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ABSTRACT: To apply synchronous laboratory passive 

brain-computer interface (pBCI) systems to dynamic 

real-world scenarios, it is essential to develop 

asynchronous, event-independent pBCIs that can 

continuously interpret brain activity. Minimizing false 

alarms (FAs) caused by artifacts in continuous online 

sessions without compromising the hit rate is one of the 

primary challenges in EEG-based brain activity 

classification tasks. To address this challenge, this study 

introduces the Max-Min Amplitude Noise Filtering 

(MANF) technique, which is designed to reduce FAs in 

the online EEG-based machine error detection task. To 

achieve this, we pre-trained a classifier on labeled data 

and then tested the performance of the technique on a 

simulated continuous online classification. The MANF 

technique, using a predetermined noise threshold, 

simplifies the noise filtering process by comparing the 

difference between the maximal and minimal amplitude 

of incoming EEG data against this threshold, 

substantially reducing FAs while maintaining high hit 

rate. This technique outperforms the unfiltered 

condition and those using the Artifact Subspace 

Reconstruction technique, achieving an optimal balance 

between sensitivity and specificity with medium and 

conservative thresholds. Highlighting the "less is more" 

principle, the MANF technique proves highly suitable 

for continuous online pBCI applications. This 

development contributes to the ongoing efforts in 

creating more user-friendly and reliable pBCIs for 

dynamic real-world use. 

 

INTRODUCTION 

 
Passive brain-computer interfaces (pBCIs) derive the 

output from ongoing brain activity, enriching the 

human–machine interaction by integrating implicit 

information on the actual user's intentions and 

emotional states into technical systems [1]. In recent 

years, electroencephalogram (EEG)-based pBCIs have 

been used in various scenarios [2–5], particularly 

notable in the use of error-related potentials (ErrPs) as 

implicit feedback. This approach has been validated as 

feasible in various use cases, e.g. BCI speller [6–8], 

cursor control [2,9], and improvement of robot control 

[10–12]. However, most paradigms involved are lab-

based and time-locked to specific events. To bridge the 

gap between synchronous laboratory pBCI systems and 

dynamic real-world usage, it is essential to develop 

asynchronous, event-independent pBCIs that can 

continuously interpret brain activity, ensuring more 

natural and seamless human-machine interactions. A 

few studies have investigated continuous, asynchronous 

error detection [13–15], with the aim of reducing false 

alarms (FAs) caused by artifacts in continuous online 

sessions while maintaining precise error detection. 

When exploring the real-time classification of EEG 

signals in dynamic environments or during intense 

physical activities, artifact interference is a primary 

obstacle [16,17]. Research in Mobile Brain/Body 

Imaging [18,19] has highlighted the efficacy of offline 

artifact correction techniques, such as Independent 

Component Analysis (ICA), for cleaner signal analysis 

[20]. Nonetheless, the adaptability of ICA for online 

application is limited. Novel approaches, including 

Artifact Subspace Reconstruction (ASR) [21] and 

Online Recursive ICA [22], show potential in certain 

online scenarios. However, their performance in 

continuous, asynchronous online classification, 

especially considering computational demands, remains 

unexplored. Therefore, further research is necessary to 

evaluate the performance of these algorithms or explore 

new techniques to reduce the effects of artifacts in 

continuous online application.  

This study aims to fill this gap by designing and 

evaluating a continuous online classification approach 

that incorporates a novel noise filtering technique. In the 

context of tactile-based machine error detection, we 

have implemented a comprehensive methodology that 

includes feature extraction, class re-balancing, Support 

Vector Machine (SVM) classifier training, and a simple 

noise filtering technique. The results indicate that our 

methodology achieves good performance in the 

simulation of online continuous classification. 

Furthermore, through comparative analyses of different 

noise filtering conditions, we have demonstrated that 

our simplistic noise filtering technique outperforms both 

unfiltered conditions and those using the ASR 
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technique. This study highlights the “less is more” 

principle in controlled continuous online classification 

scenarios. Therefore, our contributions are twofold: we 

not only validate the feasibility of a minimalist 

approach for online machine error detection but also 

offer insights for future research and applications in 

EEG-based continuous online classification sessions. 

 
MATERIALS AND METHODS 

 
     Materials overview: This study is based on an open-

source dataset (https://zenodo.org/records/8345429) 

[23], which was used for the IJCAI 2023 competition 

(https://ijcai-23.dfki-bremen.de/competitions/inter-hri/), 

supported by German Research Center for Artificial 

Intelligence, Robotics Innovation Center. The dataset 

contains recordings of the EEG data from eight subjects 

who were assisted in moving their right arm by an 

active orthosis. For each participant, 8 labeled single-

trial training sets and 2 unlabeled test sets are included. 

The training sets contain EEG data and all the event 

markers across the whole experimental sessions, while 

the test sets contain only continuous EEG data streams 

and markers indicating the onset of introduced errors. 

     Participants: The experiment involved 8 healthy 

right-handed volunteers (4 males and 4 females) with an 

average age of 21.8 years. Before the experiment, they 

attended a short session in the lab for an introduction 

and preliminary tests, which included fitting the orthosis 

and determining the EEG cap size according to head 

circumference. All participants were informed of their 

rights including voluntary withdrawal. The experiment 

lasted an average of 4.9 hours (SD = 0.6 hours), and 

participants were remunerated at a rate of 10 euros per 

hour. 

     Experimental setup and procedure: Participants were 

equipped with a 64-channel EEG system and wore an 

active orthosis on their right arm while holding an air-

filled ball in their left hand. The orthosis facilitated the 

participant's arm movements through a sequence of 

trials that included both flexion and extension. Certain 

errors were induced for a short duration of time during 

these movements. An error was defined as a short-term 

(250 ms) alteration in the direction of the orthosis's 

movement. For example, if the orthosis was amid 

executing a flexion movement, an error would cause a 

temporary switch to extension before resuming the 

original flexion path. Similarly, during an extension, it 

would momentarily change to flexion. The participants' 

primary task was to identify these errors in the orthosis's 

operation. The experiment's initial run aimed to 

establish a baseline with 30 movements without any 

errors. This was followed by a training session to 

familiarize the participants with the sensation of the 

error and the corresponding response — squeezing the 

ball in the left hand. During the experiment, 6 errors 

were randomly introduced among 30 movement trials 

across 10 runs, with the sequence of errors varied in 

each run. To reduce the artifacts in the data, participants 

were asked to maintain specific postures and gaze 

directions. The experiment was designed to elicit a total 

of 480 error detection responses, calculated from 6 

errors in each of the 10 runs, across all 8 participants. 

The timing of the stimulus onset for the trials without 

errors was determined by averaging the onset times 

from the trials that contained errors. 

     Data acquisition: EEG data collection was 

performed using the 64-channel LiveAmp system paired 

with the ActiCap slim electrode setup, adhering to an 

extended 10-20 layout, both supplied by Brain Products 

GmbH. The reference and ground electrodes were 

placed at FCz and AFz, respectively. The impedance for 

all 64 electrodes was consistently kept below 5 kΩ. 

Data sampling was at 500 Hz using Brain Products 

GmbH's Recorder software (version 1.25.0001), which 

applied hardware filters to limit the data's frequency 

range to 0.0 Hz to 131.0 Hz. The acquired EEG data 

was organized in the BrainVision Core Data Format 1.0, 

comprising three essential files: a binary data file (.eeg), 

a header file (.vhdr), and a marker file (.vmrk). Within 

each participant's EEG data folder, the marker files 

(.vmrk) recorded all critical events during the 

experiments. Markers for the start of flexion and 

extension movements were coded as S64 and S32, 

respectively. Error-free trials are indicated by S48 

markers, placed around the calculated mean onset of 

errors from the trials that contain errors. The 

introduction of an error in a trial was marked by S96, 

while the participant's action of squeezing the ball was 

recorded as an S80 event in the marker file. 

     Task description and evaluation metrics: For 10 runs 

from each participant, 8 serve as labeled single-trial 

training sets for training machine learning models 

capable of detecting the onset of the deliberately 

introduced errors in the data, while 2 serve as unlabeled 

test sets without event markers for model evaluation. 

During the evaluation phase, a buffer-like sliding 

window moves through the EEG data along the 

temporal dimension to simulate continuous online data 

acquisition. A binary classification of event types (error 

or non-error) is performed at each position of the sliding 

window. The predicted error onsets are then compared 

with true error onsets for evaluation. A predicted error 

onset that occurs within a 1000 ms window following 

the true error onset is defined as a hit or true positive. 

Conversely, any predicted error onset outside this 1000 

ms window is defined as a FA or false positive. It is 

important to note that within the 1000 ms window 

following a true error onset, multiple error predictions 

are collectively counted as a single hit, while each FA is 

included in the cumulative count of FAs. The evaluation 

metrics consist of the total number of hits in the 2 test 

sets for all 8 participants (with a maximum of 96), the 

average number of FAs across the participants, and the 

average FA rate across the participants. The average FA 

rate is calculated as the total number of FAs divided by 

the total number of non-error epochs across the 2 test 

sessions, averaged across participants. 

     Preprocessing: For the training sets, EEG data was 

preprocessed by re-referencing to an average reference 
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and applying a zero-phase, non-causal Hamming 

windowed-sinc FIR highpass (0.1 Hz passband edge, 

0.1 Hz transition bandwidth, 0.05 Hz cutoff frequency (-

6db)) and lowpass filter (15 Hz passband edge, 3.75 Hz 

transition bandwidth, 16.875 Hz cutoff frequency (-

6db)) in succession, using the EEGLAB pop_eegfiltnew 

function. The data was then segmented into epochs of 

interest, ranging from 100 ms before to 800 ms after the 

stimulus onset. Baseline correction was applied to each 

epoch, using the interval from 100 ms before the 

stimulus to its onset. The error epochs were organized 

into a [64, 400, 48] matrix indicating the number of 

channels, time points per epoch, and total error epochs, 

respectively, derived from 8 training sets per 

participant, with each set containing 6 error epochs. 

Similarly, the error-free epochs were organized into a 

[64, 400, 192] matrix, derived from 8 training sets per 

participant, with each set containing 24 error-free 

epochs. 

     Feature extraction and classifier training: Features 

were extracted using 50 ms non-overlapping moving 

windows within the [0-800] ms post-stimulus period 

across all 64 channels. In each window, the mean value 

was calculated, resulting in 1024 features per epoch for 

classification. To address the class imbalance issue, the 

Synthetic Minority Over-sampling Technique (SMOTE) 

was applied to enhance the representation of the 

minority class (error) by generating synthetic samples 

through interpolation with neighboring instances, 

thereby equalizing the number of epochs in both classes 

within the feature matrix [24]. The resulting balanced 

feature set contained 384 epochs (192 error and 192 

non-error epochs), each characterized by a 1024-

element feature vector. This feature set served as the 

input for training the SVM classifier [25]. The SVM 

model was configured with a linear kernel and a 

regularization parameter set to 1.0. To validate the 

model’s performance, a 10-fold cross-validation was 

carried out individually for each participant. 

     Continuous online classification simulation: During 

the online classification simulation phase, a buffer-like 

sliding window moved through the test EEG data along 

the temporal dimension, simulating the process of 

continuous real-time data acquisition. Spanning 900 ms, 

this window covered the same time range used during 

the offline training phase for feature extraction 

(including 100 ms baseline range). With a step size of 

20 ms, the window continuously “fetched” EEG data, 

ensuring a seamless and overlapping coverage of the 

incoming EEG data. The preprocessing approach and 

feature set chosen for classification in this phase were 

consistent with those applied in the offline training 

phase. To reduce the FAs in the continuous 

classification, we implemented a lightweight noise-

filtering technique, termed the “Max-Min Amplitude 

Noise Filtering (MANF) Technique”. The noise level in 

each window was evaluated and compared to a 

predetermined threshold. Epochs with a noise level 

above this threshold were considered “noisy” and 

directly classified as non-error (0). Finally, the trained  

 

Figure 1: Max-Min Amplitude Noise Filtering (MANF) 

technique process. This process diagram illustrates the 

process of determining the noise threshold using target 

epochs within training sets. First, the max-min 

amplitude difference within each target epoch is 

calculated for each channel. Then, the average of the 

highest 10% of these differences is calculated for each 

epoch. The final noise threshold is derived by averaging 

these means over all target epochs and adding a variable 

number of standard deviations to this average. 

 

SVM classifier continuously provided predictions for 

each position of the sliding window, where a prediction 

of 1 indicated the detection of an error, and 0 indicated 

its absence. Furthermore, we replicated the online 

simulation using the ASR technique [21] with the 

‘clean_asr’ function in EEGLAB. The evaluation of 

both the MANF and ASR techniques included three 

conditions: aggressive, medium, and conservative, each 

reflecting a different level of noise tolerance. The 

aggressive strategy used a lower threshold, resulting in 

more stringent noise filtering, while the conservative 

strategy adopted a higher threshold, allowing for less 

stringent filtering. The medium strategy maintained a 

balance between these two extremes. To implement 

these strategies, specific hyperparameters were tuned 

within each technique. For the MANF technique, noise 

thresholds were set at one, two, and three standard 

deviations above the mean noise level. For ASR, 

deviation cutoffs of 5, 20, and 30, relative to calibration 

data, defined the respective aggressive, medium, and 

conservative conditions. In addition, a baseline 

condition without any noise filtering was also evaluated 

to provide a comparative benchmark. 

     MANF technique: As shown in Figure 1, a threshold 

is calculated by examining max-min amplitude 

differences using the target epochs in the training sets. 

To this end, first, the max-min amplitude difference 
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Table 1: Online classification simulation results across 

different noise filtering conditions. 

Condition Total 

Hits 

Average FAs 

(Mean ± SD) 

Average FA Rate 

(Mean ± SD) 

Unfiltered 

(baseline) 

88 957.3 ± 308.6 0.037 ± 0.011 

MANF 

aggressive 

80 416.6 ± 158.9 0.016 ± 0.006 

MANF 

medium 

86 539.5 ± 186.2 0.021 ± 0.007 

MANF 

conservative 

87 620.8 ± 207.5 0.024 ± 0.008 

ASR 

aggressive 

26 27.8 ± 22.1 0.001 ± 0.001 

ASR 

medium 

81 521.1 ± 192.0 0.020 ± 0.007 

ASR 

conservative 

86 653.6 ± 169.5 0.025 ± 0.006 

 

within each target epoch is calculated for each channel. 

Then, the mean of the top 10% max-min amplitude 

differences (6 channels/values) is calculated for each 

target epoch, and last, the mean of those means across 

all target epochs, plus a variable number of standard 

deviations, is set as the final noise threshold. In the 

online simulation phase, epochs that contain mean max-

min amplitude differences in their top 10% channels 

above this threshold are considered “noisy” and 

excluded from being classified as error epochs. 

 

RESULTS 

 

The pre-trained classifier's performance was evaluated 

in a 10-fold cross-validation. The average balanced 

accuracy across all participants was 91.3% ± 4.5% 

(mean ± SD), which is significantly above the chance 

level of 0.5 (significance with 𝛂 = 0.001 would have 

been reached with 73.68% correct classification, see 

[26]). The average true positive rate was 84.9% ± 7.8% 

(mean ± SD), and the average true negative rate was 

97.7% ± 1.4% (mean ± SD). 

In the continuous online classification simulation phase, 

16 test sets, with 2 for each of the 8 participants, were 

used for online simulation. The average count of non-

error epochs across all participants was 26027.0 ± 

1733.5 (mean ± SD). The unfiltered condition served as 

a baseline, yielding the highest total hits and average 

FAs, as shown in Table 1. When implementing noise 

filtering using the MANF and ASR techniques with 

varying hyperparameters, there was a notable decrease 

in the average FAs. However, this improvement was 

accompanied by a corresponding reduction in total hits. 

Figure 2 illustrates the percentage changes in hit rate 

and average FA rate when applying both noise filtering 

techniques across three noise tolerance levels. Both 

techniques substantially reduced the FA rate, with only 

a relatively minor decrease in the hit rate. The noise 

filtering strategy that was most aggressive in its 

approach was the most effective in reducing FAs.  

 
Figure 2: Impact of noise filtering techniques on hit rate 

and FA rate. This figure compares the percentage 

changes in hit rate and average FA rate resulting from 

the application of two noise filtering techniques (MANF 

and ASR) across three levels of noise tolerance: 

aggressive, medium, and conservative. 

 

However, it also resulted in the largest decline in hit 

rate. This was particularly noticeable when using the 

ASR technique in its aggressive application, where 

there was a 97.0% reduction in FAs but an unacceptable 

70.5% drop in hit rate. The medium and conservative 

conditions produced a more balanced outcome, with 

both techniques achieving similar reductions in FAs 

(43.2% and 34.7% for MANF, and 45.1% and 31.7% 

for ASR, under medium and conservative conditions, 

respectively). Notably, the MANF technique 

outperformed the ASR in preserving the hit rate, 

showing only a 2.3% reduction compared to 8.0% under 

the medium condition, and a 1.1% reduction compared 

to 2.3% under the conservative condition. To 

demonstrate the process of continuous error prediction 

in the online simulation, we display the error predictions 

and true error onsets over time using a test set from one 

participant as an illustrative example (see Figure 3). 

This visualization is presented for both the baseline 

condition and the MANF condition, across three 

different noise threshold levels. 

 

DISCUSSION 

 

This study investigates the issue of artifact interference 

in continuous online classification of EEG signals, with 

a focus on machine error detection. We introduced and 

evaluated a simple noise filtering technique and found it 

to be superior to the unfiltered condition and those using 

the ASR technique in terms of reducing FAs while 

maintaining the hit rate. Specifically, our noise filtering 

technique achieved a 43.2% reduction in FA rate with 

only a 2.3% decrease in hit rate using a medium noise 

threshold, and a 34.7% reduction in FA rate with a 

minimal 1.1% decrease in hit rate using a conservative 

noise threshold. The comparative analysis of different 

noise filtering conditions highlights an essential 

consideration in the design of noise filtering strategies: 

the trade-off between sensitivity and specificity. While 

aggressive noise filtering effectively minimizes FAs, it 

may also inadvertently filter out genuine signals, 

leading to missed detections. Especially when using an 
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aggressive cutoff with the ASR technique, this approach 

tends to remove a significant portion of valuable signal 

features. As a result, the signals become flattened and 

lose their distinctive characteristics. Conversely, less 

stringent filtering preserves more hits but at the risk of 

higher FA rates. Therefore, for practical applications, it 

is recommended to use the medium or conservative 

strategies of the MANF technique. These strategies 

effectively minimize FAs while preserving a 

satisfactory hit rate, making them a preferable choice 

over the ASR technique or no filtering. Besides, the 

simplicity of the MANF technique offers an additional 

advantage. This technique simplifies the noise detection 

process by calculating the difference between the 

maximum and minimum EEG amplitudes for new 

incoming data streams in online sessions, and then 

comparing this calculated difference with a 

predetermined noise threshold value. This 

computational efficiency makes the MANF technique 

particularly suitable for continuous online applications, 

providing a computationally lightweight and effective 

solution for enhancing pBCI systems. In essence, this 

approach perfectly illustrates the “less is more” 

principle. 

The implications of our findings extend beyond the 

context of tactile-based machine error detection and 

shed light on the broader domain of asynchronous, 

continuous online EEG-based classification tasks. The 

results suggest that the MANF technique shows 

potential in developing more intuitive and user-friendly 

pBCI systems, such as assistive devices. By effectively 

reducing FAs, it promises smoother and more reliable 

human-machine interactions. However, it is important 

to note that the MANF technique primarily focuses on 

excluding noisy epochs rather than correcting artifacts, 

which might limit its effectiveness in dynamic 

environments with substantial movement. Advancing 

artifact correction techniques in such environments is 

still crucial. Furthermore, the testing phase of our study 

was conducted through an online simulation. Therefore, 

future research should evaluate the performance of the 

MANF technique in real online sessions and across 

diverse EEG-based applications, especially in complex 

or unpredictable environments. Additionally, further 

investigation into the optimization of noise filtering 

parameters, possibly through machine learning 

algorithms or adaptive filtering techniques, could yield 

even more effective and flexible solutions. 

 

CONCLUSION 

 

This study demonstrates that the MANF noise filtering 

technique can substantially reduce FAs while 

maintaining a high hit rate, outperforming both 

unfiltered conditions and those using the ASR technique 

in continuous online EEG signal classification. This 

approach, emphasizing the “less can be more” principle, 

offers a computationally efficient solution for enhancing 

pBCI systems, particularly in applications requiring 

continuous, real-time interaction. Our work contributes 

to the field by validating a minimalist yet effective 

strategy for online machine error detection and 

providing a foundation for future research in EEG-based 

continuous online classification. Looking forward, it is 

essential to explore the generalizability of the MANF 

technique in dynamic environments and further refine 

noise filtering parameters to broaden its applicability 

and effectiveness. 

 

 

Figure 3: Visualization of continuous error prediction in online simulation. This figure displays the temporal 

distribution of error predictions (indicated by blue vertical lines) and true error onsets (highlighted with light red 

shadows) for both the baseline and MANF-filtered conditions across three different noise threshold levels. The data 

presented here is specific to participant “AQ59D”, using test set 6 as an illustrative example. 
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