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ABSTRACT: Understanding the intricate coordination 

between the brain and muscles during movement tasks is 

crucial for advancing our knowledge of motor control 

and enhancing Brain-Computer Interface (BCI) devices. 

This study investigates the mechanisms underlying 

grasping movements using diverse objects and grasping 

techniques. Employing a novel ultra-high-density (uHD) 

EEG/EMG system, the study examines neural and 

muscular activity with high spatial resolution. Results of 

three healthy subjects highlight event-related 

desynchronization/synchronization (ERD/S) patterns 

and classification accuracies for EEG and EMG signals 

during grasping tasks. Temporal analysis reveals a strong 

relationship between EMG/EEG activation and 

classification outcomes, supported by kinematic data as 

evidence of motion. S02 achieved the highest average 

EEG and EMG classification accuracies at 69.4% and 

97.8%, respectively, while S01 had the lowest at 64% and 

85.4%. The observed dependencies between accuracies 

imply an interconnected and synergistic relationship 

between EEG and EMG modalities, which holds promise 

for enhancing overall performance in future BCIs. 

 

INTRODUCTION 

 
Examining our brain's and muscles' coordination during 

movement tasks elucidates the intricate mechanisms 

underlying motor control. The primary aim of this study 

is to investigate the grasping of objects, including a 

multitude of grasp types and objects, to enhance future 

brain-computer interface (BCI) devices. Researchers 

have explored the mechanics of grasping in both animals 

and humans using various methodologies [1], [2], [3], 

[4], [5], [6], [7]. Nonetheless, a substantial gap in 

knowledge remains regarding the precise mechanisms 

through which our brains govern these movements, 

particularly as they evolve. Non-invasive techniques 

such as EEG offer high temporal resolution, allowing for 

studying neural dynamics during grasping. However, 

their spatial resolution is often limited, constraining the 

capacity to attain a more nuanced comprehension of 

neural control [8], [9], [10], [11]. Similarly, EMG 

devices, often characterized by low resolution [12], are 

used to investigate muscular activities. Our research 

utilizes a novel ultra-high-density (uHD) EEG/EMG 

system to explore the intricate interplay between neural 

and muscular activity in greater spatial detail. The system 

demonstrates improvements due to its increased sensor 

density, outperforming other high-density EEG systems. 

It has been effectively utilized in research studies focused 

on decoding finger movements [11], hand gestures [14], 

and mapping the central sulcus using somatosensory 

evoked potentials [13]. 

 

We aim to expand the scope of discrimination by 

employing various objects and grasping types, thus 

delving into multiple dimensions for precise analysis. 

Sburlea et al. [3] investigated the slow-frequency EEG 

components with a similar paradigm. They found that the 

grasp types are encoded in motor cortex areas, while 

object properties activate the frontoparietal regions. 

Additionally, they discovered that the grasp types are 

significantly better decoded during the execution and 

release stages than the observation stage. Building upon 

their findings, we focus our investigations on the motor 

cortex area contralateral to the moved hand in the 

execution and release stages. However, we focused on 

extracting EEG frequencies in the 8-30 Hz range, which 

are substantial in movement decoding in EEG research 

[14], [15]. 

 

MATERIALS AND METHODS 

 

Our system incorporates flexible surface electrode grids 

that were applied on the scalp as well as arm, and hand 

muscles. The uHD EEG/EMG system (g.Pangolin, g.tec 

medical engineering GmbH, Austria) has an inter-

electrode distance of 8.6 mm and an exposed sensor 

diameter of 5.9 mm. We used the system to measure data 

from three healthy subjects (two right-handed and one 

left-handed).  
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Two biosignal amplifiers (see Fig. 1A(a)) allow the 

acquisition of an average amount (across subjects) of 330 

channels of biosignal data, with an average of 235 

channels dedicated to scalp recordings (176 (S01), 256 

(S02), and 272 (S03)). We recorded EMG data from 96 

channels across all subjects, focusing on intrinsic (hand) 

and extrinsic (forearm) arm muscles. (see Fig. 1A). Data 

was acquired with a sample rate of 512 Hz.   

Additionally, the kinematics of the hand and arm 

movements are acquired and digitized using the leap 

motion camera [16] at a variable sample rate between 80 

and 120 Hz. The grasping task and six different grasps 

are visible in Fig. 1 B. We distinguished between four 

objects (big sphere, small sphere, big cylinder, small 

cylinder) and three grasping types (power, precision, 

pinch), resulting in a total of 12 grasping conditions, as 

demonstrated by Sburlea et al. [3]. Each grasping type 

was executed 27 times per object per run. Two runs per 

object were performed, with randomized order, resulting 

in 54 trials for further analysis. Additionally, within each 

run, the grasping types were shuffled. 

Figure 1: uHD EEG/EMG system for decoding object grasping 

task. (A) schematic system setup: two g.HIamp (b) (g.tec 

medical engineering GmbH) biosignal amplifiers, each with 

256 channels, connected to the acquisition computer (a) for 

synchronous EEG and EMG recording. The uHD EEG system 

comprises electrode grids with 16 channels and a pre-amplifier 

attached to each grid, connected to the connector box (c). For 

EEG acquisition, an average of 235 channels covers sensory 

and motor areas on the contralateral hemispheres. Six grids (96 

channels) are placed on the extrinsic and intrinsic hand muscles 

for EMG data acquisition. (B) Two objects (small sphere, small 

cylinder) and three grasp types (power, precision, and pinch) 

are depicted; see [3] for all 12 classes of the object grasps. (C) 

Paradigm Procedure: The procedure commences with the 

display of a fixation cross for 2 seconds, followed by 

randomized instructions for the grasping task (4 seconds), 

succeeded by a 2-second relaxation period. 

Subjects are then directed to prepare for the next 8-

second cycle. In total, 54 trials per class were recorded. 

Instructions were given on a computer screen placed 

approximately 1.5 meters in front of the subjects. First, a 

fixation cross was displayed for 2 seconds, followed by a 

4-second observation and execution phase, during which 

pictures depicting the object and grasp to be performed 

were presented, as illustrated in Fig. 1B. Subsequently, 

upon completing the grasping task, participants were 

instructed to return to the starting position, relax their 

arm/hand, and prepare for the upcoming trial (Fig. 1C). 

EEG Preprocessing 

The raw EEG recordings were first notch-filtered at 50 

Hz and its harmonics using a 2nd-order Butterworth 

filter. After notch-filtering, bad channels were identified 

and removed using the approach described in [11], except 

for the band-pass filter ranging from 0.5 to 40 Hz instead. 

Finally, EEG data were common average referenced. 

 

Feature Extraction and Epoching 

For the classification of grasp types, band power features 

based on 8 to 30 Hz (4th-order Butterworth band-pass 

filter) were extracted as this frequency range 

encompasses both mu (8-12 Hz) and beta (13-30 Hz) 

rhythms which are associated with motor functions [17], 

[18]. Note that mu and beta rhythms may be analyzed 

separately. However, this was not done for the current 

classification analysis to keep dimensionality (i.e., 

number of features) low. On the other hand, beta band 

power features were extracted for topography plots. 

The band power was estimated by squaring EEG time 

samples and applying a centered moving average using a 

window length of 0.75 seconds and a step size of 0.1 

seconds. Furthermore, band power estimates were log-

transformed to improve Gaussianity (i.e., normality) 

[19]. Finally, the log-transformed band power features 

were epoched using 1-second pre- and 8 second post-cue. 

 

EEG Classification 

Classification models were employed to investigate if the 

extracted band power features can differentiate between 

the grasp types. Specifically, pairwise classification of 

grasp types was performed for each object, respectively, 

leading to 12 two-class classification problems per 

subject. Pairwise classification was employed instead of 

a 3-class problem to allow for easier interpretation of 

results. Note that a classification analysis between 

objects was not carried out as objects were not shuffled 

on a trial-by-trial basis, which would lead to inflated 

accuracies due to the non-stationarity observed in EEG.  

A regularized linear discriminant analysis (rLDA) was 

utilized as a classification model, with the regularization 

parameter � set to 0.1 [20]. The classification framework 

used was a 10-times 10-fold cross-validation, in which 

the random seed was set to the respective iteration (i.e., 1 

to 10) to allow for reproducible results. 

 

Topography Plots 

Topography plots were created according to [11] and 

[21] using a custom montage creator software (g.tec 

medical engineering GmbH, Austria). Event-related 

desynchronization/synchronization (ERD/S) was 
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calculated using the log-transformed band power features 

of the beta band, with the baseline reflecting 0.5 seconds 

pre-cue. The brain models depicted in the topography 

plots were created using anatomical MRI scans from all 

participants. The brain and skull were reconstructed 

using FreeSurfer software (developed at the Martinos 

Center for Biomedical Imaging in Cambridge, MA, 

United States) based on the T1-weighted MRI data [22]. 

 

EMG  

The raw EMG recordings were notch-filtered at 50 Hz 

and its harmonics, using a 2nd-order Butterworth filter. 

EMG features reflected simple root-mean-square values 

(RMS) of the band-pass filtered EMG (20 to 200 Hz, 4th-

order Butterworth filter) data. The window length and 

step size were set to 0.2 and 0.05 seconds, respectively. 

Finally, RMS features were epoched using 1 second pre- 

and 8 second post-cue. 

 

MVC 

Maximum Voluntary Contraction (MVC) was recorded 

using a commercially available dynamometer. 

Participants performed a maximum contraction with their 

dominant hand for five seconds, followed by a one-

minute break. The contraction was repeated three times 

and was performed by using a power grip on the 

dynamometer. The EMG signals obtained during MVC 

were then used to normalize EMG signals obtained 

during the grasping paradigm [23].  

 

EMG Classification 

EMG classification of grasps per object was analogous to 

EEG classification, except that 3-class classification for 

the grasp types was performed and that � was set to 0.25 

for the rLDA. Thus, four classification problems, one for 

each object, were carried out per subject. The three-class 

classification was carried out as EMG is expected to 

result in much greater accuracy and, thus, easier 

interpretable results. 

 

RESULTS 

 

Fig. 2 illustrates the ERD/S topographies from all 

subjects, with the time points set to 1 second (for S01 and 

S02) and 1.5 seconds (for S03) after task instruction, as 

these time points reveal the most pronounced ERD for all 

subjects, respectively. The large and small object 

conditions were averaged for each grasp type, resulting 

in 6 conditions. During the sphere power grasp, S01 and 

S02 exhibited the most significant ERD at the 

contralateral hemisphere, around the C3 and C4 electrode 

positions, for S02 and S01 respectively. S03 showed the 

greatest consistency across all objects and grasps and 

demonstrated a clear focal spot around the C1 and C3 

electrode positions. In other words, S01 and S02 exhibit 

more lateralized ERD, whereas S03's ERD is slightly 

more central. A weaker ERD was observed for S01, and 

the sphere object led to a stronger ERD than the cylinder.  

 

Figure 2: ERD/S Topographical maps were created for each 

participant and the corresponding grasping type. The 

hemispheres are shown contralateral to the hand-side of the 

grasp, with S01 being left-handed and S02 and S03 right-

handed. The maps were constructed utilizing the beta frequency 

range (13-30 Hz) at 1 second for S01 and S02 and 1.5 seconds 

for S034values in dB. 

Fig. 3 shows the topographical ERD/S time course 

obtained for the beta frequency band features, averaged 

over both sphere objects (big and small), and power 

grasps for subject S03. The time window was set to -1 s 

pre-task instruction and 8 s post-task instruction (1 s 

steps) for a detailed temporal representation. The 

representation of the EMG RMS power for the same 

tasks was separated into intrinsic (blue) and extrinsic 

(green) muscles and depicted as mean (SD). The EMG 

RMS filtered from 20-200 Hz was calculated as a 

percentage according to the MVC measurement. The 

data from the leap motion camera was used for kinematic 

analysis. The retrieved velocity of the vertical movement 

from the hand/arm is depicted as mean (SD) in m/s  

(magenta). The EEG Accuracy graph in the last row 

(orange) is calculated in 0.1 s steps as mean (SD) for the 

ten runs from the 10 times 10-fold cross-validation. The 

EMG accuracy graph (cyan) reflects the outcome of a 3- 

lass problem. Similar to the EEG classification, the mean 

(SD) from the ten classification runs was plotted. 

Empirical chance levels were obtained by generating null 

models in which the class labels were shuffled and 

marked as dashed lines in Fig. 3. 
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Table 1: EEG Accuracies for all classification pairs 

Grasps / Subjects S01 S02 S03 

Big Sph. Power vs. Precision 47.9% 69.4% 76.9% 

 Power vs. Pinch 63.5% 61.1% 70.4% 

 Precision vs. Pinch 57.3% 57.4% 66.7% 

Big Cyl. Power vs. Precision 65.6% 78.7% 63.9% 

 Power vs. Pinch 55.2% 74.1% 70.4% 

 Precision vs. Pinch 77.1% 71.3% 64.8% 

Sm. Sph. Power vs. Precision 58.3% 76.9% 69.4% 

 Power vs. Pinch 69.8% 74.1% 66.7% 

 Precision vs. Pinch 67.7% 64.8% 57.4% 

Sm. Cyl. Power vs. Precision 66.7% 65.7% 71.3% 

 Power vs. Pinch 72.9% 75.9% 75.0% 

 Precision vs. Pinch 65.6% 63.9% 67.6% 

Tab. 1 shows the pairwise EEG classification accuracies 

of all the grasping techniques across objects. For each 

subject, 12 accuracies are depicted. The classification 

pair with the highest averaged accuracy was found for  

Small Cylinder Power vs. Pinch with 74.6% across 

subjects. Subject S02 reached the highest average 

accuracy of 69.4% for all pairs, S03 reached 68.4%, and 

S01 had the lowest accuracy of 64%. 

Table 2: EMG accuracies for 3-class problems 

Grasps / Subjects S01 S02 S03 

Big Sph. 90.4% 97.7% 96.4% 

Big Cyl. 98.1% 98.8% 95.9% 

Sm. Sph. 100% 98.6% 98.1% 

Sm. Cyl. 53.1% 96.2% 99.4% 

Tab. 2 shows the EMG classification accuracies 

computed as 3-class problems (all grasping types 

included). The object with the best accuracy was the 

small sphere, with an average accuracy of 98.9% across 

subjects. The subject with the highest accuracy is similar 

to EEG S02, with 97.8% across objects. S02 reached 

97.5%, and S01 has the lowest average accuracy of 

85.4%. 

Figure 3: Subject S03 detailed analysis of the sphere power condition (small / big sphere merged). The time axis ranges from -1 to 8 

seconds, with 0 as the task presentation on screen and the relax instruction at 4 seconds. The first row shows the ERD/S topographical 

time course. The maps were constructed utilizing the beta frequency band (13-30 Hz) with power shown in dB (color bar encodes ERD 

in red and ERS in blue). Row 2 represents the EMG MVC (%) time course from the 20-200 Hz filtered RMS signal as mean (SD) in 

blue for the intrinsic muscles and green for the extrinsic hand muscles. Row 3 depicts the kinematics of the arm movement as Velocity 

(m/s) in vertical (Y) direction (lifting/lowering) as mean (SD) in magenta. The last row represents the classification accuracy for EEG 

big sphere power vs. precision (orange) and the EMG accuracies for the 3-class problem classification outcome for the big sphere 

object (cyan). The EEG axis scaling was set to 40-80% (left side), whereas the EMG Accuracies are drawn from 203100% (right side). 

Real chance levels drawn as dashed lines: EEG (orange) and EMG (cyan). 
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DISCUSSION 

As illustrated in Fig. 2 and Fig. 3, the uHD EEG system's 

high spatial resolution enables a thorough examination of 

ERD/S topographies. The spatiotemporal dynamics of 

ERD/S offer valuable insights into the brain patterns 

triggered by grasping movements and their neural 

representation. In Fig. 3 (top row), a desynchronization 

occurs at the time point (1s) after task instruction, 

declining from seconds 2-3, followed by another increase 

towards the offset of the grasping task. Following the 

ERD, an ERS becomes apparent 2 to 3 seconds after the 

movement termination. The topographies show a similar 

focal spot as found in prior studies using the uHD EEG 

system [11], [15] and other studies examining temporal 

ERD/S dynamics [24].  

The EMG results from the intrinsic and extrinsic muscles 

have a similar temporal pattern (see Fig. 3) with an 

activation start around 200 ms after task instruction. 

However, the extrinsic group shows a steeper ascent of 

the curve and a slightly higher MVC percentage value at 

the beginning of the movement, which can be explained 

by a temporal difference in the activation of the muscles, 

meaning lifting off the arm incorporates more extrinsic 

muscles [25]. This is also reflected in the peak values, 

which reach around 1 second for extrinsic muscles and 

1.4 seconds for intrinsic muscles. The intrinsic muscles 

show higher activation throughout the grasping task due 

to active grasping control and the possibility of slightly 

resting the arm on the object. When moving the arm back 

to the resting position, the extrinsic muscles show higher 

activation than the intrinsic. The results from the EMG 

analysis correspond closely with the temporal behavior 

observed in the data from the Leap camera, indicating a 

parallel trend in their patterns over time, with a slightly 

longer delay of approx. 0.5 seconds from task instruction 

to velocity onset can be explained by prior muscle 

activation and real movement detected by the camera. 

The EEG and EMG accuracy traces (Fig. 2 last row) 

started to incline from the chance level at around 1 

second after task instruction, which is closely associated 

with the temporal behavior of the EMG and kinematics, 

however showing an additional 0.5 seconds delay for the 

movement onset [26]. The maximum EMG accuracy is 

stable at around the maximum of 95%; however, in 

comparison, the EEG accuracy declines again after the 

initial peak. This phenomenon may be attributed to 

diminished attention towards movement execution, as 

automatic patterns governed by lower-level brain 

structures entail reduced involvement of higher-order 

control mechanisms [27]. Interestingly, the EEG 

accuracy shows a second increase at the movement offset 

but peaks earlier than the movement onset. This temporal 

phenomenon could stem from anticipating returning the 

arm to the starting position [28].  

S02 reached the highest accuracy for EEG and EMG 

classification with 69.4% and 97.8%, respectively (see 

Tab.1 and Tab. 2). S01 achieved the worst accuracy with 

64% for EEG and 85.4% for EMG classification. 

Considering that S01 has the lowest amount of scalp 

channels used for classification, it also indicates that the 

high spatial density of EEG electrodes is beneficial for 

decoding motor tasks. A similar analysis was done by 

[11] using the uHD EEG, where they showed that when 

subsampling the electrode count, there was a decrease in 

accuracy for decoding individual finger movements. A 

lower ERD power was also observed for S01, which adds 

to the lower performance. For EMG, only the small 

sphere object grasp for S01 showed lower accuracies, 

which could be attributed to the removal of roughly half 

of the trials due to technical issues in the acquisition. The 

observed trend of superior performance in both EEG and 

EMG across subjects suggests a nuanced interplay 

between the examined modalities. This pattern highlights 

how the biosignals are interconnected and complement 

each other, suggesting they work synergistically to 

produce a combined effect greater than the sum of their 

individual contributions. Consequently, future research 

endeavors should prioritize utilizing parameters such as 

corticomuscular coherence alongside advanced 

classification methodologies to optimize the performance 

and functionality of brain-computer interfaces (BCIs) 

and neuroprosthetic systems. 
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