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ABSTRACT: Locked-in patients rely on stable 

performance of BCIs to provide them with a means of 

communication. To build a robust BCI, we demonstrate 

the need for adaptive decoding that accounts for temporal 

variations in electroencephalogram (EEG) dynamics. We 

analyzed six consecutive EEG sessions recorded between 

2p.m. (afternoon). and 12a.m. (midnight) of 15 healthy 

participants engaged in a four-right-hand gesture task. 

We employed four-class classifiers trained on 

movement-related cortical potentials of different 

sessions and applied the decoders to the same session to 

evaluate the impact of temporal fluctuations in EEG on 

decoding capabilities. As a step towards adaptive 

decoding, we developed constantly updated classifiers by 

training on the most recently collected data and 

compared these to a stationary classifier trained once on 

the first session. Our findings revealed that temporal 

variations in EEG during movement tasks influence 

classification performance. In this context, we 

demonstrated that adaptive decoding provides a remedy 

to build a robust BCI usable for patients in the home-

environment. 

 
INTRODUCTION 

 
A brain-computer interface (BCI) is a system that 

establishes a means of communication between the 

human brain and external devices by capturing and 

interpreting bioelectrical signals such as non-invasive 

electroencephalography (EEG) or invasive electro-

corticography (ECoG) that are modulated by the user’s 

intention [1,2]. Such a BCI system provides an 

alternative way of communication for patients suffering 

from severe motor neuron disorders such as amyotrophic 

lateral sclerosis, trauma or stroke that risk losing 

complete muscle control and the ability to communicate 

while still being conscious leading to locked-in syndrome 

(LIS) [3,4]. The EU project INTRECOM aims for the 

development of a novel, fully implantable BCI 

technology to allow for real-time motor and speech 

decoding to provide LIS patients with a means of 

communication in the home environment. 

Communication enabled by motor decoding shall be 

realized by movement attempt and the usage of four to 

five different gestures for discrete cursor control to 

permit the selection of characters or words presented in 

matrix-format on a screen. In this study, the execution of 

four different right-hand gestures in healthy individuals 

is investigated as a preliminary work towards decoding 

of movement-related cortical potentials (MRCPs) for a 

four-directions cursor control in a BCI system. A 

prerequisite for BCIs integrated into the home 

environment is the stable and robust performance that 

enables the user to interact with their surroundings 

whenever necessary, e.g., to call a caregiver. Variations 

in the EEG directly influence the performance of such 

BCI systems, thereby affecting the communication 

abilities of users dependent on these systems. Changes in 

concentration, attentiveness, motivation [5], and fatigue 

[6,7], or the influence of direct or indirect feedback [8,9], 

are possible factors contributing to alterations in EEG. 

Previous literature has reported temporal variations in the 

delta [10], theta, alpha and beta [11,12] frequency bands 

during resting states that follow a diurnal pattern. We 

hypothesize that such temporal alterations also manifest 

in EEG signals during movement tasks and furthermore 

influence decoding capabilities of BCI systems based on 

MRCPs. Adaptive decoding has proven to be a useful 

tool in the context of alterations in EEG due to various 

factors [8,9], therefore we introduce adaptive decoding to 

enhance the performance stability of the BCI system. In 

this paper, we aim to capture changes in movement-

related EEG patterns throughout the day and night by 

recording six EEG sessions during gesture tasks at 2-hour 

intervals over a 10-hour period with fifteen healthy 

participants. Further, we demonstrate a preliminary 

approach towards adaptive EEG decoding by introducing 

a continuously adaptive classifier and hypothesize that 

decoders including most recent data for training purposes 

significantly outperform decoders that are not updated 

throughout the course of a day. 

 
MATERIALS AND METHODS 

 
A. EEG recordings throughout the day and night 

 

We recruited twenty-two healthy, right-handed 

participants (13 female, 9 male) that agreed with the 

inclusion criteria targeting a narrow age group from 20 to 

40 years and an early morning routine starting between 

5a.m. and 7a.m. each day. Additionally, we focused on a 

stable sleeping pattern by excluding candidates regularly 

working night shifts or feeling a physical or 

psychological effect in the absence of caffeine for more 

than 24hours. On the day of the measurement, 

participants arrived at the laboratory of the Institute of 
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Neural Engineering of Graz University of Technology at 

12p.m. They were clarified about the study procedure, 

had the opportunity to ask questions, and then provided 

their written informed consent. The study was approved 

by the local ethics review board. Subsequently, we 

equipped every participant with an EEG cap holding 60 

active, gel-based electrodes (actiCAP Brain Products 

GmbH, Germany) according to the 10-10 international 

electrode standard setup. For simultaneous recording of 

EEG and electrooculogram (EOG), four additional active 

electrodes were positioned at the outer canthi of the eyes 

as well as on the inferior and superior of the left eye. The 

ground and reference electrode were positioned on the 

forehead at the position of FPz and the right mastoid, 

respectively. The signals were sampled at 500Hz and 

amplified using biosignal amplifiers (BrainAmp, Brain 

Products GmbH, Germany). To monitor hand 

movements, we used a motion capture system developed 

at the institute. A green marker was glued to the 

participant’s right index finger, and a video camera 

recorded the movement at a sampling rate of 30Hz. Each 

participant performed six recording sessions every two 

hours starting at 2p.m. until 12a.m. on the measurement 

day, each one lasting approximately one hour. Between 

the recordings, the participants followed a strict 

experimental schedule and performed prespecified tasks 

that imitated a usual workday. These tasks involved 

demanding geometric and linguistic games during the 

first two breaks, followed by a standardized dinner after 

the third recording at 7p.m. During the last two breaks, 

participants were tasked with activities such as watching 

a documentary and listening to music to induce fatigue. 

At the beginning of each recording session, the electrode 

impedance was checked, and gel was applied if 

necessary. Then, the participant was asked to perform a 

psychomotor-vigilance task and answer questionnaires 

regarding emotions, hunger level, and tiredness’ 

symptoms. Further, 2min of resting EEG were recorded. 

To remove eye artifacts, a 6-min EEG measurement was 

performed to simultaneously record EEG and EOG while 

the participant was asked to blink or move the eyes 

vertically or horizontally. After the main paradigm, 

another 2min of resting EEG were recorded. The main 

paradigm involved four right hand gestures (fist, pistol, 

pincer grasp and “Y”-gesture of the American sign 

language). Participants were seated in front of a computer 

screen positioned 50 to 60cm away, with their right hand 

on a table inside a wooden box equipped with the video 

camera. They were asked to follow on-screen 

instructions and to refrain from blinking and swallowing 

during each trial. The paradigm followed the procedure 

outlined by Patrick Ofner et al. [13]. Each trial began 

with a 1-s presentation of a class cue, including a fixation 

cross displayed after the cue for 0.5 to 1s. Participants 

were asked to focus on the fixation cross to avoid eye 

movements. A 2- to 3-s preparation period followed, 

during which a filled green circle shrank to match the 

inner white circle. Participants performed the instructed 

gesture when the circles overlapped and kept the position 

for about 3s until the screen went black, signifying the 

end of a trial. A 1.5-s break between trials allowed 

participants to rest. The total trial duration ranged from 8 

to 9.5s. Each participant performed 8 movement runs of 

approximately 5min each with a 30-s break in between. 

In total, 64 trials per gesture and session were recorded 

for each participant. 

 

B. Processing of recordings 

 

The recorded signals were processed using MATLAB 

R2022b (Mathworks. Massachusetts, USA) and 

EEGLAB [14]. Initial steps included visual inspection, 

interpolation of noise-contaminated channels, and 

removal of 50Hz line noise and its first harmonic using a 

Butterworth bandstop filter of 2nd order. A Butterworth 

highpass filter of 5th order at 0.3Hz addressed the issue of 

drifts and a Butterworth lowpass filter of order 70th at 

70Hz attenuated high-frequency noise. An eye artifact 

attenuation model was applied as described by Kobler et 

al. [15], and the most frontal electrodes were excluded. 

Pops and drifts were attenuated using the HEAR 

algorithm [16] and noisy temporal electrodes were 

removed. MRCPs were extracted using a Butterworth 

lowpass filter of 4th order at 3Hz. Movement-triggered 

epoching using the motion capture system produced 5.5s 

trials (-2.5s to 3s around movement onset). Trials 

exceeding a threshold of ±100µV were rejected, and the 

remaining trials were downsampled to 9Hz and re-

referenced to a common average reference. To address 

the issue of unbalanced classes within each session, 

between sessions and subjects, the number of trials per 

gesture and session to include participants for further 

evaluation was set to 46 trials. Fifteen out of twenty-two 

participants fulfilled the criteria and were therefore 

included in subsequent analysis. 

 

C. Analysis of MRCPs 

 

To evaluate significant changes in the MRCP shape, we 

employed a Wilcoxon rank sum test to compare the 

MRCP patterns from each session with session 6, which 

served as the reference. We combined trials of all four 

gestures across all participants. Statistical analysis was 

performed for each channel and each timepoint within a 

movement trial, therefore to correct for multiple 

comparisons, we applied the Benjamini and Hochberg 

[17] procedure that controls the false discovery rate and 

yields greater power than the commonly used Bonferroni 

technique [18]. 

 

D. Classification of gestures 

 

For classification of the four gestures, we employed a 

multiclass shrinkage linear discriminant analysis (sLDA) 

[19,20]. The input consisted of causal 1-s windows of all 

remaining electrodes that were shifted along movement 

trials at a sampling rate of 9Hz. Classification was 

performed offline on participants and sessions 

individually. 
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E. Analysis of temporal changes in classification 

 

To show whether potential temporal changes in the EEG 

during movement tasks affect decoding capabilities, we 

investigated the performance of five classifiers trained on 

each of the first five recording sessions and evaluated on 

the last (Fig. 1). First, we implemented a trial-based 5-

fold cross-validation within each training/session set 

(Fig. 1) to see the general performance of the 

corresponding set (herein referred to as single session 

results). Then, as a second step, a classifier was trained 

on the whole training session and directly applied to 

session 6 recorded at 12a.m. This procedure was repeated 

for each one of the first five recording sessions and is 

outlined in Fig. 1. 

 

 

Figure 1: Classification procedure of single classifiers 

tested on session 6. Additionally, the trial based 5-fold 

cross-validation procedure for the single session results 

on session 3 is depicted. 

 

F. Comparison between adaptive and unrevised 

classification 

 

As a preliminary step towards adaptive decoding, we 

investigated the difference in classification accuracy 

when employing an adaptive classifier in contrast to an 

unrevised decoder. Therefore, as indicated in Fig. 2, we 

shifted a window containing 46 trials per gesture across 

the six recording sessions that were used for training of 

the adaptive classifier. The subsequent 46 trials per 

gesture served as a test set. This procedure was 

performed in steps of one quarter of a session (12 trials), 

resulting in a total number of 17 trained classifiers along 

the duration of the study. For means of comparison, we 

implemented an unrevised classifier trained once on the 

very first window of 46 trials per gesture corresponding 

to the first recording session (see Fig. 2 as indicated in 

turquoise) that was further applied to every test set 

obtained in the previous approach. 

To assess whether the difference in decoding 

performance between the two classifiers was statistically 

significant, we employed a Wilcoxon signed rank test on 

the classification accuracies obtained by every pair of 

classifiers. In order to correct for multiple comparisons 

(number of classifiers), we made use of the procedure 

developed by Benjamini and Hochberg [17]. 

 

 

Figure 2: Adaptive (violet) and unrevised (turquoise) 

classification approach. As an example, only the first 

seven iterations of the adaptive classifiers are depicted. 

The test sets were the same for both classification 

approaches. 

 
RESULTS 

 
A. Analysis of MRCPs 

 

In Fig. 3 we illustrate the temporal changes in MRCPs by 

depicting the averaged MRCPs across participants for 

measurement sessions 1 (at 2p.m.), 5 (at 10p.m.) and 6 

(at 12a.m.), at electrode positions C1, Cz and C2 above 

the sensorimotor areas. For comparison purposes, session 

6 served as a reference. Timepoints exhibiting significant 

(p<0.05) differences between the compared sessions are 

highlighted in color. As sessions 1 and 6 lie the furthest 

apart from each other, MRCPs of both sessions 

demonstrate greater difference in progression than 

MRCPs obtained during sessions 5 and 6. 

 

B. Analysis of temporal changes in classification 

 

The classification results when investigating the impact 

of temporal EEG changes on movement classification 

performance can be seen in Fig. 4. Fig. 4a depicts the 

evolution of the cross-validated classification accuracies 

of the five decoders trained within different measurement 

sessions (Fig. 1). The temporal MRCP fluctuations were 

captured by the variation in maximum classification 

accuracy across time. The maximum accuracy at 2p.m. 

(session 1) increased from 37.5% ± 5.6% gradually to 

39.7% ± 3.2% at 8p.m. and declined by 10p.m. (session 

5) to 37.4% ± 5.4%. In comparison, Fig. 4b visualizes the 

performance of the five decoders when tested on the data 

of session 6. Apart from the decoder trained on session 4, 

recorded at 8p.m., which exhibited a decrease in accuracy 

(34.6% ± 5.1%) compared to the classifier trained on 

session 3 (36.3% ± 5.9%), we observed an increase in 

maximum classification accuracy as the time interval 

between training and test set recordings decreased.
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Figure 3: Average MRCPs across all participants for sessions 1 and 6 (top panel) and sessions 5 and 6 (bottom panel). 

The movement onset occurred at t=0s. Statistically significant differences (p<0.05) between sessions at each time point 

within a trial are indicated with color-coded dots on the zero-axis. In the top panel, we compared the MRCPs between 

session 1 and session 6. In the bottom panel, we compared the MRCPs between session 5 and session 6. 

 

 

Figure 4: Classification results of different sessions. (a) 

Single session results. (b) Results of classification when 

tested on session 6. Indicated by the horizontal dashed 

lines are the theoretical chance level (25%) and the level 

of statistical significance (31.25%) as estimated using a 

permutation-based approach [21]. 

 

For example, the decoder trained on the first session 

achieved a maximum classification accuracy of 32.1% ± 

5.6% whereas the classifier trained on the fifth session 

closest to session 6 used for testing yielded a maximum 

accuracy of 38.4% ± 4.7%. 

 

C. Comparison between adaptive and unrevised 

classification 

 

Fig. 5 presents the variation in maximum classification 

accuracy across time for both the adaptive and unrevised 

classification model averaged across participants. In Fig. 

5, one can observe that the adaptive decoder being trained 

on the most recent data outperforms the unrevised 

classifier which was kept constant throughout the process 

at every shift along the time axis. This difference reaches 

statistical significance at some points, with a p-value less 

than 0.05. 

 

 

Figure 5: Comparison of the maximum classification 

accuracies obtained from both the adaptive (violet) and 

unrevised decoders (turquoise) shifted along the time 

axis. Depicted are the averages across participants (± 

standard error). The horizontal dashed line at 25 % 

indicates the theoretical chance level, the dashed line at 

31.25% illustrates the level of statistical significance 

[21]. The seven vertical lines marked (*) indicate 

statistical significance (p < 0.05) differences between 

adaptive and unrevised decoder accuracies. 

 
DISCUSSION 

 
We showed that throughout the day and night, MRCPs 

varied, hence movement classification performance was 

restricted, raising the necessity for adaptive classifiers 

that proved to outperform unrevised decoders. These 

findings are crucial for the development of BCI systems 
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used in the home-environment that need to be 

functioning at every day and nighttime to enhance the 

patient’s independence. 

 

A. Analysis of MRCPs 

 

Analysis of MRCPs revealed that the frequency of 

timepoints exhibiting statistically significant deviations 

increased as more time elapsed between recording 

sessions. This was shown by comparing the MRCPs 

between sessions 1 (2p.m.) and 6 (12a.m.) and sessions 5 

(10p.m.) and 6. Additionally, a variation in amplitude of 

MRCPs across time was observed. Session 5 showed a 

reduction in amplitude, especially highlighted by the 

statistically significant deviation at the timepoint of the 

motor potential when being compared to session 6. This 

change can be attributed to the increasing level of mental 

fatigue causing a decrease in amplitude of MRCPs [22]. 

Another factor influencing the amplitude of MRCPs is 

long-time training [23–25] meaning that experts require 

a reduced amount of effort, resulting in reduced activity 

at motor cortex sites involved in motor task preparation 

and execution. The long-time training effect observed in 

this study can be attributed to participants performing the 

same task repeatedly, hence leading to a decrease in 

MRCP amplitude over time. As this study was conducted 

in an open-loop manner, learning processes associated 

with controlling a BCI system could not be taken into 

account due to the absence of neurofeedback [26]. To 

account for the increase in MRCP amplitude observed 

during the transition from session 5 to session 6, previous 

studies have investigated the role of motivation [25,27]. 

It was shown that with rising levels of motivation 

accompanied by an increase in interest and excitement, 

P300 amplitudes increased. This phenomenon can also 

be observed in session 6, where the MRCP amplitude 

increases compared to session 5 possibly indicating the 

rise in motivation of participants to finish the last 

measurement. In general, we can eliminate the possibility 

of gel drying to be responsible for the observed variations 

in EEG dynamics as the gel was still wet after more than 

12hours when the cap was removed. 

 

B. Analysis of temporal changes in classification 

 

As described previously, the variations in classification 

accuracy across classifiers for the validation set (see Fig. 

4a) arise due to temporal variation in the EEG dynamics 

during movement tasks. Recordings that are 

chronologically closer together exhibit less variability in 

terms of MRCP patterns than recordings that have a 

longer time interval between them. Therefore, as 

depicted in Fig. 4b, the classifier trained on session 5 at 

10p.m. performs the best on the data recorded at 12a.m. 

in contrast to the other decoders trained on other sessions. 

These findings strongly emphasize the importance of 

adaptive decoding in the context of robust and stable 

performance of BCIs at all times. 

 

 

C. Comparison between adaptive and unrevised 

classification 

 

The maximum classification accuracies of the adaptive 

classifiers evaluated on temporally shifted test sets 

consistently outperformed the unrevised classifier at 

every time step. This superiority arises from the influence 

of MRCPs on decoding capabilities, and as these signals 

fluctuate over time, a classifier trained only once is 

incapable of capturing the evolving temporal dynamics 

inherent in EEG signals. Conversely, when constructing 

a classifier that incorporates the most recent data for 

training, a noticeable improvement in classification is 

observed. This underscores the positive impact of 

adaptive decoding on overall classification performance. 

 
CONCLUSION 

 
In this preliminary work towards adaptive decoding for 

temporal dynamics in EEG signals, we showed that due 

to changes of MRCPs across time decoding needs to 

adapt to build a robust and stable BCI system that 

delivers reliable output for patients in their home-

environment. We demonstrated that the usage of most 

recently collected data for means of training of a decoder 

significantly improved decoding performance. This 

paper using supervised adaptation which requires task 

labels as ground truth serves as preparatory work for 

future in-depth investigations regarding online 

adaptations of decoders. Since in real autonomous BCI 

use in the home-environment labels will not be available, 

unsupervised adaptation could be realized by a trail-wise 

update of the model’s parameters, as proposed by 

Vidaurre et al. [28,29] or Hehenberger et al. [5]. 
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