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Abstract: The liquid milieu in which enzymes operate when they are immobilized in solid materials
can be quite different from the milieu in bulk solution. Important differences are in the substrate
and product concentration but also in pH and ionic strength. The internal milieu for immobilized
enzymes is affected by the chemical properties of the solid material and by the interplay of reaction
and diffusion. Enzyme performance is influenced by the internal milieu in terms of catalytic rate
(“activity”) and stability. Elucidation, through direct measurement of differences in the internal as
compared to the bulk milieu is, therefore, fundamentally important in the mechanistic characterization
of immobilized enzymes. The deepened understanding thus acquired is critical for the rational
development of immobilized enzyme preparations with optimized properties. Herein we review
approaches by opto-chemical sensing to determine the internal milieu of enzymes immobilized in
porous particles. We describe analytical principles applied to immobilized enzymes and focus on
the determination of pH and the O2 concentration. We show measurements of pH and [O2] with
spatiotemporal resolution, using in operando analysis for immobilized preparations of industrially
important enzymes. The effect of concentration gradients between solid particle and liquid bulk on
enzyme performance is made evident and quantified. Besides its use in enzyme characterization, the
method can be applied to the development of process control strategies.

Keywords: biocatalysis; immobilization; microenvironment; internal milieu; reaction-diffusion;
opto-chemical sensing; pH; oxygen; porous materials

1. Introduction

Enzymes are powerful catalysts of chemical reactions of synthetic importance [1–4]. The practical
use of enzymes in diverse applications often involves a solid catalyst preparation [1,5,6]. The solid
catalyst is obtained through enzyme immobilization [5,6]. Immobilization entails enzyme attachment
to, or encapsulation in, a suited solid material. Different principles of enzyme immobilization have
been described in almost countless varieties [5,7]. However, the most common strategy of enzyme
immobilization utilizes a mesoporous solid support as the enzyme carrier [5,6,8]. The support is
selected to offer a high internal surface area accessible to the enzyme [5,8–10]. The surface is chemically
suitable for the enzyme to become attached physically, chemically or both [5,7]. Thus immobilized
enzymes are widely used in heterogeneous biocatalyses applied to organic synthesis, up to the
industrial manufacturing scale [1–4].
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An enzyme immobilized within a porous solid support is sequestered from the surrounding bulk
solution. Catalysis happens under the confinement of the solid surface to which the enzyme is attached [11].
Therefore, immobilized enzymes commonly differ in their apparent properties (i.e., activity and stability)
from those of the soluble counterparts [6,12]. The mechanistic challenge for the study of immobilized
enzymes is to characterize effects on an enzyme’s properties due to the particular microenvironment
in the solid material [12–14]. We are concerned primarily with the effect of sequestration, affecting the
liquid milieu in which the immobilized enzyme operates. This “intraparticle” liquid milieu can be quite
different from the milieu in bulk solution [12,14] (Figure 1). These differences may be in the substrate
or product concentration, but can also be in pH, cosolvent concentration and ionic strength [12,14].
The effects of enzyme binding to the solid surface are also highly important [6,15–17]. These latter effects
are considered herein, only insofar as their quantitative assessment, unmasked from the effects of the
milieu, is concerned. The suitable detection of structural distortions relevant for enzyme function, ideally
at single-molecule resolution, remains a significant challenge for immobilized enzymes [12,17–20].
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the protein structure. The figure was adapted from reference [14] with permission from Elsevier. 

The internal milieu for immobilized enzymes is affected by two factors in particular. Firstly, 
there is solute partitioning between the liquid phase and the solid phase of the carrier. The 
partitioning is due to the chemical properties of the solid material (e.g., hydrophobicity and charge), 
creating a distinct surface-near environment with respect to polarity, dielectric and ionic strength 
[5,6,21,22]. Secondly, there is the interplay between reaction and diffusion. Mass transfer by diffusion 
occurs from the liquid bulk to the surface of the carrier and from the surface into the pores of the 
particle. When diffusion is not much faster than reaction, gradients in the substrate and product 
concentration arise between the bulk and the carrier. At steady state, therefore, the chemical milieu 
in bulk and in particle is different [12,14]. Enzyme performance is influenced by the changes in 
microenvironment (Figure 1). A key performance parameter is the catalytic rate (activity). This 
depends on substrate and product concentration, as well as on pH and ionic strength. Besides the 
kinetic effect, changes in the critical concentrations can affect the reaction equilibrium constant and 
the effective mass-action ratio in the solid particle. Another important enzyme parameter is stability. 
This may also be affected by changes in milieu parameters; the pH, for example. 

It follows from the above that the characterization of the microenvironment of an immobilized 
enzyme is essential for the understanding of the overall performance of the catalyst [12,13,20]. Kinetic 

Figure 1. Factors influencing the macroscopic behavior of immobilized enzymes. The formation of a
distinct microenvironment in porous enzyme supports is shown. The analyte’s concentration in the
well-mixed liquid bulk (Cbulk) often differs from the concentration inside the carrier, referred to as the
internal milieu (Cin). Spatially resolved measurements are needed to obtain the full internal profile of
Cin, represented by the light-to-dark green scale. Enzyme binding to the solid surface potentially alters
the protein structure. The figure was adapted from reference [14] with permission from Elsevier.

The internal milieu for immobilized enzymes is affected by two factors in particular. Firstly,
there is solute partitioning between the liquid phase and the solid phase of the carrier. The partitioning
is due to the chemical properties of the solid material (e.g., hydrophobicity and charge), creating a
distinct surface-near environment with respect to polarity, dielectric and ionic strength [5,6,21,22].
Secondly, there is the interplay between reaction and diffusion. Mass transfer by diffusion occurs from
the liquid bulk to the surface of the carrier and from the surface into the pores of the particle. When
diffusion is not much faster than reaction, gradients in the substrate and product concentration arise
between the bulk and the carrier. At steady state, therefore, the chemical milieu in bulk and in particle
is different [12,14]. Enzyme performance is influenced by the changes in microenvironment (Figure 1).
A key performance parameter is the catalytic rate (activity). This depends on substrate and product
concentration, as well as on pH and ionic strength. Besides the kinetic effect, changes in the critical
concentrations can affect the reaction equilibrium constant and the effective mass-action ratio in the
solid particle. Another important enzyme parameter is stability. This may also be affected by changes
in milieu parameters; the pH, for example.
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It follows from the above that the characterization of the microenvironment of an immobilized
enzyme is essential for the understanding of the overall performance of the catalyst [12,13,20].
Kinetic theory accounts for the effect of coupled reactions and diffusion and is a useful predictive
tool [23]. However, unless critical reaction parameters are measured directly from the porous support,
experimental verification of the kinetic theory is limited. However, kinetic parameters are normally
determined exclusively from the convoluted data recorded in liquid bulk. Experimental methods for
the evaluation of intrinsic kinetic parameters under the existence of partition effects and mass transfer
resistances are described in excellent reviews and textbooks [23,24]. The study of how apparent kinetic
parameters of the enzyme (e.g., Km) change in their dependence on variables of the immobilization
process (e.g., material chemistry and geometrical features of the solid support) can be useful [6,9,25].
However, the apparent kinetic parameters provide indirect evidence of a convoluted nature. Therefore,
determination of differences in the internal compared to the bulk milieu is fundamentally important in
the mechanistic characterization of immobilized enzymes [12,14]. The deepened understanding thusly
obtained is critical for the rational development of immobilized enzyme preparations with optimized
catalytic properties.

Our main goal here is to review correlations between the internal environment and the functional
behavior of enzymes immobilized in solid materials. We discuss approaches by opto-chemical sensing to
determine the composition of that internal environment. We describe the relevant analytical principles
applied to the study of immobilized enzymes. Although opto-chemical sensing has been developed for
a wide variety of solutes, we focus herein in particular on the determination of the pH and of the O2

concentration. We show measurements of internal pH and [O2] with spatiotemporal resolution, using
in operando analysis for immobilized preparations of industrially important enzymes. We provide
experimental evidence for the development of substantial concentration gradients between the solid
particle and the liquid bulk. These gradients are quantified and their effect on enzyme performance
is determined. We show that, besides its use for characterization of solid-supported immobilized
enzymes, the method of optical sensing in solid materials can be useful for the development of process
control strategies.

2. Opto-Chemical Sensing within Solid Particles

2.1. The Principles of Opto-Chemical Sensing

Various analytical techniques are available for the characterization of the internal microenvironment in
solid-supported catalysts (e.g., NMR, Raman and IR) [12,20,26–32]. Among these techniques, opto-chemical
sensing offers the specific advantage that both the external (Figure 2) and the overall (space-averaged)
internal concentrations of the analyte of interest can be measured at the same time, using a single analytical
device [12,14]. Opto-chemical sensors have gained considerable importance in the analytical sciences.
Principles of methodology and technologies for measurement are well established [33,34]. Sensors for O2

are widely applied in the environmental sciences, in (bio)process engineering and in the life sciences. Based
on experience with the opto-chemical sensing of oxygen, strategies for measuring other analytes (e.g., pH)
have been developed. Principles have been extended to the determination of CO2, NH4, glucose, alcohols,
amines and a variety of ions [33,35]. Temperature can be also measured [36]. Self-fluorescent molecules
(e.g., NADH and NADPH) might lend themselves directly for (internal) sensing using fluorescence
resonance energy transfer [37–39]. In this section, the principles of opto-chemical sensing are reviewed.
Their implementation in analytical strategies for the characterization of the intraparticle microenvironment
in immobilized enzymes is discussed.
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Figure 2. Optical sensing in solution. An integrated sensor spot (left) or a microsensor (middle) can be
used for the determination of pH, O2 and other analytes. The figure was adapted from reference [14]
with permission from Elsevier.

For sensing in liquid solution, opto-chemical sensors are commercially available in numerous
formats, such as layers or spots, fiber-optic (micro)sensors, and sensor particles in micro or nanometer
sizes [40–44] (Figure 2). The basic format consists of indicator molecules immobilized in an
analyte-permeable polymer layer. The sensitive material is further system-integrated by controlled
deposition as in sensor spots and optical fiber tips, enabling different and often contactless optical
readouts; e.g., from the wall of a transparent reaction vessel [45] (Figure 2). The sensor format
determines the mode, or state, of sensor integration into the enzyme reactor [46]. The different formats
allow for a non-invasive flexible application at suitable measurement positions, and for an analytic
read-out at the microscopic scale [46,47]. The sensors can be employed as single analyte detection units
or as multi-parameter detection units. Quantification of diverse analytes in the homogeneous liquid
phase, or in proximity to a solid-liquid interface, is, therefore, possible with ready-to-use technologies.
The method is flexibly applicable to very different reactor configurations, from reaction vessels to
microfluidic systems working as continuous flow reactors [34,45,46]. Moreover, opto-chemical sensing
can be applied largely independent of geometry, scale and operational parameters of the reactor used.

The features just discussed make opto-chemical sensing to be particularly apt for being used in
heterogeneous (solid-liquid) environments. However, its application for analysis inside solid porous
supports has two additional, specific requirements. First, the luminescence dye and the enzyme should
be properly co-immobilized within the same material; that way, the solid support would be internally
sensitive to the analyte to be detected (Figure 3). Second, a set-up for read-out should be established
that provides measurements with suitable spatiotemporal resolutions (Figure 3). As a general principle,
the labeling of the solid material needs to be compatible with the procedure of enzyme immobilization.
Choice of the analytical set-up determines which reactor configuration is suitable for luminescence
measurement [14,48]. It also determines which level of spatial resolution can be obtained. We discuss
method development using recent examples from the literature.
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2.2. Luminescence Labeling of the Solid Support

The procedure of labeling with the luminescence dye used must ensure that the properties of
the immobilized enzyme are minimally affected. It should also be compatible with the methods of
preparation of the immobilized enzyme, or require minimal modifications in them. Additionally,
the labeling procedure must ensure that the labeled material offers a suitable analytical response.
One possibility for luminescence labeling is the direct conjugation of the enzymes with the luminescence
dye [49–51]. This direct conjugation can be performed before or after the immobilization of the enzyme.
Working with a labeled enzyme, however, one must be aware that the procedure of immobilization
could be affected. The main challenges of enzyme labeling before immobilization are twofold. First,
the enzyme activity is typically changed as a consequence of the chemical conjugation. Second,
the mass amount of dye incorporated into the solid is often low. This can cause problems with the
analytical reading.

The alternative is to label the support material, which is, in general, the preferred approach
for the preparation of internally sensitive material (Figure 3A). Diverse examples of luminescence
labeling can be found in the literature: entrapment in alginate beads [52,53]; covalent incorporation into
PEG microparticles [54] and membranes [55]; ionic adsorption on amine-activated silica surfaces [21];
covalent incorporation into porous silica or aluminum oxide pores [56,57]; and encapsulation in PVA
hydrogel beads [58].

One quite practical approach of material labeling is based on hydrophobic adsorption
of the luminescence dye into the carrier material. Fluorescein (a pH-sensitive dye) and tris
(4,7-diphenyl-1,10-phenantroline) ruthenium (II) dichloride (an O2 sensitive dye; Ru(dpp)3Cl2)
become stably adsorbed by carriers fabricated from polymethacrylate material, making their covalent
attachment unnecessary [48,59]. A very strong hydrophobic adsorption is observed, which results
in quasi-irreversible labeling of the carrier. Dye wash-out during incubation in the aqueous buffer is
prevented thusly. The polymethacrylate carriers have become widely known for enzyme immobilization
and are being marketed under different tradenames (e.g., Sepabeads, ReliZyme and others) [60,61].
It is worth pointing out, therefore, that luminescence labeling is fully compatible with a representative
variety of reactive carrier surface groups (e.g., aldehyde, amine, carboxylic acid, diol and epoxide),
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which are already offered in the commercial carriers, or are able to be introduced easily on them
through convenient derivatization [48,59,62]. An analysis of labeled particles by confocal laser scanning
microscopy revealed that dye incorporation into the porous polymethacrylate material was spatially
uniform (J.M. Bolivar et al., unpublished).

Luminescence labeling through direct incorporation into the enzyme carrier, as demonstrated
for the relatively hydrophobic polymethacrylate material, is applicable to a range of other organic
polymers used in the field. Examples are Eupergit® and Purolite® carriers. More hydrophilic carriers
require adaptation of the labeling procedure, using covalent fixation or other forms of deposition of
the luminophore(s) on the surface. For example, hydrogels applied for encapsulation of enzymes
and cells should be generally amenable to the luminescence labeling [54]. Transfer of the (simple
non-covalent) luminescence labeling procedure to alternative carrier materials used in the field of
enzyme immobilization, including silica and agarose [18,63], has been recently accomplished [64,65].
The Ru-based organometallic luminophore was adsorbed tightly onto the silica porous supports.
Optimization of the surface labeling regarding homogeneous luminophore distribution was guided,
and its efficacy verified, by CLSM [65]. Porous agarose beads (e.g., phenyl sepharose beads) were also
labeled with the oxygen-sensitive dye Ru(dpp)3 [64].

When working with two industrial enzymes, namely cephalosporin C amidase and glucose
oxidase, carrier labeling with fluorescein and Ru(dpp)3Cl2 did not affect the enzyme immobilization in
any way [48,59,62]. While these findings indicate the useful bio-compatibility of the labeling procedure,
they clearly cannot be generalized at large. It is, therefore, advisable to always check for dye effects
on the activity or stability of the immobilized enzyme under examination. For example, studies
were performed to minimize the decrease of activity of D-amino acid oxidase in the presence of the
luminophore [66]. The sequence of immobilization and labeling was identified as important [65].
However, it should be emphasized that, unless there was a massive impairment of enzyme function by
the immobilized dyes, the establishment of a preparation of sensitive materials for the measurement of
internal concentration would still be very useful. It could be used to assess the role of diffusion in
limiting the overall reaction rate.

One recent method of labeling is the use of a sensor protein instead of a sensor chemical dye [67].
The use of proteins enables a fully biocompatible methodology for real-time opto-chemical sensing
within porous materials. A genetically encoded ratiometric pH indicator, the superfolder yellow
fluorescent protein (sYFP), was used to functionalize the internal surface of enzyme carrier supports.
By using controlled, tailor-made immobilization, sYFP was homogeneously distributed within carrier
materials, and so enabled, via self-referenced imaging analysis, pH measurements with high accuracy
and with useful spatiotemporal resolution (see later, Section 3). Unlike opto-chemical pH sensors,
which often interfere with biological function, labeling with sYFP enables pH sensing without altering
the immobilized enzyme’s properties in any of the materials used [67].

2.3. Choice of Set-Up and the Degree of Spatial and Temporal Resolution

The overall set-up for measurement requires choosing the analytical principle in proper
combination with an integrated read-out. Regarding the analytical principle, most of the sensors used
are based on the principle of photoluminescence. The dependence of the luminescence properties on the
concentration of the analyte is exploited for analytical determination. The detection involves one of the
following strategies: detection of intensity, lifetime-correlated single-photon counting (TCSPC), lifetime
gate detection, phase modulation technique or dual-wavelength ratioing. The strategies of measurement
are illustrated in Figure 4. Their details are discussed in recent reviews [14,46]. The strategies shown
in Figure 4 are commonly applied to the measurement of O2 and pH. Opto-chemical O2 sensors
operate according to the principle of dynamic quenching of the phosphorescence of an indicator dye.
The quenching affects both the intensity and lifetime of the phosphorescence, whereby lifetimes are
typically in the range 1–100 µs. The measurement of the lifetime is generally superior compared to the
measurement of intensity because it is an intrinsically referenced parameter. Contrary to intensity, it is
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not affected by scattering, reflection, drifts in the opto-electronic set-up, and inhomogeneous distribution
or bleaching of the indicator. Lifetime can be determined in the time domain, but also in the frequency
domain [35,68,69] (see Figure 4). Opto-chemical pH-sensors change their absorption or emission
properties in a manner dependent of the indicator’s protonation state. Fluorescent pH-indicators
exhibit lifetimes below <100 ns, requiring a higher degree of instrument sophistication compared
to O2-sensors. However, a straightforward approach of pH measurement involves ratiometric data
collection where the ratio of emission intensity at two wavelengths is determined [70]. Alternatively,
a method called dual-lifetime referencing is applied to convert the intensity signal into a referenced
signal, either a phase shift or a time-dependent parameter, by adding a phosphorescent reference dye
to the sensing layer [71,72]. Using a slight modification of the procedure applied for single analyte
determination, dual sensing of pH and O2 has also been reported [35].
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Figure 4. Measurement methods applied in optical sensing. (A) Luminescence lifetime determination
by time-correlated single-photon counting. (B) Lifetime determination by gated detection: rapid
lifetime determination is shown. (C) Lifetime determination by phase modulation. (D) Dual wavelength
ratioing. The figure was reproduced from reference [14] with permission from Elsevier.

Depending on the practical combination of measurement principle and sensor format, various
configurations of the analytical system can be considered. Examples of often used configurations are
those of fluorescence microscopes and dual optical fibers. Using optical fibers, measurements are
possible for mixed suspensions of solid particles or fixed beds of particles [14,46]. Analytical set-ups for
internal sensing are distinguished according to whether they provide spatial resolution of the measured
parameter. The use of optical fibers offers high flexibility in that both stirred suspensions and packed
beds of particles can be analyzed. The use of microscopy provides higher spatial resolution, but restricts
the application to stagnant suspensions of particles or to flow-cells configurations (Figure 5) [14,46].
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Figure 5 illustrates both configurations. The experimental arrangement shown in Figure 5A allows
for the collection of an overall signal useful to measure globally the averaged values of the internal
parameter, and it does so in real time. Data collection can be done at the same time in bulk solution
and within the carrier. This enables the recording of data points in a continuous fashion and it enables
the direct determination of concentration gradients between the homogeneous liquid phase and
the internal milieu of the solid catalyst (Figure 5). In initial studies, the application of this general
set-up involved measurements of the pH-sensitive fluorescence intensity [49]. However, fluorescence
intensity measurements are disturbed by the moving particles in stirred suspension. More recently,
therefore, lifetime measurements (dual-lifetime referencing method) have improved the pH resolution
and have expanded the applicability of the technique [58,59,62]. Self-referenced measurements and
fluorescence lifetime determinations exhibit superior analytical performance in agitated systems.
Dual lifetime referencing (DLR) in particular offers high versatility, for it is independent of the
catalyst’s concentration, the reactor configuration and the scale of operation. The implementation
of the space-averaged measurements internal O2 concentration has been accomplished using the
phase modulation technique. The measurement was done by interfacing a fiber optic system with the
suspension of oxygen-sensitive heterogeneous biocatalysts [48].
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Figure 5. Read-out strategy and spatiotemporal resolution provided by opto-chemical sensing in
enzyme immobilizates. (A) Interfacing fiber optics with oxygen sensitive particles for space-averaged
determination of intraparticle analyte concentrations. (B) Interfacing opto-chemical sensing with a
microscopy set-up for the spatial resolution of intraparticle concentrations in stagnant solutions or in a
fixed bed. (C) Time courses of the average intraparticle oxygen concentration and the corresponding
oxygen concentration in bulk when O2 is utilized as substrate by an immobilized enzyme. (D) Example
of the spatial resolution of intraparticle oxygen concentration. The figure was adapted from reference [14]
with permission from Elsevier.
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To obtain higher spatial resolution, it is necessary to use more sophisticated instrumentation
(Figure 5) that enables the interfacing of the reaction system with cameras or microscopy lenses.
Opto-chemical sensing in combination with confocal laser scanning microscopy (CLSM) has allowed
the determination of internal parameters (e.g., pH) in a time and space-resolved manner. In the first
examples, referenced fluorescence intensity measurements of the internal pH were accomplished. [50].
Intensity measurements in CLSM have been also used for the quantification of self-fluorescent molecules,
with applications inside particles [39]. Fluorescence lifetime provides advanced measurement
capabilities, eliminating signal distortion dependent on the scanning depth, which is a well-known
problem of intensity-based measurements in CLSM [54]. Internal pH changes at spatial resolution
have been monitored in hydrogels and PEG microparticles using fluorescence lifetime microscopy
techniques. Unfortunately, lifetime and referenced measurements in CLSM depend on high-cost
instrumentation that cannot be adapted to real-life reactor configurations and has limited throughput
capacity. The application of multiphoton laser scanning microscopy [73,74] addresses some of the
known limitations of measurements in CLSM. Multiphoton microscopy has been used to determine
concentration gradients in hydrogel-encapsulated biocatalysts [73,74]. High spatial and temporal
resolution is obtained, thus enabling multiple conversion events in immobilized biocatalysts to be
monitored simultaneously. A practical solution for the use of intensity measurements in CLSM is based
on intrinsically ratiometric dyes. This allows self-referenced measurements. For example, a recently
presented methodology [67] is based on a pH-sensitive fluorescent protein. The superfolder yellow
fluorescent protein (sYFP) [67,75,76] is as a powerful ratiometric pH indicator suitable for use both in
solution and within porous materials [67,75,76]. sYFP belongs to a new generation of Aequorea victoria
fluorescent proteins with improved stability and folding kinetics. The sYFP is highly stable and its
pH-dependent fluorescence covers the relevant (neutral) pH range [67,75,76]. Optical pH sensing in
solid materials based on sYFP is applicable to microscopic imaging analysis. In another example,
fluorescence spectroscopy was applied to measure the acid microenvironment of a silica support by
using a fluorescence labeled protein [77]. A recently described method allows for the measurement of
luminescence lifetimes in conventional CLSM, based on monitoring the relaxation of the dye molecules
to a new steady state upon the onset of excitation. This contrasts the more conventional time-domain
methods for the determination of excited state lifetimes, wherein relaxation to the ground state is
measured after the excitation is finished. The principle of operation is not limited to a common
point-scanning CLSM but can be applied in much faster line-scanning microscopes also (Figure 6) [64].
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Figure 6. Luminescence lifetime imaging of agarose beads with immobilized Ru(dpp)3 immersed in
air-saturated buffer (A–E) and in buffer with enzymatically depleted oxygen (F–K). The luminescence
intensity of the beads is lower at higher scan speed (A,B,F,G). (C, H) The intensity profiles across the
central part of the beads, as marked by two white lines in (A). (D,J) The luminescence lifetime images.
(E, K) Pixel lifetime distributions of the beads shown in (D) and (J) with the mean values marked by red
lines. Reproduced with permission from reference [64]. Copyright (2016) American Chemical Society.
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3. The Application of Intraparticle Sensing for the Development of Immobilized Enzymes
as Biocatalysts

It was already emphasized that the intraparticle microenvironment can affect the performance
of immobilized enzymes. Substrate and product concentration of the microenvironment can differ
from the corresponding concentrations in bulk liquid. Evidence of the enzyme’s microenvironment
is an important basis for rational strategies for the development the immobilized enzyme showing
the desired properties. The pH and O2 concentration are two particularly important variables of the
microenvironment. Both have a prominent role in biocatalysis. Many enzymatic reactions release
or take up protons. Moreover, O2 is a common substrate in many oxidation reactions. pH and O2

gradients can form between particle and bulk when reactions are catalyzed by immobilized enzymes.
A specific challenge for O2 supply to enzymes immobilized on solid supports is the low solubility of O2

in water. An O2 transfer rate into the particle that is comparable to, or even lower than, the enzymatic
reaction rate results in a dramatic drop in the intraparticle O2 concentration. This in turn affects the
kinetics of the enzymatic reaction. In this scenario, O2-dependent heterogeneous biocatalysts offer a
very low apparent activity. On the other hand, the pH gradients arise due to partition effects within
the solid material or higher proton release/consumption rates compared to the physical proton transfer
rate. As a consequence, internal pH gradients can influence the activity, stability and selectivity of the
heterogeneous biocatalyst. In both cases, determining whether the apparent catalytic properties are
due to immobilization effects or the intraparticle environment is an important requirement for targeted
biocatalyst optimization.

Intraparticle measurements haven proven quite useful for the advanced characterization of
immobilized enzymes [12,14,20,49–51,58,59,62,78–80]. They were important to optimize the solid-supported
biocatalysts and the chemical transformations catalyzed by them. They provide an enriched set of data
important to perform reaction modeling. Finally, they enable new strategies of reaction control. Table 1
summarizes the different approaches used for the determination of pH and O2 in solid supports for
enzyme immobilization. The table describes the method of opto-chemical sensing used and it points
out the overall system and the mode of data acquisition used. The systems used are discussed in some
detail, and each method is commented on regarding the opportunities it provides. The spatio-temporal
resolution of the method is also analyzed to distinguish the methods providing space-averaged data from
the methods enabling imaging within the solid support. Table 1 highlights studies, in particular, that have
applied characterization of the internal environment of an immobilized enzyme to process optimization.
The advantages provided by internal measurements can be summarized as follows.

3.1. Identification and Quantification of Diffusion Limitations

The quantification of space-averaged intraparticle oxygen concentrations in porous polymethacrylate
enzyme porous supports was accomplished by labeling a carrier with an O2 sensitive luminophore.
The phase modulation technique was used for measurement. Formation of a large gradient between
the O2 concentrations in bulk solvent and the internal environment of the carrier was detected, clearly
indicating limitations in the supply of O2 co-substrate into the solid support [48]. Internal acidification of
a particle’s microenvironment has been identified in proton-releasing reactions, showing the different
working microenvironment inside the particle compared to the bulk solution [49,50,59,67].

3.2. Dissection of the Influence of Physical and Biochemical Factors on Catalytic Effectiveness

A clear distinction between physical and biochemical factors of the effectiveness of the immobilized
enzyme is possible. The availability of internal concentrations allows for the establishment of a kinetic
model in which transport effects are decoupled from the enzymatic reaction [66]. Following this
procedure, the intrinsic loss of activity by immobilization can be identified [48,66].
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Table 1. Internal opto-chemical sensing in heterogeneous biocatalysts.

Analyte Methodology System Spatiotemporal Resolution Relevance and Comments Ref.

pH

• Luminescence
intensity measurements

• Fiber optic connected
to spectrofluorometer

• Porous support containing
labeled enzyme:
penicillin amidase

• Stirred tank reactor
• Fixed bed reactor

• Real-time monitoring
• Space-averaged data

• Method development
• Identification of pH gradients: 1.5-3 units
• Modeling performed and validated
• Low signal-to-noise ratio can complicate analysis of

stirred suspensions

[49]

pH

• Luminescence
intensity-based measurements

• Dual wavelength
rationing; CLSM

• Porous support containing
labeled enzyme:
penicillin amidase

• -FITC (pH indicator),
• FITC coupled to

immobilized enzyme
• Fixed-bed reactor

• No
real-time monitoring

• Spatial resolution

• Biocatalyst screening:
• pH influence on the selectivity of kinetically

controlled reactions.
• Study of enzyme loading, particle and pore size,

surface modification, and carrier selection

[50]

pH

• Fluorescence
ratiometric imaging

• CSLM

• Polymeric membrane
containing pH-sensitive
nano-hydrogels and
glucose oxidase

• FITC (pH indicator)
• T-Red (reference dye)

• Real-time monitoring
• Spatial resolution

• pH profile inside the membrane determined in buffer
of different pH or at different glucose concentrations,
affecting the pH due to reaction of glucose oxidase

• Internal pH decreased with the increase in glucose
concentration, incubation time, and diffusion distance

[55]

pH
• DLR using phase modulation;

fiber optic system

• Fluorescent labeled
porous support containing
immobilized enzyme

• Stirred particle suspension

• Real-time monitoring
• Space-averaged data

• Method development
• Biocatalyst design: pH gradient depends on

geometrical features of the carrier
• Correlation between steady-state kinetic analysis of

immobilized enzyme and intraparticle elucidation
• Internal pH monitoring
• pH gradient between bulk and particle

(biocatalyst design)
• Correlation between steady-state kinetic analysis of

immobilized enzyme and intraparticle elucidation

[59,62]
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Table 1. Cont.

Analyte Methodology System Spatiotemporal Resolution Relevance and Comments Ref.

O2
• Phase modulation technique;

fiber optic system

• Phosphorescent labeled
porous carriers containing
immobilized
glucose oxidase

• Stirred particle suspension

• Real-time monitoring
• Space-averaged data

• Method development
• Compatible with different carrier surface

modifications, dyes adsorbed directly in the
carrier matrix

• Oxygen gradient depends on immobilization
approach and informs about intrinsic
immobilization chemistry

[48]

O2
• Phase modulation technique,

fiber optic system

• Phosphorescent labeled
porous carriers containing
immobilized D-amino
acid oxidases

• Stirred particle suspension

• Real-time monitoring
• Space-averaged data

• Dyes adsorbed directly in the carrier matrix
• Oxygen gradient depends on immobilization

approach and informs about intrinsic
immobilization chemistry

[66]

3,5-Dimethoxybenzaldehyde-)
• Two-photon laser

scanning microscopy

• Hydrogel beads
suspended in an organic
solvent containing
immobilized
benzaldehyde lyase

• Real-time monitoring
• Spatial resolution

• Method development
• Determination of intrinsic reaction parameters and

mass transfer parameters
• Mechanism-based kinetic model in good agreement

with experimental data

[73,74]

O2
• Phase modulation technique,

fiber optic system

• Phosphorescent labeled
porous carriers (silica
based) containing
immobilized D-amino
acid oxidase

• Stirred particle suspension

• Real-time monitoring
• Space-averaged data

• Method development
• Biocatalytic process intensification through enhanced

O2 transport
[65]
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Table 1. Cont.

Analyte Methodology System Spatiotemporal Resolution Relevance and Comments Ref.

O2
• Phase modulation technique,

fiber optic system

• Phosphorescent labeled
porous carriers
(polymethacrylate based)
containing
immobilized catalase

• Stirred particle suspension

• Real-time monitoring
• Space-averaged data

• Observation of the release of internal oxygen from
H2O2 using immobilized catalase

• O2 hyper-saturation into the porous material
[78]

pH
• DLR using phase modulation;

fiber optic system

• Polyvinyl alcohol (PVA)
beads containing
immobilized enzyme and
phosphorescent
labeled nanoparticles

• Stirred particle suspension

• Real-time monitoring
• Space-averaged data

• Method development
• Control strategy based on intraparticle pH [58]

pH

• Luminescence
intensity measurements

• Fiber optic system

• Porous support containing
labelled enzyme
(Cephalosporin C acylase)

• Stirred particle suspension

• Real-time monitoring
• Space-averaged data

• Process design assisted by intraparticle measurements
• Operational stability of the enzyme was increased by

avoiding high internal acidification
[51]

pH • Luminescence spectroscopy
• Porous support containing

fluorescent
labeled proteins

• No
real-time monitoring

• Spectral data

• Method development
• Measurement of the acid microenvironment cause by

material support
[77]

pH
• DLR using phase modulation;

fiber optic

• Fluorescent labeled porous
particles containing
immobilized enzyme

• Stirred particle suspension

• Real-time monitoring
• Space-averaged data

• Modeling and simulation used to characterize the
influence of geometrical features of the carrier

• Calculation of intrinsic parameters
• Prediction of immobilized enzyme

effectiveness factors

[79]
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Table 1. Cont.

Analyte Methodology System Spatiotemporal Resolution Relevance and Comments Ref.

O2
• Luminescence lifetime in

a CLSM

• Porous agarose labeled
with Ru containing
immobilized
lactose oxidase

• Fixed bed

• No
real-time monitoring

• Spatial resolution

• Method development
• Implementation of simple lifetime measurement and

phosphorescence lifetime imaging in a confocal laser
scanning microscope (CLSM),

[64]

pH

• Luminescence
intensity measurements

• Fiber optic

• Porous carrier containing
labelled enzyme
(Cephalosporin C acylase)

• Stirred particle suspension
• Fixed bed

• Real-time monitoring
• Space-averaged data

• Process design assisted by intraparticle measurements.
• Selection of buffer was assisted by measurement of

intraparticle environment
[80]

pH
• Fluorescence ratiometric

measurements in CSLM

• Fluorescent labeled
porous carrier containing
immobilized enzyme

• Fixed bed

• Real-time monitoring
• Spatial resolution

• Method development.
• Identification of pH gradients: 1.5-3 units
• Fluorescent labeling of diverse carrier materials by

using sYFP
• Effects of catalyst loading and buffer strength on

pH gradient

[67]



Molecules 2019, 24, 3460 15 of 24

3.3. Screening of Suitable Immobilization Procedures

Optimization of the carrier’s geometrical parameters is of high importance in the rational design of
immobilized biocatalysts. Additionally, immobilization conditions can be optimized in a target-oriented
manner [50,62].

3.4. Guidance for Biocatalytic Process Intensification

In the case that the effectiveness of the immobilized enzyme may be limited by diffusion,
the measurements by internal sensing will reveal it. The main variables of the solid biocatalyst (particle
parameters; enzyme loading) can be varied rationally to remove the transport limitation. Internal
sensing is useful for verification of the effect. The approach was used for the enhancement of the
effectiveness of immobilized oxidases [65].

3.5. The use of Reaction-Diffusion Modeling for Biocatalytic Process Development

The availability of internal concentration data strongly supports the use of (dynamic) modeling
for the characterization and optimization of enzymatic reactions. The work of Zavrel and colleagues
demonstrates explicitly that the estimation of kinetic and mass transfer parameters for enzyme
immobilizates should not be based on external data alone [74]. In a recent study, Nidetzky and
co-workers have applied dynamic modeling to time-resolved internal pH data recorded during the
reaction of immobilized cephalosporin C amidase [79]. Their procedure yielded estimates for the
effective proton diffusivity in different enzyme carriers (mass transfer parameter) and also revealed
the intrinsic amidase activity in different carrier-bound preparations of the enzyme (biological
parameter) [79]. The availability of those two parameters, which are not readily accessible from
experiments alone and which both affect the overall enzyme effectiveness factor, is shown to be
instrumental to the selection of a suitable carrier.

3.6. Biocatalytic Process Design

This was shown in work of Spieß and colleagues [49,50]. Recently, the changes in microenvironmental
pH and in operational enzyme stability were investigated for the biocatalytic reaction of immobilized
cephalosporin C acylase. The cephalosporin C acylase releases protons during the reaction. The enzyme
was covalently bound on an epoxy-activated porous support. The microenvironmental pH change in the
immobilized enzyme during the reaction was detected by labeling the enzyme with the pH-sensitive dye
fluorescein. The high catalytic rate in the initial phase of conversion resulted in a sharp intraparticle pH
gradient, which was likely the key factor of low operational stability. Accordingly, a novel strategy for a
two-stage catalytic process was developed to reduce the reaction rate of stage I at a low temperature to
preserve enzymatic activity and to shorten the duration of catalysis at a high reaction temperature in
stage II [51]. Additionally, the buffer strength was settled based on intraparticle measurement for the
design of stable continuous operation in a fixed-bed reactor [80].

3.7. New Strategies for Control of the Reaction

Innovative process control strategies based on the on-line monitoring of internal parameters can
be established. Recently, the pH value a biphasic oxidoreduction system was controlled by using a
novel DLR measurement-based control concept. The hydrophobic prochiral substrate acetophenone
was reduced to 1-phenylethanol by the Lactobacillus brevis alcohol dehydrogenase, immobilized in
a polyvinyl alcohol hydrogel matrix and suspended in an acetophenone/n-heptane solution. It was
demonstrated that DLR-based pH control maintained a stable process pH for at least 105 h duration
within a range of 0.2 pH-units [58].
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3.8. Sensing in Microreactors

There is high interest in the use of micro-structured flow reactors for chemical synthesis [81].
In these miniaturized systems, gas or liquid is passed in single or multi-phase flow through small
channels of typically several ten to hundredµm in size. Reactions may take place in the continuous phase
or at the surface of the microchannel walls. Internal sensing along the microchannel wall(s), therefore,
constitutes a highly promising element of process monitoring and control in microreactors [46,47,82].
For example, advanced non-invasive opto-chemical sensing is applied to measure liquid-phase oxygen
concentrations in both in and out-flow, as well as directly in the microchannels (width: 600 µm;
depth: 200 µm) of a falling film microreactor (Figure 7). Modular luminescence lifetime imaging
was used to determine the dissolved O2 concentrations directly on the surface of the microchannels.
The measurement principle has been reported before, but it has not been applied for in-line sensing in
microreactors (Figure 7). Measurements of the O2 concentration directly in the channel showed that
the liquid side mass transfer coefficient for O2 governed the overall gas/liquid/solid mass transfer and
that the O2 transfer rate (≥ 0.75 mM·s−1) vastly exceeded the maximum enzymatic reaction rate in a
wide range of conditions [83]. In another example, on-line sensing was established in a wall-coated
enzyme microreactor. Phosphorescence lifetime was applied, not only to collect time-resolve single
point measurements near the inlet and outlet, but for imaging of the oxygen concentration along the
whole fluidic path. This allowed overcoming the well-known restrictions of using outlet-inlet data
only. Thus, in addition to the spot measurements, the whole oxygen concentration distribution was
imaged [84].
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Figure 7. Results of internal and external O2 concentration measurements during the operation of a 
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Figure 7. Results of internal and external O2 concentration measurements during the operation of a
falling-film microreactor containing immobilized D-amino acid oxidase on the microchannel walls
of the plate. Panel (A) shows the local O2 concentration on the plate in hPa (1 hPa is equivalent to
1.16µM at 30 ◦C). The region of interest for measurement is comprised of a rectangle located at the
lower end of the plate, as indicated in the image #1 of panel (A). Panel (B) shows O2 concentration
measurements with the flow-through sensors at the reactor entrance and exit and compares these
measurements to the results of on-plate O2 concentration measurements. Numbering is used to identify
images from the upper panel that correspond to the local O2 concentrations shown in the lower panel.
In the first phase of the experiment (#2–3), the FFMR was operated with nitrogen flow, resulting
in a complete deoxygenation of the plate. When the air flow was switched on (#3–8), the local O2

concentration increased sharply, revealing a highly effective O2 supply from the gas phase to the liquid
phase. Eventually, air saturation was reached despite consumption of O2 for the enzymatic reaction
(#9–10). Deoxygenation was only possible when air was again replaced by N2 (#11–12). Figure was
adapted from reference [83] with permission from John Wiley and Sons.
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4. Spatiotemporal Sensing of Internal pH and Oxygen: An Update

The quantification of spaced-averaged intraparticle O2-concentrations is now routinely applied to
different porous supports containing immobilized oxidases [12,14]. Recent advances involve application
of the method to new materials, as well as its use in the context of biocatalytic reaction intensification.
Further method-developments target improvements in spatiotemporal resolution [64,65]. For example,
the application of internal sensing enabled the optimization of geometrical properties of porous
silica carriers for biocatalytic process intensification through enhanced mass transport (Figure 8).
The development of luminophore-doped oxygen-sensing silica materials was connected with a modular
strategy of enzyme immobilization. This shows the general applicability of the method for the design of
an oxygen-dependent biocatalyst on a porous silica support. Mesostructured silica surpassed controlled
pore glass by ≥10-fold in terms of immobilized enzyme effectiveness at high loading of oxidase activity.
Using a detailed comparison of time-resolved O2 concentration profiles in solution and inside porous
support, the effect was shown to result exclusively from variable degree of diffusion-caused limitation in
the internal O2 availability [65].
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from reference [83] with permission from John Wiley and Sons. 
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Figure 8. The effects of intraparticle oxygen concentration (expressed as relative air saturation in percent)
on the activity of silica-based biocatalysts. (A) Confocal fluorescence images of the oxygen-sensitive
luminescence dye immobilized on different porous silica supports (from left to right, CPG, MSU-VLP
and MSU-F silica materials). (B) The dependence of the O2 concentration inside the porous support
(at apparent steady state) on the velocity of D-methionine oxidation by the immobilized oxidase
(D-amino acid oxidase) biocatalyst. (C) The dependence of the enzyme effectiveness of the biocatalyst
on the intraparticle O2 concentration. All reactions were performed at 30 ◦C using air-saturated
potassium phosphate buffer (50 mM; pH 8.0). Adapted with permission from reference [65]. Copyright
(2015) American Chemical Society.

Furthermore, internal measurements were instrumental in the development of a strategy for
the enhanced supply of O2 into immobilized oxidases. The idea was to use co-immobilized catalase
for the conversion of H2O2 and so release O2 inside the solid support at a concentration that would
not be achievable by entraining O2 gas into the liquid bulk phase. Under oxygen hyper-saturation,
the activity of the immobilized oxidase would be boosted due to a kinetic effect. Using optical sensing
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to measure the O2 concentration in the liquid, but also in the solid phase, it was shown that internal
super-oxygenation of the support was made possible under these conditions, resulting in an inverted
(that is, negative) O2 concentration gradient between the bulk and the particle. The internal O2

concentration exceeded, by up to 4-fold, the limit of atmospheric-pressure air saturation in solution.
This strategy may find an application for the bubble-free oxygenation of O2-dependent enzymes
co-immobilized with the catalase, whereby enhanced internal availability of O2 would contribute to
biocatalytic reaction intensification [78].

Opto-chemical sensing in combination with microscopy has the potential to determine the internal
pH and O2 concentration in real-time and with spatial resolution. Unfortunately, lifetime or referenced
measurements in CLSM depend on high-cost instrumentation that cannot be adapted to real-life
reactor configurations. Recently, as shown in Figure 9, a new method based on a variable excitation
time determined by the scanning velocity was implemented in a CLSM for the resolution of internal
O2 concentration [64]. The method allows phosphorescence lifetime imaging, thus spatiotemporal
resolution within porous enzyme carriers. It has been applied for the study of oxygen depletion in
particles containing immobilized lactate oxidase under packed-bed reactor configuration.
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Figure 9. Luminescence lifetime images of beads with immobilized enzyme and Ru(dpp)3. Panels
show imaging results under flow with (C,D) and without (A,B) substrate, resulting in different oxygen
concentrations. (B,D) Pixel lifetime distributions of the beads are shown in (A) and (C), with the mean
values marked by red lines. Adapted with permission from reference [64]. Copyright (2016) American
Chemical Society.

A new method for spatiotemporally resolved measurement of pH in immobilized enzymes has
been implemented based on immobilized sYFP [67]. Its application was demonstrated for monitoring
the internal pH of an immobilized penicillin acylase during the hydrolysis of penicillin. Conversion of
the penicillin releases a proton. It was shown that sYFP is as a powerful pH indicator for ratiometric



Molecules 2019, 24, 3460 19 of 24

optical sensing that facilitates applications in real time within porous materials. A reaction setup was
used in which agarose particles containing immobilized sYFP and penicillin acylase (catalyst particle)
were kept static in stagnant suspension. The experiment was designed to monitor the initial reaction
rate, immediately after addition of the substrate (Figure 10). The time course consists of a pronounced
pH drop within the first seconds of reaction, followed by a slower phase of pH decrease. At apparent
steady state, a pH difference of ~1.5 pH units between bulk and the catalyst particles prevailed. Both
the dynamics and magnitude of the pH gradient reflect the coupling of proton-releasing reaction
confined to the solid surface of the catalyst particle’s pores and the molecular diffusion events inside
these pores.
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Figure 10. Measurement of intraparticle pH by sYFP-immobilized fluorescent protein. Panel (A) shows
the set-up of the measurement. (B,C) show the evolution of ∆pH (internal pH – bulk pH) in reaction
time courses of different enzyme catalysts. Panel (B) shows the effect of the penicillin acylase loading
(per gram of carrier): 805 U (�), 130 U (#) and 27 U (H). Panel (C) shows the effect of the sodium
phosphate buffer concentration: 10 mM (�), 100 mM (#) and 200 mM (H). The penicillin acylase loading
used 805 U g–1 of carrier, and 20 mM penicillin G was used. Images of catalyst particles corresponding
to each reaction are shown for different time points (blue arrows). Adapted with permission from
reference [67]. Copyright (2018) American Chemical Society.

5. Conclusions

Summarizing, the main points of this review article are the following. (1) Characterization of the
internal liquid milieu in which solid-supported immobilized enzymes operate is crucial to understand
the behavior of the enzymes in terms of activity and stability. That understanding is important to
assess competing immobilization methods and to develop rational strategies for the optimization
of performance of immobilized enzymes. (2) Opto-chemical sensing is a powerful method for the
characterization of the internal liquid milieu. It is well developed for measuring the pH and the O2

concentration. However, a range of other analytes are within its scope. Opto-chemical sensing can
be applied in a versatile manner regarding the enzyme, the solid material, the analytical set-up and
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read-out system, and the integration into the reaction/process configuration. Opportunities and current
limitations of opto-chemical sensing in the context of immobilized enzymes are discussed. The claims
made in this review are supported by original results from recent studies from different laboratories,
including the ones of the authors. Important areas of future development include the following.
Broadening of the analyte scope of the analytical techniques as the field of opto-chemical sensings
makes progress (NH4, CO2, temperature, etc.); the application of new support materials for enzyme
immobilization (metal and covalent organic frameworks, electrospun nanofibers, ceramic structured
membranes, etc.); improved catalyst characterization for deepened mechanistic understanding; and
generating synergy between advanced catalyst characterization and improved operational use of the
catalyst, using defined reactor configurations under in operando conditions.
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