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ABSTRACT: The sense of smell, also known as olfac-
tion, can improve the usability of brain-computer inter-
faces (BCIs) and support passive modalities for moni-
toring cognitive states. In reactive BCI, users can as-
sign specific scents to commands for natural interaction,
while a passive application can monitor cognition. How-
ever, some challenges still need to be addressed, such
as the need for accurate odor delivery systems and ro-
bust algorithms for detecting and interpreting brain ac-
tivity patterns. We propose combining electroencephalo-
gram (EEG) and electrobulbogram (EBG) in an olfactory
modality oddball paradigm to predict a user’s awareness
level. Our pilot study indicates promising results for a
new passive olfactory BCI modality combining CSP fil-
tration and awareness level classification.

INTRODUCTION

Recent reports suggest a link between COVID-19 and
loss of smell, also known as olfactory dysfunction [1].
Mounting evidence suggests that this condition may be
an early symptom of Alzheimer’s or Parkinson’s syn-
dromes [2, 3]. A new method of objectively measur-
ing olfactory bulb (OB) activity named electrobulbogram
(EBG) has been proposed [4], utilizing standard EEG am-
plifiers by placing electrodes above eyebrows to evaluate
olfaction-related brain activity.
According to a recent study, olfactory sleep stimula-
tion may improve cognitive and memory performance in
the elderly, providing a potential intervention to protect
against Alzheimer’s syndrome [5]. As olfactory neuro-
science and applied neurotechnology gain interest, their
potential for use in BCI becomes more appealing [6]. The
state-of-the-art visual [7], auditory [8], and tactile [9]
modalities have been successfully implemented in BCI,
and the olfactory modality could represent the next fron-
tier.
Sensory awareness focuses on a specific sensory detail
rather than simply responding to stimuli. In the context of
olfactory awareness, it refers to the ability to distinguish
a target odor in an oddball stimulus presentation. When
evaluating the awareness level, we predict the subject’s

Figure 1: An experimental setting with a subject wearing an
EEG cap in front of an olfactometer delivering scent stimuli.

ability to differentiate between odors in a binary setting,
i.e., whether they are above or below the chance level of
half (three out of six) target stimulants.
The authors recently conducted a pilot study to test a
new form of olfactory stimulation. The study recruited
ten healthy and BCI-naive participants and used wearable
neurotechnology to capture their brainwave (EEG) and
OB sensory activity (EBG). During the EEG and EBG
preprocessing stages, we used the typical spatial pattern
(CSP) filtering technique [10, 11] to extract features from
the signals. Specifically, we focused on the gamma fre-
quency band (which ranges from 35 to 100 Hz). This
frequency band is known to carry the most meaningful
olfactory responses, as reported in previous studies [4].
We then compared the classification accuracy of EEG-
only, EBG-only, and combined EEG+EBG CSP features
using various classifiers.
The paper is organized as follows: First, we will in-
troduce the experimental conditions, signal preprocess-
ing with CSP feature extractions, and classification tech-
niques in the materials and methods section. Then, we
will present preliminary results from pilot experiments
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Figure 2: The study involved scent identification trials that included six targets each. The median results we represented as bar plots in
the above figure, along with 95% confidence intervals. Out of all the subjects, only three of them were able to achieve the maximum
score at once. The scores were then divided into two categories: lower awareness (scores ranging from 0 to 3) and high awareness
(scores ranging from 4 to 6).

involving ten young, healthy olfactory BCI users. Finally,
we will discuss these results and draw our conclusions.

MATERIALS AND METHODS

The olfactory BCI has the potential to revolutionize
human-computer interaction. It can also passively mon-
itor olfactory cognition and age-related changes, making
it helpful in supporting the elderly. Our recent feasibil-
ity study involved ten technology novices to identify any
potential usability and related unresolved issues. Dur-
ing the study, the users were asked to perform classical
oddball-style olfactory BCI tasks while their brain activ-
ity was monitored using EEG and EBG electrodes. The
users were also asked to report on the number of tar-
get scents they could identify in each trial. We utilized
data from scents delivered through an oddball paradigm
to train a machine-learning model. The model predicts
levels of sensory awareness based on olfactory stimula-
tion in a passive brain-computer interface (BCI) applica-
tion. This application estimates the user’s mental state
instead of generating commands.

Olfactory oddball BCI paradigm:
In 2024, during winter, we conducted a pilot study on
adult volunteers at Nicolaus Copernicus University in
Toruń, Poland. The study aimed to record EEG and EBG
using an olfactory passive BCI paradigm. The Institute
of Psychology UNC Ethical Committee for Experiments
with Human Subjects approved the investigation under
the ethical principles of The Declaration of Helsinki. The
study involved nine females and one male, with an av-
erage age of 20.4± 1.71 years. The report presents the
study’s findings.
This pilot project presents the findings of a study that em-
ploys the ETT Olfactometer2S to deliver odors in an odd-
ball BCI paradigm. Users are asked to identify and report
the number of instructed target scenes in each session,

comprising six odors. In each trial, one odor becomes a
target accompanied by five randomly presented distrac-
tors. Our study uses classical reactive BCI settings to de-
termine how well users can identify a specific target odor
amidst other distracting odors. However, the actual appli-
cation passively monitors the user’s cognitive states. We
used an olfactometer to ensure the odors were delivered
uniformly in all trials. This system includes an airflow
delivery unit, an odorant carrier, tubes, a nose applicator,
and ETT Direct Control software. We have developed
a Python script that communicates with the olfactome-
ter’s original software. This software connects to a lap-
top through a USB cable. The experiment setup can be
seen in Figure 1. During the experiment, a participant
wore a wireless Unicorn EEG wearable cap, manufac-
tured by g.tec medical engineering, Austria, which was
connected to a laptop running our in-house developed
EEG with EBG recording and stimulus presentation soft-
ware. This software controlled the delivery of olfactory
stimuli from a pipe near the participant’s nose. We used
an ETT Olfactometer 2S manufactured by Emerging Tech
Trans, LLC., USA, to deliver the odor stimulus. The ol-
factometer can be identified as a blue box on the left side
of the photograph in Figure 1, with a blue-orange pipe on
the participant’s right side. In our passive olfactory BCI
paradigm experiments, we used an olfactometer with six
scents to control odorant stimulation. Each scent stimu-
lus lasts four seconds, followed by a four-second break
without odor delivery. To ensure accurate results, we
conducted a pilot study that included natural odors such
as rose, cinnamon, lavender, orange, lemon, and vanilla.
The subject is visually instructed on a computer screen
to breathe at the beginning of each new odor presentation
during the experiment. After each session of six oddball
trials, the subject reported the number of correctly iden-
tified scents, with six being a perfect score and three a
chance level. The behavioral results are summarized as
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Figure 3: The averaged over all subjects and sessions head
plot images show the CSP filter coefficients overlaid on a topo-
graphic map of the gamma (γ) frequency band. The EEG data
was collected from six electrodes, namely Fz,C3,Cz,C4,Pz,
and Oz. The CSP0 filter represents the low awareness, while
CSP1 represents the high awareness signals in the passive ol-
factory BCI paradigm.

medians with 95% error bars in Figure 2. The results of
this study provide valuable insights into odor-based BCI
paradigms and their potential applications in medicine,
psychology, and neuroscience.

EEG and EBG recording:
The reported pilot research study collected EEG and EBG
data using the Unicorn EEG headset from g.tec medi-
cal engineering, based in Austria. Our previous studies
have demonstrated the reliability of this device compared
to other available wearables [12, 13]. We used six EEG
channels in the pilot investigation: Fz,C3,Cz,C4,Pz, and
Oz. We also placed two EBG sensors on a 10/5 interna-
tional standard EEG cap, approximately above each eye-
brow at AF p9h and AF p10h.
In the first preprocessing stage, we converted six EEG
and two EBG streams into a digital format with a sam-
pling frequency of 250 Hz. After that, we removed any
baseline shifts and high-frequency noise outside the fre-
quency range of 7 Hz and 100 Hz by applying a bandpass
filter. To eliminate any power line interference at 50 Hz,
we used a notch filter. We segmented the EEG and EBG

Figure 4: The averaged over all subjects and sessions head
plot images show the CSP filter coefficients overlaid on a to-
pographic map of the gamma (γ) frequency band. The EBG
electrodes, AF p9h and AF p10h, were employed. The gamma-
band filter CSP0 represent low awareness, while CSP1 the high
awareness in the passive olfactory BCI paradigm..

signals into eight-second sections with four seconds of
odor stimulation and four-second flush breaks, using ex-
perimental triggers recorded together in oddball, target,
and non-target recognition tasks.

To ensure the accuracy of our data, we utilized the em-
pirical mode decomposition (EMD) technique to remove
distortions caused by eye blinks or muscle movements
in the EEGs and EBGs. We applied this method sepa-
rately to each channel, which allowed us to identify and
eliminate artifacts effectively, thus improving the overall
quality of the data, as previously proposed in [9, 13].

Using a CSP method, we transformed EEG and EBG sig-
nals to increase the variance in one class and decrease it
in the other, as described in [10, 11]. We used the CSP
method to create distinguishable patterns across space for
the olfactory stimulus-induced potential in the gamma
sub-bands. These patterns were generated for two dif-
ferent levels of awareness. The first level had behavioral
median scores of three and below (three subjects in our
study). The second level had median behavioral scores
of four and above (seven subjects in our study). We have
illustrated all possible user behavioral responses in Fig-
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Figure 5: The averaged over all subjects and sessions head
plot images display the CSP filter coefficients superimposed
on a topographic map of the gamma (γ) frequency band.
The EEG data was obtained from six electrodes, namely
Fz,C3,Cz,C4,Pz, and Oz, and two EBG electrodes, AF p9h and
AF p10h, were employed. The gamma-band filters CSP0 repre-
sent low awareness, while CSP1 represents high awareness in
the passive olfactory BCI paradigm.

ure 2. The patterns that could be distinguished were visu-
alized in Figures 3, 4, and 5 for EEG-only, EBG-only, and
combined EEG+EBG channels, respectively. We used
the same scaling in arbitrary units (AU) [14]. The differ-
ences in CSP filter patterns that we observed were due to
varying levels of EEG and EBG signals.
To assess the potential separability of a CSP feature, we
used a supervised clustering technique called uniform
manifold approximation and projection (UMAP) [15].
We merged CSP features derived from band-pass filtered
EEG and EBG signals in the gamma band. This enabled
us to obtain distinct clusters in a two-dimensional feature
space. The CSP filters we used were four-dimensional.
As part of our research, we conducted a preliminary trial
to test the accuracy of an offline passive olfactory BCI
application. The trial involved three recording sessions,
each comprising six single oddball trials. There were
36 EEG and EBG responses, each lasting eight seconds,
with six targets and thirty non-target responses. We trans-
formed these responses into two-dimensional CSP fea-

Figure 6: A scatter plot using two-dimensional UMAP results
for EEG+EBG combined gamma bands.

tures in gamma EEG and EBG frequency bands, based
on previous research that indicated higher frequency as
the best carriers of olfactory information in the brain-
waves [2, 3].
We used five different machine learning models for
our experiment: linear SVM, random forest classifier
(RCT), decision tree classifier (DTC), linear discrimi-
nant analysis (LDA), and deep fully connected neural net-
work (DFNN). The DFNN had five hidden layers with
128,64,32,4, and 2 RELU units each. We performed
ten-fold cross-validation using these models, available in
scikit-learn v1.4.0 [16]. We did not observe overfitting
of the machine learning models despite the unequal dis-
tribution of low and high awareness cases, as shown in
Figure 2.

RESULTS

A pilot study was conducted using ten healthy subjects to
fit spatial filters and analyze patterns in the EEG and EBG
within the gamma frequency band. The study showed
promising outcomes, summarized in Figures 3, 4, and 5,
for EEG-only, EBG-only, and EEG+EBG combined, re-
spectively. The outputs of CSP filtering also formed sepa-
rable clusters of low versus high awareness mental states,
as shown in Figure 6 using UMAP applied to EEG+EBG
combined features. The results of the initial classification
trials, which used ten-fold-cross-validation, are presented
in Figure 7. The figure shows median balanced accura-
cies and percentile ranges. The evaluation used differ-
ent classifiers, including linear SVM, LDA, RFC, DTC,
and DFNN. All the results were significantly above the
balanced accuracy chance level of 50%, are reported in
Figure 7. The results also indicate that using combined
EEG+EBG electrodes led to statistically significant bal-
anced accuracy results (at p < 0.05) for RFC, DTC,
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Figure 7: Distribution plots comparing EEG+EBG (blue), EEG-only (orange), and EBG-only (green) classification results for the
evaluated classifiers in the reported study.

and DFNN classifiers, compared to EEG-only and EBG-
only modality trials. The significance was tested using
Wilcoxon tests. The RFC, DTC, and DFNN classifiers
achieved median balanced accuracy scores above 95% for
combined EEG+EBG electrode cases. Therefore, com-
bining both electrode modalities creates a promising pos-
sibility in the olfactory modality for subject awareness
estimation.

DISCUSSION

We conducted a trial study on a passive olfactory BCI,
a non-invasive method that uses smell to track brain ac-
tivity in order to estimate user awareness at a later stage.
Our study has shown that olfactory stimuli can be pro-
cessed quickly without causing attention overload. This
makes it a promising area for BCI research and quanti-
fying the mental state of users. The study discovered
that using a combination of EEG and EBG electrodes
with classifiers such as RFC, DTC, and DFNN resulted
in almost perfect classification outcomes. This supports
the hypothesis that recording brainwaves through multi-
ple modes can lead to improved results. However, sim-
pler linear classifiers such as SVM and LDA showed a
different level of improvement and had lower median ac-
curacies than the classifiers mentioned earlier.

CONCLUSIONS

The use of the olfactory modality in neurotechnology

has recently become popular due to the positive results
of the proposed passive olfactory Brain-Computer Inter-
face (BCI). These results are based on a preliminary pi-
lot study with young and healthy subjects. However, our
team faces specific challenges that need to be addressed
to improve our approach. These challenges include de-
veloping more reliable odor delivery systems and imple-
menting more robust algorithms to detect brain activity
patterns. To refine and validate our approach, we plan to
conduct a more extensive study with elderly subjects who
may have reduced awareness due to mind wandering or
daydreaming.
The study aimed to explore the potential of a passive
olfactory BCI that could be used to track dementia or
COVID-19-related olfactory impairment, as well as inter-
ventions. A passive modality could be used in the future
for this purpose. The study findings confirm the feasi-
bility of using a passive olfactory BCI, which could be a
tool in non-invasive monitoring of brain activity and as-
sociated disorders based on user awareness tracking in
various cognitive tasks.
These findings have implications for developing non-
invasive techniques for monitoring brain activity and as-
sociated disorders. The discovery of a practical passive
olfactory BCI could help track olfactory impairment re-
lated to dementia or COVID-19, which would help de-
velop early interventions. This could be particularly use-
ful in the COVID-19 pandemic, where olfactory impair-
ment has been identified as a common symptom.
The study concludes that a passive olfactory BCI option
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can be an effective way to track awareness, which may
help in early interventions. The development of this tech-
nology can have significant implications for non-invasive
monitoring of brain activity and related disorders.
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