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ABSTRACT: Understanding how the brain plans 
reaching movements is crucial in designing a brain-
computer interface (BCI) system for motor control. It is 
still unclear which referencing frame the brain uses to 
plan the movement. In this study, we investigated the 
global representation of a referencing frame during 
reaching planning via a low-frequency 
electroencephalogram (EEG). Participants were asked 
to perform directional reaching inward (from the outer 
target towards the center point) and outward (from the 
center point towards the outer target) while maintaining 
gaze on a target such that the reaching in inward and 
outward conditions should be represented similarly in 
eye-centered coordinates but differently in shoulder-
centered coordinates. We could classify the direction 
with a peak accuracy of 40.59% but not the inward and 
outward conditions. The preliminary results confirmed 
that low-frequency EEG may be globally represented in 
the eye-coordinates. The classification results suggested 
that the difference between inward-outward conditions 
was negligible in low-frequency EEG and could be 
combined in further analysis. 

 
INTRODUCTION 
     When reaching for objects (e.g., a glass of water), 
our brain must rely on sensory information from several 
sources to execute the reaching. First, the brain must 
locate the target and the hand via visual and kinematic 
information. The displacement and direction between 
the target and the hand can be calculated, and the 
reaching can eventually be executed.  
     The evidence from several studies supports the 
representation of the target in eye-centered coordinates 
(the point of origin is at the center of the gaze) in the 
posterior parietal cortex (PPC) in non-human primates 
[1], [2], [3], and in humans [4], [5]. In contrast, the 
brain transforms reaching planning into muscle 
activations in the shoulder-centered coordinates (the 
point of origin is at the shoulder) in the sensorimotor 
area (SMA) [6]. The question remains in which 
coordinates the brain computes the displacement vector 
necessary for reaching. Three theories arise: the brain 
could compute the displacement vector in the shoulder-
centered, eye-centered coordinates, or other 
intermediate coordinates [5], [7].  
     Several electroencephalographic (EEG) studies 
provide strong evidence supporting that the information 

regarding hand kinematics is represented primarily in a 
low-frequency EEG in discrete reaching [8], [9], [10] 
and continuous tracking [11], [12], [13], [14], [15], [16]. 
Recent studies have also investigated other important 
aspects of hand kinematics decoding, which could 
improve the usability of the system: learning effect and 
adaptation over sessions [17], [18], decoding 
performance [19], and continuous error processing [20]. 
As proven useful in the majority of the study, we would 
like to focus on low-frequency EEG. 
     Let us consider inward and outward reachings of the 
same direction where the eyes are always fixated on the 
target prior to the initiation of the movement. The 
internally estimated displacement from hand to the 
target should always point towards the origin of the eye-
centered coordinates and the reaching is done towards 
the target, regardless of the direction of reaching. On the 
other hand, the displacement should be represented 
differently in the shoulder-centered coordinates as the 
inward and outward displacement are represented with 
different sets of kinematics. We hypothesize that the the 
low-frequency EEG does not carry enough information 
to distinguish the inward and outward conditions, which 
also implies weakly that the reach planning is 
represented in eye-centered coordinates in low-
frequency EEG. If this is the case, then a classifier 
should distinguish the inward and outward conditions 
with accuracy no better than chance. To answer this, we 
performed a preliminary study where we collected EEG 
from five healthy participants performing directional 
with inward and outward reaching. 
 
MATERIALS AND METHODS 
     The experiment was designed based on discrete 
center-out reaching in 4 directions (up, down, left, and 
right). Participants performed outward reaching in one 
direction (e.g., left direction from center) and then 
inward reaching in the opposite direction (e.g., right 
direction to center) while fixating their eyes on the 
target (see Fig. 1c and d).  When contrasting the inward 
and outward reaching from the same direction (e.g., 
right inward and right outward), the target will always 
be at the center of the eye-centered coordinates, while 
the hand position will be in different locations in the 
shoulder-centered coordinates. 

     Participants: In this preliminary study, data from 
five healthy participants (1 female) were recorded. 
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Three were right-handed, and two were ambidextrous, 
who normally used their right hand to control a 
computer mouse. The age range was between 30 ± 3.16 
years old (mean ± std). 

     Biosignal recording: We measured 60 EEG channels 
and 4 electrooculogram (EOG) channels with a 
sampling frequency of 500 Hz using BrainAmp 
amplifiers (Brain Products GmbH, Gilching, Germany). 
The ground electrode was placed at Fpz, while the 
reference electrode was placed at the right mastoid. The 
EOG electrodes were positioned on the outer canthi of 
both eyes, above and under the left eye. 

     Hand movement recording: A custom-made motion 
capture system was employed to track hand position via 
a marker attached to the index finger, and a camera 
recorded at 30 Hz. The hand position was mapped to the 
cursor position so that the space between each grid 
marker (see Fig. 1) was roughly equal to 5cm on the 
physical plane. Additionally, the hand position was 
utilized in real time to estimate the direction of the 
movement. The detected direction of hand movement 
was used to provide feedback during the trial. 

 
Figure 1: Overview of the experiment (a) timing of a 
trial, (b) structure of the experiment, (c) and (d) 
example of left directional reaching from the inward (c) 
and outward conditions (d) the grey block indicates a 
motion capture box used in the experiment. 

     Experimental paradigm: The overview of the 
experiment is visualized in Fig. 1. The experiment was 
divided into 13 blocks: 2 Eye blocks, 1 Tutorial block, 
and 10 Trial blocks. For the eye blocks, participants 
were asked to blink, move their eyes, or rest according 
to the visual cue. The data was used to correct the eye 
artifacts in the trial blocks, according to [21]. Another 
eye block was repeated at the end of the experiment. 
     During the tutorial, participants practiced reaching in 
different conditions. The participants were instructed to 
fixate their eyes on the target before initiating the 
reaching. The hand position was visualized only during 
the tutorial so that the participants got used to moving in 
2 levels of distance. During the trial blocks, the task was 
to perform reaching conditions indicated by the target's 
movement. There were 4 directions (up, down, left, and 

right), 2 levels of speed (slow and quick), and 2 levels 
of distance (near and far), which summed up to 16 
different reaching conditions. At the beginning of the 
trial, a blank screen was visualized for 1 s, indicating a 
preparation phase. Then, a 5-by-5 grid and a white 
circle ("target") at the center position appeared. The 
distance between each dot on the grid was calibrated to 
match 5 cm in real space, but the hand position was not 
shown to the participants to force them to always look 
at the target. The grid provided a guide on possible 
positions the target could move to (see Fig. 1a). The 
conditions of the reaching (direction, speed, distance) 
were randomized for each trial. The direction 
determined which direction the target moved toward; 
the speed determined how fast the target moved for 1 
grid unit, either within 0.4 s for quick or 1.2 s for slow 
condition; the distance determined how far the target 
moved, either 1 or 2 grid units. The time required to 
move in the far condition was double that required in 
the near condition (e.g., 0.4 s in the quick near condition 
but 0.8 s in the quick far condition). As soon as the 
target stopped moving, the participants were instructed 
to wait for at least 1 s before initiating the same 
movement. The color of the target gave feedback: green 
for the correct direction of the hand movement within 
10 s, or red for incorrect (wrong direction, no movement 
detected within 10 s). The feedback was given for 1 s 
before the target turned to white, prompting the 
preparation phase for the participants. The target then 
moved at the same distance and speed but in the 
opposite direction, towards the center position. The 
participants then waited for at least 1 s before initiating 
movement toward the center position. The feedback was 
given again for 1 s, and then the screen turned blank, 
indicating the trial break period. There were 480 trials 
(48 trials per block) but 960 movements because each 
trial comprised 2 movements (outward and inward). For 
simplicity, we treated outward and inward movements 
as separate trials, so the total number of trials is 960 
trials. There were 480 trials for inward and outward 
conditions and 240 for direction conditions. On average, 
157.2 ± 88.35 (mean ± SD) trials were rejected due to 
artifacts, incorrectly performed direction, distance, and 
speed. 

     Processing pipeline: The measured EEG and EOG 
signals were processed via a custom script based on 
EEGLAB [22] on MATLAB version R2019b. The EEG 
signals were visually inspected, and the bad channels 
were identified and interpolated. The powerline noise at 
50 Hz was removed via 2nd order Butterworth notch 
filter. The signals were downsampled to 200 Hz and 
then bandpass filtered via the 2nd order Butterworth 
filter between 0.3 – 70 Hz. Eye artifacts were corrected 
via sparse generalized eye artifact subspace subtraction 
(SGEYESUB) [21], trained on the eye blocks data. 
Independent component analysis (ICA) was employed 
via the FastICA algorithm [23] to identify and remove 
the artifact component. The IClabel plugin was utilized 
to estimate the probability of each IC component being 
the artifact. Any IC components that had the probability 
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of being any non-brain activity higher than 90% were 
removed and the cleaned signals were recomputed 
again. The EOG signals were included in the 
computation of the ICA to aid the identification of the 
eye artifact. The signals were epoched between -2 to 5 s 
around when the target stopped, and bad trials were 
identified based on the amplitude (rejected if amplitude 
was higher than ± 150 µV) and the statistics of the 
signals (joint probability, kurtosis). After trial rejection, 
signals were then low pass filtered with 2nd order 
Butterworth filter at 3 Hz and then epoched around the 
detected movement onsets between -3 to 3 s. The 
signals were then re-referenced to a common average 
reference (CAR). 

     Movement onset detection: The position of the hand 
was smoothened with a 1st-order Savitzky-Golay filter. 
The speed was computed by taking the derivative of the 
vector norm of the smoothened position in 2D. The 
onsets were detected when the speed exceeded the 
threshold at 30 pixels per second. The signals were 
epoched around these movement onsets, and the 
maximum movement speed and total distance were 
computed per movement. The median of the maximum 
speed across all movements was used as a threshold to 
identify bad movements (too fast or too slow for the 
speed conditions). 
     Similarly, the median of the total distance was used 
to classify bad movements (too far or too near for the 
distance conditions). Short movement (lasting less than 
0.2 s), movement with "incorrect" feedback, and 
movement outside the movement period were excluded. 
Finally, the movements that were performed too soon 
(less than 0.5 s after the target stopped) were excluded 
as well. On average, 19.60 ± 14.04 trials were rejected 
due to incorrect behavior (e.g., no movement detected, 
wrong direction), while 61.80 ± 37.10 and 55.40 ± 
59.25 trials were rejected due to incorrect distance and 
speed, respectively. 

     Movement-related cortical potential (MRCP) 
analysis: The signals were averaged over the same 
conditions in directions and inward/outward time-
locked to the movement onset. The distance and speed 
were excluded from further analysis. The MRCPs were 
averaged over participants, but no statistical tests were 
performed due to the low number of participants. 
     Point-wise Classification: A shrinkage linear 
discriminant analysis (sLDA) [24] was employed for 
classification. Only the EEG signals were considered in 
this case. AF row channels were excluded due to the 
residual artifacts that could not be corrected from the 
eye artifact correction model. The signals were 
downsampled to 10 Hz to reduce the computational 
time. The input features for the training were the 
amplitude of EEG signals within a sliding window with 
a size between 1 sample (spontaneous) and 10 samples 
(1-s windows). Due to the maximum window size, the 
first second of the trial was omitted from the 
classification. We tested the classification on directions 
and inward/outward conditions. An sLDA model was 
trained per time point, so there were 51 sLDA models 
per condition. The training of each model was done 
with stratified 10-fold cross-validation. To estimate the 
effect of the classification, the chance level was 
simulated with a label shuffling approach [25] 
according to the number of classes and number of trials 
per class (TPC). In the direction case, the chance level 
was determined with 4 classes with 240 TPCs, and in 
the inward/outward, with 2 classes with 480 TPCs. No 
statistical tests were performed due to the low number 
of participants. 
 
RESULTS 

     MRCP analysis: The shape of MRCPs of different 
directions and inward/outward conditions is illustrated 
in Fig. 2. In both the direction and inward/outward 

Figure 2: Average MRCP from C1, Cz, C2, PPO1h, and PPO2h in inward/outward and direction conditions.  
The shaded bands indicate standard deviation (SD) across participants. 
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conditions, the amplitude of the MRCPs was strongest 
at Cz and C1 channels. The minimum peaks in PPO1h 
and PPO2h lagged behind the ones in C1, Cz, and C2 by 
200 ms. The shape of MRCPs differed in C1, Cz, and 
C2 but not in PPO1h and PPO2h. Only the amplitude of 
the minimum peaks in the PPO1h and PPO2h differed 
slightly. Similar effects could also be seen in the 
direction conditions. Additionally, the shape of MRCPs 
was similar in the horizontal (left and right) and vertical 
directions (up and down). 

     Point-wise classification: Fig. 3 visualizes the 
classification accuracy of the direction and the 
inward/outward condition. The estimated chance level 
was determined to be 27.39% and 52.70% for the 
direction and inward/outward conditions, respectively. 
In the inward/outward conditions, the average accuracy 
hovered around the chance level. The peak accuracy 
was around 0.3 s at 55.53% for the spontaneous 
classification and at 0 s at 58.16% for 1 s window 
classification. On the other hand, the accuracy curve of 
the direction stayed around the chance level before 
rising well beyond it and then peaks at 0.6 s at 34.24% 
for the spontaneous classification and at 0.9 s at 40.59% 
for the 1 s window classification after movement onset 
and then dips below the chance level again after 1s. The 
accuracy generally improved with increasing window 
size. 

 

Figure 3: Accuracy curve from spontaneous and 1-s 
window point-wise classification. Each line indicates 
the accuracy of each participant. The black line and the 
shaded area indicate the average accuracy over 5 
participants and ± standard deviation (SD) 

DISCUSSION 
     The results suggested that the low-frequency EEG 
does not carry enough information to distinguish 
between inward and outward conditions, whereas the 
amount of information seemed to suffice to distinguish 
the direction of reaching, as seen in Fig. 3. This seemed 
to support the hypothesis that the low-frequency EEG 
carries information that is likely to be represented in the 
eye-centered coordinates. 
 Interestingly, we observed in the inward and 

outward conditions the similar shape of the MRCP in 
PPO1h and PPO2h, whereas the shape differed slightly 
in the C1, Cz, and C2. As discussed earlier, the main 
difference between inward and outward conditions was 
in the different representations of the planned 
displacement vector in the shoulder-centered but not in 
the eye-centered coordinates. We speculated that this 
could be related to the underlying referencing frame in 
shoulder-centered coordinates in SMA [6] (represented 
as C1, Cz, and C2) and in eye-centered coordinates in 
PPC [1] (represented as PPO1h and PPO2h). However, 
we must be careful in drawing any strong conclusion on 
this topic due to the low number of participants and the 
lack of evidence linking the non-invasive and EEG 
measurements.  
     On the other hand, the directional information of the 
reaching seemed to be well represented in the EEG 
signal. The different shapes of MRCP in the horizontal 
(up and down) and vertical reaching (left and right) 
could be explained by the different muscle/joint 
activations when reaching in the left and right in 
comparison to the up and down direction. Alternatively, 
this could be due to a mismatch in the actual plane of 
the movement and the plane of the screen in up and 
down directions (as the left and right were 
correspondingly in the same plane) [16], [19]. 
Nevertheless, the directional information of the reaching 
could be distinguished with above-chance accuracy.  
      For further analysis in a subsequent study, the data 
from the inward and outward can safely be combined. 
The model showed promising peak accuracy for the 
direction at 40.59%, which was lower than the accuracy 
reported in similar directional decoding studies [8], [9], 
[10]. The classification in this study only represented 
how informative each time point was in discriminating 
between conditions but did not reflect the actual 
decoding accuracy of the detection of the directional 
reaching. Another major difference was that the 
participants were specifically asked to fixate their eyes 
on the target so that the eye movement was completely 
separated from the movement. This might reduce the 
amount of information that the decoder could utilize. 
Further analysis with more participants would be 
needed to draw a stronger conclusion.     

CONCLUSION 
 We provided a preliminary result that low-frequency 
EEG may be globally represented in the eye-
coordinates. We speculated that the shape of MRCP in 
PPC and SMA may represent the underlying referencing 
frames as reported in earlier studies. The classification 
results also confirmed that the directional information 
was encoded in the movement planning, which was 
sufficient to differentiate between directions but 
suggested that the inward and outward movement were 
not differentiable and could be combined for further 
analysis. 
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