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ABSTRACT: Error-related potentials hold the potential
to enhance self-correcting behaviors in Brain-Computer
Interfaces (BCIs), pivotal for human-machine interac-
tions. However, integrating error detection mechanisms
poses challenges, notably in lengthy calibration sessions
required for different BCI modules. To address this, we
propose a novel approach using Self-Supervised Learn-
ing (SSL) with an autoencoder architecture, called Ana-
E, to develop pre-trained error detection pipelines. We
recorded EEG data from participants navigating a game
scenario imposed with errors. Offline analyses within
and between participants were conducted for both pre-
processed EEG trials and Ana-E features with two clas-
sifiers. Within-participants analysis showed compara-
ble performance between Ana-E features and EEG trials.
While in between-participants analysis, Ana-E exhibited
an 8% performance improvement (72%) over the second-
best pipeline (64%). Our study offers valuable insights
into the future of pre-trained models for error detection
in BClIs, providing a baseline for more complex archi-
tectures with the goal of significantly enhancing BCI us-
ability and reducing dependency on calibration sessions,
thereby improving user experience and applicability.

INTRODUCTION

In the field of Brain-Computer Interfaces (BCIs), Error-
related Potentials (ErrPs) have been utilized as error de-
tection instruments to expand the usability of architec-
tures and develop a smoother experience between the user
and external device [1]. Such implementations have been
applied both in offline [2] and online paradigms [3]. Al-
though the integration of errors as corrective instruments
could improve the usability of BClISs as assistive tools, an
immediate challenge emerges. Different BCI modules
would require multiple calibration sessions [4], making
the existence of pretrained models a requirement for self-
correcting BCI implementation to prove applicable. In
this paper, we attempt to develop pretrained models by
adapting an autoencoder architecture to conduct a Self-
Supervised Learning (SSL) task.

SSL reflects a subset of unsupervised learning methods
in which neural networks are trained with automatically
generated labels (pretext task) and then tested on a super-
vised task (downstream task), where human annotations
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are utilized to evaluate the performance of the model [5].
SSL relies on the premise that input information has dis-
tinguishable characteristics, and learned feature represen-
tations from the pretext task can be transferred to the
downstream task [5]. SSL has been used successfully
in visual feature learning tasks like image colorization
[6], temporal order verification [7], and visual-audio cor-
respondence verification [8]. SSL methods have further
been deployed for time series data [9], where a common
method is that of masked autoencoders, which randomly
mask patches of the original time series data and learn
temporal dynamics by recovering the masked patches
[10]. Recently, SSL methods were implemented in EEG
data for sleep stage recognition and pathology detection,
outperforming purely supervised deep neural networks in
low-labeled cases [11].

Autoencoders represent an unsupervised learning tech-
nique where the core idea is to conduct a representation
learning task [12]. To do so, a deterministic encoder-
decoder network pair is trained to learn a feature vector,
often referred to as a ’bottleneck,” capable of encoding
the underlying structural characteristics of the input sam-
ples. The learned feature vector could then be used by the
decoder to fully reconstruct the input data samples [13].
In this paper, we used a 1D convolutional autoencoder ar-
chitecture for EEG reconstruction that we coined as Ana-
E. After training our model on EEG reconstructions, we
extracted the encoder part and used it as a feature extrac-
tor of EEG trials, which we then fed to a classification
head (CH). Our goal was to develop an architecture capa-
ble of deconstructing and reconstructing the input EEG
as our pretext task. We then expect that the learned fea-
tures from our encoder would be robust enough to clas-
sify errors in human participants in a downstream task.
By doing so, we hope to address the issue of pre-trained
BCI models. To investigate the novelty of our approach,
we tested our architecture both within-participants and
between-participants.

MATERIALS AND METHODS

Participants: We recorded 10 participants (6 females)
with a mean age of 22 years (SD = 2.3), each undergoing
a single recording session. One participant was removed
due to incomplete markers. Participants were recruited
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via advertisement fliers and compensated at a rate of 8 eu-
ros per hour. They provided informed consent and were
informed of their right to withdraw at any time during
the experiment. Ethical approval was obtained from the
Ethical Committee of the Faculty of Arts, University of
Groningen, The Netherlands (ID 92123476).

Procedure: Upon arrival, participants were introduced
to the laboratory, briefed on the study, and signed in-
formed consent forms. EEG cap placement took approx-
imately 30 minutes. Following this, participants under-
went a brief training session ( 5-10 minutes) to familiar-
ize themselves with the experimental paradigm, includ-
ing game rules and controls.After training, participants
explained the game rules to researchers and began play-
ing, with the game duration lasting 60-90 minutes. Rest
periods were provided between trials as needed. The total
experiment duration ranged from 120 to 150 minutes.

EEG Recordings: Participants EEG was recorded with
antiCAP slim/snap 32 gel based active electrodes accord-
ing to the 10-20 international system with a sampling
rate of 500Hz using the LiveAmp BrainProducts ampli-
fier. The measured EEG channels were: FP1, FPz, FP2,
AF3, AFz, AF4, F3,F1, Fz, F2, F4, FC3, FC1, FCz, FC2,
FC4, C3, C1, Cz, C2, C4, CP5, CP1, CPz, CP2, CP6, P3,
Pz, P4, O1, Oz, O2. Ground and reference electrodes
were placed on the left and right mastoid, respectively.
EEG was recorded with the Brainvision recorder. Finally,
impedance of electrodes was kept below 20 Q for all par-
ticipants.

Experimental Procedure: The experiment was devel-
oped in the Unity game engine [14] and had the code
name Honey Heist. The experiment consisted of two
phases: the training phase (approximately 5 minutes) and
the testing phase (approximately 60—90 minutes). In this
game, participants had to control a 3D avatar (bear) us-
ing keyboard buttons (W, S, D, A, or arrow keys) to reach
a target (acquiring the honey) and then escape from the
predefined boundaries to reach the finish line (forest). Af-
ter participants passed the starting line (fence), they were
chased by an artificial agent (chicken) throughout the rest
of the trial.

Each trial had two possible outcomes: either participants
acquired the target (honey) and reached the finish line,
resulting in "winning" the trial, or the agent caught them
before reaching the finish line, resulting in "losing" the
trial. Participants were instructed to complete the task
as quickly as possible. This experiment consisted of 400
trials, divided into three experimental conditions: 1) Nor-
mal Trials: 280 trials, 2) Control Error: 60 trials, and 3)
Environment Error: 60 trials. Each trial ranged from 9 to
13.5 seconds depending on the participants’ performance.
In the normal trials, the procedure was identical to what
is described above. In the control error condition, after
crossing a specified threshold, the player lost the ability
to jump over fences (Fig. 1), resulting in the agent catch-
ing up with the player and subsequently "losing" the trial.
The threshold was an invisible box that was randomly se-
lected between 3 — 3.6 units on the Z axis, in the game
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Figure 1: A) Normal trial where the participant is able to jump
over the fence. B) Control error trial where the participant loses
the ability to jump.

Figure 2: Environment Error Condition: The artificial agent is
teleported onto the participant while enlarged, resulting in a jit-
tering effect.

environment.

In the environment error conditions, after participants
crossed the threshold, the agent was teleported inside the
player’s avatar while doubling its size, resulting in jitter
effects and instant loss of the trial (Fig. 2).

Participants were not informed about the different error
conditions, which comprised 30% (15% per error condi-
tion) of the total trials. The total number of trials was di-
vided into 10 blocks with a uniform distribution to ensure
that only six errors per condition occurred per block. Fur-
thermore, the onset of error trials occurred after partici-
pants crossed the specified threshold, randomly selected
in each trial.

EEG Pre-processing: EEG recordings were first band-
pass filtered (FIR) between 1-30 Hz (filter length of 1651
samples) to remove slow drifts and power line noise.
Then, to remove eye artifacts, an Extended Infomax Inde-
pendent Component Analysis (ICA) [15] was computed
with as many components as EEG electrodes (32). The
ICA components were then visually inspected and scored
by adaptive z-scoring based on the three frontal elec-
trodes (FP1, FPz, FP2). After correcting for eye artifacts,
the data were filtered again between 1-15 Hz (FIR) with
a filter length of 1651 samples (3.302 sec) and epoched
for each condition from O to 1 s, where O s was the on-
set of our markers. To ensure that no significant artifacts
were maintained in our epochs, we dropped epochs based
on maximum peak-to-peak signal amplitude (PTP) with
a rejection threshold of 100 x 10® V. Epochs were then
saved per participant to be later used for the training of
our models.

Data preparation: The dataset consisted of epochs x
channels x time-points. Additionally, we selected only
the 11 central electrodes AFz, F1, Fz, F2, FC1, FCz, FC2,

Published by
Verlag der Technischen Universitat Graz



Proceedings of the

9th Graz Brain-Computer Interface Conference 2024

Cl1, Cz, C2, CPz, based on the brain regions frequently
associated with the encoding of error processing [16].
Furthermore, to prepare the dataset for our model, min-
max normalization was computed per electrode, trans-
forming the amplitude of the electrodes between 0 and
1. Finally, to account for the unbalanced dataset (as nor-
mal trials accounted for 60% of the trials), the number of
epochs was equalized between the error conditions and
the normal trials, with the aim of the remaining epochs
occurring as close as possible in time. Thus, we re-
moved those normal trials that fell further in time from
the epochs of control and environment error conditions
and maintained normal trials that fell closer. Finally, we
combined the two error conditions (control, environment)
into a single class, resulting in a binary classification task
between normal and error trials

Autoencoder Architecture Ana-E: The architecture we
developed, termed Ana-E, is a 1D convolutional autoen-
coder comprised of an encoder, decoder, and an interme-
diate dense layer for reshaping the encoded representa-
tion. The encoder consists of three layers, with each layer
applying a 1D convolution with kernel sizes of 32, 64,
and 128, respectively. The first layer’s input size mirrors
the 11 selected electrode, where a 1D convolution with a
kernel size of 32 is applied over the 500 time points per
electrode.This results in EEG epochs as input, with the
first layer’s output producing 22 filters. Subsequent lay-
ers double the number of filters, culminating in 88 in the
final encoder layer. No padding is applied in any layer.
For the first two layers, batch normalization and ReLU
activation functions are applied after each convolutional
layer, while the final encoder layer consists of a 1D con-
volution with a kernel size of 128, followed by flatten-
ing the output. This results in a high-dimensional tensor,
which is then passed through a linear layer to reduce the
dimensionality to 750.
Between the encoder and decoder, we integrated an in-
termediate dense layer with a linear transformation from
750 to 88*280 dimensions, reshaping the flattened en-
coder output for decoding. The decoder network mir-
rors the encoder, excluding the final flatten and linear lay-
ers. Additionally, the decoder’s output is passed through
a sigmoid function to reconstruct the original EEG signal.
For the EEG feature representations, we utilized the out-
put of our encoder. For the classification task, our clas-
sification head (CH) consisted of five linear layers with
dimensions 750, 500, 250, 125, 60, and 1, respectively.
The first input layer corresponds to the output number
of Ana-E’s encoder. Each linear layer is followed by a
ReLU activation function. The output of the final layer
undergoes a sigmoid function for binary classification be-
tween normal and error trials.

Training and evaluation: We trained and evaluated
Ana-E both within-participants and between participants.
For the within-participants case, we split each partici-
pant’s session into train/val/test splits of 0.6, 0.2, and 0.2,
respectively. In the between-participants case, the model
was trained on sessions from all participants except the
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one being tested, resulting in 8 training sessions and 1
testing session. The 8 sessions, after being combined,
were split into train and validation sets of 0.8 and 0.2,
respectively. This process was conducted iteratively for
each participant. The model was trained for 250 itera-
tions with a batch size of 64.

We selected Adam as an optimizer with a learning rate
of 1 x 107 and weight decay of 1 x 10, For the loss
function, we chose the Mean Squared Error (MSE) as
we wanted our model to be fine-tuned based on the dif-
ference between the original input and the reconstructed
output. The most optimal parameters for the models, such
as training iterations, batch size, learning rate, weight de-
cay, and the number of neurons of the final linear layer of
the encoder, were selected based on GridSearch.

For our classification head (CH), we used 200 training it-
erations with a batch size of 10 using Adam with a learn-
ing rate of 1 x 10~} and weight decay of 1 x 10°. We
employed Binary Cross-Entropy (BCE) as the loss func-
tion.

Ana-E: Error classification as downstream task: To as-

sess the effectiveness of our architecture in extracting re-
liable features for developing pre-trained error detection
models, we compared the features extracted by Ana-E
with the raw (preprocessed) EEG trials within and be-
tween participants. In each comparison, we employed
two classifiers: our CH and Linear Discriminant Analysis
(LDA) [17], resulting in four different pipelines: AnaE-
LDA, AnaE-CH, RAW-LDA, and RAW-CH. In the RAW
pipelines, we flattened the 3D EEG trials into 2D. Each
epoch’s input for LDA and CH in the RAW pipelines con-
sisted of 11 electrodes multiplied by 500 time points. To
meet the specified input size of 750 in the first layer for
CH, we added an extra layer with an input of size 11 *
500 and an output size of 750.
We evaluated the quality of each pipeline and its abil-
ity to differentiate between classes by examining accu-
racy scores, True Negative Rates (TNRs), and True Pos-
itive Rates (TPRs) for 2-class classification within and
between participants.

RESULTS

First, to assess the quality of our feature extractor in the
within-participants case, we provide the grand average
(GA) per pipeline, together with each participant’s ac-
curacy and TNRs and TPRs. We observe that the best
GA is achieved by RAW-CH (M = 79%, SD = 0.08).
For the second-best performance, both AnaE-LDA (M =
78%, SD = 0.11) and AnaE-CH (M = 78%, SD = 0.11)
performed equally well, while the worst accuracy was
achieved from RAW-LDA (M = 73%, SD = 0.13).

Further inspection of the accuracy per participant reveals
that the top three pipelines performed equally well across
participants, as each pipeline resulted in the best per-
formance across three participants. Differences in GA
are reflective of the variation of classifiers’ performances
within each participant. For example, our custom classi-
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Figure 3: Within-Participants: Classification accuracy
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Figure 4: True Negative and True Positive Rates: Within-
Participants

fication head seems to achieve the best GA due to the dif-
ference it has with the other classifiers in participant 6 and
not due to being the most optimal classification method.
Additionally, we notice that all pipelines across all partic-
ipants scored higher than the binary classification chance
level (50%), with the best performances achieved in par-
ticipants 3 and 5 (>80%). Our top three pipelines consis-
tently perform around the 70 mark for almost all partici-
pants. (Fig.3).

To gain a better understanding of the quality of the clas-
sification made by our tested pipelines, we further inves-
tigated the TNRs and TPRs (Fig. 4). We observed that
the LDA pipelines predict both classes more equally, with
the normal class being predicted slightly more frequently.
In contrast, the Ana-E pipelines seem to predict the er-
ror condition more strongly, as evidenced by the average
TNRs and TPRs (Fig. 5).

Similarly, to assess the quality of our approach between
participants, we provide the GA for each pipeline to-
gether with the accuracy performances per participant
and then TNRs and TPRs. The best GA is reached by
AnaE-CH with a score of M = 72% (SD = .07), the
second-best metric is achieved by both RAW-CH (M =
64%, SD = .14), and AnaE-LDA (M = 64%, SD = .05).

By investigating the accuracy metric per participant, we
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Figure 6: Between-Participants: Classification accuracy

observe that our pipeline (Ana-E) performed above av-
erage in all participants and achieved the best accuracy
in 4 out of 9 participants. Additionally, we notice that
our custom classifier coupled with the preprocessed data
(epochs) performed the best in 5 out of the 9 participants
but next to chance levels in the remaining participants
(Fig. 6).

By further inspecting the average TNRs and TPRs per
pipeline, we notice that pipelines utilizing our feature ex-
tractor perform the best in terms of error condition recog-
nition. Although RAW-CH seems to achieve the best per-
formances in 5 out of the 9 participants in terms of ac-
curacy metrics, we now notice that the classifier mainly
learns to predict the normal trials and performs poorly in
terms of error detection.

Furthermore, by inspecting the average TNRs and TPRs,
we can deduce that when classifiers were utilizing the fea-
tures extracted by our encoder, they were firstly able to
better predict error conditions while secondly maintain-
ing more stable performances across the different partic-
ipants (Fig. 8).Finally, by inspecting the TNRs and TPRs
per participant we can observe the effects that are respon-
sible for the below chance level of error condition pre-
dictions as in 4 out 9 participants the custom classifier
trained on the preprocessed data predicts every class as
normal trials (Fig.7).

DISCUSSION
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The study aimed to explore the development of pre-
trained error detection models using an autoencoder in
a semi-supervised learning (SSL) setup. Initially, a
game simulation was designed in Unity, where partic-
ipants navigated obstacles, with 30% of trials contain-
ing simulated errors. EEG data were recorded during
the game. We adapted an autoencoder, termed Ana-
E, for SSL, training it on a reconstruction task and
utilizing EEG features for classification. Our pipeline
(AnaE) was compared against preprocessed EEG data
(RAW) using two classifiers. Both within-participant
and between-participant analyses were conducted. In
the within-participant analysis, the top three approaches
(RAW-CH, AnaE-LDA, AnaE-CH) performed equally.
In the between-participant analysis, AnaE-CH outper-
formed RAW-CH and AnaE-LDA.

Our within-participant analysis offers insights into the
performance of our architecture within a classical BCI
framework, where models are trained and tested on the
same participant session. Results suggest comparable
performance among our top three pipelines (RAW-CH,
AnaE-LDA, AnaE-CH), with minor variation. Further
examination of TNRs and TPRs reveals a tendency for
our custom architectures (RAW-CH and AnaE-CH) to ex-
hibit stronger predictions for positive class instances (er-
ror conditions). Moreover, it is noteworthy that the sam-
ple size for training and testing within participants was
significantly smaller compared to between-participant
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analysis. Given the complexity of Ana-E, the avail-
able data may not have been sufficient for our model to
learn highly discriminable features. Potentially a solu-
tion could be implemented by integrating variational au-
toencoders (VAE) [18] or other generative models [19]
in the processes and amplifying the total number of EEG
samples [20]. Furthermore, while the within-participant
analysis highlights the usability of our architecture as a
"classical" BCI paradigm, the between-participant analy-
sis will provide evidence regarding the feasibility of de-
veloping pre-trained error detection models.

The between-participants analysis provided insight into
the potential of pre-trained models, as it underscores the
capacity of an architecture to generalize to unseen partici-
pants while being trained on a sizable dataset comprising
multiple individuals. However, in the context of BClIs,
certain constraints, such as the non-stationarity of EEG
recordings [21], hinder the application of classical train-
ing approaches similar to those used in image processing.
In this study, we implemented an architecture designed
to learn generalizable features from an unsupervised task
(pretext) and subsequently transfer the learned EEG fea-
ture representations to a downstream classification task.
Our architecture (AnaE-CH) achieved the highest GA,
surpassing the second-best approach by 8%. Further ex-
amination of the TNRs and TPRs revealed that our classi-
fiers were more reliable in predicting the error condition
only when our encoder (AnaE) was used to extract fea-
tures. Conversely, when preprocessed trials were utilized
to train the classifiers, they primarily predicted normal
trials and struggled to identify the error condition. Our
approach provides support for the idea of generalizable
features across participants, laying the foundation for pre-
trained error detection models. Integration of such mod-
els into classical BCI scenarios could potentially reduce
the need for calibration sessions.

In the current study, there were certain limitations that
could have hindered the performance of our architec-
ture, such as the lack of sufficient datasets in our within-
participants analysis. The small sample size for training
and testing within participants might have limited Ana-
E’s robustness and generalizability in terms of feature
learning. Insufficient data can impact the model’s capac-
ity to learn complex EEG signal patterns and features,
potentially leading to suboptimal performance. A poten-
tial solution could involve the integration of VAE [18] or
GAN:Ss [19] to amplify the number of trials within partici-
pants without increasing the duration of participants’ ses-
sions. By doing so, we could further examine the quality
of our approach as a classical BCI pipeline. Furthermore
it should be highlighted that the results of this study are
based on an offline analysis where excessive attenuation
of artifacts was possible.

Moreover, our study diverged from the classical autoen-
coders. Typically, autoencoders aim to reduce dimen-
sions, but in our case, the number of dimensions in-
creases with each layer. Existing literature suggests that
autoencoders with large inter-layer dimensions may sim-
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ply copy input to output without learning meaningful fea-
tures [22]. Despite the increasing dimensions, our model
achieved improved classification performance based on
the learned features, indicating meaningful feature repre-
sentations from our encoder.Further investigation could
explore classical autoencoder principles to determine if
the improvements seen in this study stem from our archi-
tectural choices.

CONCLUSION

In conclusion, our study investigated the feasibility of
developing pre-trained models for error detection using
an autoencoder architecture in a semi-supervised learn-
ing (SSL) setting. We designed an experimental setup
simulating a game scenario to collect EEG data, which
were then employed to train our proposed approach. The
results demonstrated comparable performance across dif-
ferent pipelines in the within-participant analysis and a
notable enhancement in classification performance in the
between-participant analysis when utilizing Ana-E. Par-
ticularly promising was our architecture’s ability to gen-
eralize to unseen participants, indicating its potential util-
ity in real-world applications. Moving forward, further
research should explore alternative architectural modi-
fications to enhance the adaptability and robustness of
Ana-E. Overall, our study provides valuable insights into
the opportunity of developing pre-trained models for er-
ror detection in BCI scenarios, laying the foundation for
future advancements in the field.
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