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ABSTRACT: Motor imagery (MI) is the most popular 

paradigm for brain-computer interfaces (BCIs) based on 

scalp electroencephalography (EEG), while this 

paradigm is missing for stereo-electroencephalography 

(sEEG)-based BCIs. Recently, the first public dataset of 

sEEG has become available for MI-based BCIs. 

However, the performance using traditional methods is 

still inferior. In this study, we employed some state-of-

the-art methods based on deep learning to improve the 

classification accuracy of MI for sEEG-based BCIs. Six 

different deep learning models were developed, which 

include Shallow ConvNet, DeepNet, ResNet20, 

conformer, vision transformer (ViT) and ViT with pre-

trained parameters. Among six deep learning models, we 

achieved an average accuracy of 0.83 in the hand 

open/closed binary classification task with the conformer 

model. Compared to the available work, our approach 

demonstrated a remarkable 16% increase in accuracy. 

 
INTRODUCTION 

 

Brain-computer interface (BCI) technology serves as a 

promising solution, enabling direct communication 

between the human brain and external devices or 

computer systems. In general, there are two categories of 

BCI technology, i.e., invasive and non-invasive. Non-

invasive BCI relies on capturing brain signals from the 

scalp in a user-friendly way. Invasive BCI, on the other 

hand, involves direct implantation into the brain for 

signal acquisition, which can result in intracranial signals 

with less noise interference and a higher spatial-temporal 

resolution. Examples of invasive BCIs include signals 

such as stereo-electroencephalography (sEEG) and 

electrocorticography (ECoG) [1], [2]. 

Current sEEG-based BCIs primarily focus on motor-

related decoding, such as various hand gestures, tongue 

movements, and foot movements [3], [4]. Combrisson et 

al demonstrated that motor execution, intention 

movement and rest status can be differentiated by 

decoding sEEG signals [5]. The authors discovered a 

relationship between phase, amplitude and PAC during 

the planning and execution phases of the goal-directed 

movement. Additionally, they were able to predict 

continuously changing grasp force through decoding 

sEEG signals [6].  

However, there have been relatively few studies on sEEG 

decoding of imagined movements using sEEG. Murphy 

et al. employed a Support Vector Machine (SVM) to 

classify the imagined force and rest status in two different 

grasp configurations, achieving an average accuracy of 

over 0.6, which was higher than the chance level [7]. 

When analysing imagined single feature modulation, the 

alpha band showed a higher modulation level compared 

to other bands. Ottenhoff et al. demonstrated that non-

motor areas contain sufficient information for motor 

decoding [8]. To avoid the effect of the motor area, they 

excluded all electrodes originating from the central 

sulcus and its adjacent area. They used a Riemannian 

decoder as the classifier, which achieved an average area 

under curve of 0.68 for imagined movements, with 

details extracted from the beta band. Individuals with 

movement disorders or speech impairments often rely on 

imagery movement as a means of communication. This 

work aims to enhance the accuracy of sEEG imagined 

movement decoding by using a deep learning model. 

Considering the capability of deep learning models to 

extract sophisticated features without manual feature 

extraction, we propose using the same to decode 

imagined movements. Furthermore, after the advent of 

the Transformer model, it was demonstrated to be highly 

effective in sequence-to-sequence tasks due to its 

attention mechanism. Recent research has shown 

promising results for deep learning models based on 

Transformers in reconstructing trajectories of imagined 

movement [9]. Therefore, the purpose of this study is to 

evaluate whether a deep learning model can enhance BCI 

performance for each participant. By utilizing algorithms 

that have previously been successful in executed 

movement decoding and regression tasks, they can 

improve the classification and recognition of imaginary 

motions with some optimizations. By comparing six 

different deep learning models with different structures, 

we have identified a more suitable structure for 

recognizing imaginary movements which will be 

valuable for future studies. In summary, our main 

contributions can be outlined as follows: 

1) We explore the application of deep learning 

methods on sEEG motor imagery datasets. 

2) We demonstrate improvements in recognition 

results compared to previous studies. 

The remainder of the article is organized as follows. In 

the Methods section, we introduce the deep learning 

models utilized in this study, along with details regarding 

the dataset and data preprocessing methods. The Result 

section presents the experimental findings of the models. 

Finally, we discuss the outcomes and summarize the 
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contributions of this article. 

 

METHODS 

 

To assess the performance of deep learning on MI-based 

BCIs using sEEG, this study implemented five different 

state-of-the-art (SOTA) models and an improved model 

with pre-trained weights. The results were then compared 

with those obtained from the Riemannian classifier in 

reference [8]. 

 

     Shallow ConvNet 

The ConvNet shown in Fig. 1 is a model that utilises 

temporal convolution and spatial filtering in its initial 

layers, similar to the bandpass phase in the filter bank 

common spatial pattern (FBCSP) [10]. The shallow 

ConvNet’s use of a larger kernel size in temporal 

convolution allows for a broader range of 

transformations. Additionally, incorporating multiple 

pooling regions per trial enables the learning of the 

temporal structure of band power changes, thereby 

enhancing classification. 

 

 
Figure 1: The model structure for shallow ConvNet [10]. 

 

     DeepNet  

The deepNet model utilized in this study featured a more 

intricate architecture with a substantial increase in the 

number of layers compared to the shallow model [10]. 

The architecture includes temporal convolution, spatial 

convolution, a fully connected layer and basic blocks 

which are used to extract the spatial features. Fig. 2 

shows the model structure with one basic block. A 

dropout rate of 0.5 was employed to improve the model’s 

robustness. The process of optimization involves 

experimenting with different quantities of basic blocks to 

determine the optimal configuration of the model. For 

this work, we utilized the deepNet model with two basic 

blocks. 
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Figure 2: The model structure for DeepNet model with 

changing depth. 

     ResNet20 

ResNet architectures have demonstrated success in 

various computer vision tasks due to their ability to 

mitigate the vanishing gradient problem and facilitate the 

training of exceptionally deep networks [11]. The ResNet 

model, with its residual connections, aims to leverage 

these advantages to enhance the performance of the 

imagining motion task. As the ResNet model has been 

previously used for emotion classification based on EEG 

image recognition, we incorporated a 20-layer Residual 

Network (ResNet) into our model, as shown in Fig. 3 [12].  
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Figure 3: The model structure for Resnet20. 

 

     Conformer 

The Conformer model  comprises three modules: a 

convolution module, a self-attention module, and a 

classifier module, as shown in Fig. 4 [13]. The 

convolution module uses both spatial and temporal 

convolutions to capture local spatial and temporal 

features of EEG signals. This is followed by an average 

pooling layer to reduce feature dimension and mitigate 

noise interference. The self-attention module utilizes 

multi-head attention mechanisms to capture global 

temporal dependencies of EEG features, complementing 

the local features learned by the convolution module. The 

classifier module includes two fully connected layers to 

output the probability of different EEG categories, such 

as motor imagery or emotion recognition tasks. 

 

 
Figure 4: The model structure for conformer [13]. 

 

     ViT (Vision Transformer) 

ViT is a hybrid model that combines a two-step 

convolution block with a transformer block, depicted in 

Fig. 5 [14]. The two-step convolution block is composed 

of two convolutional layers, one for the temporal 

dimension and one for the channel (spatial) dimension. 

This block generates patch embeddings that capture the 

frequency and spatial information of the sEEG data. The 

transformer block utilises the ViT architecture, which 

divides the input into patches and processes them as a 

sequence using self-attention and multi-layer perceptron. 

Additionally, it also captures global dependencies and 

patterns in the patch sequence. The final representation 

of the input is the hidden state of a special token. 
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The transformer block was pre-trained on the ImageNet 

dataset, which contains millions of natural images. This 

pre-training allows the model to utilise prior knowledge 

learned from image data and transfer it to the BCI field. 

 

 
Figure 5: The model structure for ViT [14]. 

 

     Dataset 

The sEEG dataset was collected from eight subjects 

performing two motor imagined tasks [8]. Specifically, 

subjects were instructed to imagine opening and closing 

their left and right hands, with each action lasting for 3 

seconds. Tab. 1 provides additional details about the 

dataset, including the distribution of contacts for each 

subject, as well as the number of electrodes in the left and 

right hemispheres and the presence of electrodes in the 

motor area. Each participant imagined 30 trials of 

opening and closed actions for each of their hand, with 

each action lasting 3 seconds. Consequently, each 

participant generated a total of 60 movements and 60 rest 

events throughout the entire experiment. 

 

Table 1: Electrode details of subjects after removing 

noisy and abnormal signals. Number of contacts also 

includes the electrodes which are located in the motor 

areas. 

Patient 

ID 

Motor 

Left 

Motor 

Right 

Contacts 

Left 

Contacts 

Right 

1 4 6 37 90 

2 0 0 103 24 

3 9 0 66 0 

4 0 0 54 0 

5 6 0 117 0 

6 0 0 63 63 

7 3 5 67 60 

8 0 3 40 75 

 

     Data processing 

For each subject, any abnormal signals, including flat 

signals and signals with abnormal amplitudes, were 

removed. In brief, the logarithm of the root mean square 

(LRMS) of each channel's signal was calculated. Then, 

we normalized these LRMS values, and calculated the 

corresponding p-values based on a normal distribution 

assumption. Channel with p-values less than or equal to 

0.05 were flagged as having abnormal amplitudes. For 

the channel where 50Hz frequency band power exceeded 

two times the interquartile range of the signal, it would 

be removed as well. The remaining signals underwent 

detrending, mean removal, and were subjected to a notch 

filter at 50Hz, 100Hz, 150Hz, and 200Hz to minimize 

interference from noise.  

Subsequently, the data was downsampled to 500Hz, and 

each experiment was segmented from -0.5s to 3s. The 

entire dataset is segmented by selecting fixed window 

size and stride size and stored as DataLoader formatted 

data for subsequent input into deep models for training 

and evaluation. By utilizing a fixed stride size, the 

optimal window size was identified among 200, 400, 

600, 800, 1000 and 1200. With the best window size, best 

stride size can be found among 20, 50, 100, 200, 300, 

400, 500. Based on the performance of all models, 800 

and 400 are selected as the window size and stride size 

respectively. In this work, a learning rate of 0.0001 was 

employed with a weight decay set to 0.0005. The 

optimizer used was Adadelta, and the cross-entropy loss 

was used for loss function calculation. To prevent data 

leakage from affecting model training and prediction, 

trials were classified before splitting. 60% of the trials 

were assigned to the training set, 20% to the validation 

set, and 20% to the test set. After determining these sets, 

each trial was further divided into one-second 

overlapping intervals to simulate data obtained during 

online experiments. The desktop computer that was used 

in the tests has the following configuration: 11th Gen 

Intel i9-11900 16 core CPU, 64 GB of RAM and a 

NVidia RTX 3080 GPU. 

 

RESULT 

 

The performance evaluation of six deep learning models 

was conducted to investigate their effectiveness in the 

task of imagining motion. Tab. 2 summarizes the 

performance metrics for each model, including the 

performance of the original Riemannian decoder. Our 

results indicate that shallow ConvNet and deep models 

have a relatively lower performance in imagining motion, 

with average test accuracy of 0.52 and 0.62, respectively, 

slightly above the chance level (0.5). Among the other 

deep learning models, ResNet, Conformer and ViT 

achieved performance levels of 0.75, 0.83 and 0.71, 

respectively, demonstrating superior effectiveness in the 

task. The ViT model with pre-trained parameters 

achieved an accuracy of 0.76, higher than the ViT model 

without pre-trained.  

Given that the experiment involves movements of both 

hands, the binary classification only focuses on 

distinguishing hand movements, neglecting the 

distinction between left and right hands. Hence, Fig. 6 

presents the classification performance of four gestures 

across six models, considering both the left- and right-

hand movements. Additionally, Fig. 7 illustrates the 

classification performance of the Conformer model on 

the dataset from Subject 8 (S8). 
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Table 2: Comparison of classification accuracy results among 6 deep learning mode. The chance level for the 

classification is 0.5. ViT_p model refers to ViT model with pretrained data. 

Subject Shallow ConvNet DeepNet ResNet20 Conformer ViT ViT_p Ref [8] 

S1 0.45 0.55 0.7 1.0 0.8 0.8 0.82 

S2 0.4 0.5 0.7 0.8 0.5 0.8 0.7 

S3 0.7 0.7 0.8 0.7 0.7 0.7 0.64 

S4 0.35 0.65 0.8 0.9 0.6 0.8 0.64 

S5 0.4 0.6 0.8 0.8 0.8 0.7 0.58 

S6 0.65 0.65 0.8 0.7 0.7 0.8 0.65 

S7 0.7 0.6 0.7 0.9 0.7 0.8 0.61 

S8 0.5 0.7 0.7 0.8 0.9 0.7 0.7 

Avg 0.52 0.62 0.75 0.83 0.71 0.76 0.67 

 

 
Figure 6: Comparison of 4-gestures classification 

accuracy results among 6 deep learning mode with red 

dot line represents for the chance level of 0.25. 

 

 

 
Figure 7: Confusion matrix for 4 gestures classification 

on S8 with conformer model. Label 0 and label 1 

represents the close and open status for left hand 

respectively. Label 2 and label 3 represents the close and 

open status for right hand respectively. 

 

 

DISCUSSION 

 

For the 2-gesture classification, it suggests the need for 

sophisticated feature extraction capabilities, which 

transformer architectures appear to provide, especially 

when no electrode is located in the motor area. And the 

result from the ViT with pre-trained data suggests that 

leveraging pre-training significantly enhances the ViT 

model's performance in the imagining motion task. 

Therefore, these results have displayed potential 

advantages of deep learning models in the imagery 

motion task. By comparing our findings to previous 

results, it can be suggested that given limited sEEG 

dataset, not only the model expressiveness can be 

improved through data augmentation on dataset itself but 

also through pretraining on other datasets, such as 

ImageNet for an EEG regression task [15]. This approach 

proves effective in improving the classification 

performance of MI tasks. While transformer-based 

models may not perform as well as models relying solely 

on convolutional modules for four-class classification, 

this can possibly be explained by the electrode 

distribution. For example, some participants only have 

electrode implantation on single side of the brain and 

only some have a limited number of electrodes presented 

in the motor cortex. Due to contralateral control, the left-

hand movements are dominated by the right hemisphere 

of the brain. As shown in Fig. 7, more than half of the 

left-hand closing gestures are incorrectly recognized as 

right-hand closing gestures. 

While our study makes valuable contributions, it is 

essential to acknowledge certain limitations. Due to the 

limited availability of public sEEG motor imagery 

datasets, our research focused solely on evaluating the 

model's performance in classifying two types of gestures 

within a single dataset. Future investigations should aim 

for a more comprehensive exploration of task specificity, 

dataset characteristics, and the impact of model 

hyperparameters on the ultimate performance. This 

would allow the exploration of various deep learning 

architectures, particularly the advantages and limitations 

of transformer-based models in motor imagery tasks. 

However, with the varied performance of different 
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models, especially the enhanced accuracy with pre-

trained ViT, we provide more opportunities for further 

explorations and optimisation. 

 

CONCLUSION 

 

In this work, we evaluate the performance of sEEG-based 

imagery motion classification by using multiple deep 

learning models. By comparing six different deep 

learning models, we used the conformer model to achieve 

an accuracy of 0.83 in the binary classification of 

imagined movements, which is 0.16 higher than the 

performance of the previous work. This work provides a 

reference for using deep learning models in BCI imagery 

movements with sEEG signals. 
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