
DETECTION OF MOTION TERMINATION FROM EEG DURING THE
EXECUTION OF CONTINUOUS HAND MOVEMENT

Markus Crell1, Gernot R. Müller-Putz1,2

1Institute of Neural Engineering, Graz University of Technology, Graz, Austria

2BioTechMed Graz, Graz, Austria

E-mail: gernot.meuller@tugraz.at

ABSTRACT: Recent advances in the decoding of hand
kinematics from neural data and the usage for the control
of cursors also prompt the need to detect the begin and
end of continuous movements. This study investigates
the asynchronous detection of the termination of a con-
tinuous hand movement in a handwriting task using elec-
troencephalography data and the power of frequencies in
the µ and β band. Results obtained with a shrinkage lin-
ear discriminant analysis classifier yield a correct deter-
mination of the offset in 53.5% (chance level: ≈ 18%) of
the trials. We show the general feasibility of the proposed
method in the detection of the termination of a continu-
ous hand movement and visualize the benefit of the in-
formation of the moment of movement termination in a
simulated application.

INTRODUCTION

Communication capabilities for patients using brain-
computer-interfaces (BCIs) have recently been greatly
enhanced through the decoding of continuous motion
from neural data during imagined hand movements [1].
For people in the late stages of amyotrophic lateral sclero-
sis (ALS) or with any form of locked-in syndrome, such
methods can provide highly desirable ways for the inter-
action with the outside world [2]. Although most im-
provements have been driven by advances in implantable
devices and the resulting improvement of signal quality
[1], non-invasive BCIs employing electroencephalogra-
phy (EEG) have lately shown promising advances in the
field of continuous movement decoding [3] and could
potentially be adopted in a comparable way in the fu-
ture. An important aspect of the decoding of continuous
movement and the reconstruction of hand trajectories for
the usage in cursor control is the discontinuation of the
movement. For imperfect control, as is to be expected at
the current state of continuous movement decoding, tra-
jectories have to be constantly corrected by the user [4].
While this can be acceptable during the execution of con-
trolling the cursor where users are engaged with the task,
unintended movement should be avoided during periods
in which patients are not engaged with the cursor control
and where an incessantly moving cursor could be irritat-

ing. One way of overcoming this problem is the detection
of voluntary movement initiation and termination and the
utilization for starting and stopping of the cursor control.
The execution of movement is accompanied by differ-
ent neural phenomena of which mostly the movement-
related cortical potential (MRCP) and event-related de-
/synchronization (ERD/ERS) have received major atten-
tion. While MRCPs [5] are detectable directly in the
time-series EEG and are time- and phase-locked to the
start of the movement [6], oscillatory components (ERD)
in µ and β frequencies decrease during planning and ex-
ecution of a movement until the motion is terminated
[7, 8]. At the point of termination, the desynchroniza-
tion is followed by a period of increased β synchroniza-
tion before returning to the baseline, also known as post-
movement β synchronization (in short β rebound). ERD
and ERS are phenomena which are typically observed in
µ and β frequencies of the EEG and have been exten-
sively studied for different movement tasks. While a large
body of research has focused on the detection of move-
ment onsets [6, 9, 10], few studies have explored the de-
tection of movement termination. Only limited work ex-
amined the usage of ERD/ERS patterns for the termina-
tion of movement imagination of single, short foot dor-
siflexion [11, 12]. They showed that the classification of
the β -ERS patterns proved more reliable and resulted in
a higher detection accuracy for the imagined movement.
Hortal et al. reported similar classification accuracies for
the detection of start and stop of the gait cycle from µ

and β frequency power [13]. In a related approach, Bai
et al. employed β -ERS to classify repetitive imagined
and executed wrist movement [14]. They reported over-
all high discriminability between execution and termina-
tion and better performance in the execution case than for
imagination. Noticeably, the mentioned studies used ei-
ther short single or repetitive movements. More recently,
Orset et al. investigated the detection of termination of
sustained movement imagination of the hand, achieving
an accuracy of 76.2% [15]. While these studies form a
basis for the detection of discontinuation of movements
as needed for the stop of cursor control from EEG, they
do not integrate the self-initiation of the termination of
a continuous movement as is inherent to the control of a
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computer cursor.
We aimed to detect the movement termination (herein
termed offset in contrast to the onset of a movement) of a
continuous and autonomously executed hand motion. We
designed a paradigm in which participants were tasked
with the writing of letter trajectories, which constitute
a continuous hand and finger movement. Although the
movement onset was defined based on a cue, the stop of
the motion was dependent on the letter itself as well as on
the speed and size of the writing trajectory, which varied
among participants and over the duration of the paradigm.

MATERIALS AND METHODS

Experimental Paradigm: The study was conducted
among 22 healthy, right-handed participants with a mean
age of 27.5 ± 3.92 years (mean ± standard deviation).
Each subject participated in a paradigm with an approx-
imate duration of 2.5 h. Participants were fitted with an
EEG cap equipped with 60 electrodes which were placed
on the head according to a standard 10-10 EEG mon-
tage. Four electrodes were positioned on the outer canthi
of the eyes as well as above and below the left eye to
measure electrooculogram (EOG) signals induced by eye
movements. The experiment consisted of (1) an instruc-
tion phase during which participants were informed about
the measurement and the paradigm, (2) a measurement of
specified eye movements for the elimination of eye arti-
facts in EEG data and (3) the execution of a session of
the paradigm. Steps 2 and 3 were repeated twice and
separated by a break of approximately 10-20 min. The
specified eye movements were part of the SGEYESUB
algorithm and are described further in [16]. One session
of the paradigm contained seven (first session) and eight
(second session) runs separated by breaks of 60 s. During
each run 40 trials were performed in each of which one
out of 10 letters (a,d,e,f,j,n,o,s,t,v) was written with the
index finger of the right hand. Finger movements were
recorded with a custom motion capture algorithm track-
ing a visual marker applied to the right index finger of the
participant. During trials, participants observed a screen
and waited for a letter to fade onto the screen (duration:
2 s), stay on the screen at full opacity (0.5 s) and fade
out again (2 s). As soon as the letter was invisible, par-
ticipants started to write the displayed letter with their
finger and stopped at the last point of the letter without
any further movement. The maximum duration of writ-
ing a letter was limited to 4 s, after which the next letter
would be faded onto the screen. Every letter was written
60 times, resulting in a total of 600 executed movements.
Due to technical problems and early termination, two par-
ticipants had to be excluded from the study.

Data Acquisition and Preprocessing: EEG was ac-
quired from two biosignal amplifiers (BrainAmp, Brain
Products GmbH, Germany) at a sampling rate of 500 Hz.
The signals were bandpass-filtered between 0.3-70 Hz
and Notch-filtered at 50 Hz to eliminate powerline noise.
Eye artifacts were removed using the SGEYESUB algo-

rithm [16] and signals from the EOG channels. Residual
eye and muscle artifacts were removed by applying in-
dependent component analysis. The EEG was finally re-
referenced using a Laplacian reference and 24 channels
on the outer periphery of the montage including the EOG
channels were removed from the dataset. We further ex-
tracted the start and stop of the motion from the move-
ment data using the falling and rising edge of the trajec-
tory speed. The kinematic data was recorded at 30 Hz and
smoothed with a Savitzky-Golay filter (first order polyno-
mials and window length of 200 ms).

Neural Correlates of Movement Termination: An anal-
ysis of the neural correlates of the offset of continuous
movements was conducted using ERD/ERS patterns. 20
frequency bands between 0.3 and 40 Hz were extracted
using Morlet wavelets [17]. The data was split into trials
of length [−2.5;4.0]s relative to (a) the start of the move-
ment or (b) the stop of the movement. We then extracted
the relative change in power of the time-frequency data A
to the reference period R, in this case the whole trial [7].

ERD/ERS% =
A−R

R
∗100% (1)

Finally, the trials were averaged aligned according to (a)
and (b) for each channel. We additionally examined the
delay between movement onset and offset from the kine-
matics to compare with the spread of ERD/ERS patterns
when aligned to the onset of the movement.

Movement Offset Detection: Detection of the move-
ment offset was implemented by classifying windows of
neural data into movement and no movement and deter-
mining the falling edge. We extracted time-frequency
data around six center frequencies (8,12,16,20,24 and
28 Hz) using Morlet wavelets to cover the range of µ

and β frequency bands. We obtained the slow changes
in power, equivalent to the envelope of the signal, of
specific frequency bands by lowpass filtering the band-
filtered data to 12 Hz and subsequently downsampled the
features to 30 Hz to reduce the amount of data. The rela-
tive change in frequency power was calculated according
to Eq. 1 with the reference period set to [−2.5;0]s rela-
tive to the movement onset. The trials were then cut to
include the time period [0.2,4.0]s relative to the start of
the movement. Trials in which the offset of the move-
ment happened more than 4 s after the cue onset were
discarded. The data was then labeled as movement un-
til the movement offset and as no movement between the
movement offset and the end of the trial. Windows of
length wL between [t0 −wL; t0] were created to classify
the label at t0 − lag with a lag of wL

2 to incorporate non-
causal information for the classification. (see Fig. 1a). t0
was shifted with a stride of one sample to generate the la-
beled data. A 5-fold cross-validation procedure was em-
ployed and a shrinkage linear discriminant analysis was
used for the classification. For each participant, a sepa-
rate model was trained and evaluated. After training the
models, windows were classified sequentially per trial to
retain the order and allow for a reconstruction of the la-
beling per trial from the classified data. We then defined
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a detection strategy for the definition of movement off-
sets from the classified data by generating the majority
vote from five consecutive classifications and choosing
the first falling edge as movement offset after which the
subsequent ten samples (i.e. ≈ 330ms) were successively
classified as no movement. For each trial, a movement
offset was defined as correctly identified when the de-
tected offset was within a range of ±330 ms of the ac-
tual offset. Since the window length of each trial was
3.8 s, the chance level for a random classifier was ap-
proximately 18% with a level of statistical significance
of 21.1% calculated according to [18]. We tested win-
dow sizes of wL ∈ [200,400,500,600,800]ms and a lag
of wL

2 .
Simulated Application - Handwritten Letters: To vi-

sualize the benefit of the information of the moment of
termination of the continuous movement, we employed a
simulated application in which handwritten letters were
classified from reconstructed trajectories. We simulated
imperfect reconstruction of trajectories from neural data
by adding noise to the measured x and y positions ob-
tained during the handwriting task. The noise, derived
from lowpass-filtered white Gaussian noise, ranged from
zero to a maximum amplitude of 1.5 times the average
letter size. We then constructed windows of 4 s starting
from the movement onset and constructed images of the
handwritten trajectory. This procedure was executed for
different conditions:

• NN: No additional noise was added to the recorded
trajectories and the full four second window was
used for the image construction.

• AN: Additional noise as described above was ap-
plied to the trajectories and the full four second win-
dow of noisy trajectory data was used for the image
construction.

• AN-C: Additional noise as described above was ap-
plied to the trajectories, which were cut after the
movement offset, and only the shortened window
was used for the image construction.

• AN-P: Additional noise as described above was ap-
plied to the trajectories, which were cut after the
movement offset according to the predictions from
the classifier, and only the shortened window was
used for the image construction.

These conditions are visualized in Fig. 1b. A convolu-
tional neural network (CNN) for the detection of hand-
written letters from images was employed to classify the
constructed letters. CNNs are often utilized in the recog-
nition of handwritten characters since they have proven
to yield high accuracies [19]. We repeated a 5-fold cross
validation procedure twice to generate reliable classifica-
tion results.

RESULTS

Neural Correlates of Movement Termination: An anal-
ysis of the lag between movement onset and offset per

Figure 1: (a) Schematic of the movement kinematics used for
the detection of onset and offset and the labeling of the data
for the classification. Labels are chosen 200 ms after the move-
ment onset until 4 s after the movement onset and are classi-
fied from frequency data of length wL using a lag to incorporate
non-causal information. (b) The illustration shows letters re-
constructed from kinematics and transformed into an image for
classification using a CNN. Letters are shown for the conditions
no-noise (NN), additional-noise (AN) and additional-noise-cut
(AN-C/AN-P).

trial showed that the average movement was terminated
after 1.9 s with a standard deviation of 0.6 s. We also
investigated the difference between movement onset and
offset for individual letters with the distribution shown
in Fig. 2a. The largest difference in the average dura-
tion of movements between letters occurred for letters d
(2.44±0.62s) and v (1.33±0.43s). We also found an in-
fluence of the writing duration on the distribution since
the coefficient of variation increased with longer aver-
age duration of the letters (Pearson’s r: 0.73, p-value:
0.017). We then calculated the ERD/ERS maps for the
movement onset (Fig. 2b upper images) and movement
offset (Fig. 2b lower images) aligned trials. Desynchro-
nization (relative decrease of power in the frequencies)
is shown in red while synchronization (relative increase
of power in the frequencies) is shown in blue. Movement
onset centered ERD/ERS maps are also overlayed with an
aligned distribution map of the movement offset to indi-
cate the moment of termination of the writing motion. An
ERD in µ and β frequencies during the movement and a
post-movement β synchronization can be observed. Fur-
thermore, a µ-ERS can be observed, however, delayed to
the β -ERS. Those patterns are more pronounced at chan-
nel C1, contralateral to the movement of the right finger.

Movement Offset Detection: The maximum accuracy
for the detection of movement offsets was achieved for a
window length of wL = 500 ms with an average accuracy
of 53.3±11.9% (mean ± standard deviation) over all par-
ticipants. The subject with the best performance reached
an accuracy of 77.5%. Average classification accuracies
achieved with different window lengths yielded lower but
comparable results (49.9±13.0%, 53.2±12.4%, 52.7±
12.0%, 51.4±11.0% for window sizes 200,400,600 and
800 ms, respectively). For all participants, the classifi-
cation accuracy was above chance. The influence of the
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Figure 2: (a) Density plot of the distribution of the movement offset of the handwritten letters relative to the start of the movement. The
distributions for the ten individual letters are shown together with the overall distribution. (b) ERD/ERS maps of electrodes C1, Cz and
C2 for frequency bands aligned to the movement onset (upper plots) and movement offset (lower plots). Black straight lines indicate
the movement onset/offset while dashed lines indicate the frequency band borders. (c) Classification accuracies for the detection of
the movement onset (green) and classification between movement and no movement (red) for the different window lengths. Results
for the individual subjects are plotted as dots, average results are marked by a cross. Theoretical and statistical chance levels for both
classifications are indicated by lines in the corresponding color. (d) Results for the simulated application of classifying handwritten
letters under different conditions of noise and length of the kinematic trajectories. (e) The density plot for the detected movement
offsets displaying the difference between actual and detected movement offset per trial is shown in blue. The image also depicts the
average predicted class of movement or no movement in green and the actual average class in red.

window length wL was not significant (p> 0.05) between
window lengths 200-800 ms, 400-500 ms and 400-600 ms
as assessed with a paired t-test. The density distribu-
tion for the temporal difference between actual and de-
tected movement offset is shown in Fig. 2e in blue. The
grey area displays the time range around the actual off-
set in which detected offsets were considered to be cor-
rect. This area contains 53.5% of the detected offsets, the
area to the left contains 24.8% and the area to the right
10.9%. In 10.8% of the trials, no movement offset was
detected. When increasing the threshold for considering
a predicted offset to be correct to ±500 ms, the accuracy
could be increased to 64.3%. We also analyzed the binary
classification accuracy for the classification of movement
vs. no movement, which acted as a basis for the detec-
tion of the movement offset. The highest accuracy was
achieved for a window length of wL = 800 ms with an av-
erage accuracy of 82.8±4.8% over all participants. The
best performance of a single participant was achieved for

the same subject as in the offset detection at an accuracy
of 90.5%. The average classification accuracies for dif-
ferent window lengths were 80.9± 4.8%, 82.1± 4.9%,
82.5±4.9%, 82.7±4.9% for window sizes 200,400,500
and 600 ms, respectively. The average class label over
the trials is shown in Fig. 2e in green (actual class label)
and red (predicted class label). The probability for a pre-
diction of movement at the beginning of a trial was 0.92
(actual probability: 1.0) and 0.25 (actual probability: 0.0)
at the end of a trial. Results for all subjects are shown in
Fig. 2c in green for the offset detection and in red for the
classification between movement and no movement.

Simulated Application - Handwritten Letters: Hand-
written letters could be correctly classified from the
recorded kinematics with an average accuracy of 96.9%
over all subjects in the NN condition in which no addi-
tive noise was applied and the trajectories were not cut at
the movement offset. When additive noise was applied to
the trajectories (AN condition) the classification accuracy
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dropped to 61.5%. Cutting the noisy trajectories after the
actual movement offset (AN-C condition) increased the
accuracy to 83.9%. The usage of the detected motion off-
set for cutting the noisy trajectories (AN-P condition) en-
abled an increase of the classification accuracy by 6.9%
compared to the AN condition and achieved a total accu-
racy of 68.4%. The results of the 2-times repeated 5-fold
cross-validation are shown in Fig. 2d.

DISCUSSION

Continuous decoding of hand movement, especially in
EEG, stands to benefit from the detection of movement
offsets. So far, the limited research in this area showed
promising results [11–15]. We attempted the detection of
the movement offset from time-frequency data after con-
tinuous movement and obtained a moderate accuracy of
53.5% against a chance level of 21.1%. We also showed
the benefit of including this information into an exem-
plary application of classification of handwritten letters.

Neural Correlates of Movement Termination: The con-
structed ERD/ERS maps show the connection of the
desynchronization in µ and β frequencies with the con-
tinuous movement as well as the synchronization in these
frequencies as soon as the movement terminates. The
ERD/ERS maps exhibit broader distribution and reduced
intensity of synchronization when trials are aligned to
movement onset compared to alignment with movement
offset. This is caused by the time-locking of the syn-
chronization to the termination of the movement and the
dispersion of the movement offset as shown in Fig. 2a.
These findings are also in accordance with literature [7,
8, 20, 21]. The dependency of frequency power on the
movement on- and offset generally shows that a classifi-
cation of movement vs. no movement based on the time-
frequency data is possible. Since the effects are mostly
occurring in the µ and β frequencies, the usage of these
frequencies is appropriate.

Movement Offset Detection: The maximum average
accuracy of 53.5% is comparable to those achieved in
other movement offset detection BCIs [11, 13]. The clas-
sification accuracy of around 82% for the binary classi-
fication is also in the range of performances of similar
BCIs [22]. Interestingly, the accuracies for different sub-
jects were more dispersed in the detection of the move-
ment offset than for the underlying binary classification.
Also, the influence of the window length proved to be
different for the detection of the movement offset and the
binary classification with an optimal window length of
500 ms for the offset detection and an increasing accu-
racy of the classification with longer window lengths. It
is possible that these differences occurred due to the deci-
sion strategy with which movement offsets were defined
being suboptimal for some participants. A closer anal-
ysis of the distribution of movement vs. no movement
classifications might yield insight into this and allow for
the formulation of a better strategy. The distribution of
differences between detected and actual movement off-

sets as given in Fig. 2e shows a tendency of predicting
the movement offset earlier than the actual offset. This
could similarly be influenced by the detection strategy,
which used the first feasible predicted offset as the de-
tected offset and discarded every other following feasible
offset. Since the movement vs. no movement classifica-
tion is imperfect, this strategy naturally leads to a higher
rate of false positives in the beginning than at the end of a
trial. Due to the non-causal window length and the detec-
tion strategy requiring ten continuous predictions being
classified as no movement, the causal latency between a
detected and actual movement offset amounts to 580 ms.
Including the range of ± 330 ms in which the detected
offset was considered correct, the minimal and maximal
latency between stating a correctly detected and actual
offset is between 250 and 910 ms. This calculation also
shows that shorter window lengths should generally be
preferred to longer ones in order to minimize the latency.
Since the drop in detection performance proved to be lim-
ited for shorter window lengths in this study, other stud-
ies that employ a similar paradigm online should consider
choosing a short window length for the classification.

Simulated Application - Handwritten Letters: The in-
crease in classification accuracy of the AN-C and AN-P
conditions compared to the AN condition in the simu-
lated handwritten letter classification task shows the pos-
itive influence of the inclusion of motion termination in-
formation. While the actual movement offset informa-
tion generated an increase of 22.4%, the offsets detected
from neural data still allowed for an increase of 6.9%.
Although this increase is modest, it demonstrates that
classifiers also benefit from the inclusion of the moment
of movement termination for imperfect detection perfor-
mances. While the slight increase in accuracy compared
to the AN-C condition might be improved by increasing
the accuracy of the offset detection, other methods could
also be effective: since the movement offset tended to be
predicted earlier than the actual offset, we tested a mod-
ification in which all offsets predicted before 1.5 s after
the movement onset were set to 1.5 s. With this method,
we were able to increase the classification accuracy in
the AN-P condition to 72.6% (i.e., an increase of 11.1%
compared to AN). Other, more sophisticated approaches
could increase the accuracy even further. It needs to be
noticed that the simulated additive noise might not be rep-
resentative of the distortion of movements in real-world
decoding of hand trajectories from neural data. The ben-
efit of the movement offset inclusion under the influence
of different noise must be evaluated depending on the ac-
tual task at hand. However, in cases where the distortion
leads to a residual, erroneous motion after the actual off-
set, the additional detection of the movement termination
and incorporation of this information can be of great use.

CONCLUSION

This study showed the general feasibility and benefit of
the detection of self-initiated movement offsets during
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continuous hand motion. While the accuracy of the de-
tection was modest, it showed that detection is generally
possible with a low latency. We also proved that a move-
ment offset detection can be useful to increase the accu-
racy in specific movement-related tasks even for limited
performance of the detection model. Since the benefit
of including the movement termination detection grows
with its accuracy, we aim to enhance the performance
in the future. Recently, a new method for the detection
of movement vs. no movement classes has been pro-
posed using a pole tracking algorithm [23]. Although this
method has not yet been applied to EEG, it could pose a
way of increasing the classification and detection perfor-
mances. While the current study focused on the detection
of self-initiated motion termination, the start of the move-
ments was based on an external cue, which prevented the
application of a classifier to identify both movement on-
set and offset. Future work should focus on self-paced
continuous movement tasks to investigate the detection
of both start and end of continuous movements.
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