
S-JEPA: TOWARDS SEAMLESS CROSS-DATASET TRANSFER THROUGH
DYNAMIC SPATIAL ATTENTION

Pierre Guetschel1, Thomas Moreau2, Michael Tangermann1

1Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
2Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France

E-mail: pierre.guetschel@donders.ru.nl

ABSTRACT: Motivated by the challenge of seamless
cross-dataset transfer in EEG signal processing, this ar-
ticle presents an exploratory study on the use of Joint
Embedding Predictive Architectures (JEPAs). In recent
years, self-supervised learning has emerged as a promis-
ing approach for transfer learning in various domains.
However, its application to EEG signals remains largely
unexplored. In this article, we introduce Signal-JEPA
for representing EEG recordings which includes a novel
domain-specific spatial block masking strategy and three
novel architectures for downstream classification. The
study is conducted on a 54 subjects dataset and the
downstream performance of the models is evaluated on
three different BCI paradigms: motor imagery, ERP and
SSVEP. Our study provides preliminary evidence for the
potential of JEPAs in EEG signal encoding. Notably, our
results highlight the importance of spatial filtering for ac-
curate downstream classification and reveal an influence
of the length of the pre-training examples but not of the
mask size on the downstream performance.

INTRODUCTION

Electroencephalography (EEG) allows capturing neural
activity directly from the scalp, offering a high temporal
resolution signal to investigate brain functions. The in-
terpretation of EEG signals with machine learning meth-
ods opens the door to build brain-computer interfaces
(BCIs). Despite the potential of BCIs, their practical
application is hindered by the intensive requirement for
calibration data, which is both time-consuming and de-
manding for participants. Recently, transfer learning has
been explored to mitigate the constraints imposed by data
scarcity and calibration demands. Self-supervised learn-
ing (SSL) presents itself as a pivotal strategy to tackle
transfer learning, enabling models to learn rich represen-
tations from unlabeled data that can be used to efficiently
solve downstream tasks. A particular approach to SSL
consists in strategically masking parts of the input data
and training a model to predict these masked elements.
A key advantage of masking-based SSL methods is that
they can be applied to virtually any type of data.

Masking Strategies proved a determining factor for the
success of SSL methods in various domains, including
image [2–4], speech [2, 5], text [2], and video [1] pro-

cessing. For instance, random masking strategies, where
the regions to be masked are sparsely selected, typically
deliver inferior results compared to block masking strate-
gies, where larger continuous regions are masked, requir-
ing the model to gain a deeper understanding of the data
distribution [2].

Masked Autoencoders (MAEs) stand as the quintessen-
tial entry point to masking-based SSL [3]. These models
aim to reconstruct the masked sections of the input di-
rectly, and the training objective is computed by compar-
ing the original input sections to the reconstructed ones.
Unfortunately, reconstructing the input and comparing el-
ements in the original space is not without challenges.
When the original input space has a high dimensionality,
the reconstruction can be computationally expensive, and
necessitate the use of domain-specific constraints to pro-
duce valid signals. The original signals can also be noisy,
increasing the difficulty of encoding meaningful parts
of the signal. Moreover, the reconstruction’s difficulty
can vary significantly across different areas of the input
data: with images, reconstructing a monochromatic, non-
structured sky is less difficult than reconstructing a struc-
tured object like a hand. Such structural disparities are
one of the reasons, why conventional metrics like mean-
square error often fail to assess the reconstruction quality.
These challenges question the scalability and adaptability
of MAEs as a universal SSL approach.

Joint-Embedding Predictive Architectures (JEPAs) of-
fer a promising alternative to address the limitations as-
sociated with direct reconstruction. JEPA-like methods
avoid reconstructing the input in its original space and fo-
cus on predicting latent representations, or embeddings,
of the data [4]. This approach confers two major bene-
fits: first, it is computationally efficient, especially with
high-dimensional input spaces as the embeddings can re-
duce the dimensionality; second, the metric’s selection in
the embedding space is less critical, as the embeddings
are learned adaptively to the chosen metric. However, as
the "ideal" embedding vectors are unknown, the recon-
struction objective is undefined a priori. This challenge is
addressed by constructing target embedding vectors dur-
ing the training by using a bootstrapping procedure which
will be further explained in the S-JEPA Framework sec-
tion. The potential of JEPA-like frameworks has been
highlighted by their promising results with images [2, 4],
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Figure 1: S-JEPA training procedure. The framework takes as input EEG recordings with C channels and T time samples, and binary
masks of length L. First, the Local encoder independently transforms t windows from each channel into C× t = L embedding vectors,
called tokens, of dimensionality d. Then, the tokens are marked according to their originating channel and temporal position, and are
flattened into a sequence of length L. Subsequently, only the unmasked tokens are passed to the Contextual encoder, while the full
tokens sequence is given to the Contextual target encoder to generate training targets. Finally, the Predictor attempts to reconstruct
the masked tokens and its predictions are compared with the targets using an L1 loss. During the optimisation, the parameters of
the Contextual target encoder are not trained via gradient backpropagation but follow those of the Contextual encoder by Exponential
Moving Average (EMA). Figure inspired from [1].

speech [2, 5], text [2], and videos [1].
Applications to the EEG Domain of masking-based

SSL techniques have started to emerge. Pérez-Velasco
and colleagues used a masked autoencoder approach,
with random masking over the spatial and temporal di-
mensions [6]. Chien and colleagues experimented with
MAEs with block masking over the temporal dimen-
sion [7]. Kostas et al. and Foumani et al. also used block
masking over the temporal dimension but coupled it with
JEPA-like training strategies [8, 9].

Motivation. Despite the advancements in applying
SSL to EEG data, the exploration of block masking
strategies over EEG channels remains uncharted territory.
Such an approach holds the potential for developing ro-
bust channel attention mechanisms, and thus could fa-
cilitate dynamic spatial filtering. This capability could
prove instrumental in adapting to recordings with vary-
ing channel sets, thereby facilitating cross-dataset trans-
fer learning or tackling corrupted channels. This paper
seeks to bridge this gap by investigating the implications
of a channel-based block masking strategy on SSL effi-
cacy in EEG signal processing.
The main application of models trained with SSL is the
following fine-tuning on the actual task of interest, the so-
called downstream task. While most research within the
EEG domain has focused on fine-tuning for sleep stage
classification tasks, their application to a BCI context re-
mains largely untapped, with only two studies by Kostas
et al. and Pérez-Velasco et al. exploring the impact of
SSL on BCI tasks [6, 8]. As BCI systems suffer from
data scarcity there is a consistent goal to minimize the
amount of calibration data required before each online
session, specifically as the calibration phase requires sus-
tained attention from the participant and thus is tiring.
This highlights a significant opportunity to explore the ef-
fectiveness of SSL models across various BCI paradigms,
including but not limited to motor imagery protocols,
thereby contributing to the broader understanding and ap-

plication of SSL in enhancing BCI performance.
Furthermore, the application of pre-trained SSL mod-
els for solving downstream tasks often involves the ad-
dition of a linear layer atop the embedding dimension.
This practice, however, may not be optimal in high-
dimensional embedding spaces. Through a compara-
tive analysis of six different strategies for leveraging pre-
trained architectures in downstream tasks, this work aims
to support our understanding and application of SSL in
EEG data processing.

Research Questions and Plan. This manuscript is an
explorative study investigating what approaches should
be adopted for training SSL algorithms on EEG signals,
and what domain-specific considerations warrant atten-
tion. We approach this through three research questions:
1) What constitutes the most efficacious masking strategy
for SSL when applied to EEG data? 2) How does the tem-
poral length of examples used influence the SSL training
process? 3) What fine-tuning strategies lead to the best
downstream performance?
To answer these, we first propose a novel masking strat-
egy as part of the Signal-based Joint-Embedding Pre-
dictive Architecture (S-JEPA) framework in the S-JEPA
Framework section. Then, we introduce fine-tuning
strategies tailored for S-JEPA in the Downstream Eval-
uation section. The datasets used for pre-training and for
downstream evaluation are presented in the Datasets sec-
tion. Finally, the Results and Discussion sections will re-
port and critically discuss the outcomes and implications
of the experiments we conducted.

S-JEPA FRAMEWORK

The Signal-based Joint-Embedding Predictive Architec-
ture (S-JEPA) framework is illustrated in Figure 1. It is
used to pre-train models. Its architecture is inspired by
BENDR and MAEEG, introduced in the pioneering stud-
ies by respectively Kostas et. al. [8] and Chien et. al. [7].
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A key modification is introduced in the design of the lo-
cal encoder to enable our novel masking strategy. This
section details the architecture’s components, the spatial
masking strategy, and the training process.

Local encoder. The local encoder is implemented as
a convolutional neural network (CNN) with five layers,
each formed of a convolution with a Gaussian error linear
unit (GELU) non-linearity. Contrary to the encoders in
BENDR and MAEEG, which accept multi-channel input
windows, our encoder processes windows from a singular
channel. Each window is encoded into a 64-dimensional
embedding vector, hereafter referred to as a token. The
windows are 1.19 s long, with a stride of 1.0 s. The first
convolutional kernel covers 0.25 s while the following
ones simply combine feature vectors in pairs, i.e., both
the kernel temporal lengths and strides are 2.

Contextual encoder. This encoder consists of a trans-
former architecture with eight layers, as introduced by
Vaswani and colleagues [10]. It processes the unordered
sequence of tokens generated by the local encoder, ne-
cessitating the addition of position-encoding information
to localize them temporally and spatially. The temporal
positioning of each token is defined using a cosine en-
coding [10] over the first 34 dimensions, whereas spatial
positioning is achieved through trainable embeddings for
each channel, initialized using cosine encoding based on
their three-dimensional coordinates. The contextual en-
coder receives tokens that only contain local information;
its role is to establish relationships between them.

Spatial Block Masking strategy. Unique to our method-
ology is the independent encoding of each channel by the
local encoder. While it avoids the learning of spatial fil-
ters at early stages, it paves the way for innovative spatial
dimension masking strategies. Literature in both, image
processing [2] and EEG signal analysis [9] suggests that
block masking yields superior results compared to ran-
dom masking. Motivated by these findings, our novel ap-
proach extends block masking to the spatial domain of
EEG channels.
Given the irregular distribution of EEG channels, the con-
cept of a contiguous block of tokens does not translate di-

(a) Cz as center. (b) C6 as center. (c) Oz as center.

Figure 2: Visualisation of the spatial block masking strategy
for three example mask centres (red electrodes). The dark to
light green spheres represent masks of diameters 40 %, 60 %
and 80 % of the head size, as used in our experiments. Assum-
ing a top-down view upon the scalp, the depth of the electrodes
is denoted by their intensity (black: close, grey: distant). For a
given mask, all electrodes within the corresponding sphere are
hidden from the contextual encoder and must be predicted by
the predictor.

rectly from its application in images or temporal signals,
where the pixels and time samples are regularly spaced.
Thus our approach masks all channels within a predeter-
mined radius of a randomly chosen central channel, as
illustrated in Figure 2. In this work, we compare three
mask sizes with diameters approx. 40 %, 60 % and 80 %
of the head size. This strategy inherently introduces vari-
ability in the number of masked tokens.

S-JEPA pre-training. With the operational principles
of both the local and contextual encoders established, we
introduce two ancillary components exclusively utilized
during the training phase. The first, termed the Contex-
tual target encoder, is a non-trainable duplicate of the
contextual encoder which serves to generate the training
targets. Its parameters are updated via exponential mov-
ing average (EMA). The second component, the Predic-
tor, is a transformer decoder architecture with four layers
as delineated by Vaswani et al. [10]. The comprehensive
training methodology is illustrated in Figure 1.

The models are trained until no improvement of the vali-
dation loss is observed for 10 epochs (i.e., complete pass
through the entire dataset), at which point the best model
is saved for subsequent fine-tuning.

DOWNSTREAM EVALUATION

Upon completion of the network’s pre-training through
the SSL task, which holds no intrinsic value beyond train-
ing purposes, we proceed to evaluate its efficacy on prac-
tical downstream classification tasks which, in our case,
are BCI tasks. This step is crucial for determining the
real-world applicability of the pre-trained model.

Downstream classification architectures. Using pre-
trained models for downstream classification tasks ne-
cessitates altering their architecture to allow predicting
class probabilities. The most widely adopted modifica-
tion, linear probing, consists of adding a linear classi-
fication layer directly above the embedding space [4].
However, the individual tokenization of each channel in
our approach leads to a high-dimensional latent space,
close to the dimensionality of the raw input examples,
which would make linear probing inefficient. In response
to this challenge, we enrich the architecture with two
layers instead which are Spatial aggregation and Fully-
Connected, as explained in Figure 3.

The integration of these layers is explored in three dis-
tinct configurations. (a) The Contextual downstream ar-
chitecture places both layers after the contextual encoder
as depicted in Figure 3a. (b) The Post-local downstream
architecture discards the pre-trained contextual encoder
and adds the novel layers atop the local encoder as shown
in Figure 3b. (c) The Pre-local downstream architecture
also discards the pre-trained contextual encoder but then
places the spatial averaging layer before the local encoder
as illustrated in Figure 3c. This third alternative allows
the network to perform a spatial EEG filtering step, as
commonly present in BCI architectures.
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Figure 3: Downstream classification architectures. In each of
the three alternative alterations of the pre-trained networks, two
new layers are added. 1) Spatial aggregation is a convolutional
layer that realizes weighted combinations of the elements in the
channels dimension into V ≪ C "virtual" channels. 2) Fully-
connected is a linear layer that predicts c class probabilities.

Fine-tuning. We examine two distinct fine-tuning
strategies for these downstream architectures. The first
method, indicated by the prefix new-, involves exclu-
sively training the newly introduced layers, keeping the
pre-trained components frozen. The alternative strategy,
denoted with the prefix full-, consists in fine-tuning the
entire network. This second strategy starts with a warm-
up phase of 10 epochs where only the newly added lay-
ers undergo training, preventing the deterioration of the
pre-trained layers’ performance due to irrelevant feed-
back [11], before the previously existing layers are in-
cluded into the training.
For both strategies, the model is fine-tuned until no
improvement of the validation loss is observed for 50
epochs, at which point the best model is restored for test-
ing. Additionally, it should be noted that the temporal
length of examples used during the fine-tuning phase is
determined by the requirements of the downstream task,
which is independent of the length of examples utilized
during the SSL pre-training phase.

DATASETS

For the exploratory investigation in this work, we used
the dataset introduced by Lee and colleagues [12], sub-
sequently referred to as the lee2019 dataset. It contains
EEG recordings from 54 subjects, each undergoing three
distinct BCI paradigms: steady-state visual evoked po-
tentials (SSVEP) with four classes, visual event-related
potentials (ERP), and left vs. right hand motor im-
agery (MI). The recordings are from C = 62 EEG chan-
nels, the spatial distribution of which is detailed in Fig-
ure 2. The dataset was loaded from the MOABB frame-
work [13], bandpass filtered at 0.5 - 40 Hz and downsam-
pled to 128 Hz.

We used the first 40 subjects to pre-train any model. The
subsequent 7 subjects were used for the validation during
this pre-training phase. The remaining 7 subjects were
reserved for the downstream performance evaluation.

Pre-training data. SSL methods do not necessitate la-
bels. As such, the training and validation examples are
slices of the continuous recordings taken at a fixed inter-
val of 16.9 seconds. This study compared three exam-
ple lengths T approximately distributed on a logarithmic
scale, namely 1, 4, and 16 seconds. All allocated sub-
jects and all paradigms were used collectively during the
pre-training phase which yielded a total of 36,576 train-
ing examples and 6,528 validation examples. No artefact
rejection method was applied.

Downstream evaluation data. For each subject al-
located for downstream evaluation and each paradigm,
the fine-tuning performance of the different pre-trained
models is assessed using a 5-folds within-subject strati-
fied cross-validation procedure. The examples used are
4.19 seconds long for MI and SSVEP, and 1.19 seconds
long for ERP. These lengths are chosen to respect the du-
rations defined in the original dataset [12] while main-
taining compatibility with our tokenization process.

RESULTS

Experimental details. For pre-training, our setup com-
pares all combinations of signal durations (1s, 4s, and
16s) and mask sizes (40 %, 60 %, and 80 % of head size),
along with a no-pre-training baseline.

For downstream performance evaluation, we assess
each pre-trained model using the three downstream
architectures—contextual, post-local, and pre-local—
and the two fine-tuning approaches—full and new. The
no-pre-training is only assessed with the full fine-tuning
approach. A given pairing of pre-training and fine-tuning
configurations is referred to as a pipeline.
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Figure 4: Pre-training curves of the different configurations
tested. The solid and dashed lines indicate the loss on the train-
ing and validation sets. While the validation loss was tested
once per epoch only, the training loss was logged after every op-
timisation step. The train loss on individual optimisation steps
is visible in the background, corresponding epoch-wise aver-
ages are outlined in white. A star marks the lowest validation
loss per curve, the early stopping time point and consequently
the checkpoint from which any fine-tuning started.
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Pre-training dynamics. The pre-training phase, see
Figure 4, provides insights into the training process un-
der the S-JEPA framework. It reveals that training curves
under the 16s condition are significantly smoother than
the other configurations. Additionally, the early stopping
mechanism concludes the training of the 16s-80% config-
uration prematurely at 12 epochs due to an early trough in
the loss curve. Similarly, the 16s-40% setup also encoun-
ters an early trough yet manages to recover and complete
a longer training. The longest training durations are ob-
served in the 16s-40% and 16s-60% configurations, en-
during for 74 and 58 epochs, respectively, translating to
approximately 12 and 10 hours of training.

Pipelines ranking on downstream performances. The
comprehensive ranking of all tested pipelines is detailed
in Figure 5, offering a comparative overview of the per-
formance of the different combinations over the experi-
mental protocols. Notably, the top-performing pipelines
in the downstream tasks are the 16s-60% and 16s-40%
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Figure 5: Global downstream classification ranking of all
the combinations of pre-training configurations and fine-tuning
schemes. Each of the three test datasets has 7 subjects and 5
folds per subject, which makes a total of 105 folds. In the leg-
end, the combinations are ordered according to their average
rank over all folds. The vertical span of a coloured "pixel" in
the plot represents the number of folds in which this configura-
tion has obtained the rank indicated by the x-axis.

models, especially when paired with any pre-local fine-
tuning strategy. They notably occupy the first rank in
two-thirds of the cases. In contrast, lower-performing
pipelines feature new-contextual or full-contextual fine-
tuning, particularly when combined with 16s and no-pre-
training configurations.

Paradigm-wise downstream performances. on the in-
dividual paradigms is reported in Figure 6. For the sub-
sequent analysis, we discern several key observations:
1) The pipelines obtaining the best score on the ERP,
SSVEP and MI tasks are respectively 16s-40%-full-pre-
local with a 97% AUC, 16s-60%-new-pre-local with a
94% accuracy, and 16s-40%-new-pre-local with a 65%
accuracy. 2) Pipelines combining 16s or no-pre-training
with contextual architectures frequently result at chance
level on average. 3) Pipelines combining 1s or 4s with
contextual architectures also perform at chance level on
the SSVEP paradigm but above chance level on the MI
and ERP ones. 4) Most pipelines manage to achieve re-
spectable scores on the ERP dataset. 5) Only a select sub-
set of pipelines excel on the SSVEP dataset. 6) The MI
paradigm scores exhibit notable variability, as indicated
by the considerable standard deviation.

0.4

0.6

0.8

0.5

0.97

RO
C-

AU
C 

sc
or

e lee2019-erp

Pre-training
 1s-40%
 1s-60%
 1s-80%
 4s-40%

 4s-60%
 4s-80%
16s-40%

16s-60%
16s-80%
no-pre-training

0.4

0.6

0.8

0.25

0.94

Ac
cu

ra
cy

 sc
or

e lee2019-ssvep

full
contextual

full
post-local

full
pre-local

new
contextual

new
post-local

new
pre-local

Fine-tuning scheme

0.4

0.8

0.5

0.65

Ac
cu

ra
cy

 sc
or

e lee2019-m
i

chance
level
best

Figure 6: Downstream classification scores of all the pipelines
on the three test datasets. The height of the coloured bars corre-
sponds to the average classification score over all the test sub-
jects and cross-validation folds, while the thin black bars corre-
spond to their standard deviation.

DISCUSSION

In the light of observations made in the Results section,
we aim to answer the research questions posed, draw con-
clusions, and provide guidelines for future research.
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Examples’ length largely influences downstream per-
formance. In particular, the 16s pipelines consistently
show the best performance, highlighting the advantage of
a longer context during pre-training. Conversely, when
considering solely the results using the contextual down-
stream architecture, the 16s pipelines often perform at
chance level. On the other hand, the 1s and 4s pipelines
yield better results, which may be attributed to their bet-
ter alignment of the attention mechanism’s training with
the short signal windows of the downstream tasks.

Mask radius’ impact on downstream performance un-
certain, as our results do not demonstrate a clear trend be-
tween the masks compared. It is possible that the range
of masks we compared is not optimal or that other fac-
tors are influencing the results. Future work should con-
sider comparing our spatial masking strategy with tem-
poral masking to better understand the relative strengths
and weaknesses of these approaches.

The best fine-tuning strategy implements spatial filter-
ing The pre-local architecture emerges as the best for
downstream classification. This architecture’s approach
to linearly combine channels before computing features
enables effective spatial filtering, thereby enhancing the
signal-to-noise ratio. This finding underscores the critical
role of spatial filtering in boosting model performance by
leveraging the inherent spatial properties of EEG data.

State-of-the-art comparison. According to Cheval-
lier and colleagues [14] who benchmarked numerous
decoding algorithms across all the datasets available in
MOABB [13], the current state-of-the-art (SOTA) perfor-
mances for within-session classification on the Lee2019
dataset are: ERP at 98.41± 2.03%, SSVEP at 89.44±
13.84%, and MI at 84.74 ± 13.19%. Notably, all
pipelines establishing the SOTA utilize Riemannian ge-
ometry. Our approach matches the SOTA for ERP, en-
hances it for SSVEP, but falls short on MI. A critical dif-
ference in our evaluation methodologies should be noted:
our downstream evaluation only focuses on the last 7 sub-
jects, unlike their analysis on all 54 subjects. Specifically,
Lee and colleagues have identified 6 out of these 7 sub-
jects as hard to classify on the MI task [12]. We believe
this exceptionally high rate of challenging subjects might
explain our low MI performance.

Choice of Dataset. The need for large datasets is
paramount when training transformers, potentially ex-
plaining the underperformance of the contextual down-
stream strategy. Although this exploratory study on the
Lee2019 dataset provides valuable insights, future re-
search should pivot towards larger datasets to fully har-
ness the capabilities of contextual architectures.

Conclusion. This exploratory work introduces a novel
masking strategy and three fine-tuning approaches, po-
sitioning our method competitively within the realm of
BCI tasks. We achieve SOTA performance on two out
of three evaluated downstream tasks. Our findings sug-
gest that long pre-training windows favor the local fea-
tures encoder, while short windows benefit the contextual
encoder. Therefore, future research should aim at suc-

cessfully training both the local and contextual encoders.
However, no influence of the mask radius on the down-
stream performance was found. Finally, the best down-
stream architecture includes a spatial filtering step and
discards the contextual encoder.
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