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ABSTRACT: This study presents a Machine Learning-
based identification of electroencephalographic (EEG)
features related to transcranical Electrical Stimulation
(tES) in Multiple Sclerosis (MS) patients. The contri-
bution is a first step toward an automated system capable
of adjusting electrical stimulation according to the EEG
feedback (EEG-based adaptive tES). Five MS patients
underwent both tES or sham treatments and a Theory of
Mind (ToM) training, and the EEG signal before and af-
ter treatments was acquired both in Eyes-Open (EO) and
in Eyes-Closed (EC) condition. tES was administered
by fixed cathode electrodes on the right deltoid muscle.
Power differences between post and pre tES treatment in
six bands of interest were explored. Support Vector Ma-
chine classifier achieved 92.5 % and 100.0 % accuracy
in classifying a subject treated with tES, by exploiting
power differences within high beta in T3 and gamma in
T3 and P3 in EO condition and power differences within
gamma in T3, Pz, Cz in EC condition, respectively. In
particular, absolute power in gamma band was reduced
after the treatment. The result is clinically significant due
to the tendency of MS patients to have high values in this
band, caused by the compensation determined by the neu-
rons as a result of the demyelination process.

INTRODUCTION

Multiple Sclerosis (MS) is a neurological disease with re-
current episodes of focal disorders influenced by the loca-
tion and extent of demyelinating lesions within the Cen-
tral Nervous System (CNS) [1]. MS can cause deficits
of Theory of Mind (ToM), namely the capacity to in-
fer mental states causing action and to reason on the
contents of one’s own and others’ minds [2, 3]. How-
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ever, how ToM subcomponents (cognitive and affective)
are affected in MS it’s not yet well understood. Typi-
cally, MS symptoms are pharmacologically treated. Cur-
rently, multidisciplinary approaches based on symptom
type are emerging, including disease-modifying thera-
pies, lifestyle modifications, psychological support, and
rehabilitation interventions. [4-6].

In recent years, also transcranial Electrical Stimulation
(tES) has been considered among the treatments used to
relieve MS symptoms.

tES consists in the administration of small currents ap-
plied to the scalp [7]. The applied current can induce
acute or long-lasting effects depending on the signal
specifications [8]. Three tES modalities, distinguished
by current administration methods, are commonly used :
low-intensity Direct Current (tDCS), Alternating Current
(tACS) and Random Noise Current (tRNS) [9, 10].

tDCS is the most widely used technique for the treatment
of various medical conditions [7]. tDCS microscopically
produces a series of effects including resting threshold
modification, changes in synaptic processes, enhance-
ment of synaptic plasticity and effects on glial cells [11-
14]. tDCS treatment effects on MS-related impairments
have rarely been addressed, despite stimulating neuronal
activity is an important promoter of the remyelination
process [15]. Some studies suggest positive effects, in-
cluding attention enhancement, executive function and
motor improvement, as well as reduction of associated
symptoms [16, 17][18].

tDCS technique has been demonstrated to be effective but
without following precise guidelines on stimulation pa-
rameters and brain areas to be stimulated. In most cases,
the effectiveness of the treatment is assessed only by the
improvement of pathology symptoms [19].
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Studies on healthy patients demonstrated the EEG-based
effects of tDCS treatment by describing changes in the
five frequency bands: delta ([0.5-4] Hz), theta ([4-8] Hz),
alpha ([8-12] Hz), beta ([12-30] Hz) and gamma ([30-
45] Hz). According to Boonstra et al. [20], stimulation
causes an increase in power especially below 5 Hz (delta
band). Theta band is also involved in this study and the
literature observes a specific increase in spectral power
during tDCS stimulation specifically in the cingulate cor-
tex and the dorsolateral prefrontal cortex (DLPFC) [21,
22]. Some results showed significantly changes in the al-
pha band power after anodal tDCS over the left DLPFC
[23, 24], while Mangia et Al.[21] reported variations in
the beta band during and after stimulation. Song et al.
[25] observed an increase in beta frequency power af-
ter tDCS treatment, resulting in a change in the state of
efficient cognitive functioning of the brain. Also an in-
crease in gamma power associated with the engagement
of proactive control in DLPFC was demonstrated [26].
Changes in EEG frequency bands indicating neuron dete-
rioration are also connected with Multiple Sclerosis. MS
patients have shown abnormally low Posterior Dominant
Rythm (PDR), a reliable predictor of baseline neural ac-
tivity, with a significantly lower mean value [27]. Lit-
erature demonstrates a significant increase in power in
the delta band in the fronto-temporo-central regions and
significant increase in delta and theta waves has been ob-
served in MS patients with a high load of subcortical le-
sions [28, 29]. Increased amplitude in gamma band was
also observed in Relapsing-Remitting Multiple Sclerosis
(RRMS) patients. Moreover, decreased alpha frequency
during rest indicates pathological desynchronization of
widespread neural networks regulating cortical arousal
fluctuation and tonic attention [29]. Although the use of
EEG signal has been widely used for the treatment and
diagnosis of Multiple Sclerosis, there are few studies us-
ing tES treatments referring to changes in EEG features
to improve health condition of MS patients [30, 31]. This
study aims to identify EEG features on tES-treated MS
patients and the analysis of start and finish EEG condi-
tion correlated with clinical condition changes in ToM
framework.

MATERIALS AND METHODS

Clinical protocol: Five MS patients (4 women, 1 man)
ranging from 18 to 75 years with the Expanded Disability
Status scale (EDSS) score between 1 to 7 were enrolled in
this study [32]. The exclusion criteria were the following:

* History of psychiatric illness, head injury or other
neuro-degenerative diseases (dementia or global
cognitive impairment);

* Surgery;
* Intracranial metal implantation and pacemaker;
* Severe disability (score > 7 on the EDSS scale);

* Pregnancy or lactation;
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* Illiteracy.
The experimental protocol involved the following phases:

* Collection of demographic and clinical history
data, a neuropsychological assessment and self-
administration of questionnaires;

* 3 minutes EEG recording before treatment sessions
in Eyes-Open (EO) condition;

¢ 3 minutes EEG recording before treatment sessions
in Eyes-Closed (EC) condition;

* Non-pharmacological treatment conducted twice a
week for 16 weeks, for a total of 32 sessions.

* 3 minutes EEG recording at the end of all treatment
sessions in EO condition;

* 3 minutes EEG recording at the end of all treatment
sessions in EC condition;

* Monitoring of the neuropsychological profile by ad-
ministering the same battery of tests used during the
first phase.

The order of EO and EC acquisitions was random-
ized both pre and post tES treatment. The non-
pharmacological treatment was characterized by:

* Structured training on Theory of Mind conducted by
a psychologist [33]. It consists of the viewing of
short videos selected from films, or specially made,
portraying various human social interactions requir-
ing the recognition of emotions (happiness, sadness,
anger, surprise, fear, and disgust) and ToM skills
(decoding beliefs, irony, misunderstandings, and in-
tentions) to be understood correctly. The training
was conducted twice a week for 30 minutes, simul-
taneously with the tDCS intervention. In total, 64
short videos were prepared, of which 32 focus on the
recognition of basic emotions (happiness, sadness,
anger, surprise, fear, and disgust), and 32 represent
social situations that require cognitive ToM skills
to be understood (such as understanding irony and
gaffes, attributing beliefs and intentions). In each
session, two or three videos were presented which
can be viewed several times, according to the pa-
tients’ requests. Patients be asked to become ’social
investigators’, making interpretations on the emo-
tions, mental states, and intentions of the protago-
nists of the social scenes presented.

¢ An electrical brain stimulation intervention using
tDCS. During the active stimulation sessions, a
2.5x2.5 cm anode was applied on the left DLPFC
area, while the cathode was placed on the right del-
toid muscle. The tDCS was applied for 20 minutes
at an intensity of 2 mA. The same procedure was
used for the sham condition, but in this case, the
electric current was applied only in the first 20 sec-
onds of tDCS. The sham treatment, as well as the
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active ones, was applied twice a week for 16 weeks
for a total of 32 sessions.

A flow chart of the experimental protocol is showed in
Fig. 1

Collection of

ToM tES/sham
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Figure 1: Experimental protocol flow chart.

Instrumentation: EEG data were acquired by Mitsar
EEG 201 system. It is a QEEG 21 channel device ar-
ranged according to the international 10/20 positioning
system. The sampling rate is 2000 Sa/s. For tDCS treat-
ment, 1x1 tDCS mini-CT (Soterix Medical, New York,
USA) was used. It is a low intensity transcranical stim-
ulator with current intensity ranging between 0.1 and 5
mA, and current duration beetween 5 and 40 minutes.

MITSAR EEG 201 1x1 tDCS mini-CT

]

(a)
Figure 2: EEG acquisition (a) and tES (b) systems.

EEG data processing: EEG data were filtered by a
fourth-order bandpass Butterworth filter ([0.5 - 45] Hz),
then the Artifact Subspace Reconstruction (ASR) [34]
procedure was used. ASR splits the EEG signal into com-
ponents and once a threshold based on the signal vari-
ance distribution is identified, rejects noisy components
above the threshold, reconstructing the signal by consid-
ering the remaining components. ASR was used with a
cutoff equal to 15 to remove artifacts. Then EEG tracks
were divided into 1—s epochs, organized in the form of
[Epochs x Channels x Features].

In the features extraction phase, PDR amplitude and fre-
quency and absolute and relative powers for all channels
in delta, theta, alpha, low beta, high beta and gamma
bands were computed in EC and EO conditions. Later,
differences between pre and post both tES and sham treat-
ment were calculated. The Sequential Feature Selection
(SFS) [35] was applied in the feature selection phase.
SFS is used to identify the most significant features to
discriminate among different conditions. In this phase,
the Support Vector Machine was the classifier embed-
ded within the SFS. After creating the label vector with
the O and 1 values associated with tES and sham treat-
ments respectively, the training phase was carried out.
Four patients were employed for training the classifiers:
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two from the stimulation group and two from the sham
group. Subsequently, the epochs of a fifth patient were
allocated for the test set. The training set comprised 480
epochs, while the test set 120 epochs. The most informa-
tive features were selected during the training phase. The
number of the features selected by the SFS algorithm was
defined as the minimum number maximizing the classi-
fication accuracy. Only the features selected during the
training phase were considered for the test phase on the
epochs from the fifth patient.

Results: Three EEG features maximizing the discrim-
inability between treated and no-treated patients both in
EO and in EC conditions were selected by the SFS al-
gorithm (Figs 3, 4). SFS algorithm on the train subjects
reported a mean accuracy of 88.75% with a standard de-
viation of 8.45% in EC condition and a mean accuracy of
88.75% with a standard deviation of 2.22% in EO condi-
tion. Subsequently, one-shot test on the fifth subject was
applied. In the EO condition, the test accuracy was of
92.5 %. The considered features were i) Difference of
absolute powers in high beta band in T3 channel, ii) Dif-
ference of absolute powers in gamma band in T3 channel,
and iii) Difference of relative powers in gamma band in
T5 channel. In the EC condition, the test accuracy was of
100.0 %. The considered features were i) Difference of
absolute powers in gamma band in T3 channel, ii) Differ-
ence of absolute powers in gamma band in Cz channel,
and iii) Difference of absolute powers in gamma band in
Pz channel.

EEG features

Frequency bands Power
Delta @~Absolute

:I\T;;Z OReIative

®Low Beta

@®High Beta

@ Beta
Gamma

Figure 3: Most informative EEG features in Eye-Open condi-
tion for discriminating tDCS- and sham-treated patients.
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Figure 4: Most informative EEG features in Eye-Closed condi-
tion for discriminating tDCS- and sham-treated patients.
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DISCUSSION

Only two studies on EEG-based assessment of tDCS
treatment effectiveness in MS patients are reported in lit-
erature, namely Gholami et al. [31] and Ayache et al.
[30]. In particular, in Gholami et al. study, EEG acqui-
sition with eyes closed in resting state was considered.
An increase of Power Spectral Density (PSD) in alpha
band and a decrease of PSD in beta and high beta bands
over F3, C3, and P3 resulted between pre- and post-tDCS
treatment. However, statistical tests did not confirm the
significance of the results. The authors hhypothesize that
the impact of tDCS causes a power shift from beta to
alpha frequencies, associated with the improvement in
cognitive function, attention, and information processing
speed. A limitation arises from exclusively EEG measur-
ing with eyes closed. Indeed, EEG measurements under
eyes-open conditions can reveal alterations in the highly
myelinated visual structures otherwise not visible in MS
patients [36].

For Ayache et al., only the activity of theta band over Fz
and Fpz channels during a cognitive task was focused. A
statistically significant increase after tDCS with respect
to sham treatment was highlighted.

The increased theta activity was associated with analgesic
effects on MS symptoms. However, the study focuses
only on the theta band within the region of stimulation.
Other bands and other regions of the scalp are not ex-
plored.

Both studies have restricted EEG assessment to a lim-
ited number of frequency bands, thereby omitting eval-
uations of high-frequency activity such as the gamma
band. This omission poses a limitation, considering that
demyelination effects induced by MS are particularly evi-
dent at high-frequency [37]. In the present study, all EEG
frequency bands are explored, revealing the impacts of
tDCS treatment on both high beta and gamma bands. Fur-
thermore, for three MS patients undergoing tDCS treat-
ment, a reduction in the mean absolute power difference
between pre- and post-treatment is observed in gamma
and high beta bands. This result can be linked to the
effectiveness of transcranical stimulation in restoring al-
tered EEG features. In fact, alterations in the brain’s func-
tional connectivity network due to structural brain dam-
age in MS patients are characterized by increased mean
gamma power [29, 38]. This phenomenon is also corre-
lated with partial disconnection of white matter pathways
and significant cortical atrophy [39, 40].

The comparison between the presented study and the
two aforementioned ones also encompasses the different
electrode configuration employed for transcranial stim-
ulation. In all studies, the anode is positioned over the
DLPFC area but the cathode positioning is different. In
particular, in the Gholami et al. and Ayache et al. stud-
ies, the cathode is positioned over the supraorbital re-
gion and on the Fp2 channel, respectively. Conversely,
in the presented study it is situated on the right deltoid
muscle (Fig 5). By employing this extracephalic refer-
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Figure 5: Comparison in tDCS cathode positioning among the
different studies. For all the studies, the anode is collocated
on the DLPFC area. The cathode is placed on the right deltoid
muscle (a) in the present study, on the right supraorbital area (b)
in Ayache et al. study [30], and on Fp2 channel (c) in Gholami
et al. study [31].

ence, undesired cephalic hyperpolarization effects from
brain areas beneath the reference electrode are mitigated
[41, 42]. According to literature, the extracephalic po-
sitioning of the cathode in a tDCS treatment contributes
to the decrease of absolute power in the high-frequency
bands.[43]. However, this electrodes configuration has
not been previously studied in the framework of EEG-
based assessment of tDCS effectiveness in MS patients.
Results show significant effects of tDCS treatment in
brain areas having also a crucial role in ToM frame-
work. Temporo-Parietal Junction (TPJ) is the most in-
volved area in reasoning about the contents of another
person’s mind [44]. The resulting reduction in gamma-
band power on TPJ can be related to a restoration of ToM
processes [45, 46]. Analyses on clinical outcomes are
ongoing, and early results are very encouraging. Patients
treated with tES exhibit improvements in ToM consistent
with the electroencephalographic changes noted follow-
ing combined ToM and tES treatment. Therefore, the
identified EEG features can be used to real-time assess
the treatment effectiveness and manage adaptation.
Notably, it is not possible to consider the effects of tES
treatment and ToM training separately. Consequently, the
reported results should be considered only when tES is
applied with ToM training, concurrently.

Finally, tDCS treatment has not yet been standardized
and variations in anode and cathode placement across
studies are frequent. Consequently, comparing results be-
comes challenging.

CONCLUSION

Neurocorrelates of transcranical Electrical Stimulation in
Multiple Sclerosis patients were investigated. Power dif-
ferences within high beta in T3 and gamma in T3 and
P3 in EO condition and power differences within gamma
in T3, Pz, Cz in EC condition were the most discrimi-
native features. The selected EEG features allowed the
test patient to be correctly classified as treated with 100.0
% accuracy in EC condition. This study poses the ba-
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sis for adaptive tES protocols and stimulation settings ac-
cording to EEG measurements. In the future, the number
of enrolled subjects and the analysed pathologies will be
widened to improve the statistical significance of the re-
sults. Moreover, a single integrated system allowing both
EEG measurement and tES therapy will be developed to
improve i) home therapy and ii) the contribution of cus-
tomized medicine.
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