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Abstract

The human body’s stable posture and movement are dic-
tated by the precise functioning of the vestibular organ,
mainly the ampulla organs in the semicircular canals. The
development of electronic devices such as vestibular im-
plants aims to improve the vestibular system’s capacity by
stimulating the involved vestibular nerves. We aim to de-
scribe and analyze anatomical variations of the inner ear
using computationally derived statistical shape models. The
models should support the design process of vestibular im-
plants. Based on a dataset of 81 cone-beam computed to-
mography, this work covers constructing a statistical shape
model of the semicircular canals using a recently developed
novel Particle-Based Modeling approach. The method op-
timally places correspondence points on each surface using
a gradient descent energy function. Then Principal Com-
ponent Analysis is used to describe anatomical variation.
The model was evaluated in terms of reconstruction accu-
racy, compactness, generalization, and specificity. Results
obtained by the workflow based on human datasets and the
average shape of a statistical model revealed a high qualita-
tive understanding and a quantitatively comparable range.
The first three principal components captured 57.7% of the
cumulative variation. The analysis led to 26 principal com-
ponents to account for 95% of the total shape variation cap-
tured. The shape model can be used for virtual product de-
velopment and testing and to estimate the detailed inner ear
shape from a clinical patient computed tomography scan.
For the first time, we could describe the geometry of the hu-
man semicircular canals based on a large sample of data
from living humans compared with other studies.

1. Introduction

The human ear is the organ that enables hearing and bal-
ance. The anatomy of the human ear consists of three parts:
the outer ear, the middle ear, and the inner ear. The vestibu-

lar system is the apparatus of the inner ear involved in bal-
ance. It is a complex organ consisting of three semicircular
canals (superior/anterior, posterior, and horizontal/lateral)
and the vestibule that houses the otolith organs. The most
common medical complaints [24, 26] associated with im-
balance symptoms include dizziness or vertigo. Among the
vestibular disorders, benign paroxysmal positional vertigo
(BPPV) is the most common cause of vertigo [26] which
affects females twice as often as males [18]. Vestibular
implants (VI) are a new promising technology based on
the experiences of cochlear implants [14]. The vestibular
nerves are the subject for electrical stimulation to treat bal-
ance disorders instead of the cochlear nerve. All the condi-
tions leading to a loss of balance can be severely debilitat-
ing and cause a decrease in the quality of life [13, 23], so
even though much research is still needed, the technology
has a lot of potentials. Patient-specific 3D reconstruction
of the vestibular system and its substructures could improve
different aspects of vestibular implantation. It can facili-
tate anatomical understanding for doctors and suggest mod-
ifications in the design of electrode placement for vestibu-
lar implant manufacturers. To acquire surgical skills, lots
of practice and effort are needed; thus, 3D models could
be used for surgery simulation and training [10]. Quanti-
tative analysis of the anatomical semicircular canal shape
from medical images is essential for diagnosing shape ab-
normality. In this context, statistical shape models (SSM)
turned out to be very useful for investigating variations of
shape within anatomical structures of the inner ear. Statisti-
cal shape models describe and analyze the human anatomy
and its variations, where the parameters of the probabilistic
model have been learned from data [1, 7]. It has become an
indispensable tool for medical image analysis. Moreover,
having a shape model of the vestibular system could be fur-
ther used for segmentation applications.

1.1. Related work

There are many applications concerning SSM of dif-
ferent anatomies (i.e., segmentation of brain and cardiac
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structures, orthopedics, and other non-segmentation appli-
cations). However, few works applied SSM to analyzing the
inner ear, most of which focus on the cochlea [6,12,16,17].
The mathematical method developed by Bradshaw et al. au-
tomatically reconstructs the semicircular ducts from high-
resolution computed tomography (CT) images in living hu-
mans [2] using a 2D B-spline contour. Noble et al. [18,
19] presented a point distribution model (PDM) based on
micro-CT images along with an active shape model (ASM)
approach to segment and predict preoperative CT datasets.
The model is based on micro-CTs of cadaveric cochlea
specimens with 36 µm voxel size. The scala tympani and
scala vestibuli were manually segmented to create surface
models. Point correspondences between the surfaces were
generated using an image registration based on the Adaptive
Bases algorithm [20]. In [16], Kjer et al. created an SSM
of the human inner ear from micro-CT data. The cochlea
and structures of the vestibular system were manually delin-
eated based on 17 micro-CT scans of the human temporal
bones. An initial alignment was applied to remove transla-
tional and rotational differences between the samples, fol-
lowed by a multi-level B-Spline registration approach using
bending energy regularization [21]. The resulting transfor-
mations were used to create a statistical PDM of the inner
ear containing 16 modes of variation.

Fritscher et al. [11] introduced a framework for creat-
ing statistical shape and appearance models of the vestibular
system for morphological analysis and the segmentation of
the temporal bone. To find corresponding points across all
subjects, a transformation consisting of two components: a
global rigid transformation and a local deformable trans-
formation, was applied [11]. The resulting deformation
vector fields represented the shape variations among the
training set and were the input for statistical analysis using
Principal Component Analysis (PCA). Furthermore, the ap-
proach presented in [11] was extended to visualize and an-
alyze novel multi-object models [19]. Based on the manual
segmentation of 31 micro-CT datasets of temporal bones
with an isotropic resolution of 15 µm, the SSMs for the
following structures were created: Perilymph, Endolymph,
Bony labyrinth (approximated using a combined label of
endolymph and perilymph), N. ampullaris, N. singularis, N.
facialis.

Recently, another approach for reconstructing semicir-
cular canals (SCC) uses an automatic skeletonization pro-
cess [8]. This approach is based on magnetic resonance
imaging (MRI) scans of 20 individuals. The method com-
putes the geometric parameters of the SCC through a skele-
tonization process of a binary image. The skeletonization
approach uses potential field methods, which track field
lines and potential valleys in a continuous space. Most of
these works mentioned above are based on specimens from
deceased subjects and have limited data for experiments.

High-resolution images are obtained in cadaveric specimens
after cropping the temporal bone around the bony labyrinth.
The preparation and processing of ex-vivo specimens add
consequent effort to acquiring the samples and potentially
impact the data’s quality and usability. While clinical CT
images provide a less detailed representation of the inner
ear, it is the best data source for living VI candidates. This
study is based on existing clinical patient data, which is used
in the regular routine of medical doctors that will, later on,
use the VI. Therefore we wanted to take not artificially pro-
duced data but the kind of images used at the hospitals. The
present work aims to develop and describe a detailed statis-
tical shape model of the human SCC geometry based on an
initial cohort of 81 subjects to serve as design decision sup-
port for a vestibular implant. Using a novel particle-based
shape modeling approach facilitates the design of VI.

2. Materials and methods
2.1. Dataset

Eighty-one cone-beam computed tomography (CBCT)
scans of human temporal bones used for this study were
acquired from Maastricht University, from which 41 were
from the left ear, and the rest were from the right ear. The
age of the subjects ranged from 19 to 88 years, with an av-
erage age of 58.5 years. The group was divided into 44
men with an average age of 57.7 years and 37 women with
an average of 59.3 years. The images in the dataset were
acquired over a period of approximately ten years with dif-
ferent slice thicknesses. Some scans have a resolution of 0.4
mm and others 0.6 mm. The segmentations performed by
medical experts include hearing bones, vestibular organs,
and the facial nerve.

The dataset used in this work did not include abnormal
anatomy. Exclusion criteria were applied due to missing
CTs in the dataset, with only segmented labels available,
and segmentations containing gaps in the canals. In total,
71 subjects were considered to create the SSM.

2.2. Statistical shape modeling

The approach presented by Cates et al. [4, 5] to establish
correspondence has been used for the creation of the SSM.
The general strategy of Particle-Based Modeling (PBM) is
to represent correspondence points as interacting sets of
particles, one for each shape, that redistribute themselves
under an energy optimization and therefore describe the sur-
face geometry [4]. The optimization function finds corre-
spondence positions that minimize the entropy of the model.
A more detailed description of the PBM method is referred
to [5]. Since the vestibular system is a very complex struc-
ture, the PBM method suits well since its particle system
formulation captures better-detailed areas by increasing the
particle distribution rates in the higher curvature regions.
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The PBM is defined as a collection of n shapes of k cor-
respondence points. In our experiments, n is the number
of SCC segmentations (n = 71), and k represents the num-
ber of landmarks used to describe each surface. The corre-
spondences among the SCC segmentations are determined
by running the PBM method to define a set of k corre-
spondence landmarks x; where point xi on shape number 1
matches to point xi on shape 2, 3, 4,. . . , n and i = 1,. . . , k.
Several experiments were carried out to set parameters for
obtaining an optimal and detailed shape representation of
the SCCs embedded in the bone structures of the inner ear.
The final shape model of the SCC surface was constructed
using 4096 correspondence particles per shape. This num-
ber of points was chosen by adding particles until the rep-
resentation was able to recover anatomically plausible and
accurate SCC shapes, and increasing this number did not re-
veal additional details. The experts quantitatively validated
the final number of points for the surface representation at
our research group (Institute of Biomedical Image Analy-
sis) by visualizing and comparing the results with the given
segmentations.
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Figure 1. ShapeWorks pipeline. First, the binary segmentations
need to be converted to signed DT using a set of grooming steps.
After the ShapeWorks optimization stage, statistical analysis is
performed using PCA. The mean and modes of shape variation
are computed based on the optimized correspondence model. Im-
age modified from [3].

This work uses an open-source distribution of the PBM
algorithm called ShapeWorks [3], developed at the Univer-
sity of Utah. ShapeWorks is a publicly available tool with a
pipeline of pre-processing steps required before computing
the correspondence points. The optimization phase initial-
izes the particle system and runs the PBM algorithm. It
takes an initial set of particle positions and the processed
data to the signed distance transform to construct the cor-
respondence point model of shape Fig. 1. After the Shape-
Works Optimize step, we have a correspondence model for
the population. Then, PCA was used to reduce the high
dimensionality of the data matrix required to examine vari-

ation among the different SCC structures while still retain-
ing most of the geometric information of the shapes. PCA
isolated the modes of variation from the optimized corre-
spondence particle locations. Once the m PCA modes that
contain substantial variation are chosen, the model can rep-
resent every SCC shape in the set as an m-dimensional vec-
tor of scalar values. The shape variations are analyzed by
examining the shape described by each principal compo-
nent (PC), moving between ± 2 standard deviations from
the mean in that PC.

3. Results
3.1. Data processing

The segmentation quality of the data was not sufficient,
and manual clean-up was needed before using the dataset
for further processing in the construction of the SSM (Fig-
ure 2a). Small holes and voxel-islands caused by manual
segmentation were removed using a connected component
analysis and morphological closing operation [25]. Then,
the noticeable defects not eliminated by the pre-processing
algorithms were corrected by hand using the 3D Slicer tool-
box. Since the focus in this work is concerned with the
SCCs, only the segmented labels, including it, were consid-
ered.

(a) (b)

Figure 2. 3D view of two dataset samples (a) before and (b)
after pre-processing. All the segmentations were mirrored and
aligned. Small holes and voxel-islands caused by manual segmen-
tation have been removed using morphological operations.

All the right inner ears were mirrored so that all datasets
appear to be of a left inner ear in order to obtain consistent
data (Fig. 2b). First, a transformation including mirroring
was calculated using the provided fiducial points in each
semicircular canal and applied to all datasets on the right
side. Next, all the datasets were aligned using a two-step
registration process [25]. The fiducial points were used to
apply for an initial rigid point base registration. Then, an
additional rigid registration was applied using the former
stage as initialization to avoid dependence on fiducials from
unknown precision.

All images were resampled using linear interpolation
with an isotropic voxel resolution of 0.15 x 0.15 x 0.15 mm.
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(a)

(d)

(b)

(c)

Figure 3. a) Mean shape. b) Compactness, c) Generalization, and d) Specificity of the SCC shape model.

The size was set to 300 x 300 x 300 voxel ROI spanning. At
the time of writing, the selected SSM software in this study
needed all the data with the same size, and the voxel spac-
ing equals 1. Thus, the volumes were artificially scaled up
by setting the spacing to 1.0 x 1.0 x 1.0 mm. More de-
tails about the registration and processing of the data can be
found in [25].

3.2. Statistical shape model of the vestibular organ

The resulting mean shape after generating the SSM of
the vestibular system using the PBM algorithm is visualized
in Fig. 3a.

The vestibule’s SSMs with different points were gener-
ated and analyzed, showing that poor reconstructions are
observed with a smaller number of particles, especially
along the canals. In our experiments, increasing the parti-
cle counts further than 4096 does not significantly improve
the model’s accuracy but increases the complexity of the
model and computational time. The optimization routine
using 4096 particles in a computer with 96 GB of RAM
and an Intel Core i7 processor took approximately 7 hours.
The duration of the optimization with 256, 1024, and 8192
particles was around 0.31, 1.3, and 14 hours respectively.

3.3. Principal component analysis

The PCA shape decomposition is able to represent 95%
of the variation among SCC using 26 modes. The first three
modes captured 57.7% of the cumulative variation among

S1

S2

Figure 4. Distribution of input datasets with respect to PC1 and
PC2. The red dot represents the mean shape. S1 is the closest
shape to the mean and S2 is a random shape distant from the mean.

all shapes. Specifically, mode 1 captured 28.0% of the
variation, followed by mode 2 at 20.3%, and mode 3 at
9.4%. Knowledge of the position of different datasets in
PCA space is significant for identifying similar shapes and
datasets that are close to the mean shape. Therefore, the PCs
covering the highest amount of shape variation were used to
analyze the distribution of the datasets in PCA space Fig. 4.

Shape variations of the first four modes were investigated
to analyze the influence of specific PCs on the SSM. Fig. 5
shows the mean correspondence positions from the model
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Figure 5. Influence of different PCs on the shape variation. The mean shape is in the center. In the left and right columns, deformation
is represented as a color map, and the mean shape is visualized as opaque. The color maps represent the distance for any value inside the
geometry with a negative value (blue) and outside the geometry with a positive value (red). The arrows highlight some relevant parts of the
shape variations.

moved along each of the top four PCA modes. SCC shapes
along each mode are reconstructed from the learned PBM
model parameters at –2 to +2 standard deviations from the
mean.

From Fig. 5, we can interpret that the first PC causes
size changes of the SCC. Variation in a positive direction
describes a shrinkage, whereas changes in the negative di-
rection result in an enlargement of the SCC. The extent of
variation in the lateral canal is less compared to the posterior
and superior canals. By looking at Fig. 5, PC2 affects the
area where the superior and lateral canals converge. Mov-
ing in a positive direction leads to an enlargement of the
posterior canal. PC1 and PC2 cause size variations in the
vestibule area. From –2 to +2, the vestibule area results in

a shrinking and vice-versa. PC3 mainly captures changes
in the middle part of the lateral semicircular. PC4 primarily
influences the area of the posterior semicircular canal and
the superior semicircular canal. Looking at Figure 6, we
can tell that the shape outlier S2 from the plot in Figure 5
has a large vestibule area and a large size of the canals.

3.4. Shape model evaluation

A substantial part of the creation of SSM is to vali-
date the results. Intuitively a first qualitative approach is
the visual inspection of the shape instances that the model
is able to create. When shapes have point-to-point corre-
spondence, an SSM is evaluated using more objective ac-
cepted measures, namely Generalization, Specificity, and
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Compactness, which are considered as useful benchmarks
for measuring correspondence quality [9, 22].

Figure 3(b,c,d) shows the evaluation of the SSM con-
cerning compactness, generalization, and specificity with
an increasing number of modes of variation included.
Briefly, the generalization measures the model’s ability to
represent unseen shape instances of the class. It is per-
formed using leave-one-out cross-validation reconstruction
experiments. The generalization error is expected to de-
crease with an increasing number of model parameters.
Specificity measures whether the model can generate in-
stances of an object close to those presented in the train-
ing set. It is measured by generating a large number of N
random instances (N = 1000 in our experiments) using dif-
ferent modes. For every new sample, compute the distance
to the closest shape in the training set. The mean distance
error is expected to increase with more parameters, as the
increasing number of PCs gives more flexibility to shape
reconstruction. The compactness of the model is the abil-
ity to use as few parameters as possible to represent more
shape instances in the training sets. Compactness is defined
as the cumulative variance of the M largest modes.

3.5. Reconstruction accuracy

The reconstruction accuracy of the model has been eval-
uated by computing the mean surface distance between ap-
proximated model instances and input segmentations to en-
sure that each shape in the training set is well represented.
The landmarks of the shape model constitute a point cloud.
To represent an instance of the training data, the point cloud
should cover the important part of the shape. The origi-
nal mesh is obtained from the distance transform created
from the initial manual segmentation and then compared to
a mesh reconstructed from the predicted PBM. We compute
the Hausdorff distance (mm) that takes the max of these
vertex-wise distances to return a single value as a measure
of accuracy [15]. The results after computing the Hausdorff
distance range from 1.15 to 4.91 mm. The mean surface-to-
surface distance was 2.42 mm (0.87 Std. Dev.).

4. Discussion and conclusion
This study aimed to explore and analyze the shape vari-

ations of the vestibular system for further application of the
electrode placement for VI. To control design and implant
variables, having realistic and detailed computational mod-
els of the SCC are needed, including population variability.
This work describes the first stage, having the model which
can be used currently for design decision support of an im-
plant.

An important aspect in this work was the use of data sets
that are acquired in clinical practice. On the other hand,
the quality of the data, especially the resolution and con-
trast of the scans and the accuracy of the manual segmen-

tation, was a major concern. In some samples, the spacing
between voxels is so low that the SCC consists of a sin-
gle voxel across the entire diameter. In addition, due to the
different voxel spacings for all images, resampling the vol-
umes introduces even more artifacts. A challenge during
the construction of the shape models is the methodology
for creating point correspondences between the data. The
initial shape model contained imperfections due to bad cor-
respondences, which was alleviated with the application of
a smoothing filter. Several experiments were carried out
to establish the parameters to obtain an optimal SSM of
the SCCs. Increasing the number of particles above 4096
does not significantly improve the shape representation of
the model in the sense that no additional anatomical details
become visible, but increases model complexity and com-
putational time, especially when modeling such a complex
structure as the vestibule and larger datasets. Therefore, a
balance between a good representation and the number of
particles is necessary. In general, the rest of the parameters
involved in the optimization do not significantly affect the
final model for this dataset.

The analysis of the shape variation based on the princi-
pal modes could help to find some outliers. Of course, it
is mainly a proof-of-concept since the model is built with
a small number of datasets, and therefore the representa-
tion of actual anatomy is not proved completely. Neverthe-
less, the accuracy tests have shown that the generated model
based on the 71 segmentations approximated the shape of
the vestibular system with reasonable accuracy. A lower
generalization and specificity error is desirable for an ideal
shape model, but Fig. 3(c, d) indicates that they move in op-
posite directions with an increasing number of model com-
ponents. The compactness is also essential to guarantee that
most of the shape variation is captured by the model us-
ing as few model parameters as possible. So how many
components should be used to represent 90% or more of
the shape variation is still a very interesting question when
dealing with biological data, and a trade-off between these
three metrics is necessary. In our model, 17 PCs are suf-
ficient to represent 90% of the variation. For representing
more than 95%, the gains in compactness and generaliza-
tion are very light after 30 PCs, and there is a diminishing
penalty in specificity as the number of components in the
model increases. This flattening of the curve mainly occurs
between 20 and 30 components. With more than 30 compo-
nents used, the model constructed has the best performance,
but also more noisy shape variation is introduced, and more
computation is required to fit our models.
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Gabriel Zsemlye, Gábor Székely, Christopher J. Taylor, and
Rhodri H. Davies. Evaluation of 3d correspondence methods
for model building. In Information Processing in Medical
Imaging, volume 2732, pages 63–75. Springer Berlin Hei-
delberg, 2003.

[23] Daniel Q. Sun, Bryan K. Ward, Yevgeniy R. Semenov,
John P. Carey, and Charles C. Della Santina. Bilateral
vestibular deficiency: quality of life and economic impli-
cations. JAMA Otolaryngology–Head & Neck Surgery,
140(6):527, 6 2014.

[24] Michael von Brevern and Hannelore Neuhauser. Epidemi-
ological evidence for a link between vertigo and migraine.
Journal of Vestibular Research, 21(6):299–304, 2011.

[25] Matthias Willenbrink. Segmentation of the vestibular organ
with statistical shape models and deep neural networks. Mas-
ter’s thesis, UMIT Private Universität für Gesundheitswis-
senschaften, Medizinische Informatik und Technik GmbH,
2021.

38



[26] Jennifer Wipperman. Dizziness and vertigo. Primary Care:
Clinics in Office Practice, 41(1):115–131, mar 2014.

39


