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ABSTRACT: Comprehension of performance 

variabilities across subjects and sessions is crucial for 

real life brain-computer-interfaces (BCI) applications. 

This study compared three subjects that underwent 

implantation of minimally invasive WIMAGINE ECoG 

recording implants. Three training strategies to discern 

best achievable performance, session drift, and 

variability were evaluated offline using datasets recorded 

during real-time closed-loop BCI experiments. Results 

revealed distinct BCI profiles across patients, consistent 

with qualitative observations made during online 

training. These performances were correlated with two 

indicators computed in feature space during idle periods 

of BCI sessions: Euclidean distance between the current 

session and the session of model creation in a low-

dimensional UMAP embedding, and intrinsic dimension. 

Between sessions distances demonstrated statistically 

significant correlation with models’ performances, then 

recalibration need may be potentially anticipated from 

the characteristics of idle state periods. Additionally, the 

intrinsic dimension was significantly correlated to 

subjects' overall BCI capabilities. The results are 

consistent with pre-implantation MEG-BCI experiments, 

which could make it useful for patient selection. 

 

INTRODUCTION 

 
     Brain-computer-interface (BCI) technology has 

shown promising advances in the past years, in terms of 

rehabilitative potential, performances and usability [1], 

[2], [3]. Despite the progress, there are still challenges to 

overcome before BCI use in day-to-day scenarios. In 

particular, the need to regularly train / update decoders 

poses a significant obstacle to translate BCI into real-life 

applications [4]. Minimally invasive 

electrocorticography (ECoG) based BCI, provides a 

much higher signal stability than electroencephalography 

(EEG) based BCIs, or than highly invasive 

Microelectrode Array (MEA) based BCIs [5]. ECoG-

BCIs showed their ability to properly decode brain 

activity without recalibration for several months [6], [7]. 

However, these studies included only one subject who 

was intensively trained to control the BCI. It is well 

known, however, that BCI control performances and 

motor imagery capabilities can vary significantly across 

subjects, 15-30% of patients even being described as 

BCI-illiterated or inefficient [8]. Furthermore, although 

studies [6], [7] showed globally stable performances over 

time, inter-sessions variability remained significant. 

     While the community widely acknowledges issues of 

inter- and intra-subject variability, characterization of 

good or poor BCI performance is still not well 

established. Several studies investigated potential 

neurophysiological EEG-based predictors of inter-

subjects BCI performances variability, associating the 

frontal theta rhythm (4-8Hz) [9] and the amplitude of the 

motor cortex mu band peak in the power spectrum [10], 

[11] during a relax condition to the ability of the subject 

to control a BCI. At the subject level, it has been shown 

that quality of motor imagery within a session (assessed 

by classification of left and right motor imagery) was 

correlated with gamma power during the task [12]. While 

these studies presented promising results for patient 

selection, it also shows that a multitude of currently 

unknown brain processes most likely affects BCI 

performance, and may vary across experimental 

paradigms. Furthermore, none of these studies 

investigated the neurophysiological markers of session-

to-session variability of subjects’ performances. 

Recently, some studies explored transfer learning 

approaches to compensate for this drift over sessions in 

EEG [13] and MEA [14]. However, these methods 

performs systematic domain adaptation and model 

retraining which requires labelled data and computation 

time. In an online perspective with patients chronically 

implanted with ECoG recording implants, in which it is 

possible to keep the same decoder functioning for several 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-015

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

80

mailto:lucas.struber@cea.fr


sessions, establishing predictors that can be rapidly 

estimated on an idle state period could help determine if 

the decoder needs to be recalibrated and predict how well 

a previous decoder would fit the incoming data. 

Implementing predictors of day's performance of a 

subject using a former model is also crucial to develop 

better session-to-session variability compensation 

techniques, and to elaborate more effective and 

personalized training procedures. 

     In this study, we propose to compare BCI 

performances across sessions of three patients implanted 

with chronic ECoG implants, and relate them to data-

driven characteristics extracted from idle state. We 

hypothesize that idle state signals recorded in motor and 

sensorimotor cortices are informative both on inter- and 

intra-subjects performances variability, and in particular 

that idle state characteristics can explain this variability. 

Interestingly, we relate these long-term ECoG-BCI 

results to MEG-BCI sessions that subjects performed 

before implantation, speculating that individual long-

term performances was somehow predictable. 

 
MATERIALS AND METHODS 

 
     Subjects: Three subjects who underwent bilateral 

implantation of chronic wireless WIMAGINE implants 

on the motor and sensorimotor cortices were included in 

this study. Subjects 1 and 2 (S1 and S2) were respectively 

28 and 29 years-old males (at the time of surgery), with 

traumatic sensorimotor tetraplegia which were included 

within the ‘BCI and Tetraplegia’ clinical trial 

(clinicaltrials.gov, NCT02550522) and implanted over 

the upper limb region of the cortex [15]. Subject 3 (S3) 

was a 38-year-old male who had sustained an incomplete 

cervical (C5/C6) spinal cord injury and was included 

within the ‘STIMO-BSI’ clinical trial (clinicaltrials.gov, 

NCT04632290) [1]. He was implanted more centrally to 

approach the legs motor regions. 

     Online experiments: During online BCI-sessions, the 

three subjects were trained to control different effectors. 

In the data considered in this study, S1 was controlling 

an avatar in a 3D virtual environment over eight 

continuous degrees of freedom (right and left hand 3D 

translations, and right and left wrist rotations) using 

motor imagery of both hands fingers. S2 controlled a 

virtual keypad in four directions, each of them being 

associated to a discrete state of the controller (up, down, 

left, right) using motor imagery of shoulders, legs and 

both hands. As for S3, he controlled directly his own legs 

independently through an epidural stimulator of the 

spinal cord allowing two discrete stimulation patterns 

(left leg and right leg) using direct motor imagery. For 

the three subjects, in addition to the controlled degrees of 

freedom, the decoders were trained to discern an idle 

class, corresponding to the periods of recordings in which 

the patient was relaxing. These periods were used to 

implement idle state indicators that are described below. 

ECoG was sampled at 585Hz. For each subject each BCI-

session lasted approximately 2h, but only parts of data 

were labelled (rest of data was online testing). Prior to 

implantation, the three subjects performed a ~1h single 

magneto-encephalography (MEG) BCI session, sampled 

at 1kHz, in which they controlled a runner avatar through 

motor imagery of walking (2-states brainswitch control). 

     Offline dataset: In order to obtain comparable results, 

the online ECoG dataset of each subject was narrowed to 

three discrete states: idle for every subject and motor 

imagery of right and left hand for subjects 1 and 2 and 

right and left hip for subject 3. Since one subject had only 

one functioning implant due to an electronic dysfunction, 

only data from left implant were kept for all subjects, 

leading to 32 electrodes per subject. For S1 and S2 

recorded electrodes were distributed following a 

checkerboard-pattern over the implant and for S3 more 

central electrodes were favored to get a better coverage 

of leg motor area [1]. Datasets were also balanced in 

terms of number of sessions and number of samples per 

states in each session. Finally, this led to a dataset 

comprising 15 sessions of 1800 labelled motor imagery 

samples per subject (one each 0.1s; 600 per state), 

acquired over 6,  10 and 5 months for subjects 1,2 and 3 

respectively.  

     Feature extraction: Feature extraction procedure is 

described in details in [6]. After interpolation of missing 

points in the raw ECoG data, 1s-long epochs of neural 

signals with a 100ms sliding step, were mapped to the 

temporal frequency space using a complex continuous 

wavelet transform (CCWT) (Morlet) with a frequency 

range from 10 to 150 Hz (10 Hz step). The absolute value 

of the CCWT coefficients was then decimated along the 

temporal modality to obtain a 10-timepoints description 

of the epoch for each frequency band and each channel, 

resulting in the temporal-frequency-spatial neural feature 

tensor 𝑋𝑡 ∈ ℝ10∗15∗32. Same features were used during 

online experiments and offline analyses, except for 

subject 3 for which 0.2s-long  epoch and 24 frequency 

bins were used in online experiments leading to 𝑋𝑡 ∈
ℝ2∗24∗64 (offline features were recomputed to match the 

other two subjects). Similar features were extracted from 

MEG experiments, with feature tensor 𝑋𝑡 ∈ ℝ10∗9∗105 

(10 temporal steps, 9 frequency steps distributed between 

1 and 40Hz, and 105 MEG channels). 

     BCI performances evaluation strategies and criteria: 

To assess subjects’ performances across sessions, 3 

classes classification models were trained offline for each 

subject. As previously explained, BCI performances 

were assessed offline on equivalent datasets to have a fair 

comparison between subjects that performed different 

online experiments. Similar to online experiments, 

Hidden Markov Models (HMM) combining emission 

and transition probabilities were trained and used for 

classification in a pseudo-online manner [6]. Emission 

probability was computed using REW-NPLS with one-

hot encoded class labels, post-processed by softmax 

function [16]. Transition probability matrix was 

estimated by counting the number of transition in the 

training set. The class prior was established to ensure 

equal probability distribution among classes. In order to 

evaluate general performances but also their session-to-

session variability, three training strategies were carried 
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out: 

- Within-session training: models were trained and 

tested on the same session, with a 5-folds cross-

validation scheme. 

- Session-1 training: models were trained only with 

data of session 1 and tested on every next sessions. 

- Session-to-session training: models were trained 

each session, and tested on the following session. 

Subjects’ performances were assessed with the accuracy 

of classification (total number of correct predictions 

divided by the total number of samples). They were also 

evaluated in prior MEG experiments with two states 

classification models using within-session training 

strategy. As the different states were balanced, the 

chance level was of 1/3 for all classifications. 

     Idle state variability evaluation: All idle state samples 

of the three patients were projected together in an 

unsupervised manner from the feature space into a low 

dimensional (2D) space using Uniform Manifold 

Approximation & Projection for dimension reduction 

(UMAP [17]). The centroid of each session for each 

patient was identified, and idle state variability was 

evaluated through the Euclidean distance between each 

session’s centroid and the centroid of session 1, and 

between each pair of consecutive sessions’ centroids 

(Fig. 2). Measure of distances in a 2D UMAP embedding 

was chosen to investigate variability over sessions 

because we showed in a previous study on a comparable 

dataset that the projected patterns were remarkably stable 

over time [18].  

     Idle state dimensionality: Intrinsic dimension (ID) 

was computed in the feature space for idle state samples 

of each session. ID can be defined as the minimum 

number of parameters needed to describe the data with a 

minimal loss of information. This was done using two 

widely used classical estimators, MLE and DANCo [19]. 

ID was also assessed in MEG experiments to evaluate to 

what extent the dimensionality is predictable before 

implantation.  

     Correlations: To investigate if idle state 

characteristics could explain inter-sessions and inter-

subjects variability, linear regressions were estimated 

between BCI performances, both distances in the UMAP 

embedding as well as the ID. Specifically, we 

investigated relationships between 1) within-sessions 

training performances and idle state ID indicators, 2) 

session-1 training performances and distances between 

each session’s centroid and the centroid of session 1, and 

3) session-to-session training performances and distances 

between each pair of consecutive sessions’ centroids. 

Goodness of fits were estimated using the Pearson 

correlation coefficient 𝑅.  

     Statistical tests: Differences in performances, 

distances and ID between subjects (mean across sessions) 

were assessed using one-way analysis of variance 

(ANOVA), followed by post-hoc Tukey’s honestly 

significant difference tests when ANOVA were 

significant. Statistical significance threshold was set to 

𝑝 < 0.05. 

 

RESULTS 

 

     BCI performances: BCI performances (models 

accuracy on test sets) of the three subjects with the three 

training strategies are presented in Fig. 1. S1 and S3 had 

significantly better performances than S2 in the within-

session training (p<0.001; S1: 0.79±0.08; S2: 0.63±0.10; 

S3: 0.79±0.06). When model was trained on day 1 only, 

performances of S1 were significantly better than S2 and 

S3 (p<0.001 and p = 0.02 respectively; S1: 0.79±0.08; 

S2: 0.61±0.12; S3: 0.69±0.10). Only performances of S3 

dropped in this scenario compared to within-session 

training, For session-to-session training, S1 

performances were significantly better than S2 and S3 

(p<0.001 and p = 0.03 respectively; S1: 0.75±0.13; S2: 

0.60±0.08; S3: 0.65±0.08). Again, performances of S3 

dropped particularly with this training strategy compared 

to within-session training. Regarding prior to 

implantation MEG experiment, BCI performances were 

better for S1 in comparison to S2 and S3 (S1: 0.80; S2: 

0.58; S3: 0.59). 

     Idle state variability: Distances between centroids of 

idle state features projected into the 2D UMAP 

embedding are presented in Fig. 2. Whether comparing 

distance to first session or session-to-session distances, it 

appeared that idle state features of S1 remained more 

stable over time, with a smaller average distance and a 

smaller variability of distances. Distance to session 1 was 

significantly lower for S1 than for S2 and S3 (p = 0.01 

and p = 0.02 respectively; S1: 0.73±0.41; S2: 1.99±1.78; 

S3: 1.33±1.13), while session-to-session distance was 

significantly lower for S1 in comparison to S3 only 

(p<0.01; S1: 1.11±0.58; S2: 1.49±1.07; S3: 1.95±1.38).  

     Idle state dimensionality: ID was globally stable over 

ECoG sessions for the three subjects with a gradation 

between them (Fig. 3). Whether computed with MLE or 

Figure 1: Models’ decoding accuracies over sessions (left) and 

average across sessions (right) with the three training 

strategies. Bar graph are presented as mean ± standard dev. * 

reports significant differences. For comparison purposes, grey 

dotted lines on the top bar graph represents models’ decoding 

accuracies in MEG experiments. 
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DANCo estimator, ID was significantly lower for S1 

compared to S2 and S3, and significantly lower for S2 

than for S3 (p<0.001 for all cases; MLE-ID: S1: 

15.3±1.8; S2: 31.3±4.8; S3: 24.7±2.9; DANCo-ID: S1: 

19.2±4.5; S2: 53.7±11.4; S3: 39.9±7.4). ID was also 

evaluated during prior to implantation BCI-MEG 

experiments, and seemed to follow a similar pattern 

between subjects, especially with DANCo estimator 

(MLE-ID: S1: 34.0; S2: 36.3; S3: 36.8; DANCo-ID: S1: 

27.2; S2: 43.3; S3: 37.2). 

     Correlations: When pulling subjects’ together, 

significant correlations between cross-sessions models’ 

accuracies and variability of idle state between sessions 

as well as between subjects’ performances and intrinsic 

dimensions were found (cf. Fig. 4 – Pearson correlation 

coefficient and associated p-values are indicated in the 

figure). These correlations remained insignificant for 

individual subjects. 

 

DISCUSSION 

 

     The main objective of this study was to investigate if 

markers of inter and intra-subjects’ BCI performances 

could be unraveled from idle state. To do so, we 

compared different indicators of idle state brain signals 

between sessions and patients, and related them to the 

BCI performances. BCI performances were assessed 

offline, with three training strategies to disentangle 

subjects’ best achievable performance (within-session 

training), drift over time (session-1 training) and session-

to-session variability (session-to-session training). Note 

that for the purpose of this study, subjects’ best 

achievable performance were assessed with relatively 

small training sets (5 folds of 1440 features, i.e.  2.4 min 

of data) and do not reflect the best performances they 

could achieve with a longer training.  

     The three training strategies allowed us to observe that 

the patients presented distinct BCI profiles. S1 showed 

high BCI capabilities with no drift and only low 

variability over sessions. S2 performances were lower, 

but we did not observe strong drift or variability between 

sessions either. Regarding S3 high BCI performances 

were observed, with an important drop of performances 

when the model of a previous session was used, 

indicating a drift and/or variability over sessions.  

Interestingly, these observations are consistent with what 

was noticed in online experiments. Indeed, S1 was able 

to control accurately up to 8 continuous degrees of 

freedom without recalibration of the model for up to 6 

months [6], while S2 controlled models with 5 discrete 

states with fluctuant performances even in the same 

session. As for S3, he was somewhere in between, and 

controlled with good performances 7 continuous states 

[1], although regular model recalibration (approximately 

every 2 weeks) was necessary. 

     This more frequent need for recalibration was also 

coherent with more fluctuations of idle state, measured 

as distances between centroid features of sessions in a 

low-dimensional projection. Indeed, S2 and S3 presented 

higher variability in idle state features over sessions. 

Furthermore, the performances in a session using a 

decoding model of another session was significantly 

negatively correlated with the distance between these 

sessions. Thus, measuring the distance with model’s 

calibration session through an idle state recording 

acquired prior to the BCI experiment could be a good 

predictor of session expected performances, and of the 

need to recalibrate the model. Although this has to be 

confirmed on more sessions, we believe to have obtained 

here a session-to-session predictor of subjects’ 

performances, in contrast to previous studies that 

investigated only inter-subjects predictors of 

performance [10], [11], [20]. In addition, this distance is 

a data-driven indicator that is not based on 

neurophysiological hypotheses, and then could be 

adapted to other recording techniques.  

     Regarding ID of the idle state in features space, we 

observed a clear gradation between subjects, with a lower 

ID for S1, higher for S2, and relatively stable across 

sessions. Crosschecking this result with subjects’ 

Figure 2: (A) Unsupervised UMAP of all idle state features of the three patients in a 2D-space; (B) Representation of the centroids of 

each BCI-ECoG session for each subject separately; (C) Euclidean distance between centroid of session 1 and centroids of the 

following sessions (top) and distance between each session and the previous one (bottom) in the UMAP embedding. Average across 

sessions is presented as bar graphs on the right (mean ± standard dev). * reports significant differences). 
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performances indicated that ID could be a good global 

predictor of subject BCI capabilities: the lower ID, the 

more decodable and stable brain signals. This was 

confirmed by correlation between model’s accuracy and 

ID. This is in agreement with previous results that 

reported the same relationship in images dataset [21]. 

     Although predicting the global long-term 

performances of implanted patients through ECoG 

experiments could be of interest, it would be much more 

valuable to assess it before implantation. With this in 

mind, we examined prior to implantation MEG-BCI 

experiments that were performed by the three subjects. 

This session was the first BCI experiment of patients and 

was performed to assess their adhesion. While S1 and S2 

presented similar MEG-BCI performances than in 

ECoG-BCI, S3 presented much lower performances (in 

comparison to within-session training, which is the same 

strategy than in MEG). This tends to indicate that, if high 

MEG-BCI performances would ensure high ECoG-BCI 

performances, lower MEG-BCI performances does not 

necessarily leads to lower ECoG-BCI performances. This 

is not surprising as the patients certainly have a different 

BCI learning potential, which cannot be estimated within 

a single session. Thus, MEG-BCI sessions seems to be an 

important step for subjects prior to the implantation to 

assess their BCI “compatibility” (in addition to their 

adhesion), but we strongly suggest to perform more than 

one BCI sessions (ideally, enough to observe a learning 

curve). Interestingly ID of idle state during these MEG-

BCI experiments was also estimated and showed the 

same gradation between patients than in ECoG-BCI 

experiments (especially with DANCo estimator). Since 

ID seems to remain relatively stable and discriminating 

across subjects after implantation, it could be a strong 

predictor of subjects’ global BCI long-term 

performances. Although this need to confirmed on more 

patients, this could be an important finding as it could 

help identifying BCI-inefficient patient for whom an 

implantation would be an unnecessary risk in addition to 

a waste of time and resources. A simple assessment of 

subject’s brain signals complexity in MEG (or EEG) in a 

relax state could participate to reveal these patients 

before implantation.  

 

CONCLUSION 

 

 To our knowledge, this work is the first study 

investigating session-to-session BCI performance 

predictors on implanted ECoG patients. Even though this 

was based on offline analysis, on patients that used 

different motor imagery, effectors and online decoding 

models, the conclusions drawn here on narrowed 

comparable datasets are reflecting our experimental 

observations done during the online experiments. Based 

on idle state features variability over sessions, we first 

uncovered a predictor of the performances of a previous 

decoding model on current session. Then, analyzing the 

dimensionality of brain signals in idle state, we revealed 

a more “long-term” indicator, which predicted the global 

BCI-capabilities of the patients. Furthermore, although 

this must be confirmed on more subject, the latter 

followed the same pattern between patients in MEG-BCI 

experiments performed before implantation. These 

results are of particular importance on one hand to 

anticipate the need of model recalibration in ECoG-BCI 

training experiments, and on the other hand for selecting 

patients to be implanted with BCI neuroprosthesis.  
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