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Abstract

To fight the growing problem of fake news – and specif-
ically image manipulation – we propose a simple, yet effi-
cient neural network architecture for detecting and localiz-
ing various image forgeries on a pixel-level. Robust fea-
tures for forgery detection and localization were learned
and the trained model performs well, even on heavily down-
scaled images, but without the excessive processing time of
competitive approaches based on image decomposition and
merging of the fragmental results. We provide detailed ex-
planations regarding the creation of our training dataset
comprising 1.9 million images. Finally, we compare the
proposed solution against several state-of-the-art methods
on four public benchmark datasets in order to demonstrate
its superior performance.

1. Introduction
”Fake News” are a growing problem of our society.

Technological progress makes it easier and faster to pro-
duce high quality forgeries of digital media material such as
audio, video and images. The impact ranges from satirical
memes to orchestrated political Fake News campaigns aim-
ing to influence public opinion – and at the same time rais-
ing the hard question where to draw a line between fighting
Fake News and the fundamental right of free speech. In this
paper, we present a new approach for identifying forged re-
gions in images, thereby enabling institutions such as media
organizations and interested citizens to get a better indica-
tion of whether specific images may have been manipulated.

During the last decade, various approaches for detect-
ing the main categories of image forgery were proposed:
copy-move [9] splicing [11], inpainting [8] and further spe-
cific filtering, subsumed as enhancement [20]. However,
these approaches frequently focus on specific features of
the respective manipulation type. In recent years, more gen-
eral approaches for multiple manipulation types were devel-
oped, such as [24] and [23]. Each of them promotes sophis-
ticated and problem-specific concepts, like modeling known
and unknown noise on images that result from transmis-

Forged Image Ground Truth Output

Table 1. Results of our model for image forgery detection and
localization. Example images are taken from the CASIA [4] and
the NIST [15] datasets.

sion to Online Social Networks (OSNs). In this paper, we
present an image forgery detector which outperforms state-
of-the-art approaches with a quite simple and general deep
learning network architecture and a carefully constructed
training dataset. To be more specific, our major contribu-
tions are as follows:

• We propose a deep learning network architecture for
the task of image forgery detection and localization,
capable to learn relevant features for composed image
manipulations.

• We present a model that outperforms current state-of-
the-art (SOTA) approaches on four public benchmark
datasets.

• We present a processing time comparison with a SOTA
approach showing a significant time saving, especially
for larger images.

• We give a detailed description of our training dataset,
as well as instructions on how to generate such a
dataset.

2. Related Work
Many methods of detecting and localizing image forgery

have been published (see, for example, the review of [21]
and references therein), in order to ensure visual informa-
tion authenticity. Some of these forensic techniques are de-
signed to detect specific forms of tampering, such as splic-
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ing [11], copy-move [12, 16, 22, 25–27], and inpainting [8].
Unfortunately, these forensic approaches can only be ap-
plied to detect specific tampering manipulations.

In recent years, deep learning-based methods were de-
veloped to address the problem of detecting general (com-
pound) types of forgeries. In [28], a two-stream Faster R-
CNN network is trained end-to-end to detect the tampered
regions in a manipulated image. One of the two streams is
an RGB stream whose purpose is to extract features from
the RGB image input. The other one is a noise stream that
leverages the noise features extracted in order to discover
noise inconsistencies between authentic and tampered re-
gions. Notably, [24] proposes a unified deep neural archi-
tecture called ManTra-Net, which is an end-to-end network
that performs both detection and localization without extra
preprocessing and postprocessing. ManTra-Net is a fully
convolutional network which can handle images of arbitrary
sizes and many known – and even unkown – forgery types.
Furthermore, the authors design a self-supervised learning
task to learn robust image manipulation features, formu-
late the forgery localization problem as a local anomaly
detection problem, and propose a long short-term memory
(LSTM) solution to assess local anomalies.

In [13], a CNN-based image forgery detection frame-
work is proposed which makes decisions based on full-
resolution information gathered from the entire image,
without the need for preliminary image resizing. The frame-
work is trainable end-to-end with limited memory resources
and weak (image-level) supervision, thus allowing for the
joint optimization of all parameters. The work of [29] ad-
dresses the issue of tampering localization by focusing on
the detection of commonly used editing tools and opera-
tions in Photoshop. A fully convolutional encoder-decoder
architecture is designed, as well as a training data genera-
tion strategy by resorting to Photoshop scripting.

The widespread availability of online social networks
(OSNs), e.g., Twitter, Facebook, Whatsapp, etc., makes
them the dominant channels for transmitting forged images.
However, almost all OSNs manipulate the uploaded images
in a lossy fashion (including format conversion, resizing,
enhancement filtering and JPEG compression). The noise
introduced by these lossy operations could severely affect
the effectiveness of forensic methods. In a recent paper
[23], the problem of OSN-shared image forgeries is tackled
by employing a dedicated training scheme. A baseline de-
tector is presented, which is based on a modified U-Net [17]
as the backbone architecture. Next, an analysis of the noise
introduced by OSNs is conducted, and the noise is decou-
pled into two parts, i.e., predictable noise and unseen noise.
These are then modelled separately and the modelled noise
is further incorporated into the training framework.

Outline: The rest of this paper is structured as follows:
Section 3 describes in detail how the datasets for training

and validation were generated. In section 4, we present dif-
ferent models we have created, evaluate them on benchmark
datasets, and describe the architecture of the best perform-
ing model in detail. In section 5, our proposed network is
evaluated and compared to state-of-the-art methods. Final
remarks are made in section 6.

3. Datasets
Currently, there are no sufficiently large training datasets

publicly available for the task of image forgery detection. In
the following, a detailed description is provided, of how our
training dataset, which comprises 1.9 million manipulated
images, was created.

3.1. Training and Validation Datasets

As a source of pristine and donor images we facilitated
the MS-Coco [10] 2017 training dataset containing 118K
images. This public and widely used dataset encompasses
a wide range of images. Our training dataset includes 4
major types of image manipulation: splicing, copy-move,
removal and enhancement. The overall process for training
data generation was as follows:

1. Select Pristine Image:
A pristine image IP from MS-COCO 2017 was se-
lected randomly. For the few images with width
W or height H smaller than 224 pixels, the image
was resized to the size (max(W, 224),max(H, 224)).
For 50% of the images IP in the training dataset,
a proportion-preserving downscaling was executed.
This avoided extracting only small portions of big-
ger images (like a monochrome patch depicting a part
of the sky from the original image). This scaling for
an image IP with size (W,H) to (Wnew, Hnew) was
done as follows:

Wnew = max(⌊( 224 ·W
min(W,H)

)⌉, 224)

Hnew = max(⌊( 224 ·H
min(W,H)

)⌉, 224)

IP = IP .resize((Wnew, Hnew))

(1)

Next, a patch of size (224, 224) pixels is randomly
chosen from the image IP and used as a pristine image
patch P .

2. Select Donor Image:
A donor image ID from MS-COCO was selected.
For the splicing operation, a random image other than
the pristine image IP was selected. For the copy-
move, removal and enhancement manipulations, the
same pristine image was selected as a donor image
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Forgery Type Manipulation Mask
Shape

Copy-Move triangle

Enhance rounded rectangle

Enhance ellipse

Removal poligon 5 vertices

Copy-Move ellipse + 4V polygon

Copy-Move superpixel segmentation

Splicing person segmentation

Table 2. Training and Validation data: showing forged images for
major manipulation types and related manipulation mask shapes

(ID = IP ). Then, a donor patch D of size (224, 224)
was randomly cropped from ID. For enhancement and
removal (inpainting) manipulations, the donor patch D
and the pristine patch P share the same location in
ID = IP .

3. Preprocess Donor Image Patch D:
Table 4 shows which preprocessing steps may be

applied to the donor image patch D for each manip-
ulation type. Resample rescales the height and the
width image dimension independently by 70 to 130
percent. The resulting image has at least the size
(224, 224). The preprocessing step Flip flips the
donor image horizontally with a likelihood of 50%,
while Rotate rotates the image by either 90, 180 or
270 degrees with a likelihood factor controlled by a
parameter (for the generated dataset, 30% of the donor
images were rotated). Blur is blurring the donor image
with a likelihood of 50%. In case the blurring fil-
ter is applied, either ImageFilter.BoxBlur
or ImageFilter.GaussianBlur from
the Python package PIL are used with equal
probabilities. The blur radius is set ran-
domly between 1 and 7 pixels. Contrast
uses one of the ImageFilters EDGE ENHANCE,
EDGE ENHANCE MORE, SHARPEN, UnsharpMask
or ImageEnhance.Contrast from the Python
package PIL. Noise adds Gaussian noise with mean
and standard deviation (µ, σ) = (0, 12) with like-
lihood of 1 out of 3. The Brightness is changed
with probability of 50% by a factor uniformly
chosen from the range [0.5-1.5]. With 0.5 prob-
ability, a JPEG-Compression with quality factor
10x for x ∈ [1, 2, 3, 4, 5, 6, 7] is employed. In
case the manipulation type is Removal, an in-
painting filter from OpenCV [2] is applied (either
cv2.INPAINT TELEA or cv2.INPAINT NS) on
the manipulation mask defined in the next step.
In case the chosen manipulation type is Enhance and
none of the filters (blur, contrast, noise, brightness,
jpeg compression) were applied to the donor patch D,
the process is repeated.

4. Create Binary Manipulation Mask
7 types of binary masks were used to define the region
in an image where manipulations have been executed
(see Tab. 3). In Table 2, various examples for created
masks and the resulting forged images are shown. The
Python’s image processing toolbox scikit-image is em-
ployed to segment the donor patch in Superpixels [1]
of appropriate size, and selects one Superpixel (con-
nected set of pixels) for the splicing manipulation. The
”person segmentation” uses the segmentation ground
truth from the MS-COCO dataset. All pixels from a
donor image patch D marked as person are selected
and used as splicing input. Masks are recalculated if
their portion of the image patch is not in the range of
5% to 40%.

5. Generate Forged Image
Given a pristine patch P , a donor patch D, a manipula-
tion m and a binary manipulation mask M, the forged
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Shape of Mask Parameters Impact
Triangle p1, p2, p3 3 random points
Rounded Rectangle X,Y, r 2 points for Bbox; radius of the corners
Ellipse X, Y 2 points to define the bounding box
Polygon with 5 vertices p1,. . . ,p5 sequence of 5 random points
Ellipse + Polygon with 4 vertices X,Y, p1,..,p4 ellipse + 4 vertex polygon
Superpixel Segmentation [min, max] range for number of Superpixels
Person Segmentation -

Table 3. Types of mask shapes generated for local image manipulation

image X is given by

X = M · P + (1−M) ·m(D) (2)

meaning that each pixel of the resulting image X is
taken either from the pristine patch P or the manip-
ulated donor patch D, depending on the binary mask
M. In case of a copy-move manipulation, an addi-
tional translation of the copied image part (1 − M) ·
m(D) towards another position in the pristine image
patch is made.

Using this process, a training dataset with 1.9 million
forged images was generated, comprised of 700, 000 splic-
ing, 500, 000 copy-move, 400, 000 enhance and 200, 000
inpainting images as their main forgery type. This training
dataset was used in Section 4 for model training.

Manipulation-Type C S R E
Resample × × – –
Flip × × – –
Rotate × × – –
Blur – – – ×
Contrast – – – ×
Noise – – – ×
Brightness – – – ×
JPEG-Compression – – – ×

Table 4. Preprocessing steps for donor image per manipulation
types: Copy-Move (C), Splicing (S), Removal (R) and Enhance-
ment (E)

4. Network Architecture Evaluation
In this section we implemented several network archi-

tectures for image forgery detection and localization. The
models were trained on the dataset created in Sec. 3. The
problem of image forgery detection and localization is es-
sentially a segmentation problem in which each pixel is
classified as an original or a manipulated pixel. For this
task, U-Nets are a well established network architecture and
we present 3 variants of U-Net models with promising per-
formance, evaluate them on 4 benchmark datasets and de-
scribe the best performing model in more detail.

4.1. Models and Evaluation

MobileNet - MoNet: This model is a modified U-
Net. U-Nets consist of an encoder for downsampling and
a decoder for upsampling. MobileNetV2 [19], pretrained
on Imagenet, is used as an encoder. MobileNet [5] is a
lightweight architecture that has already learned robust fea-
tures in the context of image classification and hence al-
lows to reduce the number of trainable parameters. For up-
scaling, the Tensorflow implementation of pix2pix [7] was
utilized. Furthermore, 5 skip connections between output
layers from downsampling and layers form the upsampling
part were established.
U-NET: This network is one implementation of the original
U-Net architecture [17].
SE-UN: Our improved version of U-NET architecture,
which adds a recalibration with Spatial and Channel
Squeeze & Excitation Blocks [18].

Table 5 shows results for the three network architec-
tures evaluated on the benchmark datasets CASIA [4],
Columbia [6], DSO [3] and NIST16 [15].

While the MobileNet implementation (MoNet) gives the
best results for the metrics F1 and IoU averaged over all
4 benchmark datasets, SE-UN performs better for AUC and
the pixel-wise accuracy. Since the average over all 4 metrics
is higher for the latter model (0.574) compared to MoNet
with a score of 0.566, we chose our U-Net variation with ad-
ditional Spatial Channel Squeeze and Excitation (SE-UN)
for further experiments and SOTA comparison. The archi-
tecture is depicted in more detail in Fig. 1.

4.2. Implementation Details

The deep learning framework Tensorflow was used for
training our network. For training and detection, the images
were resized to (224, 224) pixels. An Nvidia GeForce
GTX 1080 Ti GPU was used for training, with batch size
set to 16. We use Adam optimizer and perform 1500 steps
per epoch and stop after the loss of the validation dataset did
not improve for 35 epochs. Training starts with a learning
rate of 0.00006, which is halved after 20 epochs without
improvement.
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Test Datasets
Models DSO [3] Columbia [6] NIST [15] CASIA [4] Average

AUC F1 IoU ACC AUC F1 IoU ACC AUC F1 IoU ACC AUC F1 IoU ACC AUC F1 IoU ACC all
MoNet .690 .348 .227 .716 .781 .663 .568 .829 .660 .257 .195 .833 .723 .384 .306 .878 .713 .413 .324 .814 .566
U-NET .599 .098 .061 .835 .803 .519 .411 .802 .655 .222 .174 .897 .750 .212 .176 .924 .701 .263 .206 .864 .508
SE-UN .732 .152 .108 .848 .827 .503 .428 .827 .780 .265 .221 .921 .851 .429 .369 .929 .797 .337 .282 .881 .574

Table 5. Comparison of three developed U-Net architectures (MoNet, U-NET, SE-UN) by AUC, F1 and IoU metrics.

Figure 1. Our proposed network: A U-Net architecture with 4 skip
connections and spatial channel Squeeze & Excitation (scSE) ex-
tension. Two (3x3)-convolutions combined with one scSE layer,
a batch normalization (BN) layer and a Relu activation layer form
the building blocks, followed by Max-pooling (encoder) respec-
tively upscaling (with a Conv2DTranspose layer in the decoder
part on the right side). The expected input image size (H,W ) =
(224, 224).

4.3. Image Manipulation Classification

To investigate the capability of our networks to han-
dle the image manipulation classification (IMC) task, we
trained the encoder part of our MoNet model with an addi-
tional Softmax layer to detect one of the 4 main manipula-
tion types (splicing, copy-move, removal, enhancement) as
the outcome. We trained on a dataset created according to
Sec. 3 with one million images divided into 4 classes. For
an evaluation dataset with 1,200 images created similarly
to the training dataset, a classification accuracy of 94, 92%
was achieved, thus showing the capacity of the model for
the classification task.

5. Experimental Evaluation
5.1. SOTA Comparison

The proposed model SE-UN was compared with 4 state-
of-the-art methods: ForSim [14], DFCN [29], ManTra-Net

[24] and OSN [23]. We used the officially released models
from the latter two approaches to evaluate the methods on
the four benchmark datasets CASIA V1 [4], Columbia
[6], DSO [3] and NIST16 [15]. For DFCN and ForSim, we
listed the results from [23]. As metric, the Area Under the
Receiver Operating Characteristic curve (AUC) was chosen
as it is widely used in the research field of image forgery
detection. As in previous works (e.g. [23]), the ground truth
mask is inverted if it sums up to more than 50%) of the
image. This seems in line with the principal concept of ma-
nipulation detection, although it has an insignificant impact
on the overall metric scores.

As shown in Table 6, our approach performed best on the
Columbia, NIST16 and CASIA datasets. Only for the
DSO dataset, the ForSim achieved the highest AUC value.
With an average AUC-value of 79.7 our approach outper-
formed OSN, the second best performing approach, by 5.3
points. Table 7 shows examples from each of the benchmark
datasets, comparing the three methods with the highest av-
erage AUC values.

5.2. Processing Time

Our proposed SE-UN model is trained on images of size
(224, 224). Therefore, for the purpose of evaluation, im-
ages are first rescaled to this size. The learned network
features are so robust, that they are capable to predict forg-
eries with SOTA performance even on down-scaled images.
This brings significant advantages compared to other ap-
proaches ( [13], [23]), which make decisions base on full
resolution information gathered from whole images. In Ta-
ble 8, we show a comparison with [23] of the processing
time when predicting all images for each of the benchmark
datasets. For datasets with images of smaller size (CASIA,
Columbia), the processing time of our approach and the
OSN [23] method is on the same scale. For datasets with
larger images (DSO, and specifically NIST), the processing
time for OSN rises rapidly with the size of the images. The
reason is that, for the 564 images of the NIST dataset, this
approach produces 24,996 tiles from the original images,
executes forgery detection on each of these image parts, and
finally merges the result for the predicted outcome per im-
age.
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Models AUC of Test Datasets
DSO [3] Columbia [6] NIST [15] CASIA [4] Average

ForSim [14] .796 .731 .642 .554 .681
DFCN [29] .724 .789 .778 .654 .736
ManTra-Net [24] .795 .747 .634 .776 .738
OSN [23] .723 .815 .686 .751 .744
SE UN (ours) .732 .827 .780 .851 .797

Table 6. Comparison of our SE UN model with SOTA methods using AUC metric on four benchmark datasets. The highest value per
column is bold
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Table 7. Examples of qualitative comparison of MantraNet [24], OSN [23] and our proposed forgery detector. Each line shows one example
image for each of the four benchmark datasets DSO [3], Columbia [6],NIST [15], CASIA [4]. The five columns show: the forged image
(input), manipulated area (ground truth), results (output) from MantraNet, OSN and our detector.

Dataset # Images Format t-OSN t-Ours
CASIA [4] 920 jpg 169 94
Columbia [6] 160 tif 120 178
DSO [3] 100 png 701 20
NIST [15] 564 jpg 15250 188

Table 8. Processing time (t) in seconds for prediction per bench-
mark dataset. For datasets with huge images as NIST (images of
size up-to 5616×3744 pixels) tile-based approaches considerably
take longer than approaches performing pre-scaling.

6. Conclusion

In this paper, we propose a new network model for
image forgery detection. The proposed approach reaches
and exceeds state-of-the-art performance on various bench-
mark dataset. The relatively simple network architecture

learns very robust features from scratch from the presented
dataset. Even on heavily down-scaled images, the detector
delivers very good results, and a considerable processing
time advantage for bigger sized images compared to com-
petitors.
Our model can detect compound and unseen forgeries
of postprocessed images (as included in the benchmark
datasets). But still, the fact that our model achieves pixel-
wise accuracy rates of 99% on a validation dataset cre-
ated similarly to the training dataset, but about 88% on the
benchmark datasets used for evaluation shows potential for
more improvement of the detector by generating more chal-
lenging training data.

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien

Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic superpix-
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