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ABSTRACT: Uncertainty Quantification aims to deter-
mine when the prediction from a Machine Learning
model is likely to be wrong. Computer Vision research
has explored methods for determining epistemic uncer-
tainty (also known as model uncertainty), which should
correspond with generalisation error. These methods the-
oretically allow to predict misclassifications due to inter-
subject variability. We applied a variety of Uncertainty
Quantification methods to predict misclassifications for a
Motor Imagery Brain Computer Interface. Deep Ensem-
bles performed best, both in terms of classification perfor-
mance and cross-subject Uncertainty Quantification per-
formance. However, we found that standard CNNs with
Softmax output performed better than some of the more
advanced methods.

INTRODUCTION

Machine Learning systems for Brain Computer Interfaces
(BCI) are normally optimised to their predictive accuracy.
The availability of public datasets and benchmarking sys-
tems allow for faster progress in this direction. However,
for successful BCI systems there are more aspects that
need to be explored.
This study explores the options of Uncertainty Quantifi-
cation (UQ) for Machine Learning models [1] as applied
to non-invasive Motor Imagery BCIs. Uncertainty Quan-
tification aims to estimate how likely a prediction from
a Machine Learning model is to be correct. For this two
types of uncertainty are commonly considered.

Two types of Uncertainty: Aleatoric uncertainty (also
referred to as data uncertainty) is the uncertainty inher-
ent in the data. This cannot be reduced by better models,
only by better EEG recordings or better paradigms. Noisy
EEG recordings or extracted features that are poorly cor-
related to the to-be-predicted classes introduce aleatoric
uncertainty.
Epistemic uncertainty (also referred to as model uncer-
tainty) is the uncertainty in the model. This kind of un-
certainty can be reduced by collecting more training sam-
ples that are similar to what the model is being evaluated
on. In BCI contexts this uncertainty can come from lim-
ited amounts of training data [2], but also from between-
subject variability [3].

*These authors contributed equally to this work

While there is some Motor Imagery BCI research dedi-
cated to UQ [2–5], it is worth noting that simple methods
of estimating aleatoric uncertainty are often readily avail-
able. For example, Neural Networks used for classifica-
tion generally use Softmax or Sigmoid activation func-
tions for the output, which also gives a crude estimate of
aleatoric uncertainty.
This study, like most research on modelling epistemic un-
certainty is mostly done in the domain of Deep Learning.

Using Uncertainty for Rejection: UQ is often consid-
ered as a method for improving interpretability of predic-
tions from a Machine Learning model [6]. There, the goal
is to have a precise and well calibrated prediction of the
class probability. This means that a prediction with 90%
certainty should be correct 90% of the time. This results
in methods aimed at addressing overconfidence of Neural
Networks [7].
However, for BCIs there is often no time for human inter-
pretation of the classification. Instead, the system should
automatically deal with certain and uncertain predictions.
Typically this means "rejecting" the uncertain predictions
and abstaining from sending a control command to the
device. We focus on this rejection case, as it aligns with
how BCIs are implemented in practice, and highlight that
it comes with different methods and metrics.

Research Aim: This paper investigates whether UQ
methods that account for epistemic uncertainty can iden-
tify wrong predictions in cross-subject classification.
This expands on previous work [3, 5] by exploring a
larger variety of UQ methods and by applying a leave-
one-subject-out cross validation paradigm to get a more
realistic estimate of model performance.
We investigate whether available UQ methods for CNNs
that account for epistemic uncertainty are actually able
to reject the uncertain predictions when applied cross-
subject better than the crude methods readily available.
Previous work has shown success with rejection methods
[5], but a comparison with simple baseline methods such
as Softmax is missing. Moreover, by using different mea-
sures of uncertainty we can see how much aleatoric and
epistemic uncertainty contribute to the total uncertainty.
This disentangling of uncertainties has not been applied
to BCIs before [8]. Lastly, we cover a wider range of UQ
methods and explain how they have different underlying
assumptions.
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(a) Discriminative model (b) Generative model

Figure 1: An illustration of a discriminative and a generative
model. The yellow and purple dots indicate the training sam-
ples of two different classes. The background indicates the pre-
diction. The green color indicates uncertainty.

Background on uncertain models: Following [9] we
consider two assumptions for how epistemic uncertainty
may be modelled. [9] calls these two assumptions dis-
criminative and generative models.
Discriminative models learn a boundary that optimally
separates the classes. Samples that are far away from
this boundary are considered "certain", whereas samples
that are close to this boundary are considered uncertain.
When the model uncertainty is considered, these methods
consider multiple decision boundaries that are all valid
with the training data. When samples fall between differ-
ent decision boundaries this is considered epistemic un-
certainty. Figure 1a shows what this looks like in a 2D
feature space. This could be the band power following
2 CSP filters, but a similar concept can also be applied
at a higher dimensional space for Neural Networks. In
contrast, generative models learn the distribution of each
class. A sample that matches the distribution of the train-
ing data is considered "certain", whereas a sample that is
far away from the training data is considered "uncertain".
Figure 1b visualises this concept.
Both approaches have similar behaviour under aleatoric
uncertainty. This is seen in the parts where the two
classes overlap. However, they exhibit very different
behaviour under epistemic uncertainty. Since it is not
known which of these underlying assumptions is most
suitable it is important to consider models from either
family.

Bayesian Neural Networks: Bayesian Neural Net-
works (BNNs) fall under the category of discriminative
models. Standard Neural Networks learn a single opti-
mal vector θ of the parameters learned on the training
data D. They then do classification according to the Soft-
max function to capture aleatoric uncertainty.
BNNs instead consider a weight distribution p(θ |D).
This captures all possible weights for the Neural Net-
works, based on how well they fit the data. Inference
is then made according to the predictive posterior distri-
bution:

p(y = c|x) =
∫

p(y = c|x,θ)︸ ︷︷ ︸
aleatoric

p(θ |D)︸ ︷︷ ︸
epistemic

dθ . (1)

Truly Bayesian Neural Networks are computationally in-
feasible, so instead various methods to approximate it

have been proposed [1, 8]. We will be considering MC-
Dropout [10], MC-DropConnect [11], Deep Ensembles
[12] and Flipout [13].
While they have differences in approximation quality, im-
plementation complexity, and computational cost, they
all rely on BNN fundamentals.

Deterministic Uncertainty Quantification (DUQ):
DUQ [14] uses a different approach to Uncertainty Quan-
tification in Neural Networks. DUQ uses a standard Neu-
ral Network as a feature extractor, and then learns a cen-
troid for each class. Samples that are far away from the
centroids are deemed uncertain, whereas samples that are
close to a centroid are deemed certain.
This different underlying assumption of how uncertainty
should arise is inspired by generative models, though
DUQ is not actually a generative model. A true genera-
tive model models the distribution of the training samples
directly, whereas DUQ only models class centroids. Still,
this makes it fundamentally different from the discrim-
inative BNNs, and may therefore give different results
than the BNN approach. It also means that aleatoric and
epistemic uncertainty cannot be clearly distinguished, but
they are both included in the predicted uncertainty.

METHODS

Dataset: We used the public Motor Imagery dataset:
BCI Competition IV, dataset 2a [15]. This dataset con-
tains 22 channel EEG and 3 monopolar EOG channel
recordings of 9 subjects performing one of 4 different
motor imagery tasks— left hand (class 1), right hand
(class 2), both feet (class 3) and tongue (class 4).
The sampling rate was 250Hz and the dataset comes pre-
applied with a 50Hz notch filter and a bandpass filter of
0.5Hz to 100Hz.
The Braindecode [16] and MNE [17] Python libraries
were used to load and pre-process the data.
The training setup (shown for a single subject in figure
2) was designed to allow the observation of aleatoric un-
certainty and the combination of aleatoric and epistemic
uncertainty. This allows the impact of epistemic uncer-
tainty to be observed in isolation.
We used leave-one-subject-out cross-validation with a
slight variation. Normally leave-one-subject-out involves
splitting N −1 subjects into a training set and leaving the
last subject as the out-of-population (cross-subject) set.
Our variation to this procedure is as follows: 10% of the
data from each training set subject is used as a within-
population test set*. This within-population dataset al-
lows for an observation with minimal epistemic uncer-
tainty, and comparing it to the cross-subject set allows us
to isolate the impact of cross-subject generalisation.

Preprocessing: Some EEG pipelines employ extensive
signal processing and feature extraction in order to op-
erate with ML algorithms. However, it is often unclear
what value each processing step introduces, and various

*The remaining training data was in turn split into 90% train and
10% validation for hyperparameter optimisation
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Figure 2: Training setup for a single subject. One subject is
excluded and used as an out-of-population set while the other
10% of the data from each subject is separated into a within-
population set. The data of the remaining subjects are concate-
nated and split 90-10 into a training and validation set. This
procedure is repeated for every subject.

researchers and labs use different pipelines. The use of
CNNs (and DL methods in general) in EEG is promising
because of their ability to automatically extract features
from raw data and perform classifications, with minimal
preprocessing required [18, 19].
Hence the following preprocessing steps are very mini-
mal. It consists of: dropping the EOG channels, con-
verting the EEG signals from volts to microvolts (µV ),
applying an exponential moving standardisation with pa-
rameters described by [16] and epoching from 0.5 sec-
onds before the trial cue at t = 2s to end of the trial at
t = 6s (for a total trial window of 4.5 seconds). Creating
epochs as such leads to a single trial being a matrix (C,T )
with C = 22 being the number of channels and T = 1125
being the number of timestamps.

Model Architecture: We used Keras [20] to implement
the Shallow ConvNet CNN [16], and the Keras Uncer-
tainty library [21] to implement the UQ adaptations. *

Although all UQ methods followed the same Shallow
ConvNet architecture, minor differences existed in the
implementation of the UQ layers. Two standard models
regularised with Dropout and DropConnect were used as
baselines.
MC-Dropout and MC-DropConnect and their standard
counterparts both had only a single UQ layer. In
MC-Dropout this layer was positioned before the dense
classification layer with a drop rate of 0.2. In MC-
DropConnect it was positioned after the second convo-
lutional layer with a drop rate of 0.1. A grid search was
done on a single subject (due to computational complex-
ity) to decide this configuration. Normal Dropout and
DropConnect sets the value of a node or weight to 0 dur-
ing training. The equivalent UQ versions retain this dur-
ing testing, resulting in slightly different predictions each
forward pass, thereby representing epistemic uncertainty.
The Ensemble model simply consisted of 10 standard
Shallow ConvNet CNNs, regularised with dropout identi-
cal to the dropout baseline model. Disagreement between

*All code is available at https://github.com/p-manivannan/
UQ-Motor-Imagery

these 10 models represents epistemic uncertainty.
Flipout changes the final dense classification layer to a
standard dense layer using ReLU activation with 10 units,
following which are two flipout layers. Both flipout lay-
ers use a prior P(θ) = N (0,1.02)+π N (0,2.52) with
π = 0.1. Additionally, the first flipout layer had 10 units.
Both sets of parameters were determined using a grid
search.
MC-Dropout, MC-Dropconnect and Flipout are stochas-
tic during inference. Therefore, a number of forward
passes T needs to be selected. T was chosen to be 50
as it has been found to be point where the improvement
in accuracy stabilises [3].
DUQ changes the final layer of the Shallow ConvNet
CNN to a dense layer with 100 units using a ReLU ac-
tivation, following which is an RBF classification layer
with a length scale of 0.4 with trainable centroids of di-
mension 100. These parameters were found using a grid
search. Additionally, compared to the categorical cross-
entropy loss used by the other methods, DUQ utilizes bi-
nary cross-entropy.
Other hyperparameters follow common practice in Deep
Learning literature. Specifically we set the learning rate
(1×10−4), loss function (categorical cross entropy), and
optimiser (Adam).

Uncertainty Measures: The BNN-based methods rely
on T forward passes from a stochastic model. Each for-
ward pass predicts class probabilities pc, resulting in a
distribution over probabilities. To this we can apply vari-
ous Uncertainty Measures to measure either aleatoric un-
certainty, epistemic uncertainty or the total uncertainty
[8].
The total uncertainty is based on the mean of the pre-
dicted probability for each class and is measured by the
Predictive Entropy:

Hpred(p) =−∑
c

p̄c log p̄c. (2)

The Expected Entropy first determines the uncertainty of
each forward pass, and then takes the average over those
uncertainties.

HE(p) =−T−1
∑

t
∑
c

pct log pct (3)

In this approach, Expected Entropy takes the "average
uncertainty" of each individual model. As such, it only
corresponds to aleatoric uncertainty [22].
Lastly, subtracting the aleatoric uncertainty from the to-
tal uncertainty results in the remaining epistemic uncer-
tainty. This measure is referred to as Mutual Information
[23]:

I(p)≈Hpred(p)−HE(p) (4)

Predictive Entropy and Expected entropy may be applied
to a standard Neural Network, but they will result in the
same prediction. This approximation for Mutual Infor-
mation cannot be applied to standard Neural Networks.
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Because DUQ does not follow the same discriminative
assumptions for uncertainty, these measures of uncer-
tainty do not apply. Instead, it gives a single uncertainty
measure that responds to both aleatoric and epistemic un-
certainty.

RESULTS

Classification accuracy for each method is given in ta-
ble 1. It can be seen that performance is higher within-
population than out-of-population, with Ensembles out-
performing all other methods for both groups. The per-
formance of the Ensemble is in-line with benchmarks for
out-of-population and within-population accuracies [19]
while the other methods are slightly underperforming.
To find out whether UQ can improve performance, un-
certainty estimation was treated as a binary classification
task, where the aim was to classify wrong predictions as
uncertain. Therefore, the Area Under the ROC curve
(AUROC) is considered as a performance metric [24].
Note that this can never approach 100 as the uncertain
samples are "guessed", which will be correct 25% of the
time. These would be labelled as false positives in this
framework.
This metric is chosen in place of common metrics like
Expected Calibration Error [7], because our goal is to de-
tect misclassifications, whereas ECE aims to detect over-
confidence or underconfidence.
The uncertainty AUROC scores for each method and each
uncertainty measure on the within-population set is given
in table 2a. This table shows that Mutual Information
(which corresponds only to epistemic uncertainty) per-
forms the worst. Predictive Entropy and Expected En-
tropy perform similarly, suggesting that the modelling of
epistemic uncertainty is not beneficial to the uncertainty
estimation. It also shows that DUQ has the worst un-
certainty estimation, and that most discriminative models
show similar performance.
Table 2b shows the performance of uncertainty estima-
tion on the out-of-population dataset. The performance
of uncertainty estimation is consistently lower here than
on the within-population set. Mutual Information, which
represents epistemic uncertainty, still does not offer bet-
ter uncertainty estimation. This suggests that none of the
available models are able to fully account for the epis-
temic uncertainty introduced by cross-subject classifica-
tion. We again see that DUQ has noticeably worse UQ
performance.
It can be seen that the quality of uncertainty estimation
is worse cross-population than within-population. This
behaviour is inevitable for measures of aleatoric uncer-
tainty, but measures of epistemic uncertainty should be
more robust to this [25].
When predictive entropy is disentangled into aleatoric
and epistemic uncertainty, it can be seen that epistemic
uncertainty based thresholding is consistently slightly
worse than aleatoric uncertainty based thresholding. This
suggests either that aleatoric uncertainty is more preva-

Table 1: Mean accuracy per subject for each method. Within-
population accuracy is higher overall than cross population ac-
curacy, with ensembles outperforming other methods in both
categories. Standard DropConnect performs noticeably worse,
but most methods perform similar to Standard Dropout.

Method Within pop. Acc% Cross pop. Acc %
Dropout 68.98 ± 2.73 55.54 ± 7.95
MC-Dropout 69.00 ± 2.73 55.56 ± 7.94
DropConnect 66.67 ± 2.23 53.51 ± 11.67
MC-DropConnect 69.27 ± 1.34 54.96 ± 9.76
Flipout 69.90 ± 2.55 54.99 ± 8.67
Ensembles 73.05 ± 2.22 59.05 ± 8.11
DUQ 70.47 ± 2.93 55.42 ± 9.16

lent than epistemic uncertainty, or that epistemic uncer-
tainty is not captured well by the models. Since the accu-
racy does go down when moving to cross-population, it
is clear that there must be an increase in epistemic uncer-
tainty which the models are not accounting for.
It can be seen that no BNN method is substantially bet-
ter than another at uncertainty quantification. Only DUQ
performs substantially worse than other methods, per-
forming even lower than standard neural networks.

DISCUSSION

Surprisingly, we find that the specific UQ methods de-
signed to observe epistemic uncertainty are not able give
better uncertainty estimations than a similar Neural Net-
work with Softmax activation. It is still possible for all
methods to reject some of the uncertain samples to in-
crease accuracy, but this is trivial.
A possible reason for this is that since aleatoric uncer-
tainty seems more prevalent, the ability of these UQ
methods to take into account epistemic uncertainty does
not help, hence explaining how standard models are able
to achieve comparable performance. However, it is clear
that the decrease in accuracy should be attributable to an
increase in epistemic uncertainty. This could be caused
by how these methods model uncertainty, but the results
show that the discriminative models and DUQ suffer the
same problems.

Relation to background: Our findings contradict the
expectation that cross-subject classification should in-
troduce epistemic uncertainty, and that therefore BNNs
should perform better.
Epistemic uncertainty should arise when a model is tested
on data that is different from the data it was trained on.
In this case, the cross-subject testing samples are differ-
ent from the data that the model is trained on, but the
models capturing epistemic uncertainty were not able to
offer better uncertainty estimates.
It is difficult to attribute this to problems with a specific
approximation of BNNs, as a variety of approximations
show this effect consistently. We also cannot attribute this
to flaws in the discriminative model as shown in Figure
1a, because this problem is consistent even when using
DUQ which has a fundamentally different assumption of
uncertainty.
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Table 2: Uncertainty AUROC scores for each method both within-population and out-of-population. Predictive Entropy and Expected
Entropy both perform equally well for all BNN models. At the same time Mutual Information performs noticeably worse, and shows
more difference for the different models. The uncertainty of all models and all uncertainty measures is consistently worse when moving
out-of-population.

(a) Within-population

Method Predictive Entropy (Ale+Epi) Expected Entropy (Ale) Mutual Information (Epi)
Standard Dropout 76.07 ± 2.918 76.07 ± 2.918 -
MC-Dropout 76.07 ± 2.927 76.06 ± 2.927 74.24 ± 3.398
Standard DropConnect 75.44 ± 2.691 75.44 ± 2.691 -
MC-DropConnect 75.3 ± 3.303 75.29 ± 3.297 73.33 ± 2.835
Flipout 75.56 ± 2.461 76.70 ± 2.460 70.56 ± 2.488
Ensembles 76.92 ± 2.868 76.66 ± 3.046 70.02 ± 2.064
DUQ 73.19 ± 2.379 - -

(b) Out-of-population

Method Predictive Entropy (Ale+Epi) Expected Entropy (Ale) Mutual Information (Epi)
Standard Dropout 67.46 ± 4.646 67.46 ± 4.646 -
MC-Dropout 67.43 ± 4.611 67.43 ± 4.611 66.6 ± 4.164
Standard DropConnect 68.23 ± 4.532 68.23 ± 4.532 -
MC-DropConnect 68.48 ± 4.625 68.48 ± 4.626 66.82 ± 5.311
Flipout 67.79 ± 5.156 67.79 ± 5.152 63.95 ± 4.024
Ensembles 67.39 ± 5.446 67.29 ± 5.564 63.86 ± 4.354
DUQ 65.30 ± 4.01 - -

The previous studies in this direction [3, 5] show more
positive findings for approximations of BNNs, but by
considering an equivalent CNN and using Softmax as a
baseline we were able to that those results can also be
achieved with simpler methods.

Limitations: Our study also only focuses on the use
of uncertainty for rejecting difficult samples, and does
not actively look at the absolute epistemic uncertainty.
It may be that the epistemic uncertainty did increase for
cross-subject samples, but if this happens uniformly for
a given subject we are not able to capture it. This does
not affect the validity of the findings, but does make it
harder to know why these Bayesian Neural Networks are
not performing well.
There may also be limitations underlying how Predictive
Uncertainty is disentangled into aleatoric and epistemic
uncertainty. The proposed approach follows a line of
existing work [22, 23], but there is also a line of work
that assumes an entirely different formulation for disen-
tangling uncertainty [26, 27]. There, the BNNs have two
outputs. One for predicting the prediction, and one for the
variance. The mean of the variances is then the aleatoric
uncertainty, and the variance of the predictions is then
epistemic uncertainty. This approach explicitly models
aleatoric and epistemic as part of the model, which may
give more favourable results.

Directions for future research: We showed that UQ did
not work to reject the cross-subject samples with the most
epistemic uncertainty. However, it may still be usable for
deciding whether or not to make a prediction under noisy
EEG, or for identifying a model well suited for a certain
subject, or even for detecting off-task thoughts.

CONCLUSION

Available Deep Learning methods that capture and disen-
tangle epistemic uncertainty are not able to improve the
robustness of within-subject nor cross-subject Motor Im-
agery BCIs in the context of a benchmark dataset. How-
ever, there are other contexts in BCIs where epistemic
uncertainty may be expected. Off-task thoughts, rare ar-
tifacts, or insufficient training data can all introduce epis-
temic uncertainty, and the methods demonstrated here
may be able to improve robustness in those cases. This
has not yet been investigated.
We want to emphasise the need to study the behaviour
and uses of uncertainty estimates from non-Deep Learn-
ing models. Classical Machine Learning models for clas-
sification often come with an adaptation to return class
probabilities, but the behaviour of these may vary sub-
stantially. Assessing their ability to reject segments of
EEG that are likely to be false positives may allow for
more robust BCI systems. The robustness promised by
good UQ may be a step towards making BCIs more us-
able outside of the lab.
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