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ABSTRACT: Research on BCI-illiteracy in the imagined 

speech domain has been scarce. In the current study, we 

therefore investigate the relationships between both 

motor imagery vividness as well as inner speech habits, 

and classification accuracy based on the neural activity 

evoked by speech imagination. For this purpose, we 

classified electroencephalography-derived brain activity 

with respect to four imaginatively spoken phonemes: /a/, 

/i/, /b/ and /k/. We found that individuals who engaged 

more frequently in dialogic inner speech exhibited 

significantly higher classification accuracies, while 

motor imagery vividness showed no effects.  

Neurophysiological findings indicate that a higher 

expression of dialogic inner speech is associated with a 

suppression of redundant or counteractive neural 

information. These findings extend our understanding of 

the substrates of classification performance, respectively, 

BCI-illiteracy in speech imagery-based systems. 

 

INTRODUCTION 

 
     Imagery vividness and inner speech habits Brain-

computer interfaces (BCIs) rooted in 

electroencephalography (EEG) attempt to enable 

individuals with motor impairments to control a certain 

device by leveraging electrophysiological brain signals. 

Motor imagery has been used extensively for this 

purpose [1,2]. The classification of imagined speech 

emerged more recently and is considered an intuitive 

means for the development of speech prostheses [3]. 

Irrespective of whether one imagines movements or 

speech, some individuals fail to control BCIs via own 

brain signals. This phenomenon is referred to as BCI 

illiteracy. An estimated 15-30% of BCI-users are 

affected by this [4]. Regarding the roots of the illiteracy 

phenomenon, structural brain heterogeneity, 

insufficiently discriminative classification algorithms 

and a lack of neuroimaging diversity have been discussed 

in the literature [5]. Furthermore, associations between 

motor imagery vividness and classification performance 

[6–8] or corticomotor excitability [9] have been reported. 

Vuckovic [7], for example, showed that kinesthetic 

motor imagery vividness was highly correlated with the 

classification accuracies of a kinesthetic motor imagery 

task. Visual motor imagery vividness also was positively 

correlated with the classification outcome, but to a lesser 

extent. Despite being a motor imagery process, the role 

of motor imagery vividness has not yet been investigated 

in speech imagery. Corresponding questionnaires, 

however, may not accurately capture the full dynamics of 

the underlying ability to vividly imagine speaking, as 

they neglect the auditory component thereof entirely. 

Since no speech imagery vividness questionnaire exists, 

previous studies [10,11] alternatively used the Varieties 

of Inner Speech Questionnaire (VISQ) [12] to quantify 

the degree to which  individuals “mentally” talk to 

themselves on an everyday basis. However, it is 

important to note that conceptual and procedural 

discrepancies between naturalistic inner speech and 

experimentally manipulated imagined speech exist [13]. 

The former is produced naturally and spontaneously, 

while the latter is elicited as part of an investigation. The 

former often serves a function, e.g. to remind oneself of 

something or to monitor one’s actions, while the latter 

frequently consists of isolated stimuli, such as phonemes 

[3] and yes/no contrasts [14]. For this reason, we refer to 

experimentally elicited imagined speech as imagined 

speech and to naturally occurring inner speech as inner 

speech throughout the rest of this paper. Despite the 

differences, naturalistic inner speech habits may 

represent a more suitable proxy for speech imagery 

vividness compared to motor imagery vividness, as they 

capture the predominant auditory component of 

imagined speech. 

 

     Neural substrates of imagined/inner speech Neural 

correlates of imagined speech have been researched 

thoroughly over the last decades. Evidence derived from 

reviews [15,16] suggests the involvement of an extensive 

perisylvian, respectively, sylvian network including the 

left pars opercularis, premotor cortex (especially ventral 

portions), insula, supplementary motor area, inferior 

parietal gyrus and superior and middle temporal gyri. 

Similarly, findings of a recent fMRI study [11] indicate 

the recruitment of left-hemispheric areas, including the 

inferior frontal gyrus, medial frontal gyrus, insula and 

nucleus caudatus regarding both dialogic and monologic 

inner speech. Additionally, the authors found significant 

correlations between the activation contrast 

Dialogic>Monologic inner speech and self-reported 
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dialogic inner speech usage as assessed by the 

corresponding VISQ subscale in the right medial 

temporal gyrus as well as the right precuneus. The 

remaining subscales were not associated with any voxel 

activity cluster. With respect to identifying the drivers of 

BCI-illiteracy in imagined speech classification 

problems, discovering the neural markers of imagined 

speech discriminability might be of higher relevance than 

those of imagined speech per se. For this purpose, 

imagined speech classification studies frequently 

reported the discriminative power of features. In terms of 

frequency bands, higher frequency components (beta, 

gamma) have been shown to hold a larger amount of 

discriminative information [14,17,18]. Regarding the 

role of brain areas, respectively, EEG channels, evidence 

suggests that, similarly to the neural correlates of 

imagined speech in general, perisylvian areas, consisting 

of inferior frontal, inferior parietal and superior temporal 

channels, provide the most discriminative information 

[14,18]. However, it is difficult to draw general 

conclusions from the literature, as feature types, 

neuroimaging methods and classification algorithms vary 

strongly between studies [17].  

In the current study we examine the relationships 

between motor imagery vividness as well as inner speech 

habits and classification performance regarding 

“mentally” spoken phonemes /a/, /i/, /b/ and /k/. In a 

second step we attempt to establish associations between 

dialogic inner speech and the discriminability of features, 

as quantified by mutual information scores, provided that 

a substantial relationship between the Dialogic inner 

speech subscale and classification performance emerges 

in step one. This choice was based on Alderson-Day and 

colleagues [11], who demonstrated significant 

associations between the Dialogic subscale and fMRI 

activity clusters for both dialogic and monologic inner 

speech. In a third step, we identify features that are 

significantly associated with classification accuracy. 

Finally, we enter them into a multiple regression model 

alongside dialogic inner speech in order to get insights 

into whether inner speech habits uniquely predict 

classification performance beyond the influence of 

neurophysiological features. Through this, we intend to 

provide preliminary evidence regarding the role of motor 

imagery vividness and - with a main focus - naturalistic 

inner speech habits in imagined speech classification 

paradigms and, consequently, imagined speech based 

BCI illiteracy. 

 
MATERIALS AND METHODS 

 
     Participants Twenty-seven individuals participated 

in this study. Due to technical errors during 

measurements and noisy EEG signals, five participants 

had to be excluded. Thus, the data of 22 individuals 

between the ages of 19 and 37 (M = 25.41, SD = 4.02) 

were subjected to the analyses. 10 of them were male and 

12 were female. All were native German speakers, right-

handed and had normal or corrected-to-normal vision. 

Participants reported no psychiatric or neurological 

disorders, or medical diseases. Further, no use of 

medication that could influence the central nervous 

system was reported. Recruiting was performed via 

university-wide mailing distribution. Compensation in 

the form of either 28 Euros (8 Euros per hour) or course 

credit for psychology students was offered. To 

participate, individuals had to sign an informed consent 

document. This study was approved by the ethics 

committee of the University of Graz, Austria and 

conforms to the ethical principles of the Declaration of 

Helsinki. 

 

     Procedure Participation comprised attendance on two 

sessions with 1 hour and 45 minutes each (3.5 hours in 

sum) on two separate days. Participants were seated in a 

comfortable armchair approximately 100 cm in front of a 

24.5-inch computer screen. A COVID-19 questionnaire, 

the German version of the Vividness of Movement 

Imagery Questionnaire 2 (VMIQ-2) [19], the Varieties of 

Inner Speech Questionnaire – Revised (VISQ-R) [10] 

and sociodemographic questions were answered prior to 

the beginning of the study paradigm. Instructions and test 

trials were presented on the computer screen. In this 

phase, participants were exposed to audio recordings of 

all four phonemes. These were carried out via near field 

studio monitors at a constant volume of approximately 

75db at the position of the participants. Audio stimuli 

were self-recorded and digitally manipulated to exhibit a 

fundamental frequency in the gender-ambiguous range of 

140-170 Hz. Two conditions were embedded into the 

study paradigm: Phoneme imagination and phoneme 

perception. However, as the phoneme perception data are 

not relevant for the current study and merely derived as 

part of a larger investigation, they were not subjected to 

the analyses. All participants engaged in the mental 

speaking of four phonemes: /a/, /i/, /b/ and /k/. The reason 

for this is the articulatory differences, as well as phonetic 

dissimilarities between these phonemes [20]. Although 

no specific imagination instructions were provided, the 

imagination condition was consistently referred to as 

“imagining speaking something” throughout the entire 

paradigm. We did not provide any specifics about the 

imaginative content, as we wanted to ensure that 

participants apply their most natural form of speech 

imagination. Trials consisted of 5 seconds of visual 

phoneme presentation. Phonemes occurred once per 

second for 0.5 s. Prior to and after trials a fixation cross 

was displayed for 1 and 2–4 s, respectively. 20 trials of 

the same phoneme represented one block. Eight phoneme 

imagination blocks (2 repetitions * 2 conditions * 4 

phonemes) were presented in each session. An inter-

block break of 15 s was incorporated. With this design 80 

trials were carried out for each imaginatively spoken 

phoneme. The paradigm was constructed and presented 

in PsychoPy2 (version 1.85). 

 

     Questionnaires The German version of the VMIQ-2 

was used in the current study. It measures the vividness 

of motor imagery and is comprised of three subscales: 

internal visual (In), external visual (Ex) and kinesthetic 
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(Ki) imagination. Each of the three factors has high 

internal consistency (α > .7). Test-retest-reliability of .69 

is moderate. The VISQ-R assesses the phenomenological 

varieties of inner speech and consists of five factors: 

‘Dialogic’ (D), ‘Evaluative/Critical’ (E), ‘Other People’ 

(O), ‘Condensed’ (C) and ‘Positive/Regulatory’ (P) inner 

speech. Dialogic inner speech denotes talking to oneself 

in a discursive manner, a recurring back and forth. 

Condensed inner speech, on the other hand, implies a 

rather short, fragmented inner speech rather than 

complete dialogue. The “Evaluative/Critical” scale 

comprises items that measure to which degree one tends 

to mentally criticize and evaluate oneself, whereas the 

“Positive/Regulatory” scale represents a self-praising, 

comforting inner speech variant. The “Other People” 

Scale assesses to which degree individuals experience the 

voices of others in their inner speech. Internal 

consistency is excellent, ranging from .80 to .91 across 

subscales.  

 

     Data Acquisition EEG was derived from 45 electrodes 

distributed across the whole scalp. Electrode positions 

conformed to the international 10-5 system to facilitate 

an even whole-head distribution. EEG was recorded by 

using actiCAP active wet Ag/AgCl electrodes (Brain 

Products GmbH), a BrainAmp EEG amplifier (Brain 

Products GmbH) and the accompanying recording 

software BrainVision Recorder (version 1.21) at a 

sampling rate of 500 Hz. The average of the left and right 

mastoid signal was used as a reference. The ground was 

placed at Fpz. Three ocular signals were derived from 1 

cm above the nasion (vertical eye movements) and the 

lateral canthi (horizontal eye movements). Furthermore, 

fNIRS signals were concurrently acquired. However, as 

they are not relevant for the research questions of the 

current study and merely derived as part of a larger 

investigation, they were not subjected to the analyses.  

 

     Preprocessing Bandpass filtering was conducted with 

a 1 Hz high-pass and a 70 Hz low-pass setting. A notch 

filter at 50 Hz was also applied. Ocular artifacts were 

addressed by regressing the EOG signals out of the EEG 

data [21]. Subsequently, EEG data were visually 

inspected to mark artifact corrupted trials and channels 

for removal. Finally, the data were segmented into 5 s 

epochs (0 to 5 s) with adjacent baselines of 1 s (-1 to 0 s).  

 

     Feature selection and classification Power spectral 

densities (PSDs) were calculated for the predefined 

frequency bands alpha (8-12 Hz), beta (12-30 Hz) and 

gamma (30-70 Hz). This selection was grounded on the 

results of Preedapirat and Wongsawat [18] and 

Sereshkeh and colleagues [14], who identified higher 

discriminative potentials of the alpha, beta, and gamma 

frequency range with respect to an imagined speech 

classification problem. This resulted in a total of 135 

features per trial (45 EEG channels * 3 frequency bands), 

provided that no channels were excluded. By using 5-fold 

cross-validation on the training data, the number of used 

features was optimized. The k = 10, 15, 20, 25, 30 

features with the highest mutual information scores were 

subjected to this. Classification was performed by means 

of a multilayer perceptron. Individual classification 

results, however, are not reported; the focus of this study 

exclusively lies on the relationship between classification 

performance and motor imagery vividness, respectively, 

inner speech habits. However, we do want to emphasize 

that all classification accuracies exceeded chance level 

by more than 25% and exhibited an average accuracy > 

70%. 

 

     Statistical analyses To quantify the relationships 

between motor imagery vividness, inner speech habits, 

feature discriminability and classification accuracies 

simple bivariate Pearson classification coefficients are 

reported. These underwent bootstrapping with 20000 

iterations to test them for significance. In an integrative 

data-driven effort multiple linear regression analysis was 

conducted to identify more robust, unique effects. 

Predictors for this were selected as follows: The dialogic 

inner speech subscale was incorporated if it showed a 

substantial correlation with classification accuracy. 

Again, this was based on the findings of Alderson-Day 

and colleagues [11]. Further, features that showed 

significant correlations with classification accuracy were 

also entered. Due to large intercorrelations between 

features, gamma and beta features were averaged, 

resulting in one consolidated gamma and beta predictor 

each. Variance inflation factor was below 5 for all 

predictors. 

 

RESULTS 

 

     Inner speech habits and motor imagery vividness with 

respect to classification performance Correlative 

analyses indicated a positive relationship between the 

Dialogic, the Evaluative/Critical as well as the 

Condensed inner speech subscale and phoneme 

classification performance of r = .32 (bootstrap 95% CI 

[-.18, .73]), r = .30 (bootstrap 95% CI [-.13, .62]) and r = 

Figure 1: Correlation map containing the variables of 

interest.  
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.21 (bootstrap 95% CI [-.18, .61]), respectively (Fig. 1). 

Note that bootstrapping did not attest the correlation 
coefficients significance. Partial correlation analysis 

indicated that the correlation between the dialogic inner 

speech subscale (D) and classification performance (C) 

persists beyond the influence of Evaluative/Critical inner 

speech (E) (rDC.E = .26). All other questionnaire scales 

showed absolute correlation coefficients < .17. 

 

     Inner speech and feature discriminability Negative 

correlations arose between gamma- as well as beta-based 

mutual information scores, and the Dialogic inner speech 

subscale (Fig. 2). A fronto-central beta network 

consisting of FC3 (r = -.54, bootstrap 95% CI [-.75, -

.19]), FC1 (r = -.44, bootstrap 95% CI [-.67, -.03]), FC2 

(r = -.57, bootstrap 95% CI [-.81, -.18]), C1 (r = -.51, 

bootstrap 95% CI [-.77, -.13]) and Cz (r = -.52, bootstrap 

95% CI [-.78, -.18]) emerged. Further, in both the gamma 

and the beta frequency band CPP5h showed a significant 

correlation (r = -45, bootstrap 95% CI [-.69, -.13]; r = -

.49, bootstrap 95% CI [-.73, -.11] for beta and gamma, 

respectively). Finally, mutual information values of the 

gamma frequency band at C4 (r = -.50, bootstrap 95% CI 

[-.74, -.18]) and the beta frequency band at TTP8h (r = -

.35, bootstrap 95% CI [-.61, -.07] exhibited a significant 

correlation with Dialogic inner speech. This constitutes a 

small right-hemispheric centro-temporal cluster. Lastly, 

O2 beta also showed a significant association (r = -.44, 

bootstrap 95% CI [-.71, -.12]) with the inner speech 

subscale. 

 

     Feature discriminability and classification accuracy 

Several significant correlations regarding mutual 

information scores of features and classification accuracy 

were observed (Fig. 3). A predominant left fronto-central 

gamma network consisting of F7 (r = .37, bootstrap 95% 

CI [.00, .66]), Fz (r = .50, bootstrap 95% CI [.05, .76]), 

FFT7h (r = .41, bootstrap 95% CI [.08, .66]), FC1 (r = 

.58, bootstrap 95% CI [.30, .76]), FCz (r = .51, bootstrap 

95% CI [.23, .70]), C3 (r = .46, bootstrap 95% CI [.06, 

.71]), C1 (r = .50, bootstrap 95% CI [.14, .72]) and Cz (r 

= .49, bootstrap 95% CI [.12, .72]) emerged. 

Additionally, left parietal and right frontal contribution 

was observed at P3 (r = .39, bootstrap 95% CI [.10, .65]) 

and FFC6h (r = .43, bootstrap 95% CI [.13, .66]), 

respectively. A more diffuse pattern was found in the beta 

band with significant correlations at FFT7h (r = .48, 

bootstrap 95% CI [.10, .73]), Cz (r = -.50, bootstrap 95% 

CI [-.76, -.11]) and CP4 (r = .44, bootstrap 95% CI [.10, 

.77]). 

    

Integrative model Multiple linear regression analysis 

yielded the following results: gamma-based mutual 

information scores (b = .069, p = .001) as well as the 

Dialogic inner speech subscale (b = .047, p = .009) 

emerged as significant predictors with respect to 

classification accuracy (Tab. 1). Beta-based mutual 

information scores did not prove significant (b = .017, p 

= .332). In sum, the model explained approximately 60% 

of the variance of classification accuracy (R2 = .595, p < 

.001).  

 

Table 1. Multiple linear regression results 

 b SE t 

Gamma .069** .017 4.115 

Beta .017 .017 0.996 

VISQ D .047** .016 2.935 

R2 = .595 R2 adj. = .527 F = 8.807 p(F) < .001 

Note. Gamma: Averaged mutual information values of 

gamma features. Beta: Averaged mutual information 

values of beta features. VISQ D: Dialogic inner speech 

subscale of the VISQ-R 

**p < .01 

 

DISCUSSION 

 
     Motor imagery vividness and inner speech habits The 

aim of the current study was to investigate the 

relationships between motor imagery vividness as well as 

inner speech habits and classification performance on 

grounds of neural activity evoked by imaginatively 

spoken phonemes. Literature suggests that visual [6,8] as 

well as kinesthetic motor imagery vividness [8,22] have 

an impact on the classification of neural reaction patterns 

evoked by motor imagery. Dissonantly, by means of 

correlative methods, we were unable to establish a 

connection between visual or kinesthetic motor imagery 

vividness and classification performance in the imagined 

speech domain. Despite not withstanding bootstrapping-

based significance tests, inner speech habits, however, 

indicated promising effects: dialogic and evaluative inner 

Figure 2. Topo plots of the correlation coefficients between mutual information scores of the frequency bands of interest 

and the VISQ-R Dialogic subscale. Significant correlation coefficients are marked in white. 
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speech both showed a moderate, and condensed inner 

speech exhibited a small to moderate correlation with 

classification performance. Hence our results suggest 

that, while individuals who can vividly imagine 

movements cannot produce more differentiable neural 

signals on grounds of imaginatively spoken phonemes, 

individuals engaging frequently in dialogic, evaluative 

inner speech can. Although, in previous studies, motor 

imagery vividness was shown to have reliable influence 

on motor imagery classification, it is not surprising that 

this mechanism cannot simply be translated to speech 

imagery. The established motor imagery vividness 

questionnaires do not assess speech imagery or any other 

form of imagery with an auditory component. Since the 

content of imagined speech is considered to be not only 

of articulatory, but also auditory nature [13], this may 

explain the larger influence of naturalistic inner speech 

on classification performance compared to motor 

imagery vividness. 

 

    Neurophysiological contribution To obtain a more 

comprehensive depiction of the role of naturalistic inner 

speech habits in an imagined speech classification 

paradigm, we investigated the embedding of the 

discriminative power of features. Negative correlations 

between the mutual information values, i.e., the 

discriminability of features and dialogic inner speech 

emerged. A prominent fronto-central network of beta 

channels emerged, along with isolated significant 

channels in left superior temporal, right occipital and 

right medial temporal regions regarding beta, and left 

superior temporal and right inferior central regions 

regarding gamma. To our knowledge, only one study 

exists that investigated associations between VISQ scales 

and neural data [11]. Our results are only partially 

overlapping with those reported in the referenced study, 

as the authors consonantly reported a significant 

association between the Dialogic subscale of the VISQ 

and an fMRI cluster in the right medial temporal gyrus, 

but additionally in two clusters of the right precuneus. 

Note that the authors did not report the direction of the 

correlation. Since our network is much more diffuse, 

caution is advised with respect to interpreting these 

findings. While being negatively correlated with the 

discriminability of EEG-channels, dialogic inner speech 

shows a positive relationship with the overall 

classification performance. Consequently, individuals 

who engage more frequently in dialogic inner speech 

may be more successful in suppressing redundant neural 

information, which in turn increases accuracy. We found 

associations between feature discriminability and 

classification performance that support this notion. An 

increased expression of dialogic inner speech suppresses 

features that show a negative or no influence on 

classification performance. A higher expression of 

dialogic inner speech might therefore not only act as a 

noise cancelling mechanism but also directly suppress 

the recruitment of counteractive features. However, 

significant positive correlations between feature 

discriminability and classification performance were also 

found. In this regard, a predominantly left-hemispheric 

frontal gamma network emerged,  which is in line with 

previous literature [11,14,18]. Despite existing findings 

showing more diffuse discriminability maps [14,18], 

comparisons are limited, as these reflect mere 

discriminability values and not correlations. Ultimately, 

we integrated these results in a data-driven approach by 

building a multiple linear regression model to predict 

classification accuracy based on dialogic inner speech 

and the beta as well as gamma features that showed a 

significant correlation with classification accuracy. In 

line with previous findings [14,18], gamma indicated a 

significant influence on classification performance that is 

independent from all other predictors. Similarly, dialogic 

inner speech yielded a significant unique effect that goes 

beyond the neurophysiological predictive power. As 

indicated in the bivariate correlative analyses, this 

supports the notion that a high tendency towards every-

day dialogic inner speech acts as a noise cancelling 

mechanism, inhibiting redundant neural contributions 

rather than increasing feature discriminability. Lastly, 

beta features did not influence classification 

performance. 

 

CONCLUSION 

 
We were able to shed light on the complex action 

mechanisms surrounding the role of naturalistic inner 

speech habits and motor imagery vividness in imagined 

speech classification. In opposition to previous studies, 

no link between motor imagery vividness and BCI 

performance was found. Dialogic inner speech, however, 

 Figure 3. Topo plots of the correlation coefficients between mutual information values of the frequency bands of interest 

and classification accuracy. Significant correlation coefficients are marked in white. 
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was found to significantly predict classification accuracy. 

The auditory imagination component, which might be 

captured by the inner speech, but not by the motor 

imagery vividness assessment, may be the reason for this.  

Although promising, the presented findings are 

preliminary. Further studies are needed to gain an in-

depth understanding about the role of naturalistic inner 

speech habits in speech imagery based classification 

performance, respectively, BCI-illiteracy. 
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