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ABSTRACT:  
 

Neurofeedback (NF) is a technique where participants 

receive real-time feedback about their brain activity to 

learn how to modulate it. As a non-invasive 

neuromodulation tool, it proves useful in both research 

and clinical practice. However, approximately one third 

of users do not respond effectively to NF, prompting 

efforts to improve responder rates. A promising 

approach involves individualizing feedback by focusing 

on a narrow feedback band that encompasses only the 

individual's peak frequency (IPF), as opposed to a fixed 

broadband. In some frontal-midline-theta (FMT) -

NF paradigms, the IPF is determined during a single 

calibration session and applied over several days. In a 

pilot study involving five participants undergoing seven 

sessions of FMT-NF, we calibrated the IPF using a 

virtual TMaze task and conducted two follow-up 

sessions. Our exploratory analysis across three task 

sessions failed to detect a stable IPF. This, as well as the 

scarce literature on FMT peak frequency stability, casts 

first doubts on the efficacy of this calibration technique. 
 

INTRODUCTION 
 

Neurofeedback (NF) is a promising technique in which 

individuals receive real-time feedback of their brain 

activity, empowering them to consciously regulate it 

[1]. This approach holds significant potential both in 

research settings and clinical applications as a non-

invasive method of neuromodulation [2], [3]. However, 

despite its potential benefits, NF's effectiveness remains 

variable, with approximately one third of users not 

achieving tangible results [4], [5]. In response, ongoing 

efforts are focused on enhancing responder rates [5]. 

One strategy to optimize NF outcomes involves 

individualizing the target frequency bands to each user. 

In traditional electroencephalographic (EEG)-NF, 

electric, oscillatory brain activity was usually extracted 

in relatively broad, fixed frequency bands [6].  

More recent approaches try to increase the signal-to-

noise ratio by narrowing the target frequency band. This 

is done by choosing an individual peak frequency (IPF) 

– the frequency of the band with the most measurable 

activity at scalp level and providing a narrow target 

frequency window around this peak. Hence, unrelated 

frequency responses in broad windows (i.e. noise) can 

be avoided.  

The idea of the general IPF is rooted in the individual 

alpha frequency (IAF, 8-12Hz), which was shown to be 

a trait and hence stable over time [7]. Furthermore, it is 

easily detectable, as humans tend to show a peak in the 

alpha range (8-12Hz) of their power spectrum, when 

closing their eyes, being inattentive or in resting-state, 

with topographies depending on the respective 

inactivity [8].  

Other frequency responses, such as theta (4-8Hz), do 

not show as easily detectable peaks during resting-state 

measurements, but during the performance of specific 

tasks, yet also with specific topographical distributions. 

For example, the task-related theta, linked to cognitive 

control and conflict [9], [10], [11] is localized at frontal 

midline electrodes (Fz, FCz), hence also named frontal-

midline theta (FMT) [12], [13] or midfrontal theta 

(MFT) [14], [15]. 

Concerning peak frequencies, increases in task-related 

theta, when exerting cognitive control, remain in a 

narrower band than the entire theta band [8] supporting 

the idea of IPF-training if the latter is targeted. To find 

the respective individual theta frequency (ITF), several 

definition and quantification approaches exist. One 

classical approach bases itself on the IAF for the 

calibration [8], [16], resulting in an equal stability. More 

recent neurofeedback studies aiming at FMT 

modulation calibrated directly on task-related theta 

peaks [17], [18]. 

Calibrating task-related theta can be quite laborious, and 

often, the same calibration is applied across multiple 

sessions. This approach would be justifiable if 

individual theta frequency (ITF) measured with the 

task-related theta peak quantification was akin to 

individual alpha frequency (IAF) in terms of trait-like 

stability. However, to date, no studies have specifically 

investigated ITF stability for this new type of definition 

and quantification. 

During a pilot study with a particular focus on FMT 

inhibition, involving five participants and seven NF 

sessions each, our design further employed a virtual 

TMaze task to calibrate the IPF in the initial session and 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-046

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

260



Figure 1: Overview of an Approach-Avoidance Conflict trial 

of the virtual TMaze task, displaying the first-person view of 

the participant, the entities he may encounter and the setup of 

the TMaze, with the safety zone behind the participant.  

during two follow-up sessions. 

In an exploratory analysis of the task sessions, we were 

unable to detect a stable theta peak. This unexpected 

finding raises critical questions regarding the reliability 

and efficacy of the calibration technique employed for 

IPF-based FMT neurofeedback. 

In this paper, we present the findings of our exploratory 

analysis, shedding light on the difficulties of 

individualized NF calibration methods, particularly 

concerning FMT modulation. 
 

MATERIALS AND METHODS 
 

     Ethical statement: The study was carried out in 

accordance with the recommendations of “Ethical 

guidelines, The Association of German Professional 

Psychologists” (“Berufsethische Richtlinien, 

Berufsverband Deutscher Psychologinnen und 

Psychologen”) with written informed consent from all 

subjects. All subjects gave written informed consent in 

accordance with the Declaration of Helsinki before they 

participated in the experiment. The protocol was 

approved by the local ethics committee of the 

department of psychology of the Julius-Maximilians-

University of Würzburg (GZEK 2023-45, 

Ethikkommission des Institutes für Psychologie der 

Humanwissenschaftlichen Fakultät der Julius-

Maximilians-Universität Würzburg). 
     Participants: Five participants (3 female, age: M = 

24.4 years, SD = 1.5) were recruited through 

advertisements in an experiment online portal of the 

University of Würzburg. Participants were given course 

credits or a monetary compensation of 12,50€. All 

participants were at least 18 years old, righthanders, 

non-color blind and without a history of a psychiatric 

disorder. They took part in nine experimental sessions 

within three weeks: An initial calibration session 

(virtual TMaze) was followed by seven neurofeedback 

sessions. The virtual TMaze was recorded again directly 

after the last neurofeedback in session eight, as well as 

one week later in session nine.  

     Virtual TMaze: The virtual TMaze used in this study 

is an adaptation of the original design of [19], [20], [21] 

into a more recent games engine, the Unreal Engine 4. 

Participants interacted with the virtual environment 

using a gamepad, navigating through a TMaze in a first-

person view (see Fig. 1). 

By virtually moving in the TMaze it was possible to 

encounter two entities: The participant could be caught 

by a scary kraken, leading to credit loss and an aversive 

sound being played, or the participant could catch a cute 

seal, leading to credit gain and a harmonic sound.  

Each 18 second trial started with the participant 

positioned in a passage, facing the T-arms of the maze.  

The study incorporated four distinct trial types: 

Avoidance Trials (n=20): A red light indicated the 

presence of the kraken in one of the arms. Avoidance 

was possible by retreating behind the starting passage 

into a safety-zone instead of entering the T-arms. 

Approach Trials (n=20): A green light indicated the 

presence of the seal in one of the arms. 

Approach Avoidance Conflict Trials (n=30): A green 

and a red light indicated the presence of both entities.  

Ambiguous Events (n=30): A yellow light indicated the 

presence of an unspecified entity in one of the arms. 

Unbeknown to the participants, the probability of 

encountering one or the other entity was at 50 percent.  

     Neurofeedback: Given that the neurofeedback does 

not constitute the central focus of this paper, 

neurofeedback results are not discussed in this paper. 

Each session consisted of six blocks of five one-minute 

trials, leading to a total of 30 minutes of neurofeedback, 

aiming at FMT-inhibition. A three-minute resting-state 

was recorded before and after each session. Participants 

received real time feedback of their FMT activity at Fz, 

at the assumed ITF (+/-1Hz). The ITF was calibrated on 

the event-related theta of conflict and ambiguous trials 

of the virtual TMaze task of the first session. 

     EEG: For the recording of the EEG ActiCap 

electrodes and BrainAmp EEG amplifiers (Brain 

Products GmbH, Gilching, Germany) were utilized. 

During session one, eight and nine (all three sessions in 

which the TMaze was recorded) 62 scalp-electrodes 

were placed according to the 5-10-system. Two 

electrodes (O1/O2) were sacrificed to be used as 

electrooculogram (HEOG/VEOG, right eye). The 

reference electrode was placed at FCz. All data was 

recorded using LabStreamingLayer (LSL-Connector, 

LabRecorder) at a sampling rate of 250Hz.  

     Preprocessing: All EEG data was processed in 

MATLAB using the code of and following the EPOS-

Pipeline [22]. First a notch filter for line noise and 

resonance frequencies (50,100Hz) was applied. Next, 

bad channels were detected and interpolated. Detection 

was based on a statistical threshold of z > 3.29 [23] for 

joint probability, kurtosis and the power spectrum. Then 

the data was re-referenced to common average, 

restoring the previously used reference electrode FCz. 

Epochs were cut from -1 to 5 seconds after cue 

(appearance of lights in the TMaze) onset. A 1Hz 

highpass-filter was applied before an independent-

component-analysis (ICA) was performed. The 

components were used to select bad segments based on 

the same statistical criteria as before. A second ICA was 
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computed, this time artifactual components were 

automatically detected using MARA, ADJUST and 

SASICA. After removal of the selected components the 

data was finally re-referenced to current source density. 

To analyze time frequency responses the data was cut 

into shorter epochs from -1 to 2 seconds. Data was 

baseline corrected, using the one second before stimulus 

onset, and subsequently decomposed using Morlet 

wavelets.  

     Calculation of the ITF: As we discovered the 

instability of the ITF with the pipeline, we used for 

calibration during the study, we considered alternative 

ways of peak detection to calibrate the neurofeedback 

system. To investigate these alternative ways, we 

employed a “mini”-multiverse analysis, comparing 

combinations of multiple reasonable decisions along the 

pipeline. 

The theta-peak was searched in a time window from 

250-450ms after stimulus (light cue) onset. We varied 

the pipeline at five steps, with two to four alternative 

decisions per step, resulting in a total of 96 analyses. 

1) Unit of time-frequency response 

1A: Power  

1B: decibel (dB) - to account for 1/f dynamics of the 

power spectrum. 

1C: dB change to baseline - to account for differences 

in baseline activity. 

2) Spacing of frequency bins 

2A Linear – to have equally spaced bins. 

2B Logarithmic – to account for 1/f dynamics of the 

power spectrum. 

3) Search Time (250-450ms after cue) 

3A: Peak Window (50ms window) – the peak is 

detected on a singular timepoint. Additional 25ms of 

data before and after this peak are included in the 

analysis. 

3B: Center of Gravity (50ms window) – to detect 

peaks lower in amplitude but extended in duration 

we utilized the average of a moving window of 

50ms with 10ms steps.  

4) Search Band (4-8Hz) 

4A: Broadband– detecting the peak (timewise) in the 

broadband, and afterwards extracting activity of 

each sub-band of the peak. This approach tackles an 

overall theta peak. 

4B: Sub-bands – detecting the peak (timewise) for 

each sub-band and correspondingly extracting the 

activity. This allows the investigation of frequency-

interferences. 

5) Peak Detection 

5A: Frequency with the highest average activity of 

only those trials where the specific frequency was 

the frequency with the most activity. 

5B: Frequency with the highest summed activity of 

only those trials where the specific frequency was 

the frequency with the most activity. 

5C: Frequency with most trials where the specific 

frequency was the frequency with the most activity. 

5D: Frequency with the highest average activity of all 

trials. 

    Peak Timing: To investigate whether peaks in the 

different frequency bins may interfere with each other 

we looked at the distribution of peak timings in the 

individual sub-bands and compared the standard 

deviations of peak timings for each individual trial.  

     Statistical Analysis: To assess peak stability, we 

calculated inter-class-correlations (ICC) across the three 

sessions for every pipeline. To quantify the variability 

between the 96 pipelines we calculated the ICC for the 

pipelines for each session of each participant. Due to the 

small number of participants (n=5) results from these 

statistical tests should be taken with caution. 
 

RESULTS 
 

     ITF Peak Detection: Due to the immense number of 

comparisons possible we display only the most 

important ones. Nonetheless all analyses performed are 

available on GitHub 

(https://github.com/iamraP/FMT_Peak). 

We observed variability in the ITF across participants, 

sessions as well as calibration pipelines. The employed 

approaches did not provide a stable peak, except for 

instances where it is questionable whether the stability 

was provided by edge artifacts of the frequency band 

processing [24] . The ICC for the pipelines was 

especially low (ICC: 0.03, 90%-CI [0.02,0.06]). The 

evaluation of the peak frequency stability was 

impossible in 55 pipelines as the strength of the edge 

artifacts led to zero variability in the detected peak. All 

three pipelines which would still be rated as fairly 

reliable (ICC > 0.5) [25], present a strong tendency 

towards edges of the frequency band. The low ICC of 

the other 38 pipelines challenges the assumption of a 

stable ITF across sessions. In the following we will 

refer to differences in peak detection > 1Hz as 

“meaningful differences”, since they would lead to a 

different setting in the neurofeedback system. 

     1) Unit of time-frequency response: The blue panels 

of Fig. 2 display the difference between the different 

choices for 1 (A-C). It is exemplary for our observation 

over all the performed analysis, displaying the three 

issues of the analysis: first, edge artifacts at the lowest 

frequency for power, second, edge artifacts at the 

uppermost frequency for the dB transformed data, and 

third, high fluctuation of the detected peak for dB 

transformed data in relation to the baseline.  

     2) Spacing of frequency bins: Decision on step 2(A-

B) did not lead to such extreme effects, but nonetheless 

observable and meaningful differences, most 

pronounced in combination with 1C (Fig. 2, blue vs. red 

panels).  

     3) Search Time & 4) Search Band: Another 

meaningful difference was observed for the decision 

between center of gravity (3A) and peak window 

detection (3B), again most visible in combination with 

1C. Interestingly the observed meaningful difference of 

search time (3A-B) remained relevant only in 

combination with 4A (broad-band) (see Fig. 2, green 

panels). For the sub-band peak search (4B) the 
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Figure 2: Detected frequency peaks for each participant 

(colors) for the three sessions (1: Initial Session (Day 0); 8: 

after 7 NF sessions (Day 10-14), 9: 1 week later (Day 17-

21)). Each panel displays the results of a different pipeline, 

highlighting changes induces by design choices.  

Blue: Differences for unit of time-frequency response. 

Pipeline choice pattern: 1A-C – 2B – 3A – 4A – 5D.  

Red: Linear spaced frequency bins instead of logarithmic 

bins. Pipleline choice Pattern: 1C – 2A – 3A – 4A – 5D. 

Green: Center of gravity vs. Peak Window and Broadband 

vs. sub-bands. Choice Pattern: 1C – 2A – 3AB – 4AB – 5D. 

Gold: Differences choice of peak detection. Choice pattern: 

1C – 2B – 3A – 4A – 5A-D. 

 

approaches 3A-B remained similar enough to not 

change the frequency band of the neurofeedback (see 

Fig., 2 green panels). Choosing the band within which 

to search for the peak also impacted the detection in a 

meaningful manner itself. While detecting the peaks in 

the sub-bands lead to a higher likelihood of the peaks 

being detected at edge frequencies (93% of peaks either 

>7.5Hz or <4.5Hz), detection of the peak in the broad 

band led to the inclusion of more centered frequencies 

(76% of peaks either >7.5Hz or <4.5Hz). 

     5) Peak Detection: Except for 5C, only minor 

differences between the different approaches for 

detecting the peak were notable (see Fig. 2, gold 

panels). An issue posed by approach 5C was the 

possibility of several frequencies accumulating the same 

number of trials, therefore not providing a single peak 

frequency.  

     Peak Timing: Investigations of the distribution of the 

peak timing for the sub-bands showed, that peaks 

tended to occur across the entire time for any frequency, 

but also a slight variation of timings between them. 

Nonetheless for no participant any frequency displayed 

a more specifically time-locked peak than the others. 

Comparing the divergence of peak-timing for individual 

trials revealed that the timing is not consistent over 

frequencies, as indicated by high standard deviations 

(on average 44ms per trial within a 100ms time 

window). 
 

DISCUSSION 
 

The exploratory findings of our pilot study reveal 

several critical insights into the calibration of Individual 

Peak Frequency (IPF) for Frontal-Midline Theta (FMT) 

Neurofeedback (NF). The inability to establish a stable 

IPF across sessions raises significant questions about 

the reliability and effectiveness of current calibration 

methods, particularly in the context of FMT-NF. This 

discussion will critically analyze these findings, 

examining the implications for neurofeedback research 

and practice, and suggesting potential avenues for future 

studies. 

The core challenge identified in this exploratory 

analysis is the stability of the ITF. Our results indicate 

substantial variability in ITF across participants, 

sessions, and calibration pipelines. This instability could 

be attributed to several factors: 

     Trait vs. State: Some differences are expected as 

human brain activity is inherently variable, influenced 

by factors like cognitive state, attention, and even 

diurnal rhythms [8]. This variability could lead to 

fluctuations in theta activity. Nonetheless if an IPF is 

supposed to be used over several sessions, it needs to be 

trait- and not state-dependent, hence intraindividual 

differences should be minimal. 

     EEG-Pipelines: The methods employed for detecting 

the IPF, such as the time-frequency response units and 

the peak detection algorithms, showed heterogenous 

outcomes. This suggests that the choices of 

methodological approach play a crucial role in the 

calibration process, which is supported by previous 
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investigations of the effects of different design choices 

in EEG analysis pipelines [26]. However meaningful 

peak stability was not achieved with any of the applied 

approaches.  

     Processing Artifacts: The lower-edge artifacts shown 

for analysis with 1A (power), are explainable by the 1/f 

dynamics of EEG-data - lower frequencies displaying 

higher activity and hence are more prone to be detected 

as peaks. Opposingly, the decibel transforms (1B) 

supposedly correcting for these dynamics overcorrects 

it, leading to the opposite edge-artifact. The third choice 

1C (dB change to baseline) introduces other artifacts 

which may be caused by a variance in baseline activity. 

The issue of edge artifacts may be tackled by 

emphasizing the analysis on the center of the signal by 

using padding or a specific window function such as 

Hanning windows.   

Diverse padding methods could be tested in further 

pipelines, such as zero-padding, mirror-padding, or 

constant-padding, to make the edges of the signal 

smoother or more consistent with the central parts, 

whereas the Hanning window for example tapers the 

signal, giving more weight to the center and less to the 

edges and corners. 

     Task Design: The variance in baseline activity is 

likely caused by the task design. While we used a rather 

complex task to elicit conflict-related theta (the virtual 

TMaze), previous neurofeedback studies using task-

based peak detection relied on more simplistic tasks 

focusing on the exertion of cognitive control (Stop-

Signal-Task, Stroop) or working memory (Delayed-

Match-to-Sample, n-back) [17], [18]. 

Even though the stability of the peak frequency was not 

explicitly reported in former studies, it is still plausible 

to assume it could have been stable. Three differences 

may have influenced detectable peak stability in our 

design. First, while the conflict-related theta elicited in 

the TMaze is also part of the cognitive control domain, 

the complexity of the task may still influence the 

stability of the underlying processes. It may have led to 

a less consistent baseline, hence influencing the baseline 

corrected dB transform: Second, the underlying 

processes of conflict-related theta and working 

memory-related theta may differ, which could explain a 

trait for one but not for the other. Third, the TMaze may 

also suffer from habituation, e.g. participants 

developing a strategy to deal with the conflict, which is 

not possible in the simpler designs aiming at inhibitory 

control (e.g. Stop-Signal Task). A comparative study, 

employing different tasks over several sessions would 

be necessary to shed further light on the suspected issue.  

The variability in ITF suggests a need for more 

personalized NF protocols. While individualizing NF 

based on IPFs in general is a promising approach, our 

study indicates that a one-time calibration may not be 

sufficient for FMT neurofeedback. Dependent on the 

intention of the modulation, e.g. if non-sleep-related 

processes are targeted, we believe an IPF approach to be 

more applicable than broadband feedback, but 

continuous or frequent recalibration might be necessary 

to account for the dynamic nature of FMT activity. 

     Peak Timing: The investigation of peak times for the 

different sub-bands displayed inconsistencies across 

them. This may indicate a band interference, where one 

sub-band may cancel out the other when averaged, 

hence we would assume an individual investigation 

(4B) of each sub-band may lead to more accurate results 

than the peak detection on the broadband (4A). 

     Outlook: A recent meta-analysis showed, FMT-NF 

based in on IPFs did not outmatch broadband feedback. 

[27]. Chances are, the IPF did not outmatch the 

broadband feedback because both approaches are 

equally well, but due to the not yet established pipeline 

for ITF detection. To investigate this proposed issue of 

ITF peak instability and possibly for providing a stable 

pipeline, a larger multiverse analysis is planned, 

including different steps of design choices on an 

existing dataset of TMaze data, as well as newly 

recorded data from several tasks eliciting FMT.  
 

CONCLUSION 
 

In conclusion, while individualizing FMT-NF by 

focusing on the IPF might be a promising approach, to 

tailor feedback to NF-users our study underlines the 

challenges in achieving reliable IPF calibration. Even 

though with such a small sample these results should be 

interpreted with caution, the underlying lack of 

literature concerning ITF stability together with the 

current observation necessitates a reconsideration of 

current calibration methods of FMT-NF and highlights 

the need for more sophisticated approaches. As NF 

continues to evolve, addressing these challenges will be 

crucial for maximizing its efficacy and applicability in 

both research and clinical settings. 
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