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ABSTRACT:  
Current features used in motor imagery-based Brain-
Computer Interfaces (BCI) rely on local measurements 
that miss the interactions among brain areas. Such 
interactions can manifest as bursts of activations, called 
neuronal avalanches. To track their spreading, we used 
the avalanche transition matrix (ATM), which contains 
the probability that an avalanche would consecutively 
recruit any two brain regions. Here, we proposed to use 
ATMs as a potential alternative feature. We compared 
the classification performance resulting from ATMs to a 
benchmark model based on Common Spatial Patterns. 
In both sensor-and source-spaces, our pipeline yielded an 
improvement of the classification performance 
associated with reduced inter-subject variability. A 
correspondence between the selected features with the 
elements of the ATMs that showed a significant 
condition effect led to higher classification performance, 
which speaks to the interpretability of our findings. 
In conclusion, working in the sensor space provides 
enough spatial resolution to classify. However the source 
space is crucial to precisely assess the involvement of 
individual regions. 
 
INTRODUCTION 
Neuroscientists have been exploring and researching 
Brain-Computer Interface (BCI) since the70s as a way to 
restore communication and motor capabilities for 
severely disabled people., such as patients affected by 
amyotrophic lateral sclerosis, stroke, or spinal cord injury 
[1].  
In non-invasive BCI, Event Related 
Desynchronization/Synchronization, Event Related 
Potentials, and Steady State Evoked Potentials are the 
most informative brain activity patterns for 
communication and control applications to design 
electroencephalography (EEG)-based BCI. One of the 
main drawbacks of the current systems lies in the high 
inter/intra-subject variability, notably in terms of 
performance. Indeed, multiple studies reported that 
15%–30% of the subjects fail in controlling a BCI device. 
This is a phenomenon referred to as the “BCI 
inefficiency” [2]. Among the potential causes are the 
selected data features. Indeed, relying mostly on local 
measurements might not effectively capture brain 
functioning, as some information is encoded in the 
interactions between areas [3]. 
To overcome these limitations and to take advantage of 
the EEG time-resolution, in a recent work, we proposed 

to use a metric that captures the dynamic nature (i.e. 
changing in space and time) of the brain activities: the 
neuronal avalanches. Neuronal avalanches are 
characterised by the propagation of cascading bursts of 
activity [4]. Previous studies show that their spreading 
preferentially across the white-matter bundles [5] and 
that neuronal cascades are a major determinant of 
spontaneous fluctuations in brain dynamics at rest [6]. 
Furthermore, in our previous work we showed that 
neuronal avalanches, estimated from source-
reconstructed data, spread differently according to the 
task performed by the user, demonstrating the potential 
relevance of neuronal avalanches as an alternative feature 
for detecting the subjects' intent [7].   
Here, we investigated to which extent this framework 
would be compatible with a BCI experiment. For this 
purpose, instead of working in the source domain that 
requires additional data (e.g. individual magnetic 
resonance imaging) and computational resources, we 
tested the performance of neuronal avalanches directly in 
the sensor domain. Indeed, the methodological validity 
of sensor space measures is especially relevant for online 
studies in a clinical setting due to time and economic 
constraints. We hypothesised that despite a reduction of 
the spatial resolution, using the neuronal avalanches in 
the sensor space could help in classification performance, 
and that the selected features could be 
neurophysiologically interpretable and relevant. 
 
MATERIALS AND METHODS 
Participants 
The research was conducted in accordance with the 
Declaration of Helsinki. A written informed consent was 
obtained from subjects after explanation of the study, 
which was approved by the ethical committee CPP-IDF-
VI of Paris. All participants received financial 
compensation at the end of their participation. Twenty 
healthy subjects (27.5 ± 4.0 years old, 12 men), with no 
medical or psychological disorder, were recruited. 
 
Experimental protocol 
The dataset used in our study originates from Corsi et al. 
[8] and involves a BCI task structured around a two-
target box task. Participants were required to adjust their 
brain's alpha and/or beta activity levels to control a 
cursor's vertical movement, aiming to reach a vertical 
bar, referred to as a target displayed on the screen. 
Achieving the upper target necessitated the subjects to 
engage in continuous motor imagery (MI) of right-hand 
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grasping. Conversely, reaching the lower target required 
the subjects to remain in a resting state. Each session 
comprised 32 trials, evenly and randomly split between 
the up and down targets, correlating with the MI and Rest 
conditions, respectively. For a complete description of 
the protocol, the reader can refer to [8]. 
 
EEG data acquisition & pre-processing 
EEG data were captured using a 74-channel EEG system 
equipped with Ag/AgCl passive sensors (Easycap, 
Germany), arranged according to the 10-10 standard 
montage. Reference electrodes were placed on the 
mastoids, with the ground electrode on the left scapula. 
Recordings took place in a magnetically shielded room, 
utilising a 0.01-300Hz bandwidth and sampling at 1kHz. 
Two channels (namely T9 and T10) were identified as 
bad and rejected based on the amplitude of the signals 
recorded, with a threshold of three standard deviations. 
For a complete description of the pre-processing steps, 
please refer to [8]. 
 
Neuronal Avalanches extraction  
The neuronal avalanches analysis consists of identifying 
large signal excursions beyond a given threshold. The 
cascades are captured by clustering these discrete supra-
threshold events based on temporal proximity, thus, 
defining neuronal avalanches as periods of collective 
spatio-temporal organization. Each signal was z-scored 
(over time), and set to 1 when above a threshold, and to 
0 otherwise. An avalanche was defined as starting when 
at least one channel is above threshold (referred here as 
active channel), and as finishing when all channels were 
inactive [4,5,6]. For each avalanche, we estimated a 
transition matrix A, called Avalanche Transition Matrix 
(ATM), structured with channels in rows and columns, 
and the ijth element of matrix A defined as the probability 
that the electrode j would be active at time t+1, given the 
electrode i was active at time t.      For each subject, we 
obtained a transition matrix over all avalanches for each 
condition (MI and Rest conditions).  
 
Classification Analysis      
To explore the applicability of the ATM method in the 
context of a BCI training, we performed a subject-
specific analysis.  
The classification step was done using a Support Vector 
Machine (SVM). To assess the extent to which the ATMs 
might be considered as an alternative feature for BCIs, 
we compared our approach (ATM+SVM) to a framework 
that relies on spatial filters, namely Common Spatial 
Patterns (CSP+SVM) [9, 10]. 
For each approach (namely ATM+SVM or CSP+SVM), 
we classified different tasks at the individual level. To 
evaluate the classification performance, we divided the 
dataset to include 80% of the trials in the train split and 
20% of the trials in the test split. The classification scores 
for all pipelines were evaluated with an accuracy 
measurement using a random permutation cross-
validator. To assess the robustness of our framework, we 
also tested a different number of re-shuffling & splitting 
iterations (5/25/50/75). 

For each subject, the CSP method decomposes signals 
using spatial filters, and then selects the n modes that 
capture the highest inter-class variance. Here, we 
selected eight spatial modes and returned the average 
power of each.  
As for the ATMs, to consider the subjects’ specificity, we 
optimised two parameters, namely: the threshold applied 
to the z-scored signals (ranging from 1.0 to 4.0), and the 
minimal duration of the considered avalanches (ranging 
from 2 to 8) [11]. Inside the ATM pipeline the choice of 
the best decoding parameters relied on a posteriori 
classification accuracy performance rate.  
Finally, we individually compared the classification 
performance obtained with the CSP+SVM and with the 
ATM+SVM approaches, respectively. We run t-tests 
under the null hypothesis that, for a given subject, 
CSP+SVM and ATM+SVM would not yield statistically 
significant differences in classification. We repeated the 
comparison for all the subjects and corrected these 
statistical comparisons for multiple comparisons across 
subjects using the False Discovery Rate (FDR) [12]. 
Such an analysis has been performed across 25, 50, and 
75 splits. However, given its poor statistical power, it is 
not possible to apply a statistical test over 5 splits 
classification. Therefore, to evaluate whether the 
difference between the two pipelines could be considered 
as significant, we calculated the averaged classification 
performance across splits using both CSP+SVM and 
ATM+SVM and we determined the difference for each 
subject. Ultimately, we compared the absolute value of 
the difference with our predefined threshold, considering 
the classification performance not statistically different if 
the magnitude of the difference between the two methods 
was less than a threshold. We established the threshold at 
an arbitrary value of 0.05. As a sanity check, we 
performed this analysis in the source space, as we did in 
[7]. For a complete description of the source-
reconstruction steps, the reader can refer to [8].  
 
In this work, we used preprocessed signals that were 
bandpass filtered between 3 and 40Hz. To investigate the 
potential effect induced by the choice of the frequency 
band, we performed the same analysis in the  μ band (8 – 
13 Hz) and in the beta band (13 – 30 Hz) [not shown]. 
We performed a one way ANOVA (df = 2) among these 
three-frequency bands under the null hypothesis (H0) 
that these groups came from the same population. For 
both approaches (CSP+SVM and ATM+SVM), no 
frequency band effect on the classification performance 
was observed (p-value > 0.05). Therefore, in the next 
sections, we will report the results were obtained within 
the 3-40 Hz band. 
 
Decoding: Features importance analysis 
To investigate the interpretability of the classification 
performance, we examined the relative importance of the 
features derived from the absolute values of the 
classification coefficients in the model. To better 
understand the features importance across subjects, we 
carried out a quantitative reliability analysis across the 
cohort to identify the repetition of the selected features in 
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at least half of the subjects. To investigate features 
importance from a nodal point of view we set as a 
threshold the median value across channels and subjects, 
then we evaluated which nodes were over threshold in 
the majority of the subjects
We computed this analysis over the entire dataset (20       
subjects) but also independently on two different sub-
groups: on the 10 most responsive subjects according to 
ATM classification performance and on the 10 least 
responsive subjects respectively. All these investigations 
were also performed in the source space.  
 
Encoding: Quantification and statistical analysis 
To identify the edges (i.e. functional links) that are more 
likely to be recruited during a hand motor imagery task 
as compared to resting state, for each participant, we 
calculated the variance in the probability of perturbations 
traversing a specific edge between resting state and MI 
task. To assess the statistical significance, we 
randomized the labels of individual avalanches for each 
person. This shuffling was repeated 10,000 times to 
generate a distribution of differences for each edge under 
the null hypothesis that the transition matrices revealed 
no distinction between the two conditions. We then 
determined statistical significance for each edge against 
this null distribution, applying Benjamini-Hochberg 
correction for multiple comparisons across edges. This 
process yielded a matrix for each subject, highlighting Si,j 
values (here referred to as edges) with statistically 
significant differences between conditions. We assessed 
the consistency of these matrices across individuals, 
concentrating on edges consistently implicated in the 
task. Then, we performed a node-wise analysis to 
identify the nodes over which significant differences 
were clustered. These nodes were referred to as ‘‘task-
specific’’ areas. 

RESULTS 
Classification performance      
Working on the entire dataset of 20 subjects, as a 

standard configuration, we used 50 random splits.  
 
At the group-level, the classification performance in the 
sensor space, between CSP+SVM and ATM+SVM is 
similar (t-test, pval > 0.05). Nevertheless, we observed a 
larger inter-subject variability with CSP+SVM 
(71%+/15%) as compared to ATM+SVM (71% +/- 9%). 
In the source-space, ATM+SVM (80%+/-8%) led to a 
statistical improvement of the classification performance 
as compared to CSP+SVM (75%+/-14%) (t-test, 
pval<0.05) such as a reduced inter-subject variability. 
At the individual level, in the sensor-space ATM+SVM 
yielded a statistically better classification accuracy than 
CSP+SVM for 9 subjects. In 8 subjects, CSPs yielded 
better accuracy than ATMs. In 3 subjects, there was not 
any statistically significant difference between the two 
approaches (Fig. 1B). In the source-space, ATM+SVM 
yielded significantly higher classification accuracy than 
CSP+SVM for 13 subjects, while the opposite was true 
for 4 subjects. For the remaining 3 subjects, there was not 
any statistically significant difference between the 
decoding performances of the two approaches (Fig. 1E).  
 
To investigate the possibility to reduce the computational 
time to get closer to a configuration more compatible 
with the online requirements, we investigated the 
accuracy performance across different random splits 
configurations (5, 25, 50, 75) both at the individual and 
at the group level. As shown in Fig. 1A & D the 
performance was robust across splits for both CSP+SVM 
and ATM+SVM pipelines (one-way ANOVA p>0.05), 
and we observed a higher accuracy score for most of the 
subjects with 5 splits both in sensor and source space. 
Based on the observations made on the inter-subject 
variability, we validated the significant difference of the 
variance of these two populations via the F-test 
(pval<0.05). The statistical difference between the two 
pipelines was achieved both in the sensor and in the 
source space. 
 

Figure 1: Classification performance. (A/D) Effect of splits tested on ATM+SVM and CSP+SVM at group level in sensor-space (A) 
and source-space (D). (B/E) Individual level classification performance in sensor-space (B) and source-space (E) using 50 random splits. 
(D/F) Individual level classification performance in sensor-space (D) and source-space (F) using 5 random splits.  
Color coded: in salmon, ATM+SVM pipeline; in violet, CSP+SVM pipeline. Statistical difference between CSP + SVM & ATM + SVM: 
* pval < 0.05, ** pval < 0.01. 
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When considering 5 splits, at the group level, in the 
sensor space, no significant difference was observed 
between the two pipelines (t-test, p-value > 0.05) but 
CSP+SVM (72% +/- 15.55%) showed a larger inter-
subject as compared to ATM + SVM (73% +/- 9.14%). 
In the source space, ATM + SVM (81% +/- 7.5%) led to 
a statistical improvement of the performance (t-test, 
pval<0.01) as compared to CSP + SVM (75% +/- 14%) 
and a significant reduction of inter-subject variability.  
At the individual level: in the sensor-space (Fig.1C), with 
5 splits, ATM+SVM yielded a statistically better 
classification accuracy than CSP+SVM for 9 subjects. In 
7 subjects, CSPs yielded better accuracy than ATMs and 
in four subjects, there was not any significant difference 
between the two approaches. However, CSP+SVM 
pipeline led to a larger number of subjects with a 
performance below the chance level, set to 58% here [13] 
(6 subjects) than with ATM+SVM (1 subject). In the 
source space, ATM+SVM showed an improved 
performance in 12 subjects, while the opposite was true 
for 3 subjects with CSP+SVM (Fig. 1F).  
 
From now on, unless specified otherwise, the chosen 
configuration will involve 5 splits to closely mimic a 
real-time setup, and the subsequent sections will deal 
with ATM data only.    
 
Sensor and source space selected features  
To investigate the interpretability of the decoding 
performance, we estimated the weights attributed to each 
feature. A preliminary probabilistic analysis showed that 
most of the selected features presented a lower feature 
importance and that only a few were notably higher, 
suggesting that only a reduced number of features were 
relevant. When considering the features selected in at 

least half of the cohort, an edge involving left central 
electrodes (C5) and occipital electrodes (O2) was 
obtained in 13 subjects (Fig. 2A). We observed a 
predominant involvement of left central electrodes 
connected to occipital electrodes, between left and right 
central electrodes connected to parietal electrodes. 
Similar observations were possible in the source-space. 
Looking for a recurrent path across most of the subjects, 
see Fig 2B, in 15 subjects, most of the connections 
involved left paracentral, rostral anterior cingulate 
cortex, caudal middle frontal gyrus and medial lateral 
orbito-frontal regions.  
 
These interactions correspond to edge clusters that were 
task-dependent and consistent across subjects in 
encoding investigation shown in our previous paper [7]. 
Moreover, the features with higher weight often involved 
the left paracentral and the precentral areas. 
To get a more synthetic vision of these results, we 
performed a similar analysis at the nodal level, 
confirming the results previously obtained. To increase 
the statistical validity of such observations, in this part, 
we worked with the 50-split configuration. In the sensor-
space, the electrodes with highest features’ importance 
were C5 and P8. Nevertheless, it is possible to observe a 
general activation in electrodes over the bilateral motor 
cortex, and the bilateral parietal lobe. In the source-space, 
the most frequently selected brain regions were the right 
paracentral area, the left frontal pole and the right rostral 
anterior cingulate. 
 
Encoding-Decoding Match in sensor-space 
To investigate the neurophysiological validity of the 
selected features, we compared them with the results 
obtained with an encoding framework. To achieve this, 
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Figure 3: Encoding analysis in sensor-space. 
 (A) Encoding reliably different edges cluster at 
group level in sensor-space 
 (B) Encoding at nodal and group level in 
sensor-space 

Figure 2: Features selection. 

 (A) Edges-wise, valid at group 
level in sensor-space  

(B) Edges-wise, valid at group 
level in source-space 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-018

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

101



we examined differences between the two experimental 
conditions in the probabilities of perturbations 
propagating across two brain regions. Our results show 
that there is a set of links over CP and P electrodes (CP5, 
P1, P2 edges-wise and CP1, Pz, P2 at nodal level), in 
which the difference between two conditions (MI and 
rest) was consistently significant across most of the 
subjects (p < 0.0001, BH corrected) (Fig. 3A/B). 
Following the features’ importance analysis described in 
the previous section, we performed a quantitative 
reliability analysis to consider only the edge-wise 
selected in at least half of the subjects (Fig. 2A). The final 
goal of this analysis was the comparison between reliably 
different edges selected in the encoding phase and the 
features selected in most subjects with the larger 
attributed weight. Indeed, we observed a higher level of 
match score with the ten subjects with a highest 
classification performance (37%, see Fig. 4A) as 
compared to the ten subjects with the lowest 
classification performance (6%, see Fig. 4B) but also to 
the entire dataset (9%, see Fig. 4C).  

A. B.  

C.  
Figure. 4: Edges matches between encoding and decoding: 
(A) Results obtained from the ten subjects with the highest 
classification performance; (B) Results obtained from the ten 
subjects with the lowest classification performance; (C) Results 
obtained from the entire dataset.  
 
DISCUSSION 
In the sensor space as well as in the source space, the 
classification of ATMs led to an improvement of the 
decoding performance with respect to the benchmark 
(namely the spatial filter-based approach) in most of the 
subjects robustly across the different number of tested 
random splits. Importantly, in both source and sensor 
domains, we observed a reduced intra and inter-subject 
variability with ATM+SVM as compared to CSP+SVM. 
These findings suggest that the use of our approach could 
be a tool to reduce the BCI inefficiency phenomenon.  
Beyond the classification performance, we also 
investigated the interpretability of our findings through 
the study of the selected features. ATMs present a 
straightforward interpretability as opposed to CSPs, 
which operate on large-scale components of the signal 
that are not as readily interpretable. Indeed, it is possible 

to study and to identify the selected features at the subject 
level but a quantitative analysis at the group level is not 
applicable because of the difficulty to identify a common 
precise pattern across different subjects and different 
selected features. At the individual level, the information 
captured by the two types of feature extraction (namely 
CSPs and ATMs) are complementary, as seen in Fig. 5. 
ATMs is based on edge-wise representations and focus 
on strong coherent interactions that intermittently occur 
on the large-scale whereas CSP features, that embedded 
pipelines based on techniques that assume stationarity, 
rely on local measurements (mostly frequency band 
power features and time-point features) disregarding the 
propagation of brain dynamics at consecutive time 
instants.  
To further study the meaning of the features selected with 
ATMs, we adopted an encoding framework identified 
here as a set of functional connections (i.e., edges) that 
consistently exhibited a higher likelihood of dynamic 
recruitment during a hand motor imagery task as 
compared to the resting state at the group level. This 
straightforward approach, validated on the entire dataset, 
allowed us to reliably extract functional information 
specific to the task execution at the individual level, an 
observation not achievable through traditional functional 
metrics (namely power spectra and phase-locking value) 
[7]. Therefore, from a theoretical standpoint, our study 
establishes the foundation for exploring neuronal 
avalanche metrics as a novel functional connectivity 
measure for investigating changes during motor tasks 
based not on the functional activation between two brain 
areas at the same time but on consecutive activations.  
In the sensor space, the electrodes that showed a higher 
feature importance, identified through the decoding 
framework, were located over the same brain areas 
defined as “reliably edges” in the encoding framework. 
Moreover, we noticed that an increased match between 
the selected features and the edges-clusters led to an 
improvement of the classification performance. This 
finding suggests a possible way to apply a dimensionality 
reduction in the features used in the decoding step, to 
improve the classification performance. An ongoing 
work consists in investigating the key-parameters of the 
neuronal avalanches to be tuned and the associated 
features selection approaches to assure that the most 
relevant information will be considered for the 
classification step. Considering such approaches will 
improve the performance, but they will also reduce the 
computational time as well; two key-aspects of the 
feasibility of our pipeline in real-world scenarios. 
 
In our work, to emphasise this possible future 
development, we dealt with epochs of 5s from which 
25ms and 27ms (respectively for ATM + SVM and 
CSP+SVM) were required to extract the features and to 
perform the classification. Such computational time 
estimations are in line with current real time settings that 
rely on similar time windows and propose an update of 
the provided feedback every 28 ms. Future work will 
consist in identifying strategies to extract neuronal 
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avalanches, and therefore ATMs, in shorter time 
windows to make our framework completely compatible 
with online settings.  
 
To further investigate the physiological meaning of our 
findings we compared the results respectively obtained in 
the sensor and in the source space. The most frequently 
selected features involved central electrodes (C-CP) in 
the sensor-space, and the paracentral area in the source-
reconstructed data, implying the motor-area. Moreover, 
our results showed that other networks were involved in 
a motor-imagery task, through the selection of electrodes 
above parietal and occipital areas. The parietal lobe is 
structurally divided into inferior parietal lobe, superior 
parietal lobe, and precuneus [14]; its principal functions 
are the perception of the body, the integration of 
somatosensory information (e.g. touch, pain, pressure 
and temperature), visuospatial processing and 
coordination of movement. As such, the parietal 
activation is in line with our observations [7], because the 
subjects were instructed to perform a kinesthetic motor 
imagery task, that involves imagining movements as well 
as sensing the touch caused by the grasped object, and 
because coordinating hand, arm, and eye motions is 
required to perform our task. A similar role of precuneus 
in coordination of motor behaviour is achieved by 
anterior cingulate cortex [13] and its involvement has 
come to light in source-reconstructed data [7]. The 
occipital lobe [15] is primarily responsible for visual 
processing. Its recurrent activation and connection with 
central electrodes usually happens during a kinesthetic 
task, and when a visual stimulation is proposed as it was 
during our experiments. 
Moreover, mainly in the source-space, we observed the 
involvement of the caudal portion of the middle frontal 
gyrus and of the medial-orbital frontal area. Within the 
caudal portion of the middle frontal gyrus, at the 
intersection with the precentral gyrus, is the frontal eye 
fields (Brodmann area 8). The frontal eye fields control 
saccadic eye movements, rapid, conjugate eye 
movements that allow the central vision to scan 
numerous details within a scene or image, same meaning 
of orbital regions involvement [16], instead medial-
orbital frontal region reflects the allocation of attentional 
resources, which are typically engaged in 
cognitive/motor tasks [7]. Such findings demonstrate the 
neurophysiological validity of the selected features.  

CONCLUSION 
Our results suggest that the integration of periodic and 
aperiodic features would be a straightforward way to 
capture functionally relevant processes, in turn, to apply 
them to the design of BCIs and to improve task 
classification. The good performance of the ATMs on the 
EEG data in the sensor space is relevant to translate our 
methodology to real-world scenarios. Until now, we 
tested this  new feature only during a hand motor imagery 
BCI task. Future work will consist in considering a wider 
range of BCI paradigms for communication and 
movements recovering applications. 
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Figure 5: Selected 
components in sensor-
space at single subject 
level, ATM & CSP: (A) 
Edges-wise feature 
selection with ATM, (B) 
Local selected component 
with CSP. Subject 11: 
subject with highest 
classification 
performance in ATM & 
CSP 
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