trained for
identify the REST and the two movement-related classes,
for enhancing classification performance compared to the
EEGnet trained on three classes that shown low accuracy
during our previous analysis.

MATERIALS AND METHODS

Data from 105 people from the Physionet Dataset [3]
were used. The original data set consisted of 109 persons,
but four subjects were excluded because they performed
different numbers of trials with a different sampling rate.
Each subject was recorded while performing an execu-
tion or the imaginated execution of opening and closing
the right or left hand for 4 seconds. Before each exercise
performed or imagined, there was a 4 seconds of rest.
Each person was recorded three times and each recording
contained approximately seven movements in each cat-
egory, plus one rest period for each movement. Of 64
electrodes, we used only the following 15: Fpl, Fp2, F7,
F8, Fz, P3, Pz, P4, Ol, 02, F3, F4, C3, C4, Cz. This
was done to reduce the number of channels and make the
system lighter and more portable, given the possibility of
using a cheaper EEG device (such as Enobio 20! or other
light mobile EEG device). After exclusion, the epochs
were extracted using one second of signal, starting from
the marker, without any baseline reduction. Signals were
downsampled the data from 160 to 80 Hz and a high-pass
filter to 1 Hz was used.

In Fig 1, the pipeline for preprocessing applied to the
dataset and the classification stage are shown.

Our work aims to create a deep learning model capa-
ble of recognizing the movement execution of the right
hand, the left hand, and the rest period. For this rea-
son, only the EEG data acquired during ME conditions
were used. Finally, our dataset was composed of 4725
signals under “ME rest condition”, 2369 signals under
“ME left-hand movement” and 2356 signals under “ME
right-hand movement”. In each class, the correspond-
ing trials of all selected subjects are grouped. In Fig.
2 the train-validation-test sets splitting is shown. The
movement decoding process was carried out using the
DL architecture EEGnetV4, from now on EEGnet [13],
trained on the EEG signal from the EEG motor move-
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ment/image dataset [3]. Preprocessing and deep learning
models were performed using Python with MNE library
[14] for EEG data analysis, PyTorch [15] for the deep
learning and [16] for the EEGnet architecture. Before
training, starting from the original data, we performed the
trasformation using Common Spatial Pattern (CSP) [17,
18] and used the transformed signal as the input for the
network. This operation reduced the number of channels
from 15 to 2, maximizing the distinguishability between
classes. This process was repeated for all EEGnet used.
All networks were trained using a balanced training set,
so all classes had the same number of samples in both
for training and for test. The training hyperparameters,
displayed in the Tab. 1, were selected following sever
al experimental trials. We noticed that signal downsam-
pling did not affect performance, so we downsampled the
signal to improve training speed. We used the Stochastic
Gradient Descending (SGD) to improve the convergence
of the training, applying also a dynamic Learning Rate,
starting from a value of 0.004, that reduced its value au-
tomatically when, after 25 epochs of inactivity, it did not
improve. The factor of reduction of Learning Rate was
set at 0.2. Moreover, we used a double batch size [19]
that changes when there was no more improvement of
the network also after reducing the Learning Rate. Fi-
nally, we used a decay rate of 0.001 to improve the learn-
ing rate of the network. The signals of REST, execution
of open close right-hand (RIGHT) and execution of open
and close left-hand (LEFT) were considered. As a first
step, the EEGnet network was trained on the three classes
REST (0), LEFT (L), and RIGHT (R), called OLR, with
unsatisfactory results, as shown in Tab. 2 in the last
row. Therefore, comparisons were made between the
same EEGnet trained on two classes left-right, rest-left
and rest-right classes defined as LR, OL, and OR, respec-
tively. After this analysis, we observed that the OLR net-
work did not correctly distinguish the three classes to the
LR, OL, and OR networks.For this reason, a Network Tree
based on previously tested EEGnets was created to im-
prove the classification accuracy and analyze the REST
signal. Our “Network Tree”, was composed of three dif-
ferent EEGnetV4 [13] individually trained on different
subsets of our dataset, to classify different types of sig-
nal:

e EEGnetrg: the network was able to classify cor-
rectly the signals labeled as Left or Right;

* EEGnetgr: the network was able to classify cor-
rectly the signals labeled as Rest or Left;

* EEGnetog: the network was able to classify cor-
rectly the signals labeled as Rest or Right.

To build the Network Tree, the classification of the class
unknown to each network was tested with the following
results:

* a Rest epoch, if given as an input to EEGnetyg, was
classified as Right;
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Figure 1: The pipeline used for data preparation and classification stages.
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Figure 2: The split of the original set in train, validation and test
set after preprocessing and epochs extraction.

Hyperparameter Value
Sample shape 1,15,79
Sampling rate 80 Hz
N. channels 2
N. epochs 2000
Optimizer Stochasti.c Gradient
Descending (SGD)
Scheduler type Reduce learning rate when a

metric has stopped improving

Learning rate 0.004
Patience 25 epochs
Factor scale 0.2
Batch size 16, 32
Decay 0.001

Table 1: The hyperparameters used to train all EEGnet

» aRight epoch, if given as an input to EEGnetor, was
classified as Rest;

* a Left epoch, if given as an input to EEGnetog, was
classified as Right.

Each network started with a CSP transformation, and
each CSP transformation was different for each network.
Based on the results shown in the Tab. 2, our system
was behaves as follows: a sample was given as input
in EEGnetpg: if it waas classified as Left, the original
epoch was given to EEGnetyy, for final classification in
Rest or Left movement; If it was classified as Right, then
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the origianl epoch was given as input in parallel to two
networks: EEGnety; and EEGnetyz. Based on the re-
sults, the truth table in Fig. 3 was applied to classify the
epoch.

The network tree architecture is shown in Fig. 3. Tab. 3
shownthe results of the classification using the Network
Tree.

RESULTS

For evaluating the model, Accuracy, Precision, Recall,
and F1 metrics were used. In Tab. 2 the results are shown
for all networks trained individually. In the last three
rows of Tab. 2, the results for all the 2-class networks
shown that the binary classification was more accurate
related to the 3-class network (last row). The EEGnetgy,
shown a good discriminability power between Left and
Right movements, while when a Rest signal was given as
an input to this net, it created a light unbalancing clas-
sification result towards the Right class. It was interest-
ing to note that a Right sample was classified as Rest if
was given as input to EE Gnetor, while a Left sample was
classified as Right if was given as input to EEGnetog.
Starting from these results, we built the Network Tree
combining all 2-classes network in a classification cas-
cade. The proposed network achieved an overall accu-
racy of 0.55, greater than the chance [20] and improv-
ing the performance respect to EEGnetyrg. Moreover,
in the EEGnetg g the single classes were misclassified
frequently, expecially Rest and Right, and it was shown
looking the Recall metric. It must be emphasised that in
the training of EEGnetorr, three classes were extracted
with the CSP instead of two, so the resulting multivari-
ate signal was composed by 3 channels. For comparison
the results for the Network Tree are reported, in Tab. 3,
showing a more stable behavior of the network in terms
of classification. This aspect is well represented by the F1
score, which takes into account both precision and recall.
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Network | Class | Support | Precision | Recall | F1 | Accuracy | Unknown Class | Prediction
Rest 574 0.62 0.15 | 0.24 - -
EEGnetyrp | Left 594 0.39 0.96 | 0.55 0.43 - -
Right 606 0.72 0.18 0.29 - -
Left 600 0.74 0.73 | 0.74 0.46
EEGneiir | pight | 582 0.73 073 | 073 | 073 Rest 0.54
Rest 576 0.66 0.64 0.65 . 0.73
EEGnetor | 1or | 609 0.67 069 | o068 | OO Right 0.27
Rest 568 0.67 0.46 | 0.55 0.42
EEGnetor | pione | 614 061 | 079 |069| 0O Left 0.58

Table 2: Prediction metrics table for all networks used in Network Tree

| Class | Support | Precision | Recall | F1 | Accuracy

Network
Rest 591 0.
Network Tree | Left 586 0.
Right | 596 0.
Table 3: Results of Network Tree
------------------- “"""""""I
Original epoch
(1,15,79)
: CSPLR
Transformed epoch
: (1,2,79) :
| EEGnetLR |
| T 1
i Classified Classified
as Left as Right
Originall epoch Original epoch
(1,11, 79) (1,15,79)
: [ csPoL ] L [ csPoL ] i CSPOR
Transformed epoch Transformed epoch Transformed epoch
(1,2,79) (1,2,79) (,2,79)
[ EEGnet OL ] D [ EEGnet OL ] i [ EEGnet OR ’ :
A 4
EEGnet OL EEGnet OL|EEGnet OR| Output
REST | LEFT 0 Don'tcare [ REST
L 0 REST
L R RIGHT

Figure 3: Network Tree - the first classification of the signal
is performed by the EEGnet;g and then a classification check
is carried out. If L is identified, the input signal is sent to the
EEGnety, for final classification between O or L. In case R is
classified, the input signal is sent both to the EEGnety;, and
EEGnetyg. The result of their combined classification returns
the result of the final classification between 0 or R. The input
undergoes, before being sent to a network, a transformation by
the associated CSP.
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48 045 | 0.46

57 0.61 | 0.59 0.55
58 0.59 | 0.58
CONCLUSION

This work aimed to present a new method for a motor-
based BCI. In an online classification, the EEG signal
is recorded while performing L o R hand movement or
while having a rest. In this field, there is a literature
gap on the non-movement classification, also known as
Rest, but this is fundamental in online application since
there are many non-movement periods while using a BCI
[21]. The novelty lies in the concatenation of a network
tree of able of correctly classifying not only left and right
hand movements, but also the rest signals. Future work
should test the system in real-time by including a pre-
processing pipeline capable of quickly cleaning the sig-
nals [22, 23]. Furthermore, other tasks, such as motor
imagery on emotions [24], needs to be tested, and us-
ing different types of features extracted by the EEG data
such as connectivity [25], independent components [26],
or other features [27]. Moreover, future improvement
of the Network Tree will include both subject-dependent
and subject-independent cross-validation analysis, split-
ting the subjects into training and test groups before the
training.
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