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ABSTRACT 

In this work, finite element welding models are firstly validated with experimental measurements. Cases 

with different weld time, weld current and squeeze force are subsequently simulated in order to create a 

new database. Multiple linear regression, decision tree and random forest methods are used to train the 

analytical models. The trained analytical models are used to predict new experiments with reasonably 

good accuracy. In addition, weights for the input variables are explicitly ranked and discussed, which 

provides valuable information for optimizing the welding process. The main conclusions are 

summarized as follows, 

• The approaches proposed in this work to combine the experiments, numerical models and 

analytical models are proven to be reliable and can be extended to other materials and 

processes.  

• Increase in weld time or weld current, or decrease in squeeze force will increase the nugget 

size. With the studied material, multiple linear regression model provides two equations to 

calculate the nugget diameter and height with respect to weld time, weld current and squeeze 

force. Decision tree has a slightly better accuracy than multiple linear regression. Random 

forest provides the best predictions. 

• Weld current has a dominating weight (more than 0.85) to determine the final nugget size. 

Squeeze force has a weight of 0.12 for determining the nugget height. 
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INTRODUCTION 

Advanced high strength steels (AHSS) are increasingly used by the automotive 

manufacturers to reduce weight of a vehicle. A 10% reduction in vehicle weight can save 

fuel by 3% to 7% [1]. It has been reported that more than 4000 welds are made on a body 

in white car frame [2]. Resistance spot welding is the mostly applied method due to low 

cost, high degree of automation and small workload. The strength of a weld is strongly 

dependent on the weld nugget size. Therefore, it is of great importance to understand the 

relationship between the weld nugget size and welding parameters.  
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Finite element modelling is a widely used method to predict thermal and mechanical 

material responses during welding [3]. However, a virtual heat flux with a certain 

distribution has to be defined for simulation of either a laser welding or arc welding 

process [4-5], which always leads to a discussion on its reliability. Simulation of 

resistance spot welding can be fully based on the physics of Joule heating, where heat 

generation is calculated from the contact resistance at the sheet interface [6]. Therefore, 

combination of experimental and numerical approaches becomes an effective way to gain 

a better insight of temperature and strain/stress evolution during resistance spot welding 

and optimize welding parameters on demand. However, for a physical-based model with 

complex structure and processing conditions, calculation time for a numerical model can 

be very expensive. In addition, weights of input variables cannot be explicitly studied 

from simulation. Any changes in material properties, sample dimension and welding 

parameters will lead to a re-run of the model.  

With development of modern high-speed computers, modeling based on big data has 

become a powerful approach to control and optimize different process parameters. 

Advanced analytical model has proven to an effective tool for resolving complex 

problems related to multiple factors [7]. Therefore, combination of experimental, 

numerical and advanced analytical methods to study resistance spot welding is explored 

in this work. An advanced high strength steel DP800-GI with a thickness of 1.2 mm was 

selected for resistance spot welding experiments. Finite element welding models are 

firstly constructed and validated with experimental measurements. A new database with 

different squeeze force, weld time and weld current are subsequently simulated. Multiple 

linear regression, decision tree and random forest methods are used to train the analytical 

models. The trained analytical models are used to predict new experiments with 

reasonably good accuracy. In addition, weights for the input variables are explicitly 

ranked and discussed, which provides valuable information for optimizing the welding 

process. 

MATERIALS AND METHODS 

MATERIAL AND WELDING EXPERIMENT 

A dual phase (DP) steel with a thickness of 1.2 mm was selected for the experimental 

approaches in this study. This steel was received in a cold-rolled and galvanized condition 

with a coating weight of 50 gm−2. The testing coupons were prepared with a dimension 

of 45 mm x 45 mm. The chemical compositions of the studied material with Fe balanced 

are listed in Table 1. 

Table 1 Chemical composition of studied material with Fe balanced (wt%) 

C Si Mn Al 

0.15 0.096 2.063 0.647 

Resistance spot welds were produced on a 1000 MHz MFDC spot welding machine, 

using a constant current regulation. ISO5821 F1-16-20-6 CuCr1Zr electrodes were tip-
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dressed before use. The welding specification was according to the VDEh SEP1220-2 

standard [8], as shown in Table 2. The welding current range was determined by 

producing two welds per current setting, starting from a welding current of 3.0 kA with an 

increment step of 0.2 kA. The minimum current was found when the weld spot diameter 

is greater than 4√t (t refers to sample thickness). When splash occurs between the sheets 

in two subsequent welds at identical welding current settings, the welding current was 

decreased in steps of 0.1 kA. The maximum current was determined until three 

consecutive welds were made without splash. 

Table 2 Welding specification according to SEP1220-2 

Force (kN) Squeeze time (ms) Weld time (ms) Hold time (ms) 

4  400 320 200 

NUMERICAL MODEL 

SORPAS®2D welding is used in this work for modelling approaches. Temperature 

dependent material properties of DP800, such as thermal conductivity, specific heat 

capacity, density, thermal expansion coefficient, Young’s modulus, flow stress curves, 

were obtained from the SORPAS materials database. For welding simulation, a 1000Hz 

DC arbitrary projection/spot welding machine was selected from the SORPAS machine 

database and ISO5821 F1-16-20-6 CuCr1Zr electrodes with a geometry matching the 

experimental configuration were defined. Zinc surface coating was selected with a 

thickness of 50 g/m2. The model set-up for resistance spot welding is shown in Fig. 1. 

The numerical welding simulation in this work follows the ISO/TS 18166 guidelines [9]. 

 

Fig. 1 Model set-up and mesh arrangement 
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ADVANCED ANALYTICAL MODEL 

Advanced analytics employs predictive modeling, statistical methods, machine learning 

and process automation techniques beyond the capacities of traditional business 

intelligence (BI) tools to analyze data or business information. Three advanced analytical 

models were used in this study, i.e., multiple linear regression, decision tree and random 

forest. The scripts were compiled using Python language. Packages of SCIPY, PANDAS 

and NUMPY were imported.  
Multiple linear regression (MLR) is a method used to model the linear relationship 

between a dependent variable and two or more independent variables. The MLR equation 

can be expressed as follows, 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + …+ 𝑏𝑝𝑥𝑝                                               (1) 

where y is the predicted or expected value of the dependent variable, x1 through xp are p 

distinct independent or predictor variables, b0 is the value of y when all the independent 

variables (x1 through xp) are equal to zero, and b1 through bp are the estimated regression 

coefficients. Each regression coefficient represents the change in y relative to a one-unit 

change in the respective independent variable. MLR is based on ordinary-least-squares 

(OLS), the model is fit such that the sum-of-squares of differences of observed and 

predicted values is minimized. 

Decision tree builds regression or classification models in the form of a tree structure. 

It breaks down a dataset into smaller and smaller subsets while at the same time an 

associated decision tree is incrementally developed. The final result is a tree with decision 

nodes and leaf nodes. A decision node has two or more branches, each representing 

values for the attribute tested. Leaf node represents a decision on the numerical target. 

The topmost decision node in a tree which corresponds to the best predictor called root 

node. A node will be split if this split induces a decrease of the impurity greater than or 

equal to this value. The weighted impurity decrease equation is the following, 

𝑁_𝑡 / 𝑁 ∗  (𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 −  𝑁_𝑡_𝑅 / 𝑁_𝑡 ∗  𝑟𝑖𝑔ℎ𝑡_𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 −  𝑁_𝑡_𝐿 / 𝑁_𝑡 ∗  𝑙𝑒𝑓𝑡_𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦)    (2) 

where N is the total number of samples, N_t is the number of samples at the current node, 

N_t_L is the number of samples in the left child, and N_t_R is the number of samples in 

the right child. The advantages of decision trees are simple to understand and interpret 

and capable of handle both categorical and numerical data. However, a small change in 

the training data can result in a large change in the tree and consequently the final 

predictions. 

Random forest is a model made up of many decision trees. Rather than just simply 

averaging the prediction of trees, this model uses two key concepts: random sampling of 

training data points when building trees and random subsets of features considered when 

splitting nodes. 
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RESULTS AND DISCUSSION 

VALIDITY OF MATERIAL PROPERTIES AND NUMERICAL MODEL 

The SORPAS material database provides properties of universal steel grades (e.g., Mild 

steels, Dual phase steels, TRIP steels). DP800 was chosen in this work. In order to check 

the validity of the input material properties, chemical composition of the studied material 

from Table 1 was imported into JMatPro® to calculate the temperature dependent material 

properties, and then compared with those from the SORPAS materials database, as shown 

in Fig. 2. Reasonable agreements have been achieved for both the thermal conductivity 

and electrical resistivity. As temperature increases, the thermal conductivity from 

SORPAS database firstly increases to 35.4 W/ m K, and then decreases to 26.1 W/m K, 

and increases again at high temperatures up to 36.1 W/m K. The calculated thermal 

conductivity from JMatPro has a slightly overestimation in the temperature range from 

300 to 1000 °C. For the electrical resistivity, it increases at elevated temperature. A very 

good agreement has been achieved between SORPAS and JMatPro. Thermal conductivity 

and electrical resistivity are the two most important properties for an electrical-thermal 

analysis, which determines the heat generation at the interfaces and the final weld nugget 

shape. 

 

Fig. 2 Comparison of thermal conductivity (left) and electrical resistivity (right) from 

SORPAS and JMatPro 
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Fig. 3 Weld nugget size from numerical prediction and experiment measurement with 

welding current of 6 kA 

The weld nugget size was used for validation of the numerical model. The welded 

sample was cut into cross-section and etched to visualize the weld fusion area. A 

comparison of the weld nuggets size with a welding current of 6 kA is shown in Fig. 3. A 

good agreement of the weld nugget shape between the experimental measurement and 

numerical prediction has been achieved. 

ADVANCED ANALYTICS 

After validation of the numerical model, in total 64 testing conditions were simulated 

considering different combinations of weld current (7-10 kA), squeeze force (3.5-5 kN) 

and weld time (280-400 ms). Hold time does not affect the nugget size and it is therefore 

not investigated. The simulated nugget diameter and height are listed in Table 3. It needs 

to be addressed that the “Height” exported from SORPAS output is half of the real nugget 

height. With the same force and time, diameter and height increase when current is 

increased. With the same force and current, diameter and height increase when time is 

increased. Increase either in time or current will increase the total heat input, and thus 

enlarge the nugget size. With the same time and current, diameter and height decrease 

when force is increased. Increase in force will increase the contact area and decrease the 

contact resistance at sheets interface. The total heat input is as a result decreased, and thus 

reduce the nugget size.  
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Table 3 Simulated weld nugget diameter and height with different combinations of squeeze 

force, weld time and weld current 

Sample Force (kN) Time (ms) Current (kA) Diameter (mm) Height (mm) 

1 3.5 280 7 4.4237 0.70182 

2 3.5 280 8 5.5245 0.89669 

3 3.5 280 9 6.1294 0.94104 

4 3.5 280 10 6.553 0.98001 

5 4 280 7 4.1062 0.64227 

6 4 280 8 5.2759 0.86884 

7 4 280 9 6.0805 0.92618 

8 4 280 10 6.5191 0.96463 

9 4.5 280 7 3.9487 0.61293 

10 4.5 280 8 5.1783 0.82468 

11 4.5 280 9 6.06 0.91139 

12 4.5 280 10 6.5057 0.95405 

13 5 280 7 3.8082 0.55913 

14 5 280 8 5.0542 0.77551 

15 5 280 9 5.8206 0.89114 

16 5 280 10 6.475 0.92805 

17 3.5 320 7 4.6984 0.79285 

18 3.5 320 8 5.6941 0.90322 

19 3.5 320 9 6.2977 0.94355 

20 3.5 320 10 6.7896 0.97874 

21 4 320 7 4.5206 0.71044 

22 4 320 8 5.6094 0.88946 

23 4 320 9 6.202 0.92883 

24 4 320 10 6.7442 0.96341 

25 4.5 320 7 4.4326 0.68644 

26 4.5 320 8 5.558 0.85753 

27 4.5 320 9 6.1441 0.91349 

28 4.5 320 10 6.7214 0.9525 

29 5 320 7 4.0425 0.60017 

30 5 320 8 5.3025 0.80125 

31 5 320 9 6.1551 0.92083 

32 5 320 10 6.6625 0.92901 

33 3.5 360 7 5.0532 0.80764 

34 3.5 360 8 5.8877 0.90686 

35 3.5 360 9 6.3962 0.94257 

36 3.5 360 10 6.9645 0.9772 
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37 4 360 7 4.8429 0.73625 

38 4 360 8 5.8274 0.88872 

39 4 360 9 6.3159 0.92887 

40 4 360 10 6.9162 0.96132 

41 4.5 360 7 4.6282 0.69027 

42 4.5 360 8 5.7638 0.85777 

43 4.5 360 9 6.3221 0.91415 

44 4.5 360 10 6.8847 0.94867 

45 5 360 7 4.3306 0.61704 

46 5 360 8 5.5532 0.80036 

47 5 360 9 6.2265 0.89761 

48 5 360 10 6.746 0.92515 

49 3.5 400 7 5.2071 0.8065 

50 3.5 400 8 6.068 0.90581 

51 3.5 400 9 6.587 0.94096 

52 3.5 400 10 7.0357 0.96976 

53 4 400 7 5.0281 0.73714 

54 4 400 8 5.9915 0.88744 

55 4 400 9 6.543 0.92703 

56 4 400 10 7.0007 0.95227 

57 4.5 400 7 4.883 0.69821 

58 4.5 400 8 5.9304 0.8567 

59 4.5 400 9 6.4763 0.91282 

60 4.5 400 10 6.9718 0.93797 

61 5 400 7 4.5363 0.63719 

62 5 400 8 5.654 0.79939 

63 5 400 9 6.3993 0.89579 

64 5 400 10 6.9479 0.92291 

The created database is divided into two sets, 70 % of which was used for training the 

model, and 30 % was kept for validation. Weld nugget diameter and height are defined as 

target functions. Three advanced analytical model were used, i.e., multiple linear 

regression, decision tree and random forest. The associated results are shown in Fig. 4. A 

dashed line is plotted in every figure for reference. A shorter distance of the dots to the 

dashed line indicates a better fit of the predictions. R square (R^2) and root mean square 

error (RMSE) of the models are shown in Table 4. For nugget diameter prediction, the 

R^2 of the multiple linear regression model is 0.951 with a RMSE of 0.193 mm. Decision 

tree model shows a better prediction between 5.5 mm and 6.5 mm. The R^2 and RMSE 

are 0.973 and 0.141 mm respectively. Random forest model improves the prediction by 

random sampling the training points and random subset of features when splitting the 

nodes. The R^2 of random forest reaches 0.979 with a RMSE of 0.126 mm. For nugget 
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height prediction, the R^2 of multiple linear regression model only achieves 0.803, while 

decision tree and random forest have a better accuracy of 0.93 and 0.966, respectively. 

 

 

 

Fig. 4 Results of multi-linear regression, decisition tree and ranom forest models 
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Table 4 Results from different advanced analytical models. 

 Linear 

regression 

Decision 

tree 

Random 

forest 

Linear 

regression 

Decision 

tree 

Random 

forest 

 Diameter Height 

R^2 0.951 0.973 0.979 0.803 0.930 0.966 

RMSE 0.193 0.141 0.126 0.048 0.028 0.019 

Table 5 Weighting factors of decision tree and random forest models. 

 Decision tree Random forest Decision tree Random forest 

 Diameter Height 

Force 0.036 0.030 0.129 0.123 

Time 0.065 0.062 0.021 0.020 

Current 0.899 0.908 0.850 0.857 

From the multiple linear regression model, three coefficients and one intercept of the 

input variables can be obtained. Therefore, a multi-linear equation can be generated to 

predict the weld nugget diameter and height based on force, time and current,  

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = −0.181 ∗ 𝑓𝑜𝑟𝑐𝑒 + 0.005 ∗ 𝑡𝑖𝑚𝑒 + 0.743 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 1.488       (3) 

𝐻𝑒𝑖𝑔ℎ𝑡 = −0.051 ∗ 𝑓𝑜𝑟𝑐𝑒 + 0.0002 ∗ 𝑡𝑖𝑚𝑒 + 0.085 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 0.284          (4) 

Table 5 shows the weights of force, time and current related to nugget size. From the 

decision tree model, weld current is the dominating variable (more than 0.899) to 

determine the nugget diameter. Random forest model shows a slightly higher weight 

(0.908) than that of the decision tree. Weld time is ranked the second and squeeze force 

has the least influence on the nugget diameter. For prediction of nugget height, weld 

current has still the dominating weight of 0.85. However, squeeze force is ranked the 

second in the order of 0.12. Weld time has the least influence on the nugget height. 

Besides ranking the weights of input variables, another advantage of using a tree-like 

model is to trace the split at every node. The ‘sklearn.tree’ package was used to export the 

data for node split. Fig. 5 shows the tree layout using ‘Graphviz’. As ‘current’ has the 

most weight in determing the nugget size, it was picked as the root node. The threshold is 

8.5 kA with 44 samples. The target value is 5.851 mm. 24 samples were found with 

‘current’ greater than the first threshold. As there are many branches generated in the 

subsequent judgements, only the bottommost branch is chosen here for discussion. The 

second judgement is ‘current’ less than 9.5 kA, which returns 12 samples with ‘truth’ and 

12 samples with ‘false’. The third judgement is ‘time’ less than 300 ms, which returns 7 

samples with ‘truth’ and 5 samples with ‘false’. The fourth judgement is ‘time’  less than 

380 ms, which returns 3 samples with ‘truth’ and 4 samples with ‘false’. The fifth 

judgement is ‘force less than 4 kN, which determines the weld diameter of 7.036 mm with 

‘truth’ and 6.972 mm with ‘false’. The similar interpretions can be applied to other 

branches. 
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Fig. 5 Node split with respect to squeeze force, weld time and current 
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CONCLUDING REMARKS 

In this work, finite element welding models are firstly validated with experimental 

measurements. Cases with different weld time, weld current and squeeze force are 

subsequently simulated in order to create a new database. Multiple linear regression, 

decision tree and random forest methods are used to train the analytical models. The 

trained analytical models are used to predict new experiments with reasonably good 

accuracy. In addition, weights for the input variables are explicitly ranked and discussed, 

which provides valuable information for optimizing the welding process. The main 

conclusions are summarized as follows, 

• The approaches proposed in this work to combine the experiments, numerical 

models and analytical models are proven to be reliable and can be extended to 

other materials and processes.  

• Increase in weld time or weld current, or decrease in squeeze force will increase 

the nugget size. With the studied material, multiple linear regression model 

provides two equations to calculate the nugget diameter and height with respect 

to weld time, weld current and squeeze force. Decision tree has a slightly better 

accuracy than multiple linear regression. Random forest provides the best 

predictions. 

• Weld current has a dominating weight (more than 0.85) to determine the final 

nugget size. Squeeze force has a weight of 0.12 for determining the nugget 

height. 
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