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ABSTRACT: The use of EEG brain-computer interfaces 
(BCI) during movement is inherently difficult due to 
motion artifacts interfering with measured brain signals. 
Thus, most BCI research utilizes rather immobile 
conditions, thereby decidedly limiting its range of use 
cases. We aim to overcome this restriction by introducing 
a novel virtual reality paradigm which allows full-body 
movement of participants in combination with a 
processing pipeline specifically designed to deal with 
motion artifacts. Stimulus discrimination (target versus 
distractor) upon fixation was tested in 32 participants. 
Results indicate that targets elicit a higher P300 
amplitude than distractors. Comparing the performance 
of different classifiers, shrinkage linear discriminant 
analysis (sLDA), support vector machine (SVM), and 
EEGNet, yielded equally sized, above chance 
classification accuracies. Overall, the results suggest the 
feasibility of studying and applying BCI in full-body 
motion paradigms given refined data preprocessing. The 
authors conclude with suggestions for future BCI studies 
in motion.      

 
INTRODUCTION 
 
After the first years of brain-computer interface (BCI) 
research, during which BCI was mainly investigated as a 
means to partially compensate lost motor functions in 
people with severe motor disabilities, research on 
applications of BCI expanded to its use in non-medical 
areas. Following Zander and Kothe [1], BCI will be most 
beneficial to a wide range of applications if it does not 
replace or compete with fundamental human interaction 
patterns, like using hands or speech. Rather, it should 
substantially add value to the human-computer 
interaction (HCI) without distracting the user in his/her 
task. Because this kind of BCI covertly, or rather 
passively boosts HCI, it’s referred to as passive BCI 
(pBCI) which will be the object of this paper. 
Promising fields for BCI usage beyond medical 
application are summarized by van Erp, Lotte, and 
Tangermann [2] as device control, user state monitoring, 
evaluation, training and education, gaming and 
entertainment, cognitive improvement, as well as safety 
and security.  
Even though, there is a definite vision to apply pBCI in 
real-life contexts, most of the research has been 
conducted in highly controlled laboratory settings which 

are limited in their ecological validity. A major challenge 
in investigating pBCI under highly realistic (simulated) 
or real scenarios lies in their inherent complexity 
comprised of artefacts, non-brain influences, and other 
mental states [3]. Some research has been done to fill this 
gap and promising results were obtained, yet most studies 
were conducted in seated scenarios, notably driving, 
aviation, and desktop gaming. Of all studies included in 
the review [3], only one investigated participants who 
were standing and moving rather freely while performing 
a surgical task [4]. We believe it is imperative to conduct 
more studies allowing for free full-body movement in 
order to make pBCI applicable universally in real-life 
scenarios and not only in seated conditions. To achieve 
this goal, we introduce a new paradigm which allows 
participants to move and interact freely in a relatively 
fast-paced game-like scenario. First promising results of 
electroencephalography (EEG) analysis will be presented 
underlining the feasibility to work with pBCIs in a rather 
movement-intensive environment.  
To deal with motion artifacts, we adopted methods from 
another discipline which has emerged to understand brain 
and body in motion: Mobile Brain-Body Imaging (MoBI; 
[5]). For MoBI studies, it’s common to apply joint 
measurements of EEG, muscular activity, motion 
capture, and eye tracking. This, in combination with 
elaborate data processing techniques, like independent 
component analysis (ICA) for artifact rejection or 
machine learning for pattern recognition, proved to be 
efficacious in studying EEG in moving participants [6,7]. 
We combined MoBI with virtual reality (VR), an 
emerging tool to investigate more realistic scenarios, 
permitting participants to move around freely, while at 
the same time being highly controllable [8].  
To demonstrate the feasibility of our setup, we 
investigated two well-established findings of BCI 
research. First, we aimed at replicating the P300 response 
and second, we compared the most common BCI 
classification algorithms in terms of their performance in 
a visual categorization task. In both cases we investigated 
fixation-related potentials (FRP), i.e. the cortical patterns 
locked to the onset of a fixation. 
     Replicating the P300 component: The main goal of 
this first step is a proof of concept: investigating whether 
we can replicate a typical pattern of cortical activation, 
the P300 in response to targets vs. distractors, in such a 
movement-rich paradigm.  
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Figure 1: Stimulus presentation in virtual reality. Spheres 
flow towards the participant. The translucent blue hand 
represents positioning of the controller and bursts spheres 
upon touch. Depicted is a condition in which sphere color 
is permanently visible and colors are easy to distinguish. 
 
While the P300 speller is probably the most popular 
application of this cortical potential in a BCI (first 
demonstrated by Farwell and Donchin, [9]), there are 
numerous examples of BCI studies investigating the 
P300 [10]. De Vos, Gandras, and Debener [11] 
investigated the P300 on walking participants while they 
performed an auditory oddball task. They were not only 
able to replicate the P300 component to rare targets, also 
single-trial classification in the P300 time window 
worked with a decent accuracy of 64%.   
In our experiment, P300 was analyzed to visually 
presented targets and distractors. Since stimuli were 
appearing in a rather fast paced, free-viewing 
environment, some challenges had to be addressed to 
obtain a meaningful FRPs (for a detailed discussion of 
free-viewing paradigms see [12]). First, fixation 
durations were shorter than the following cognitive 
processes: a fixation usually lasts around 200-300ms 
[13], but some cognitive components, like P300, occur 
even later. Hence, components to subsequent fixations 
would overlap. This overlap can be controlled for 
mathematically with a linear regression [14,15]; which 
also deals with non-uniformly distributed artifacts caused 
by eye movements systematically affecting FRP 
averaging [16]. Thus, we chose to “detangle” FRPs in a 
regression-based approach. In the first part, we focused 
on the cortical activation to targets versus distractors in a 
time window of 200-600ms. It was hypothesized that 
amplitudes to targets will be larger than to distractors.  
     Comparing classifiers for visual categorization: 
Next, cortical activation to targets and distractors was 
classified with different algorithms in order to 
demonstrate the feasibility of EEG classification in such 
a motion-intensive VR task. Therefore, we compared the 
performance of the three most popular classifiers in BCI 
research as reviewed by Värbu, Muhammad, and 
Muhammad [17]: linear discriminant analysis (LDA), 
support vector machines (SVM) and convolutional 
neural networks. We investigated the standard LDA as 
well as shrinkage LDA (sLDA) and we worked with 
EEGNet as neural network. LDA and sLDA both aim to 
find a linear combination of features that most effectively 

separates two or more classes, with sLDA being less 
prone to overfitting [18]. SVMs find hyperplanes to 
maximize margins between different classes [19]. Lastly, 
EEGNet is a specialized compact convolutional neural 
network architecture tailored for the interpretation and 
analysis of EEG signals, designed to offer both high 
interpretability and robust performance in BCI tasks [20]. 
EEGNet performs feature extraction autonomously based 
on the data, whereas for LDA and SVM features must be 
extracted in a separate step.  
For all methods, we hypothesize that the validation 
accuracy will be significantly above chance. Further, we 
expect the best classification performance for EEGNet, 
as it is specifically designed to classify EEG signals. Due 
to overfitting issues, LDA might work least accurately. 
 
MATERIALS AND METHODS 
 
     Participants: 48 participants were invited to the study 
and met the inclusion criteria: good health, sobriety, 
right-handedness, no preexisting neurological issues, 
normal or corrected-to-normal vision. During the 
experiment, 16 participants were excluded due to 
inaccurate eye-tracking (7), technical issues (6), motion 
sickness (1), pain from EEG cap (1), or below chance 
performance in the task (1). In total 32 participants (age 
22-45, x̄ = 28.81 ± 5.00 years, 19 female) finished the 
experiment and were included into analysis.  
     Study design and procedure: After giving informed 
consent, participants answered demographic questions 
and were set up with an EEG. They then performed a 
workload calibration task which will be part of another 
analysis. The main object selection task was performed 
in a visually sparse VR environment created in Unity 3D. 
It consisted of a grey floor and sky with the controller 
represented by a translucent blue hand. In the 
experiment, spheres with a diameter of 0.5 m spawned 
with an angle of ± 50° left or right in front of the 
participants. Spheres were colored either bright blue or 
yellow, grayish blue or yellow, or in isoluminant gray. 
Spheres floated towards the participant where they 
disappeared either because the participant touched a 
sphere, or it reached the center of the virtual world. Upon 
destruction, three different sounds were played 
depending on whether the destruction was a hit, false 
alarm, or a miss. No sound was played for a correct 
rejection. Color, speed and spawn distance of the spheres 
depended on the condition. A 2x2x2 repeated 
measurements design resulted in varying difficulty levels 
with the factors: distinguishability (color was easy or 
hard to distinguish), predictability (constant or random 
inter-stimulus intervals), and visibility (color visible 
permanently or upon fixation). During 4 training blocks, 
participants got accustomed to the conditions. In the main 
part, all 8 conditions were presented in pseudo-random 
order, split into 2 blocks each, while the target/distractor 
color was counter-balanced over all participants. Each 
block contained 240 spheres (120 targets) and lasted 
180s. After each block NASA-TLX [21] and 3D-SART 
[22] were collected for a separate analysis. In total, the 
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experiment lasted for 3.5-4.5 hours per participant, 
including breaks. 
     Instruments: For workload calibration a 27” HD 
monitor was used. The main experiment was conducted 
using a head-mounted display (HMD, HTC Vive) and an 
HTC VR controller. Positions of HMD and controller 
were tracked with the SteamVR Lighthouse tracking 
system. The HMD additionally had an inbuilt eye 
tracking system by SensoMotoric Instruments. Both 
motion and eye tracking data was streamed with a 
sampling rate of 90 Hz using Lab Streaming Layer (LSL, 
[23]). Events such as block starts and ends, sphere 
spawns and destructions, and eye gaze fixations were 
recorded in LSL. EEG was recorded using a 128-channel 
ANT eego sports system with passive Ag/AgCl 
electrodes and active cable shielding (ANT Neuro, 
Hengelo, Netherlands) with a backpack-worn tablet PC 
streaming the data wirelessly to LSL. To our knowledge, 
no high pass filter was applied during recording. The 
EEG was referenced to the vertex electrode, grounded 
with an electrode at the ear lobe and recorded with a 500 
Hz sampling rate. Impedances were below 20 kΩ.  
     EEG preprocessing: Preprocessing of the EEG data 
was done in EEGLAB [24] in MATLAB using the 
BeMoBIL Pipeline with minor adaptations [25]. Taken 
together, preprocessing consisted of three steps: (1) Data 
import and synchronization of the different streams. (2) 
Data downsampling to 250 Hz, line noise removal using 
Zapline-plus [26], detection and interpolation of bad 
channels using the clean_rawdata EEGLAB function, 
and referencing to the average. (3) Artifact removal using 
the adaptive mixture independent component analysis 
(AMICA; [27]), rejecting all non-brain components as 
determined by the ICLabel toolbox [28].  
     Calculating fixation-related potentials with the 
Unfold toolbox: To prepare for further analysis, the 
cleaned EEG data was filtered with a low pass filter of 35 
Hz and a high pass filter of 0.2 Hz passband edges, 
respectively. To deconvolve overlapping EEG signals 
and to model the influence of artifacts the Unfold toolbox 
for MATLAB was used [29]. The Unfold toolbox was 
designed to recover isolated neuronal responses from 
originally overlapping cortical signals by reconstructing 
the deconvoluted signal mathematically. For every event 
of interest, a regression model is defined which is then 
fitted to each time point and channel relative to the onset 
of an event. The following events were supposed to 
influence the phenomenon of interest and were therefore 
included as a regression model: last fixation onset, 
fixation onset, final fixation exit, sphere spawn, sphere 
destruction, and sphere collision. For a more detailed 
description of the process including regression equations, 
see Rabe [30]. The Unfold toolbox returns beta weights 
which we then used to reconstruct the deconvoluted 
FRPs by summing up grand mean, regression weights of 
main effects, and interaction terms. 
The following data was included into further analysis: (1) 
only trials in which participants correctly reacted to 
targets (hit) or distractors (correct rejection), (2) only last 
fixations on a sphere, i.e. before an action was performed 

on it (hit a target) or not (dismiss a distractor), (3) 
activation from -1 to 2 ms around the fixation event (750 
timepoints), (4) only Pz electrode because the most 
elevated P3 amplitudes can be expected over the 
centroparietal cortex [31]. Paired t-tests comparing target 
amplitudes against distractor amplitudes were conducted 
for each timepoint. Peak amplitudes to targets and 
distractors were averaged +/- 10 ms around the peak in a 
time window of 200-600 ms. Then, a one-sided t-test 
(hit>distractor) was conducted. Normal distribution was 
assessed visually with QQ-plots and could be assumed.  
     Classifying on target and distractors: Classification 
was performed on the preprocessed but not unfolded 
dataset. All input time intervals were locked to fixation 
onset. In order to exclude brain responses related to 
motor execution we only included fixations on spheres 
that were more than 4 meters away (head to sphere 
distance), i.e. out of reach for the participant.  
For classification, four algorithms were applied: LDA, 
sLDA, SVM, and EEGNet. Features needed to be 
extracted as input for LDA, sLDA, and SVM while 
EEGNet is designed to detect features automatically, thus 
it used the preprocessed data directly. Feature extraction 
will be described in the following.  
First, epoching was done with a time window of [-1000 
1500] ms and a baseline between [-400 -200] ms. 
Epoching steps were conducted in EEGLAB and resulted 
in a three-dimensional data matrix (channel x time x 
epoch). Second, the timeframe of [0 600] ms was used 
for feature extraction. This 600 ms period was split into 
15 non-overlapping moving windows of 40 ms each. 
Third, amplitude averages were calculated for each 
window across all channels and epochs. Lastly, the 
resulting feature matrix (epoch x 1935) was fed into the 
classifiers (LDA, sLDA, SVM). To validate the 
classifiers’ performance, 5-fold cross-validation was 
conducted. Finally, statistical significance levels were 
calculated with a permutation-based approach, written by 
Laurens Krol (based on [32]). It generates a synthetic 
dataset of the same size and randomly shuffles the classes 
25,000 times. This produces a distribution of random 
correct assignments for comparison with our 
classifications. For α = 0.01, significance is reached with 
53.06% accuracy.  
MATLAB R2021a and the EEGLAB 2022.1 toolbox 
were used for preprocessing. The SVM model used a 
linear kernel and a box constraint value of 0.01 to prevent 
overfitting. The LDA, sLDA and EEGNet models were 
developed using Python 3.8.8. For EEGNet, Keras (v3.0) 
was used. The software components were executed on a 
system equipped with the following hardware 
specifications: an AMD Ryzen 5 3600X 6-core processor 
running at a clock frequency of 3.80 GHz, 16 GB of 
RAM. 
 
RESULTS 
 
     P300 to targets and distractors: Our hypothesis was 
that amplitudes of the FRPs in a time window of 200-600 
ms on Pz electrode would be larger to targets (i.e. hits)  
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Figure 2: (A) Fixation-related potentials (FRP) to last fixation onset, 0 ms, on target or distractor. Significant differences 
in amplitude are indicated (pairwise t-test per timepoint, p<0.05) (B) Performance of different classifiers for classification 
of brain activation to targets or distractors. Each boxplot indicates the spread of accuracy percentages. Statistical 
significance level of above chance performance is indicated with a horizontal dashed line at 53.06%. 

than to distractors (i.e. correct rejections). T-tests of the 
amplitudes on every single timepoint against each other 
revealed a significant difference with p < 0.05 for most 
timepoints between around -100 ms to 750 ms 
(timepoints marked in Fig. 2). Comparison of the peak 
amplitudes indicated that during the 200-600 ms period 
after fixation onset, the average peak amplitude for 
targets was 1.05 µV (SD = 0.96), while for distractors it 
was 0.79 µV (SD = 0.95), showing that targets had a peak 
amplitude that was, on average, 0.26 μV higher than that 
of distractors (SD = 0.47). A paired one-sided t-test 
comparing the peak amplitudes (targets > distractors) 
confirmed a significant difference (t (31) = 3.12, p < 0.01, 
d = 0.55).  
     Classifier performances: For the evaluation of EEG 
data classification, four algorithms—LDA, shrinkage 
LDA, SVM, and EEGNet—were assessed using 5-fold 
cross-validation. Fig. 2 demonstrates the distribution of 
the validation accuracies. On average, 2307 valid epochs 
were included for each participant, with an almost 
balanced ratio of targets to distractors. We hypothesized 
classification accuracies above chance for each method, 
with EEGNet performing best and LDA performing 
worst. Results show that all classifiers except LDA (𝑥" = 
52.7%) performed above random - sLDA 𝑥" = 55.5%, 
SVM 𝑥" = 56.3%, and EEGNet 𝑥" = 56.0% -, i.e. median 
values exceeding the estimated threshold of 53.06 %. All 
classification accuracies for training and validation can 
be seen in Tab. 1.  
 
DISCUSSION 
 
In this study, participants had to react to floating spheres 
of two colors in a VR environment. While the spheres 
were approaching towards the participants, they had to 
touch targets and dismiss distractors. We were interested 
in the cognitive reaction to targets and distractors upon 

fixation and the possibility of a fixation-based BCI. Our 
analysis was split into two parts: (1) comparing FRP 
amplitudes upon last fixation onset to correctly identified 
targets (hits) and distractors (correct rejections), (2) 
assessing the performance of different classifiers (LDA, 
sLDA, SVM, EEGNet) to distinguish between targets 
and distractors. For the first part, the amplitudes in a P300 
time window were larger for targets than for distractors, 
both during peaks and at each time point. In the second 
part, above chance classification accuracies were 
achieved for all classifiers but LDA. Performance of 
SVM, sLDA, and EEGNet was almost equal.   
     Cortical activation around fixation: Since the 
participants were in full-body motion during the 
experiment, we investigated whether it was generally 
possible to replicate a well-studied cortical response in 
our paradigm despite movement artifacts. The P300 was 
analyzed because it has been repeatedly shown to be a 
discriminator between targets and distractors [33–37]. 
Our analysis confirmed the hypotheses: during the P300 
time window, FRP amplitudes to targets were higher than 
to distractors, both for the peak and for each timepoint. 
Unexpectedly, this difference emerged already 100ms 
before stimulus fixation which was not reported by other 
free-viewing studies [33,34,36]. The sustained elevation 
of amplitude to targets compared to distractors from -100 
ms to 750 ms around fixation onset may stem from 
parafoveal processing before fixation onset, potentially 
present in all blocks where color visibility was constant  
 
Table 1: Median training and 5-fold validation accuracies 
for the different classifiers 
Classifier Training Validation 
LDA 92.9% 52.7% 
sLDA 71.8% 55.5% 
SVM 68.8% 56.3% 
EEGNet 60.1% 56.0% 
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(half of the trials). Such modulations might have affected 
the overall FRPs calculations. Indeed, early modulations 
of amplitudes can be seen in free-viewing tasks, and not 
in replay or oddball tasks [35]. Another possibility is that 
participants already distinguished between stimuli during 
earlier fixations. Unlike in the last fixation (which we 
investigated), a person is likely to decide during the 
initial fixation whether a stimulus requires further 
attention. This might influence the cortical activation to 
that same stimulus during following fixations. 
Supporting this idea, another study showed FRP 
modulations for repeated object fixation [38].  
The prominent spike at approximately 40-120 ms post 
fixation onset most likely reflects a visually evoked 
lambda response, a potential unique to free-viewing 
studies and originating from the striate or extrastriate 
cortex [12]. 
Overall, and most importantly, we could demonstrate a 
substantial difference in amplitude to targets compared to 
distractors after stimulus fixation even in a paradigm 
with full-body movement and fast-paced events. This 
serves as a first proof of concept for the feasibility of 
analyzing brain responses in our novel VR interaction 
paradigm. Further investigations should address the 
potential influence of parafoveal stimulus discrimination 
and repeated stimulus fixation to improve understanding 
of cortical responses in free-viewing paradigms and to 
pave the way for EEG analysis in more realistic research 
scenarios.  
     Classifying stimulus discrimination: In an online 
classification of neuronal processes, it might be of 
interest to identify whether a participant is evaluating a 
stimulus as target or as non-target, for example to 
indicate whether the participant intents to interact with 
that stimulus. As a first step towards that goal, we 
compared the performance of four different classifiers, 
offline, to predict target and distractor discrimination 
from brain activation after fixating a stimulus. Three of 
the classifiers, sLDA, SVM, and EEGNet, yielded an 
above chance accuracy. Only LDA failed to reach that 
level. Low performance of LDA was predicted before 
because of its overfitting issues [18]. We expected the 
best performance of EEGNet, however all classifiers 
performed equally well with mean validation accuracies 
between 55.5-60.0%. One reason for the similar 
outcomes might have been the relatively noisy data, 
compared to other paradigms. We argue that it may create 
a ceiling effect in classification accuracy which could be 
topic of investigation in subsequent analyses.   
We identified several factors that, if considered in future 
analyses, could improve classification accuracies. 
Probably, the overlap between cortical activation to 
subsequent stimuli hampered the classifiers' ability to 
effectively distinguish between targets and distractors. In 
the first part of our analysis, we showed that by 
“detangling” overlapping cortical responses with a 
regression-based calculation we were able to replicate 
results of studies without this overlap. It is advisable to 
come up with a similar method that can integrate well 
with classification to reduce the noise produced by 

overlapping responses. Further, all EEG channels were 
used for classification without spatial filtering. 
Optimization could be achieved by concentrating on 
more relevant electrode locations. As target and 
distractor discrimination represented by the P300 is 
primarily found over the centroparietal cortex [31], we 
argue that respective electrodes should be elevated by a 
spatial filter. Finally, motion artifacts might still have 
obscured some of the brain signals as the paradigm was 
quite motion-intensive. Since all applications of BCI in 
motion will face similar issues we suggest the 
exploration and integration of more sophisticated artifact 
rejection techniques to ensure cleaner, more reliable data 
inputs. 
 
CONCLUSION 
 
To the best of our knowledge, this was the first study 
classifying stimulus discrimination in a 3-dimensional 
VR environment with high stimulus frequency and full-
body motion, investigating more innate interaction 
patterns than standard 2-dimensional monitor based 
experiments. The findings indicate that it is feasible to 
classify cortical activation patterns to stimulus 
discrimination despite body movements. Our results can 
be regarded as a promising first step to investigate and 
apply BCI in motion, making it more accessible for a 
wide range of human-computer interactions.  
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