

Raphael Watschinger

Fast space-time boundary element methods
for the heat equation

Monographic Series TU Graz

Computation in Engineering and Science

Series Editors

G. Brenn Institute of Fluid Mechanics and Heat Transfer
G. A. Holzapfel Institute of Biomechanics
W. von der Linden Institute of Theoretical and Computational Physics
M. Schanz Institute of Applied Mechanics
O. Steinbach Institute of Applied Mathematics

Monographic Series TU Graz

Computation in Engineering and Science Volume 44

Raphael Watschinger

Fast space-time boundary element methods for the heat equation

This work is based on the dissertation “Fast space-time boundary element methods
for the heat equation”, presented at Graz University of Technology, Institute of
Applied Mathematics in 2022.

Supervision / Assessment:
Günther Of (Graz University of Technology)
Johannes Tausch (Southern Methodist University, Dallas)

Cover Verlag der Technischen Universität Graz

Cover photo Vier-Spezies-Rechenmaschine

by courtesy of the Gottfried Wilhelm Leibniz Bibliothek

Niedersächsische Landesbibliothek Hannover

Print Buchschmiede (Dataform Media GmbH, Vienna)

2023 Verlag der Technischen Universität Graz

www.tugraz-verlag.at

Print

ISBN 978-3-85125-949-0

E-Book

ISBN 978-3-85125-950-6
DOI 10.3217/978-3-85125-949-0

This work is licensed under the Creative Commons
Attribution 4.0 International (CC BY 4.0) license.
https://creativecommons.org/licenses/by/4.0/

This CC license does not apply to the cover, third party material
(attributed to other sources) and content noted otherwise.

Abstract

In this thesis we consider space-time boundary element methods for the solution of the
heat equation. Since the system matrices in boundary element methods are generally
dense, fast methods and related matrix compression algorithms are required to solve
large systems in a reasonable amount of time. The main focus in this work lies on
the extension of such a fast method, the parabolic fast multipole method (pFMM),
to be able to exploit the frequently mentioned advantages of space-time methods:
the possibility for a parallelization in space and time and space-time adaptivity.

In classical time stepping methods for the solution of time-dependent partial dif-
ferential equations the occurring systems of linear equations are solved sequentially
in time and, therefore, only a parallelization with respect to the spatial variables is
possible. In space-time methods the whole space-time system can be solved at once,
which enables an additional parallelization in time. Such a parallelization in space
and time of a fast boundary element method for the solution of the heat equation
is considered for the �rst time in this work. We provide an implementation of the
parallel method for the execution on modern computer clusters and demonstrate a
high parallel scalability in numerical experiments.

The other substantial modi�cations of the pFMM in this work improve the perfor-
mance of the method when locally re�ned meshes are used for the discretization
of the corresponding boundary integral equations. In particular, we introduce new
FMM operations for tensor product meshes with adaptively chosen time step sizes
and a new method for the compression of the temporal near�eld, which is especially
relevant for meshes with adaptively re�ned spatial elements. In several numerical
experiments we demonstrate the corresponding improvements.

In addition to the mentioned improvements of the parabolic multipole method, we
consider an integration by parts formula for the hypersingular boundary integral
operator of the heat equation in the theoretical part of this thesis. While such a
formula is available in the literature, it contains a problematic integral term with a
non-integrable kernel function. Furthermore, a proof of the formula is missing. We
close these gaps by providing a rigorous proof of the integration by parts formula
and an alternative, well-de�ned representation of the problematic integral term.

Zusammenfassung

In dieser Arbeit werden Raum-Zeit-Randelementmethoden zur Lösung der Wärme-
leitgleichung betrachtet. Da die Matrizen der Gleichungssysteme bei Randelement-
methoden im Allgemeinen vollbesetzt sind, werden schnelle Methoden, beziehungs-
weise spezielle Matrixkompressionsalgorithmen benötigt, um gröÿere Gleichungssy-
steme in angemessener Zeit lösen zu können. Der Schwerpunkt dieser Arbeit liegt
auf der Weiterentwicklung einer solchen schnellen Methode, der parabolischen Mul-
tipolmethode (pFMM), um die häu�g genannten Vorteile von Raum-Zeit-Methoden
ausnutzen zu können: Die gute Parallelisierbarkeit und lokale Adaptierbarkeit in
Raum und Zeit.

Bei klassischen Zeitschrittverfahren zur Lösung zeitabhängiger partieller Di�erential-
gleichung werden die entsprechenden Gleichungssysteme schrittweise in der Zeit ge-
löst, weshalb nur eine Parallelisierung bezüglich der örtlichen Freiheitsgrade möglich
ist. Bei Raum-Zeit-Methoden kann hingegen das gesamte Raum-Zeit-Gleichungssys-
tem auf einmal betrachtet und gelöst werden, was eine zusätzliche Parallelisierung
in der Zeit ermöglicht. Eine solche Raum-Zeit-Parallelisierung für schnelle Randele-
mentmethoden zur Lösung der Wärmeleitgleichung wird in dieser Arbeit erstmals
betrachtet und für die Ausführung auf modernen Supercomputern implementiert. In
verschiedenen numerischen Experimenten wird eine hohe parallele Skalierbarkeit der
Methode gezeigt.

Die weiteren Anpassungen der pFMM, die in dieser Arbeit präsentiert werden, sor-
gen für eine höhere E�zienz der Methode, wenn lokal verfeinerte Netze zur Diskre-
tisierung der entsprechenden Randintegralgleichungen verwendet werden. Konkret
werden neue Multipoloperationen für Tensorproduktnetze mit adaptiv gewählten
Zeitschrittweiten eingeführt, und eine neue Methode zur Kompression des zeitlichen
Nahfelds, die insbesondere bei Netzen mit adaptiv verfeinerten Ortselementen von
Bedeutung ist. In zahlreichen numerischen Experimenten werden die positiven Ef-
fekte dieser Anpassungen demonstriert.

Zusätzlich zu den angeführten Verbesserungen der parabolischen Multipolmethode,
wird im theoretischen Teil dieser Arbeit eine partielle Integrationsformel für den
hypersingulären Randintegraloperator der Wärmeleitgleichung betrachtet. In der
Fachliteratur ist eine solche Formel zwar bekannt, allerdings enthält diese einen pro-
blematischen Integralterm mit einer nicht integrierbaren Kernfunktion und es fehlt
ein Beweis für ihre Gültigkeit. Diese Lücken werden in dieser Arbeit geschlossen,
indem ein rigoroser Beweis der partiellen Integrationsformel und eine alternative,
wohlde�nierte Darstellung des problematischen Integralterms präsentiert werden.

Contents

1 Introduction 1

2 Preliminaries 7

2.1 Basic function spaces . 7
2.2 Lipschitz domains and their smooth approximation 8
2.3 Anisotropic Sobolev spaces and trace operators 9
2.4 Piecewise polynomial approximation spaces 15

3 Boundary integral equations and boundary element methods 19

3.1 The boundary integral operators . 19
3.2 Solving initial BVPs by boundary integral equations 22
3.3 Boundary element methods . 23

4 An integration by parts formula for the hypersingular operator 29

4.1 Auxiliary de�nitions and results . 29
4.1.1 Selected results from distribution theory 29
4.1.2 The surface curl in H1/2,1/4(Σ) 31
4.1.3 The heat equation � selected results 33

4.2 A general integration by parts formula for the hypersingular operator 35
4.2.1 A proof of the general integration by parts formula 38
4.2.2 An integral representation of the bilinear form b 49
4.2.3 Evaluating the BEM matrix of the hypersingular operator . 57

5 A space-time FMM for the heat equation 61

5.1 A separable approximation of the heat kernel 62
5.1.1 Analysis of the interpolation error in time 64
5.1.2 Analysis of the approximation error in space 68
5.1.3 The space-time approximation error 70

5.2 Description of the space-time FMM 72
5.2.1 A 4D space-time box cluster tree 73
5.2.2 Matrix partitioning using operation lists 77
5.2.3 Approximation of admissible matrix blocks 82
5.2.4 Nested FMM operations and the space-time FMM 85

6 A task based parallelization of the space-time FMM 93

6.1 A temporal version of the space-time FMM 94

i

6.2 A task based shared memory parallelization 98
6.2.1 Additional aspects for a better parallel performance 107

6.3 A task based distributed memory parallelization 109
6.3.1 Assumptions about the data distribution 109
6.3.2 Distributed FMM task lists and inter-process communication 114
6.3.3 The distributed algorithm 117

6.4 A data and workload distribution strategy 119
6.5 Numerical experiments . 125

6.5.1 Numerical experiments in shared memory 126
6.5.2 Numerical experiments in distributed memory 131

7 A time-adaptive version of the space-time FMM 135

7.1 Temporally one-sided approximations of the heat kernel 136
7.1.1 Analysis of the approximation error 138

7.2 Description of the time-adaptive FMM 140
7.2.1 Extended space-time box cluster trees 140
7.2.2 Operation lists for the time-adaptive FMM 142
7.2.3 Block approximation and new FMM operations 148
7.2.4 The time-adaptive space-time FMM 152

7.3 Complexity analysis for newly approximated blocks 155
7.4 Parallelization of the time-adaptive FMM 159
7.5 Numerical experiments . 166

8 An ACA based near�eld compression scheme 173

8.1 The adaptive cross approximation 174
8.2 The applicability of the ACA for the single layer operator matrix . 179
8.3 The ACA near�eld compression in the space-time FMM 184
8.4 A recompression strategy to improve the near�eld compression . . . 189
8.5 Analysis of the recompression error 194
8.6 Numerical experiments . 200

8.6.1 Experiments for spatially re�ned meshes 201
8.6.2 Revisiting numerical experiments from previous chapters . . 209

9 Conclusions and Outlook 219

A Hardware and compiler speci�cations 223

References 225

ii

1 Introduction

The heat equation is a time-dependent partial di�erential equation (PDE) that mod-
els di�usion processes like the propagation of heat in a medium. The high relevance
of such processes in natural and applied sciences and the fact that the heat equa-
tion is one of the simplest parabolic PDEs explain why it is widely studied in the
mathematical literature. Often, initial boundary value problems are considered: For
a given domain Ω ⊂ R3, a �nite time T > 0, a heat capacity constant α > 0, and an
initial datum u0 one has to �nd a function u that satis�es the heat equation

∂

∂t
u(x, t)− α∆u(x, t) = 0 for all (x, t) in Q := Ω× (0, T), (1.1)

the initial condition

u(x, 0) = u0(x) for all x in Ω, (1.2)

and additional boundary conditions, for example, a Dirichlet boundary condition

u(x, t) = g(x, t) on Σ := ∂Ω× (0, T), (1.3)

where the values of u on the boundary ∂Ω of Ω are prescribed by a function g for all
times t ∈ (0, T), or a Neumann boundary condition

n(x) · ∇u(x, t) = q(x, t) on Σ, (1.4)

where the normal derivative n ·∇u on the boundary ∂Ω is prescribed by a function q
for all times t ∈ (0, T). A variety of methods has been developed for the solution of
such initial boundary value problems. In this thesis we focus on boundary element
methods.

When it comes to the solution of boundary value problems of elliptic PDEs, bound-
ary element methods (BEM) are well established; see e.g. the textbooks [63, 66]. If
the fundamental solution of a PDE is known, the solutions of corresponding bound-
ary value problems can be represented by boundary and volume potentials involving
unknown density functions on the boundary of the considered domains which can
be determined by solving corresponding boundary integral equations. Boundary ele-
ment methods deal with the discretization and numerical solution of such boundary
integral equations using a decomposition of the boundary into so-called boundary
elements. Initial boundary value problems of the heat equation � and many other

1

2 1 Introduction

time-dependent PDEs � allow for a similar treatment. In the corresponding space-
time boundary integral equations, the unknown quantity is a density function de�ned
on the lateral boundary Σ = ∂Ω× (0, T) of the space-time cylinder Q = Ω× (0, T).
Such boundary integral equations are discretized in space-time boundary element
methods by using a decomposition of Σ into space-time elements, e.g., elements of a
tensor-product mesh obtained by combining a triangulation of ∂Ω with a partition of
the time interval (0, T). In the resulting systems of linear equations, a discretization
of the unknown density function can be computed at once instead of sequentially
in time as in time stepping methods. While this means that the linear systems can
become quite large, it also brings certain bene�ts. Firstly, a parallelization of the
solution process with respect to space and time is possible and not only with respect
to space as in time stepping methods. This helps to improve the parallel scalability of
the solution methods to exploit the full computing power of modern computer clus-
ters. Secondly, the approach enables space-time adaptivity: The considered boundary
meshes can be re�ned locally with respect to space and time to resolve certain local
features or singularities of the desired solutions well while keeping the global number
of boundary elements relatively low.

In this thesis we consider Galerkin space-time boundary element methods for the heat
equation. Such Galerkin methods have been investigated in many publications, see
e.g. [8, 24, 28, 31, 53, 57, 60]. In particular, a proper mathematical framework is well
established and many important properties of the occurring boundary integral oper-
ators have already been proven. Two particularly important results which were �rst
proven in [8, 24] are the ellipticity of the single layer operator and the hypersingular
boundary integral operator in certain anisotropic Sobolev spaces. These ellipticity
results can be used to show the unique solvability of related boundary integral equa-
tions and corresponding linear systems in BEM. A comprehensive summary of these
and many other known results is given in [28].

A major di�culty when working with the hypersingular boundary integral operator
is that it does not have an integral representation in a classical sense, since the
related integral kernel has a strong singularity. In elliptic PDEs this problem is often
overcome by considering the bilinear form associated with the hypersingular operator
and using a special kind of integration by parts formula to obtain a representation
that involves only weakly singular integrals; see e.g. [55] for the Laplace equation,
[47, 56] for the Helmholtz equation, [56] for the time-harmonic Maxwell equations
and [36, 41] for linear elastostatics. A similar integration by parts formula for the
heat equation in two spatial dimensions was provided in [24] together with an outline
of its proof. For the heat equation in three spatial dimensions as we consider it in
this work, an integration by parts formula of the hypersingular operator is provided,
for example, in [27, 51, 53], but without a proof. Moreover, the integration by parts
formula presented in those works includes an integral over the time derivative of
the heat kernel, i.e. the fundamental solution of the heat equation, which is not

3

Lebesgue integrable on the respective integration domain. To overcome these issues
we provide a general integration by parts formula for the hypersingular operator of
the heat equation in three spatial dimensions together with a rigorous proof in this
thesis. Furthermore, we explain how to correctly represent the problematic integral
term and how to evaluate it for a certain class of functions including those which
are typically used for the discretization in BEM. This is one of the main theoretical
results in this thesis and is published in [77].

The other main results in this thesis are achieved in the �eld of fast boundary element
methods. Fast boundary element methods deal with the compression of BEM system
matrices. A compression of these matrices is necessary since they are generally dense
due to the non-local nature of the related boundary integral operators. In particular,
the costs for assembling, storing, and applying such a matrix scale like the product
of its numbers of rows and columns, which signi�cantly limits the size of the prob-
lems that can be considered in a standard BEM. A variety of fast methods has been
developed in the last decades to overcome this problem for BEM and related particle
simulations. Some examples for the heat equation are algorithms based on Fourier
series expansions and fast Fourier transforms [32, 33], algorithms based on the use
of wavelet bases [16, 17, 60], a fast sparse grid method [37], and the parabolic fast
multipole method (pFMM) [52, 53, 67, 68]. In the pFMM the matrix compression is
achieved by using a clustering strategy to partition the matrix, e�ciently approxi-
mating many of the resulting blocks by using a separable approximation of the heat
kernel, and discarding others by exploiting the exponential decay of the heat kernel
in space. In addition, the causality of the operators is used in the pFMM to solve
systems of linear equations sequentially in time in a forward-sweeping manner.

In this thesis we consider the pFMM and present several substantial improvements.
One of the main results is the parallelization of the method with respect to space
and time for the execution on modern computer clusters with distributed memory
architectures. In the literature one can �nd many publications that deal with the
parallelization of fast methods for purely spatial problems, see e.g. [2, 4, 5, 25, 43, 79]
for FMMs related to particle simulations, or e.g. [1, 15] for the solution of spatial
boundary integral equations. In the context of the heat equation, a parallelization of
a standard BEM with respect to space and time was described in [29], but a space-
time parallelization of a fast method has not yet been considered. To enable such a
parallelization, we reorganize the operations in the pFMM to obtain an FMM that
realizes the full matrix application at once. This FMM is parallelized in shared and
distributed memory by using a special task based execution scheme that exploits
the temporal structure of the FMM for the distribution of the workload and the
reduction of the number of communication events between the involved computing
nodes. We present the corresponding algorithm in detail in this thesis and investigate
its performance in several numerical experiments. The original results which we
discuss are published in [76].

4 1 Introduction

The other contributions in this thesis are related to improvements in the performance
of the FMM for more general meshes. The pFMM has originally been described
for tensor product meshes with uniform time steps. While an application for non-
uniform time steps is possible, the performance of the pFMM can su�er signi�cantly
for meshes that are adaptive in time. To overcome this de�ciency, we introduce new
FMM operations in the spirit of adaptive fast multipole methods of purely spatial
problems [21, 22, 54]. We present an analysis of the underlying temporally one-sided
kernel expansions, a complete description of the resulting time-adaptive FMM, and
numerical experiments to demonstrate the improvements. The corresponding results
have been accepted for publication in [78].

The need for an additional temporal near�eld compression in the pFMM for meshes
with �ne spatial resolutions but rather coarse time steps was already discussed in [52].
In that work, a corresponding compression method was presented and several numer-
ical examples were provided to demonstrate its e�ectiveness. Since the compression
method in [52] is quite di�cult to implement and heavily exploits the prismatic struc-
ture of the considered space-time boundary elements, which poses a restriction on
the types of meshes for which it can be applied, we present an alternative method
in this thesis. Our near�eld compression scheme makes use of the partially pivoted
adaptive cross approximation (ACA), a matrix compression algorithm described, for
example, in [10, 13]. We motivate why the ACA is applicable in our setting, show
how to incorporate it in the FMM to compress the temporal near�eld, and present
an additional recompression strategy with a novel recompression criterion to further
improve the achieved compression. In several numerical experiments we investigate
the e�ects of this near�eld compression scheme on the performance of the FMM.

The rest of this thesis is structured into seven main chapters and an additional con-
cluding chapter. Each of the seven chapters starts with an introduction that includes
an overview of the respective contents. Therefore, we only give a short summary of
the overall structure of the thesis here. In Chapter 2 we repeat several basic results
from the literature that are used in the rest of the thesis. Chapter 3 contains a
short overview of boundary integral equations and boundary element methods for
the heat equation and introduces the boundary integral operators and BEM ma-
trices considered in the later chapters. Chapter 4 is devoted to the integration by
parts formula for the hypersingular operator. In all the following chapters we focus
on fast boundary element methods. In Chapter 5 we introduce a space-time FMM
based on the pFMM which serves as a basis for all later considerations. In Chap-
ter 6 we present our space-time parallelization approach for the FMM in shared and
distributed memory. The extension of the FMM for temporally adaptive meshes is
discussed in Chapter 7 and the novel near�eld compression scheme in Chapter 8. In
Chapter 9 we conclude the thesis with a summary of our results and an outlook.

5

Contributions by coauthors

Several results in this thesis are based on joint work with the other members of
the team in the Austrian-Czech research project BESTHEA, namely Günther Of,
Michal Merta, and Jan Zapletal. The C++ code in [49] was written in equal shares
by Michal Merta, Jan Zapletal, and me. Jan Zapletal is the main author of the
research paper [81]. The quadrature formulas described in that paper are used in
this thesis and are shortly mentioned in Chapter 3. Michal Merta and I are the
main authors of the research paper [76] and contributed similarly to the development
of the parallelization approach in that paper. The other new contributions in this
thesis, in particular the results in Chapters 4, 7 and 8, were authored by me under
the supervision of Günther Of.

2 Preliminaries

In this chapter we introduce basic de�nitions and notations and repeat results from
the literature which are used throughout this work. We start with a short overview
of basic functions spaces and Lipschitz domains in Sections 2.1 and 2.2. In Sec-
tion 2.3 we recall standard anisotropic Sobolev spaces and related trace operators for
the treatment of initial boundary value problems of the heat equation and related
boundary integral equations. Standard discretization spaces and related meshes for
these boundary integral equations are covered in Section 2.4.

2.1 Basic function spaces

Throughout this section, let A ⊂ Rd be open. The set of all continuous functions
on A is denoted by C(A) and the set of k times continuously di�erentiable functions
by Ck(A), where k ∈ N ∪ {∞}. Here and in the rest of this work all functions are
assumed to be real-valued, if not stated otherwise. A function f is contained in Ck(A)

if there exists an open set B ⊃ A and a function f̃ ∈ Ck(B) such that f̃ |A = f , i.e. f

is the restriction of f̃ to A. Functions in C∞(A) with compact support are denoted
by C∞c (A).

For any p ∈ [1,∞], Lp(A) denotes the standard Lebesgue space containing equiva-
lence classes of p-integrable functions on A with the usual norm. When referring to
functions in these spaces, we always mean the related equivalence classes. For a given
Banach space X the space Lp(0, T ;X) is the Bochner space containing equivalence
classes of Bochner measurable functions f : (0, T)→ X whose norm

‖f‖Lp(0,T ;X) =

(∫ T

0

‖f(t)‖pXdt

)1/p

is bounded; see e.g. [26] for more details.

To simplify the notation we use boldface letters to denote spaces of functions with
values in R3 whose components are in the respective function space. For example,
L2(A) is used instead of (L2(A))3.

7

8 2 Preliminaries

2.2 Lipschitz domains and their smooth approximation

In the literature several di�erent but equivalent de�nitions of a Lipschitz domain can
be found. In this work we use the following de�nition similar to [19, De�nition 2.1].

Definition 2.1 (Lipschitz domain). Let d ∈ N and d > 1. A set Zj ⊂ Rd is called
an open coordinate cylinder with radius rj > 0 and height hj > 0 if there exists a
rectangular coordinate system of Rd obtained from the standard Cartesian coordi-
nate system by rotation and translation with corresponding coordinates x(j) ∈ Rd−1

and s(j) ∈ R such that

Zj = {(x(j), s(j)) ∈ Rd : |x(j)| < rj, |s(j)| < hj}.
A bounded, connected, open subset Ω ⊂ Rd is called a Lipschitz domain, if there exists
a �nite family {Zj}j of open coordinate cylinders covering Γ := ∂Ω and for each
coordinate cylinder Zj there exists a Lipschitz continuous function ηj : Rd−1 → R,
i.e. |ηj(x)− ηj(y)| ≤ Lj |x− y| with Lj ∈ R, such that |ηj(x)| < hj and

Ω ∩ Zj = {(x(j), s(j)) ∈ Zj : s(j) > ηj(x
(j))},

Γ ∩ Zj = {(x(j), ηj(x
(j))) : x(j) ∈ Rd−1} ∩ Zj,

(2.1)

where (x(j), s(j)) denote the coordinates associated with Zj and hj its height.

Remark 2.2. For each Lipschitz domain Ω one can �nd a family of coordinate cylin-
ders {Zj}j covering Γ as in De�nition 2.1 such that for all j the dilated cylinder

3Zj := {(x(j), s(j)) ∈ Rd : |x(j)| < 3rj, |s(j)| < 3hj}
satis�es (2.1) too; see [19, De�nition 2.1] and [73, Section 0.2]. Furthermore, one
can choose the cylinders to be congruent, i.e. to have the same radii and heights.

We can de�ne a C∞ domain in the same way as we de�ned a Lipschitz domain, by
requiring that all of the functions ηj in De�nition 2.1 are in C

∞(Rd−1). The following
theorem states that every Lipschitz domain Ω can be approximated from the inside
by a sequence {Ωm}m of C∞ domains. It is proven in [72, Theorem A.1].

Theorem 2.3 ([19, Lemma 2.2], [72, Theorem A.1], [73, Theorem 1.12]). Let d > 1
and Ω ⊂ Rd be a Lipschitz domain whose boundary is denoted by Γ. Then there exist
sequences of C∞ domains {Ωm}m, homeomorphisms {Λm}m and functions {ωm}m
that satisfy:

(i) Ωm ⊂ Ω and the homeomorphisms Λm : Γ→ Γm := ∂Ωm satisfy

lim
m→∞

(sup{|x−Λm(x)| : x ∈ Γ}) = 0. (2.2)

In addition, Λm(x) approaches x non-tangentially.

2.3 Anisotropic Sobolev spaces and trace operators 9

(ii) There exists a �nite family of coordinate cylinders {Zj}j that cover Γ as in
Remark 2.2 and associated Lipschitz functions {ηj}j such that for each j and m
there exists a function η

(m)
j ∈ C∞(Rd−1) that represents Γm in 3Zj, i.e.

Γm ∩ 3Zj = {(x(j), η
(m)
j (x(j))) : x(j) ∈ Rd−1} ∩ 3Zj.

Furthermore, η
(m)
j → ηj uniformly and ∇η(m)

j → ∇ηj pointwise almost every-

where as m tends to in�nity, and ‖η(m)
j ‖L∞(Rd−1) ≤ ‖ηj‖L∞(Rd−1) for all m.

(iii) The normal vectors nm on Γm converge pointwise almost everywhere to the
normal vector n on Γ, in the sense that nm(Λm(x)) → n(x) for almost all
x ∈ Γ as m tends to in�nity.

(iv) The functions ωm : Γ→ R>0 are such that

∫

E

ωm(x)dsx =

∫

Λm(E)

dsy

for all measurable sets E ⊂ Γ, where dsx and dsy denote the surface measures
on Γ and Γm, respectively. Furthermore, there exists a constant c > 0 such that
c ≤ ωm ≤ c−1 for all m and ωm → 1 pointwise almost everywhere as m tends
to in�nity.

Remark 2.4. Item (i) of Theorem 2.3 states that Λm(x) approaches x non-tangen-
tially. Roughly speaking this means that the points Λm(x) all lie in a cone centered
at x. A rigorous de�nition is given in [19, 73]. Some additional properties of the
approximating domains {Ωm}m can be found in the referenced works.

2.3 Anisotropic Sobolev spaces and trace operators

From this point onwards, let Ω ⊂ R3 be a bounded Lipschitz domain as in De�ni-
tion 2.1 with boundary Γ, let T > 0 be �nite and Q := Ω× (0, T) be the space-time
cylinder with lateral boundary Σ := Γ × (0, T). In this work we consider initial
boundary value problems for the heat equation, i.e. we want to �nd a function u that
satis�es the heat equation (1.1), an initial condition (1.2), and a Dirichlet boundary
condition (1.3) or a Neumann boundary condition (1.4). In the following, suitable
anisotropic Sobolev spaces and trace operators are introduced, which allow to treat
these initial boundary problems in a well-posed manner. Note that throughout this
work di�erential operators like ∆ =

∑3
j=1 ∂xj and ∇ = (∂x1 , ∂x2 , ∂x3)> act only with

respect to the spatial variables {xj}3
j=1, not the temporal variable t.

10 2 Preliminaries

To start o�, we brie�y recall the de�nitions of relevant Sobolev spaces on the time
interval (0, T), the spatial domain Ω and its boundary Γ. For a better overview
see [27, Section 2] and [80, Sections 2.2�2.5]. On (0, T) one de�nes the Sobolev
space H1(0, T) by

H1(0, T) = {v ∈ L2(0, T) : v′ ∈ L2(0, T)}, ‖v‖2
H1(0,T) := ‖v‖2

L2(0,T) + ‖v′‖2
L2(0,T),

where v′ denotes the weak derivative of v. The fractional order Sobolev spaces
Hs(0, T) for a given order s with 0 < s < 1 can be de�ned by

Hs(0, T) :=
{
v ∈ L2(0, T) : |v|Hs(0,T) <∞

}
,

where the seminorm and norm on Hs(0, T) are given by

|v|Hs(0,T) :=

(∫ T

0

∫ T

0

|v(t)− v(τ)|2
|t− τ |1+2s

dτ dt

)1/2

,

‖v‖Hs(0,T) :=
(
‖v‖2

L2(0,T) + |v|2Hs(0,T)

)1/2

.

We are particularly interested in the case s = 1/2 and the subspaces

H
1/2
0, (0, T) :=

{
v ∈ H1/2(0, T) : |v|

H
1/2
0, (0,T)

<∞
}
,

H
1/2
,0 (0, T) :=

{
v ∈ H1/2(0, T) : |v|

H
1/2
,0 (0,T)

<∞
}
,

with

|v|
H

1/2
0, (0,T)

:=

(∫ T

0

v(t)2

t
dt

)1/2

, ‖v‖
H

1/2
0, (0,T)

:=
(
‖v‖2

H1/2(0,T) + |v|2
H

1/2
0, (0,T)

)1/2

,

|v|
H

1/2
,0 (0,T)

:=

(∫ T

0

v(t)2

T − t dt

)1/2

, ‖v‖
H

1/2
,0 (0,T)

:=
(
‖v‖2

H1/2(0,T) + |v|2
H

1/2
,0 (0,T)

)1/2

.

H
1/2
0, (0, T) can be understood as the subspace of H1/2(0, T) whose functions satisfy

a homogeneous initial condition in a weak sense. Indeed, the extension by zero of a
function in H

1/2
0, (0, T) lies in H1/2(−∞, T); see Proposition 5.2 (ii) in [44, Chapter 3].

Furthermore, it is shown in [44, Chapter 1, Remark 11.5] that H
1/2
0, (0, T) coincides

with the interpolation space [L2(0, T), H1
0,(0, T)]1/2, where

H1
0,(0, T) := {v ∈ H1(0, T) : v(0) = 0}.

Similarly, H
1/2
,0 (0, T) corresponds to the subspace of H1/2(0, T) with a weak homoge-

neous end condition. Note that, in general, an element in H1/2(0, T) does not have a

2.3 Anisotropic Sobolev spaces and trace operators 11

continuous representative, so one cannot simply enforce homogeneous initial or end
conditions in a strong sense.

When it comes to the spatial domain, we consider the classical Sobolev space H1(Ω)
with the norm

‖u‖H1(Ω) :=

(∫

Ω

u(x)2 + |∇u(x)|2 dx

)1/2

and its subspace
H1

0 (Ω) = C∞c (Ω),

where the closure is taken with respect to the norm ‖ · ‖H1(Ω). On the surface Γ of Ω
we consider the Sobolev space H1/2(Γ) with the Sobolev Slobodeckij norm

‖ϕ‖H1/2(Γ) :=

(
‖ϕ‖2

L2(Γ) +

∫

Γ

∫

Γ

|ϕ(x)− ϕ(y)|2
|x− y|3 dsy dsx

)1/2

and its dual space H−1/2(Γ).

In the space-time domain Q we are particularly interested in the anisotropic Sobolev
space

H1,1/2(Q) := L2(0, T ;H1(Ω)) ∩H1/2(0, T ;L2(Ω))

with the norm

‖u‖H1,1/2(Q) :=

(∫ T

0

‖u(·, t)‖2
H1(Ω) dt+

∫

Ω

|u(x, ·)|2H1/2(0,T) dx

)1/2

and its subspaces

H
1,1/2
;0, (Q) := L2(0, T ;H1(Ω)) ∩H1/2

0, (0, T ;L2(Ω)),

H
1,1/2
;,0 (Q) := L2(0, T ;H1(Ω)) ∩H1/2

,0 (0, T ;L2(Ω)),

where

‖u‖
H

1,1/2
;0, (Q)

:=

(
‖u‖2

H1,1/2(Q) +

∫

Ω

|u(x, ·)|2
H

1/2
0, (0,T)

dx

)1/2

and ‖ · ‖
H

1,1/2
;,0 (Q)

is de�ned analogously. The spaces H
1,1/2
;0, (Q) and H

1,1/2
;,0 (Q) can be

understood as the subspaces of H1,1/2(Q) with weak homogeneous initial and end
conditions, respectively. The notation here corresponds to the one in [28]. In [24],

H̃1,1/2(Q) and
(T)

H1,1/2(Q) denote the spaces equivalent to H
1,1/2
;0, (Q) and H

1,1/2
;,0 (Q),

respectively. Another subspace of H1,1/2(Q) which is of interest in this work is the
space

H
1,1/2
0; (Q) = L2(0, T ;H1

0 (Ω)) ∩H1/2(0, T ;L2(Ω)).

There hold the following density results.

12 2 Preliminaries

Proposition 2.5. Let the spaces C∞c (Ω×(0, T]), C∞c (Ω×[0, T)) and C∞c (Ω×(0, T))
be de�ned by

C∞c (Ω× (0, T]) := {u : u = ũ|Q, ũ ∈ C∞c (R3 × (0,∞)}, (2.3)

C∞c (Ω× [0, T)) := {u : u = ũ|Q, ũ ∈ C∞c (R3 × (−∞, T)}, (2.4)

C∞c (Ω× (0, T)) := {u : u = ũ|Q, ũ ∈ C∞c (R3 × (0, T))}. (2.5)

The following inclusions are dense:

C∞c (Ω× (0, T)) ⊂ X where X ∈ {H1,1/2(Q), H
1,1/2
;0, (Q), H

1,1/2
;,0 (Q)}, (2.6a)

C∞c (Ω× (0, T]) ⊂ H
1,1/2
;0, (Q), (2.6b)

C∞c (Ω× [0, T)) ⊂ H
1,1/2
;,0 (Q), (2.6c)

C∞c (Q) ⊂ H
1,1/2
0; (Q). (2.6d)

Sketch of the proof. In the proof of Lemma 2.22 in [24] it is mentioned that the in-
clusion (2.6b) is dense, and that this follows from the density of C∞(Ω) in H1(Ω) and

the density of C∞c ((0, T]) := {f : f = f̃ |(0,T), f̃ ∈ C∞c (0,∞)} in H1/2
0, (0, T) by tensor

product arguments. The same tensor product arguments can be used to show the re-
maining density results. For this purpose we use that C∞c (0, T) is dense in H1/2(0, T)

� see e.g. [34, Theorem 1.4.2.4] � and also in H
1/2
0, (0, T) and H

1/2
,0 (0, T) � see

[80, Theorem 2.2.2]. Furthermore, C∞c ([0, T)) := {f : f = f̃ |(0,T), f̃ ∈ C∞c (−∞, T)}
is dense in H

1/2
,0 (0, T) and C∞c (Ω) in H1

0 (Ω).

On the lateral space-time boundary Σ = Γ × (0, T) we focus on the anisotropic
Sobolev space

H1/2,1/4(Σ) := L2(0, T ;H1/2(Γ)) ∩H1/4(0, T ;L2(Γ))

with the norm

‖ϕ‖H1/2,1/4(Σ) :=

(∫ T

0

‖ϕ(·, t)‖2
H1/2(Γ) dt+

∫

Γ

|ϕ(x, ·)|2H1/4(0,T) dx

)1/2

and its dual
H−1/2,−1/4(Σ) = (H1/2,1/4(Σ))′.

The duality product on H−1/2,−1/4(Σ)×H1/2,1/4(Σ) is denoted by 〈·, ·〉Σ and under-
stood as the continuous extension of the L2 inner product

〈ψ, ϕ〉L2(Σ) =

∫ T

0

∫

Γ

ψ(x, t)ϕ(x, t) dsx dt

from L2(Σ)×H1/2,1/4(Σ) to H−1/2,−1/4(Σ)×H1/2,1/4(Σ).

The following theorem establishes trace operators and corresponding right inverse
operators between H1,1/2(Q) and its subspaces and H1/2,1/4(Σ).

2.3 Anisotropic Sobolev spaces and trace operators 13

Theorem 2.6 ([45, Chapter 4, Theorem 2.1], [24, Lemma 2.4]). There exists a

unique continuous operator γint
0,Σ : H

1,1/2
;0, (Q) → H1/2,1/4(Σ) such that γint

0,Σu = u|Σ
holds for all u ∈ C∞c (Ω× (0, T)). This operator is surjective.

Remark 2.7. The trace operator γint
0,Σ can also be considered as a surjective opera-

tor from H1,1/2(Q) or H
1,1/2
;,0 (Q) to H1/2,1/4(Σ). In a slight abuse of notation, we

denote all three operators by γint
0,Σ in this work. Note that the target space is the

same for H
1,1/2
;0, (Q), H

1,1/2
;,0 (Q) and H1,1/2(Q), i.e. it does not depend on the ho-

mogeneous initial or end condition. In fact, initial or end conditions cannot be
observed in H1/4(0, T). This is related to the fact that the interpolation spaces
Hs

0,(0, T) := [L2(0, T), H1
0,(0, T)]s coincide with Hs(0, T) for all s with 0 < s < 1/2;

see [42, Remark 2.5 (1)].

Corollary 2.8. There exist continuous operators

EΣ : H1/2,1/4(Σ)→ H1,1/2(Q),

EΣ;0, : H1/2,1/4(Σ)→ H
1,1/2
;0, (Q),

EΣ;,0 : H1/2,1/4(Σ)→ H
1,1/2
;,0 (Q),

which are right inverses of the operator γint
0,Σ on the respective space on Q.

For the de�nition of the Neumann trace operator we introduce the space

H
1,1/2
;0, (Q, ∂t − α∆) =

{
u ∈ H1,1/2

;0, (Q) :
∂

∂t
u− α∆u ∈ L2(Q)

}

with the norm

‖u‖
H

1,1/2
;0, (Q,∂t−α∆)

:=

(
‖u‖2

H
1,1/2
;0, (Q)

+
∥∥∥ ∂
∂t
u− α∆

∥∥∥
2

L2(Q)

)1/2

as in [24, Equation (2.29)] and [28, page 5]. For a function u ∈ C2(Q) the Neumann
trace is given by n · ∇u and due to Green's �rst identity it satis�es

α

∫ T

0

∫

Γ

(n · ∇u) v dsx dt

= −
∫ T

0

∫

Ω

(
∂

∂t
u− α∆u

)
v dx dt+ α

∫ T

0

∫

Ω

∇u · ∇v dx dt+

∫ T

0

∫

Ω

∂

∂t
uv dx dt

for all v ∈ C1(Q). This identity is used to de�ne the Neumann trace operator for

arbitrary u ∈ H1,1/2
;0, (Q, ∂t − α∆) in Proposition 2.10. For this purpose, we need to

show that the right-hand side is well-de�ned and continuous for u ∈ H1,1/2
;0, (Q, ∂t−α∆)

and v ∈ H1,1/2
;,0 (Q). This is clear for the �rst two integrals and for the third one it is

established in the following proposition.

14 2 Preliminaries

Proposition 2.9 ([24, cf. Lemma 2.6]). The bilinear form

d(u, v) :=

∫ T

0

∫

Ω

∂

∂t
u(x, t)v(x, t) dx dt (2.7)

can be continuously extended from the product space C∞c (Ω× (0, T])×C∞c (Ω× [0, T))

to H
1,1/2
;0, (Q)×H1,1/2

;,0 (Q) and there holds

|d(u, v)| ≤ cd‖u‖H1,1/2
;0, (Q)

‖v‖
H

1,1/2
;0, (Q)

, (2.8)

where the constant cd does not depend on Ω.

Sketch of the proof. It su�ces to show the estimate in (2.8) for u ∈ C∞c (Ω × (0, T])

and v ∈ C∞c (Ω× [0, T)), since these spaces are dense in H
1,1/2
;0, (Q) and H

1,1/2
;,0 (Q),

respectively; see Proposition 2.5.

We can extend u ∈ C∞c (Ω × (0, T]) to a function ũ ∈ H1/2(R;L2(Ω)) by setting
ũ(t, ·) = 0 for all t < 0 and then setting ũ(·, t) = ũ(·, 2T − t) for all t > T . For this
extension one can show that

‖ũ‖H1/2(R;L2(Ω)) ≤ c(T)‖u‖
H

1,1/2
;0, (Q)

,

where the constant c(T) depends only on T . Similarly, we can extend a function
v ∈ C∞c (Ω× [0, T)) to ṽ ∈ H1/2(R;L2(Ω)) such that

‖ṽ‖H1/2(R;L2(Ω)) ≤ c(T)‖v‖
H

1,1/2
;,0 (Q)

.

Since u and v are compactly supported in Ω × (0, T] and Ω × [0, T), respectively,
there holds

d(u, v) =

∫ T

0

∫

Ω

∂

∂t
u(x, t)v(x, t) dx dt =

∫

R

∫

Ω

∂

∂t
ũ(x, t)ṽ(x, t) dx dt

≤ c‖ũ‖H1/2(R;L2(Ω))‖ṽ‖H1/2(R;L2(Ω)) ≤ cd(T)‖u‖
H

1,1/2
;0, (Q)

‖v‖
H

1,1/2
;,0 (Q)

.
(2.9)

The �rst of these estimates can be shown by switching to the Fourier domain in
time using Plancherel's theorem, where the estimate follows easily when considering
the equivalent norm in H1/2(R;L2(Ω)) de�ned via Fourier transforms. The second
estimate is a consequence of the two estimates above.

2.4 Piecewise polynomial approximation spaces 15

Proposition 2.10 ([24, cf. Lemma 2.16]). The map

γint
1,Σ : H

1,1/2
;0, (Q, ∂t − α∆)→ H−1/2,−1/4(Σ)

de�ned by

〈γint
1,Σu, ψ〉Σ (2.10)

:=
1

α

(
−
∫ T

0

∫

Ω

((∂
∂t
− α∆

)
u EΣ;,0ψ − α∇u · ∇(EΣ;,0ψ)

)
dx dt+ d(u,EΣ;,0ψ)

)

for all u ∈ H1,1/2
;0, (Q, ∂t−α∆) and ψ ∈ H1/2,1/4(Σ) is well-de�ned and continuous. In

particular, it does not depend on the choice of the extension EΣ;,0 from H1/2,1/4(Σ)

to H
1,1/2
;,0 (Q). Furthermore, for u ∈ C2(Q) there holds γint

1,Σu = n · ∇u|Σ.

Remark 2.11. By considering a suitable exterior domain Ωext ⊂ R3 \ Ω and the
related space-time cylinder Qext = Ωext× (0, T) we can de�ne exterior trace operators
γext

0,Σ : H1,1/2(Qext)→ H1/2,1/4(Σ) and γext
1,Σ : H1,1/2(Qext, ∂t − α∆) → H−1/2,−1/4(Σ);

see e.g. [24, p. 515f.]. These exterior trace operators will be used for the de�nition
of the double layer and adjoint time-reversed double layer operator in Section 3.1.

2.4 Piecewise polynomial approximation spaces

In this section we introduce �nite-dimensional spaces for the discretization of the
anisotropic Sobolev spaces H1/2,1/4(Σ) and H−1/2,−1/4(Σ) in Section 2.3 and the
space L2(Ω). We assume that Ω is a polyhedral Lipschitz domain.

On Σ = Γ×(0, T) we consider piecewise polynomial tensor product spaces de�ned on
corresponding tensor product meshes, which is the standard discretization strategy;
see for example [57, Section 6] or [24, Section 5]. A tensor product mesh of Σ is
constructed by combining the elements of a spatial surface mesh Γh with the time
intervals of a partition Iht of (0, T). We assume that Γh = {γjx}Ex

jx=1 is a triangular
surface mesh with plane triangles γjx and require that Γh is admissible, i.e. the
intersection γjx ∩ γkx of two triangles with jx 6= kx is either empty, or a shared
vertex, or a shared edge. The local mesh size hx,jx of a triangle γjx ∈ Γh is de�ned
by

hx,jx := |γjx |(1/2) =
(∫

γjx

1 dsx

)1/2

(2.11)

and the global mesh size hx of Γh by

hx := max
jx=1,...,Ex

hx,jx . (2.12)

16 2 Preliminaries

A partition Iht of the time interval (0, T) is formed by a sequence of grid points
{tjt}Etjt=0 satisfying 0 = t0 < t1 < . . . < tEt = T . The size ht,jt of the corresponding
subintervals (tjt−1, tjt) of (0, T) is given by

ht,jt = tjt − tjt−1 (2.13)

and the global mesh size ht of Iht by

ht = max
jt=1,...,Et

ht,jt . (2.14)

Note that in this work we will not only consider uniform partitions of (0, T) where
ht,jt = ht for all jt ∈ {1, . . . , Et}, but also non-uniform partitions where the sizes ht,jt
may di�er. By combining a temporal partition Iht with a surface mesh Γh we obtain
the tensor product mesh

Σh := Γh ⊗ Iht
= {σjt,jx = γjx × (tjt−1, tjt) : jt ∈ {1, . . . , Et}, jx ∈ {1, . . . , Ex}}.

(2.15)

We de�ne the space of all piecewise constant functions on the partition Iht by S0
ht

(Iht).
A basis of S0

ht
(Iht) is given by {ϕ0

t,jt}Etjt=1, where ϕ
0
t,jt(t) = 1 for t ∈ (tjt−1, tjt) and

zero otherwise. Likewise, we de�ne the space of all piecewise constant functions on
the mesh Γh by S0

hx
(Γh) with the basis {ϕ0

x,jx}Ex
jx=1, where ϕ

0
x,jx(x) = 1 for x ∈ γjx

and zero otherwise. This allows us to de�ne the tensor product space S0⊗0
hx,ht

(Σh) by

S0⊗0
hx,ht

(Σh) := S0
hx(Γh)⊗ S0

ht(Iht)
= span{ϕ0

x,jxϕ
0
t,jt : jt ∈ {1, . . . , Et}, jx ∈ {1, . . . Ex}}.

(2.16)

A function fh ∈ S0⊗0
hx,ht

(Σh) can be written as a linear combination of the basis
functions {ϕ0

x,jxϕ
0
t,jt}jt,jx , i.e.

fh =
Et∑

jt=1

Ex∑

jx=1

fjt,jxϕ
0
x,jxϕ

0
t,jt . (2.17)

In particular, fh is uniquely de�ned by the vector f ∈ REtEx of coe�cients fjt,jx . Here
and in the rest of the work we use pairs of indices (jt, jx) to denote the entries of such
coe�cient vectors f and sort them in a �time major� order, i.e. f> = (f>1 , . . . ,f

>
Et

),
where fjt ∈ REx contains the entries fjt,jx for a given time-index jt.

On Γh we de�ne in addition S1
hx

(Γh) as the space of all piecewise linear, globally

continuous functions. Let the set of all vertices of the mesh Γh be given by {xjx}Nx
jx=1.

The nodal basis functions of S1
hx

(Γh) are given by {ϕ1
x,jx}Nx

jx=1, where ϕ
1
x,jx is uniquely

2.4 Piecewise polynomial approximation spaces 17

de�ned by setting ϕ1
x,jx(xkx) = δjxkx . Here, δjxkx denotes the Kronecker delta. By

combining S1
hx

(Γh) with S
0
ht

(Iht) we get the tensor product space

S1⊗0
hx,ht

(Σh) := S1
hx(Γh)⊗ S0

ht(Iht)
= span{ϕ1

x,jxϕ
0
t,jt : jt ∈ {1, . . . , Et}, jx ∈ {1, . . . Nx}}.

(2.18)

A function gh ∈ S1⊗0
hx,ht

(Σh) is uniquely de�ned by the vector g ∈ REtNx of coe�-
cients gjt,jx in the representation

gh =
Et∑

jt=1

Nx∑

jx=1

gjt,jxϕ
1
x,jxϕ

0
t,jt .

The spaces S0⊗0
hx,ht

(Σ) and S1⊗0
hx,ht

(Σ) will be used for the approximation of functions

in H−1/2,−1/4(Σ) and H1/2,1/4(Σ), respectively.

For the discretization of functions v ∈ L2(Ω) we consider an admissible tetrahedral
mesh Ωh = {TΩ,kx}EΩ

kx=1 and de�ne the space of all piecewise linear, globally continu-

ous functions on Ωh by S
1
hx

(Ωh). Let {xΩ,kx}NΩ
kx=1 denote the vertices of the mesh Ωh.

Then the nodal basis of S1
hx

(Ωh) is given by {ϕ1
Ω,kx
}NΩ
kx=1, where ϕ

1
Ω,kx

is de�ned by
ϕ1

Ω,kx
(xΩ,jx) = δkxjx . A function vh ∈ S1

hx
(Ωh) can be expressed in terms of this

nodal basis by vh =
∑NΩ

kx=1 vkxϕ
1
Ω,kx

, where vkx are the entries of the corresponding
vector v ∈ RNΩ .

We conclude the section by introducing L2 projection operators for the discrete spaces
on Σ and Ω introduced above. The L2 projection Q1

Ωv ∈ S1
hx

(Ωh) of a function
v ∈ L2(Ω) is de�ned as the unique solution of

〈Q1
Ωv,Φh〉L2(Ω) = 〈v,Φh〉L2(Ω) for all Φh ∈ S1

hx(Ωh).

On Σ we consider the operators Qpx⊗pt
Σ : L2(Σ)→ Spx⊗pthx,ht

(Σh) where px ∈ {0, 1} and
pt = 0. The projection Qpx⊗pt

Σ u of u ∈ L2(Σ) is de�ned as the unique function in
Spx⊗pthx,ht

(Σh) that satis�es

〈Qpx⊗pt
Σ u, ϕh〉Σ = 〈u, ϕh〉Σ for all ϕh ∈ Spx⊗pthx,ht

(Σh). (2.19)

In [27, Section 6.3.2], the interested reader can �nd several approximation properties
of the L2 projection operators Qpx⊗pt

Σ .

3 Boundary integral equations and boundary

element methods

In this chapter we give a short overview of boundary integral operators for the heat
equation, boundary integral equations for the solution of related initial boundary
value problems, and corresponding boundary element methods for their approximate
solution. The description here is close to the one in [28], where an interested reader
can �nd additional details. Most of the discussed results stem from the seminal
works [8, 24, 57].

3.1 The boundary integral operators

Let u be a solution to the homogeneous heat equation (1.1) that satis�es an initial
condition (1.2) for a given function u0 on Ω. Such a function u can be expressed by
the representation formula

u = Ṽ (αγint
1,Σu)−Wγint

0,Σu+ M̃0u0, (3.1)

see e.g. [28, Section 4.1]. Here, Ṽ is the single layer potential operator, W the double

layer potential operator and M̃0 the initial potential operator. For densities g and w
in L1(Σ) the potentials Ṽ w and Wg have the integral representations

Ṽ w(x, t) =

∫ t

0

∫

Γ

Gα(x− y, t− τ)w(y, τ) dsy dτ, (3.2)

Wg(x, t) =

∫ t

0

∫

Γ

α
∂

∂ny
Gα(x− y, t− τ)g(y, τ) dsy dτ (3.3)

for all x ∈ R3 \ Γ and t > 0, where Gα is the fundamental solution of the heat
equation de�ned by

Gα(x− y, t− τ) =

{
1

(4πα(t−τ))3/2 exp
(
− |x−y|2

4α(t−τ)

)
if t− τ > 0,

0 otherwise,
(3.4)

see e.g. [28, Sections 4.4 and 4.6]. More general de�nitions of the operators Ṽ and W

are given in [24, Section 3]. There it is also shown that Ṽ : H−1/2,−1/4(Σ)→ H
1,1/2
;0, (Q)

19

20 3 Boundary integral equations and boundary element methods

and W : H1/2,1/4(Σ)→ H
1,1/2
;0, (Q) are continuous and that the corresponding poten-

tials satisfy the homogeneous heat equation, i.e. (∂t − α∆)Φ = 0 in Q for Φ = Ṽ w
and Φ = Wu, respectively.

The initial potential M̃0u0 of a function u0 ∈ L2(Ω) admits the representation

M̃0u0(x, t) =

∫

Ω

Gα(x− y, t)u0(y) dy for all x ∈ R3 and t > 0. (3.5)

The operator M̃0 is continuous as a map from L2(Ω) to V(Q); see e.g. [28, Section 4.2].
The space V(Q) is de�ned by

V(Q) := L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)), (3.6)

and equipped with the usual graph norm; see [28, Section 3.3]. It is a dense subspace
of H1,1/2(Q), and in addition there holds V(Q) ⊂ C([0, T];L2(Ω)); see [24, p. 502f.].
Hence, functions u ∈ V(Q) have a representative which is continuous in time, which
makes point evaluations in time and, in particular, initial conditions well de�ned.
In [28, Section 4.2] it is also proven that M̃0u0(x, 0) = u0(x) almost everywhere in Ω

and (∂t − α∆)M̃0u0 = 0 in Q.

Note that the single layer potential operator Ṽ in (3.2) and the double layer potential
operatorW in (3.3) are causal. This means that for any t > 0 the values of densities g
and w in the interval (t, T) do not in�uence the functions V w andWg in (0, t). From
a physical perspective, this is to be expected. Mathematically, this property is related
to the fact that the heat kernel Gα(x− y, t− τ) in (3.4) vanishes for t < τ . Due to
this fact, we will also denote the heat kernel as causal in this work.

By applying the trace operators γint
0,Σ and αγint

1,Σ to the representation formula (3.1)
we obtain two boundary integral equations, which we will later use for the explicit
solution of concrete initial boundary value problems. Applying the trace operator γint

0,Σ

yields the �rst boundary integral equation

γint
0,Σu = V (αγint

1,Σu) +
(1

2
Id−K

)
γint

0,Σu+M0u0, (3.7)

where V := γint
0,ΣṼ is the single layer operator, K := 1

2
(γint

0,Σ + γext
0,Σ)W the double layer

operator and M0 = γint
0,ΣM̃0. Recall that γ

ext
0,Σ is a suitable exterior trace operator; see

Remark 2.11. The operators V , K and M0 admit the integral representations

V w(x, t) =

∫ t

0

∫

Γ

Gα(x− y, t− τ)w(y, τ) dsy dτ for all (x, t) ∈ Σ, (3.8)

Kg(x, t) =

∫ t

0

∫

Γ

α
∂

∂ny
Gα(x− y, t− τ)g(y, τ) dsy dτ for all (x, t) ∈ Σ, (3.9)

M0u0(x, t) =

∫

Ω

Gα(x− y, t)u0(y) dy for all (x, t) ∈ Σ, (3.10)

3.1 The boundary integral operators 21

for w, g ∈ L∞(Σ) and u0 ∈ L2(Ω), where additional regularity assumptions on
the spatial boundary Γ are needed for the representation in (3.9); see for exam-
ple [63, Sections 3.3.2 and 3.3.3] for similar results on the corresponding boundary
integral operators V and K for elliptic PDEs.

By applying the scaled Neumann trace operator αγint
1,Σ to the representation for-

mula (3.1) we obtain the second boundary integral equation

αγint
1,Σu =

(1

2
Id +K ′T

)
(αγint

1,Σu) +Dγint
0,Σu+M1u0, (3.11)

with the adjoint time-reversed double layer operator K ′T := 1
2
(αγint

1,Σ + αγext
1,Σ)Ṽ ,

the hypersingular operator D := −αγint
1,Σ(W) and the operator M1 := αγint

1,ΣM̃0.
The operator K ′T is indeed the adjoint of the time-reversed double layer operator
KT := ΘT ◦K, where ΘTf(x, t) := f(x, T − t). For w ∈ L∞(Σ) and a su�ciently
regular boundary Γ there holds

K ′Tw =

∫ t

0

∫

Γ

α
∂

∂nx
Gα(x− y, t− τ)w(y, τ) dsy dτ for all (x, t) ∈ Σ, (3.12)

see [63, Section 3.3.3] for a similar result for elliptic PDEs. The integral representa-
tion

M1u0 =

∫

Ω

α
∂

∂nx
Gα(x− y, t)u0(y) dy for all (x, t) ∈ Σ (3.13)

is valid for all u0 ∈ L2(Ω). The hypersingular operator D does not admit a similar
integral representation. This is related to the fact that the kernel

((x, t), (y, τ)) 7→ ∂

∂nx

∂

∂ny
Gα(x− y, t− τ) (3.14)

has a strong singularity on the diagonal (x, t) = (y, τ). When we consider the
bilinear form associated with D, we can use a so-called integration by parts formula
to overcome this problem. This integration by parts formula will be discussed in
detail in Chapter 4.

From the continuity of the potential operators Ṽ , W and M̃0 and the continuity of
the trace operators γint

0,Σ and γint
1,Σ we conclude that the operators

V : H−1/2,−1/4(Σ)→ H1/2,1/4(Σ), K ′T : H−1/2,−1/4(Σ)→ H−1/2,−1/4(Σ),

K : H1/2,1/4(Σ)→ H1/2,1/4(Σ), D : H1/2,1/4(Σ)→ H−1/2,−1/4(Σ),

M0 : L2(Ω)→ H1/2,1/4(Σ), M1 : L2(Ω)→ H−1/2,−1/4(Σ)

are continuous. Furthermore one can show that V and D are positive de�nite iso-
morphisms, which we express in the following theorems.

22 3 Boundary integral equations and boundary element methods

Theorem 3.1 ([24, Corollary 3.13 (a)] and [57, Theorem 4.3]). The single layer
operator V is an isomorphism between H−1/2,−1/4(Σ) and H1/2,1/4(Σ) and there exists
a constant cV1 > 0 such that

〈V q, q〉Σ ≥ cV1 ‖q‖2
H−1/2,−1/4(Σ) for all q ∈ H−1/2,−1/4(Σ). (3.15)

Theorem 3.2 ([24, Corollary 3.13 (b)]). The hypersingular operator D is an iso-
morphism between H1/2,1/4(Σ) and H−1/2,−1/4(Σ) and there exists a constant cD1 > 0
such that

〈Dϕ,ϕ〉Σ ≥ cD1 ‖ϕ‖2
H1/2,1/4(Σ) for all ϕ ∈ H1/2,1/4(Σ). (3.16)

3.2 Solving initial BVPs by boundary integral equations

The integral operators introduced in Section 3.1 can be used to construct solu-
tions to initial boundary value problems of the heat equation. Let us �rst focus
on the initial Dirichlet boundary value problem (1.1)�(1.3), where we follow the lines
of [28, Section 5.3] and assume g ∈ H1/2,1/4(Σ) and u0 ∈ L2(Ω). If we want to use
the representation formula (3.1) to construct the solution u, we have to determine
the unknown Neumann datum γint

1,Σu. According to the �rst boundary integral equa-
tion (3.7) there holds

V q =
(1

2
Id +K

)
g −M0u0

for q := αγint
1,Σu. The corresponding variational problem is to �nd q ∈ H−1/2,−1/4(Σ)

such that

〈V q, ψ〉Σ =
〈(1

2
Id +K

)
g −M0u0, ψ

〉
Σ

for all ψ ∈ H−1/2,−1/4(Σ). (3.17)

Due to the continuity and linearity of the boundary integral operators, Theorem 3.1,
and the Lemma of Lax�Milgram, this variational problem admits a unique solution q
that depends continuously on g and u0.

Another option is to use the following indirect approach. We know that for any
density w ∈ H−1/2,−1/4(Σ) the function

u := Ṽ w + M̃0u0 (3.18)

is a solution of the homogeneous heat equation (1.1) that satis�es the initial con-
dition (1.2). By applying the trace operator γint

0,Σ to u we see that the Dirichlet

condition (1.3) is satis�ed if w ∈ H−1/2,−1/4(Σ) solves the variational problem

〈V w, ψ〉Σ = 〈g −M0u0, ψ〉Σ for all ψ ∈ H−1/2,−1/4(Σ). (3.19)

The existence of a unique density w with this property follows as before.

3.3 Boundary element methods 23

The initial Neumann boundary value problem (1.1)�(1.2) with (1.4) and the Neumann
datum q ∈ H−1/2,−1/4(Σ) can be treated in a similar way; see [27, Section 5.3]. The
direct approach uses the representation formula (3.1) to construct the solution u.
The unknown Dirichlet datum g := γint

0,Σu can be determined by using the second
boundary integral equation (3.11), i.e.

Dg =
(1

2
Id−K ′T

)
(αq)−M1u0.

The equivalent variational problem is to �nd g ∈ H1/2,1/4(Σ) such that

〈Dg, ϕ〉Σ =
〈(1

2
Id−K ′T

)
(αq)−M1u0, ϕ

〉
Σ

for all ϕ ∈ H1/2,1/4. (3.20)

Due to the continuity and linearity of the boundary integral operators, Theorem 3.2,
and the Lemma of Lax�Milgram, it follows that there exists a unique solution g to
this problem which depends continuously on q and u0.

Alternatively, we can use the following indirect approach, where we set

u := −Wf + M̃0u0 (3.21)

and require that the density f ∈ H1/2,1/4(Σ) satis�es

〈Df, ϕ〉Σ = 〈αq −M1u0, ϕ〉Σ for all ϕ ∈ H1/2,1/4(Σ). (3.22)

A unique density f with these properties exists and the resulting function u is the
solution to the considered initial Neumann boundary value problem.

3.3 Boundary element methods

In this section we describe how to discretize the variational formulations (3.17)
and (3.20) by a Galerkin�Bubnov method to obtain approximate solutions to the
initial Dirichlet and Neumann boundary value problems of the heat equation, re-
spectively. The variational formulations from the indirect approaches can be handled
analogously.

Let Σh = Γh ⊗ Iht be a space-time tensor product mesh of Σ, Ωh be a tetrahedral
mesh of Ω, and Spx⊗pthx,ht

(Σh) and S
1
hx

(Ωh) be piecewise polynomial spaces on Σh and Ωh

as in Section 2.4. A Galerkin�Bubnov discretization of the variational problem (3.17)
is to �nd qh ∈ S0⊗0

hx,ht
such that

〈V qh, ψh〉Σ =
〈(1

2
Id +K

)
gh −M0u0,h, ψh

〉
Σ

for all ψh ∈ S0⊗0
hx,ht

(Σh). (3.23)

24 3 Boundary integral equations and boundary element methods

Note that we have replaced g and u0 on the right-hand side of (3.17) by the cor-
responding approximations gh = Q1⊗0

Σ g ∈ S1⊗0
hx,ht

(Σh) and u0,h = Q1
Ωu0 ∈ S1

hx
(Ωh)

with the L2 projection operators Q1⊗0
Σ and Q1

Ω from Section 2.4. The variational
formulation (3.23) has a unique solution due to Theorem 3.1. It can be rewritten as
the system of linear equations

Vhq =
(1

2
Mh + Kh

)
g −M0

hu
0. (3.24)

Here q, g and u0 denote the coe�cient vectors of the discrete functions qh, gh and u0,h,
respectively. As stated in Section 2.4 we use pairs of indices (jt, jx) to address the
entries of q and g and assume that these vectors are sorted in a �time-major� order.
The matrices Vh, Kh and M0

h are the BEM matrices of the operators V , K and M0,
respectively, and Mh is the mass matrix. Their entries are obtained by evaluating
the corresponding bilinear forms 〈V ·, ·〉, etc., for pairs of basis functions. The entries
of Vh for row indices (kt, kx) and column indices (jt, jx) with kt, jt ∈ {1, . . . , Et} and
kx, jx ∈ {1, . . . , Ex} are given by

Vh[(kt − 1)Ex + kx, (jt − 1)Ex + jx]

=

∫ tkt

tkt−1

∫

γkx

∫ tjt

tjt−1

∫

γjx

Gα(x− y, t− τ) dsy dτ dsx dt.
(3.25)

For the assembly of Kh and the sparse mass matrix Mh we need to evaluate

Kh[(kt − 1)Ex + kx, (jt − 1)Nx + jx]

=

∫ tkt

tkt−1

∫

γkx

∫ tjt

tjt−1

∫

Γ

α
∂

∂ny
Gα(x− y, t− τ)ϕ1

x,jx(y) dsy dτ dsx dt,
(3.26)

Mh[(kt − 1)Ex + kx, (jt − 1)Nx + jx] =

{
ht,kt

∫
γkx

ϕ1
x,jx(x)dsx if jt = kt,

0 otherwise
(3.27)

for all kt, jt ∈ {1, . . . , Et}, kx ∈ {1, . . . , Ex} and jx ∈ {1, . . . , Nx}, with ht,kt given
in (2.13). Finally, the entries of M0

h are given by

M0
h[(kt − 1)Ex + kx, jx] =

∫ tkt

tkt−1

∫

γkx

∫

Ω

Gα(x− y, t)ϕ1
Ω,jx(y) dy dsx dt (3.28)

for all kt ∈ {1, . . . , Et}, kx ∈ {1, . . . , Ex} and jx ∈ {1, . . . , NΩ}.
The matrix Vh has the lower triangular block structure




V1,1
h 0 . . . 0

V2,1
h V2,2

h

. . .
...

...
...

. . .
...

VEt,1h VEt,2h . . . VEt,Eth


 , (3.29)

3.3 Boundary element methods 25

where the blocks Vkt,jth ∈ REx×Ex contain all entries of Vh corresponding to a temporal

row index kt and a temporal column index jt. The blocks V
kt,jt
h with jt > kt above

the diagonal are zero due to the causality of the operator V in (3.8). If the time
intervals in the partition Iht are uniform, the matrix Vh is even a lower triangular
block Toeplitz matrix, i.e. Vkt,jth = Vmt,`th if kt − jt = mt − `t. The matrix Kh has

the same block structure as Vh with blocks Kkt,jth ∈ REx×Nx . The mass matrix Mh

is block-diagonal and the diagonal blocks Mkt,kt
h ∈ REx×Nx are sparse. The structure

of the matrix M0
h is di�erent. One can subdivide its rows according to the temporal

row indices kt, but not its columns. In particular, all entries of M0
h are nonzero.

The numerical evaluation of the integrals (3.25) and (3.26) is discussed, for example,
in [57, Section 6.2], [51, Appendix B], and [81, Sections 3.1 and 3.2]. The usual strat-
egy is to combine an analytic integration in the temporal variables with numerical
quadrature formulae in space. In [81], the authors took particular care to give a com-
plete and error-free description of this process. The temporal mesh in that work is
assumed to be uniform but the generalization for the case of non-uniform time steps
is straightforward. The computation of the entries of M0

h in (3.28) was not consid-
ered in [81] or the other mentioned works. An analytic integration in time can also
be done in this case. The remaining spatial integrals can be handled by numerical
quadrature formulae on pairs of tetrahedra τkx ∈ Ωh and triangles γjx ∈ Γh. The only
di�culty arises for the time-index kt = 1 because in that case the resulting integrals
are singular if the intersection of τkx and γjx is not empty. In [31, Section A.1.2]
it is shown how to handle such integrals in the spatially two-dimensional case. For
the examples in this work, we used a heuristic subdivision strategy instead, which
worked su�ciently well.

When the solution q to the system (3.24) has been computed, we can use the corre-
sponding function qh together with the approximations gh of the Dirichlet datum g
and the approximation u0,h of the initial datum u0 to construct

ũH = Ṽ qh −Wgh + M̃0u0,h, (3.30)

which approximates the solution u to the initial Dirichlet boundary value prob-
lem (1.1)�(1.3). The evaluation of Ṽ qh(x, t) and Wgh(x, t) for x ∈ Ω and t ∈ (0, T)

is discussed in [81, Section 3.5]. The initial potential M̃0u0,h can be evaluated by
standard quadrature schemes since the related integrals are not singular.

In the discrete version of the variational problem (3.20) we search for gh ∈ S1⊗0
hx,ht

(Σh)
such that

〈Dgh, ϕh〉Σ =
〈(1

2
Id−K ′T

)
(αqh)−M1u0,h, ϕh

〉
Σ

for all ϕh ∈ S1⊗0
hx,ht

, (3.31)

where u0,h = Q1
Ωu0 ∈ S1

hx
(Ωh) and qh = Q0⊗0

Σ q ∈ S0⊗0
hx,ht

. Note that the Neumann
datum q has to be su�ciently regular to de�ne qh in this manner, which we assume

26 3 Boundary integral equations and boundary element methods

here. The discrete variational problem (3.31) admits a unique solution gh, which is a
consequence of Theorem 3.2. We can use it to construct an approximate solution ũH
to the initial Neumann boundary value problem (1.1)�(1.2) with (1.4) by using (3.30)
as above.

The system of linear equations equivalent to (3.31) reads

Dhg =
(1

2
M>x
h − K>x

h

)
q −M1

hu
0. (3.32)

As before, g, q and u0 denote the vector of coe�cients of gh, qh and u0,h, respec-
tively. The matricesM>x

h and K>x
h are obtained by a blockwise transposition from the

matrices Mh and Kh in (3.24), which we indicate by the superscript >x. E.g., there
holds

K>x
h =




(K1,1
h)> 0 . . . 0

(K2,1
h)> (K2,2

h)>
. . .

...
...

...
. . .

...

(KEt,1h)> (KEt,2h)> . . . (KEt,Eth)>


 . (3.33)

The matrix Dh has the same block structure as the matrix Vh in (3.29) with blocks
Dkt,jt
h ∈ RNx×Nx , due to the causality of the operator D. The entries of Dh are

computed using the integration by parts formula in Theorem 4.8 together with (4.59).
Further details about this computation are given at the end of Section 4.2.2.

The entries of the matrix M1
h are given by

M1
h[(kt − 1)Nx + kx, jx] (3.34)

=

∫ tkt

tkt−1

∫

Γ

∫

Ω

α
∂

∂nx
Gα(x− y, t)ϕ1

Ω,jx(y)ϕ1
x,kx(x) dy dsx dt

for all kt ∈ {1, . . . , Et}, kx ∈ {1, . . . , Nx} and jx ∈ {1, . . . , NΩ}. The computation of
these entries can be handled similarly to the computation of the entries of M0

h, which
we described above.

For a priori error estimates related to the discretization (3.23) of the variational
problem (3.17) corresponding to the Dirichlet problem and the discretization (3.31)
of the variational problem (3.20) corresponding to the Neumann problem we refer
to the literature. A detailed discussion of error estimates for a Dirichlet problem is
already given in [57, Section 7] and results for both problems in [24, Section 5]. A
comprehensive overview can be found in [27, Sections 7.1 and 7.2], where also meshes
without tensor product structure are considered. In [53, Section 4] error estimates
for a mixed boundary value problem including prescribed Dirichlet, Neumann, and
Robin boundary values are given. Note that in [53] and [57] also the error related to

3.3 Boundary element methods 27

the approximation of the right-hand side is investigated for the respective problems.
Of further interest is [23], where an alternative estimate for the approximation error
for the Dirichlet problem in the energy norm ‖ · ‖H−1/2,−1/4(Σ) is given; see Theo-
rem 3.3. This result shows, in particular, how to adapt the time step sizes to the
spatial mesh widths when constructing a sequence of tensor product meshes to obtain
better convergence rates in the energy norm than those predicted in the previously
mentioned works.

4 An integration by parts formula for the

hypersingular operator

The hypersingular operator D was introduced in Section 3.1 as D = −αγint
1,ΣW with

the double layer potential operator W from (3.3). We have already pointed out
that D does not admit an integral representation like the single layer operator V
in (3.8) or the double layer operator K in (3.9) due to the strong singularity of the
related kernel function (3.14). However, an alternative representation is available for
the bilinear form 〈D·, ·〉Σ on H1/2,1/4(Σ)×H1/2,1/4(Σ), which eventually allows for
an evaluation by means of weakly singular integrals. This representation is known
as integration by parts formula and is covered in detail in this chapter and the
corresponding publication [77].

The contents of this chapter are structured as follows. In Section 4.1 we present
auxiliary de�nitions and results which are required in this chapter. A general ver-
sion of the integration by parts formula for the bilinear form 〈D·, ·〉Σ is discussed
in Section 4.2 with a detailed proof in Section 4.2.1. The integration by parts for-
mula includes a bilinear form b, which cannot be evaluated directly for non-smooth
functions in its general form. In Section 4.2.2 we provide an alternative representa-
tion for this bilinear form which is valid for functions in the typical tensor product
discretization spaces.

4.1 Auxiliary de�nitions and results

In the following subsections we discuss a few additional results that are needed later
in this chapter. We start by citing several de�nitions and results from distribution
theory following the lines of [48] and [71], which will be needed for the proof of the
integration by parts formula in Section 4.2. This formula includes surface curls of
functions inH1/2,1/4(Σ), which we de�ne in Section 4.1.2. In Section 4.1.3 we consider
selected additional aspects of the heat equation, which we will need in Section 4.2.2.

4.1.1 Selected results from distribution theory

The distributions on an open set A ⊂ Rd are denoted by D′(A). These are the linear
functionals on C∞c (A) which are sequentially continuous with the usual notion of

29

30 4 An integration by parts formula for the hypersingular operator

convergence in C∞c (A); see e.g. [48, page 65]. In the same manner, the set of all
linear, sequentially continuous functionals on C∞(A) is denoted by E ′(A). We use
the notation u[w] for the application of u in D′(A) or E ′(A) to a function w in C∞c (A)
or C∞(A), respectively.

Let L1
loc(A) be the set of all measurable functions u : A→ R such that ‖u‖L1(K) <∞

for all compact subsets K of A. For each u ∈ L1
loc(A) we can de�ne a distribution by

setting

u[w] :=

∫

A

uw dx.

A distribution that can be represented by a function in L1
loc(A) in this way is often

called regular.

For a multi-index α ∈ Nd
0 the derivative Dα =

∏d
j=1 ∂

αj
xj of a distribution S ∈ D′(A)

is de�ned by
DαS[w] = (−1)|α|S[Dαw]

for all w ∈ C∞c (A), where |α| :=
∑

j |αj|. The derivative DαS is itself a distribu-
tion.

The restriction S|B of a distribution S ∈ D′(A) to an open subset B of A is de�ned
by setting S|B[w] = S[w̃] for all w ∈ C∞c (B), where w̃ denotes the extension of w to A
by zero. There holds S|B ∈ D′(B). The support supp(S) of a distribution S ∈ D′(A)
is de�ned as the largest relatively closed subset F of A such that S|A\F = 0. In
[71, Theorem 24.2] it is shown that

E ′(A) = {S ∈ D′(A) : supp(S) is a compact subset of A}.

In the following the focus lies on distributions on the whole space Rd. The convolution
of a distribution S ∈ D′(Rd) and a test function u ∈ C∞c (Rd) is de�ned by

S ∗ u : x 7→ Sy[u(x− ·y)],

where the index y added to S indicates that S acts with respect to this variable.
It can be shown that this is a function in C∞(Rd) or even in C∞c (Rd) if supp(S) is
compact; see e.g. [71, Theorem 27.3]. For S ∈ D′(Rd), R ∈ E ′(Rd) and u ∈ C∞c (Rd)
we can also consider the functions

Sy[u(·x + ·y)] : x 7→ Sy[u(x+ ·y)]

and Ry[u(·x + ·y)], which are in C∞(Rd) and C∞c (Rd), respectively. This follows
directly from the alternative representation Sy[u(x + ·y)] = (S ∗ ǔ)(−x), where
ǔ(x) := u(−x). In particular, we can de�ne the convolution of S ∈ D′(Rd) and
R ∈ E ′(Rd) as an element in D′(Rd) via

(S ∗R)[u] := Sx[Ry[u(·x + ·y)]] for all u ∈ C∞c (Rd) (4.1)

4.1 Auxiliary de�nitions and results 31

and similarly (R ∗ S) ∈ D′(Rd) by

(R ∗ S)[u] := Rx[Sy[u(·x + ·y)]] for all u ∈ C∞c (Rd).

Let us collect some properties of the convolution of distributions de�ned in this
way.

Proposition 4.1 ([71, Theorem 27.4, Propositions 27.3 and 27.5]). Let S ∈ D′(Rd),
R ∈ E ′(Rd) and α ∈ Nd

0. Then

S ∗R = R ∗ S,
Dα(S ∗R) = (DαS) ∗R = S ∗ (DαR),

δ0 ∗ S = S,

where δ0 is the delta distribution de�ned by δ0[w] = w(0) for all w ∈ C∞(Rd).

The distributions that play an important role in this chapter are those generated by
the adjoint operators (γint

0,Σ)′ and (γint
1,Σ)′ of the trace operators in Section 2.3. If we

interpret the Dirichlet trace operator γint
0,Σ as a continuous operator from C∞(R3 × R)

to H1/2,1/4(Σ), its adjoint (γint
0,Σ)′ : H−1/2,−1/4(Σ)→ E ′(R3 × R) is given by

(γint
0,Σ)′(ϕ)[w] := 〈ϕ, γint

0,Σw〉Σ (4.2)

for ϕ ∈ H−1/2,−1/4(Σ) and w ∈ C∞(R3 × R). Similarly, we consider the Neumann
trace operator γint

1,Σ as a continuous operator from C∞(R3 × R) to H−1/2,−1/4(Σ) and

end up with its adjoint (γint
1,Σ)′ : H1/2,1/4(Σ)→ E ′(R3 × R) de�ned by

(γint
1,Σ)′(ψ)[w] := 〈γint

1,Σw,ψ〉Σ (4.3)

for ψ ∈ H1/2,1/4(Σ) and w ∈ C∞(R3 × R).

4.1.2 The surface curl in H1/2,1/4(Σ)

For the integration by parts formula of the hypersingular operatorD we need to de�ne
the surface curl of a function in H1/2,1/4(Σ). In this work we use a weak variational
de�nition. This is inspired by the de�nitions of the purely spatial tangential trace
and surface curl in [64]; see the de�nitions of γT and ∇⊥Γ in Sections 16.2 and 16.10,
respectively.

Definition 4.2. The surface curl curlΣ ϕ ∈ H−1/2,−1/4(Σ) of ϕ ∈ H1/2,1/4(Σ) is
de�ned by

〈curlΣ ϕ,ψ〉Σ = 〈∇EΣϕ, curl(EΣψ)〉L2(Q) for all ψ ∈H1/2,1/4(Σ), (4.4)

where EΣ is the continuous right inverse of γint
0,Σ from Corollary 2.8 and its application

to a vector-valued function is understood componentwise.

32 4 An integration by parts formula for the hypersingular operator

Proposition 4.3. The operator curlΣ : H1/2,1/4(Σ)→H−1/2,−1/4(Σ) is well-de�ned
and continuous. In particular, (4.4) is independent of the extension EΣ. If ϕ̃ ∈ C2(Q)
and ϕ = ϕ̃|Σ, then there holds

curlΣ ϕ = ∇ϕ̃× n. (4.5)

Proof. We start by showing that the de�nition in (4.4) is independent of the exten-

sion EΣψ of the test function ψ ∈ H1/2,1/4(Σ). For this purpose, let ψ̃1 and ψ̃2

in H1,1/2(Q) denote two extensions of ψ to Q. Then, the di�erence ψ̃1 − ψ̃2 is

in H
1,1/2
0; (Q) and, therefore,

〈∇u, curl ψ̃1 − curl ψ̃2〉L2(Q) = 0 (4.6)

for all u ∈ H1,1/2(Q). Indeed, integration by parts yields

〈∇u, curlw〉L2(Q) = 〈u,n · curlw〉Σ − 〈u, div(curlw)〉L2(Q) = 0

for w ∈ C∞c (Q), and thus (4.6) follows from the density of C∞c (Q) in H
1,1/2
0; (Q); see

Proposition 2.5. This proves that (4.4) is independent of the extension EΣψ of ψ.

Similarly, we conclude that (4.4) is independent of the extension EΣϕ of ϕ by using
that

〈∇u, curlw〉L2(Q) = 〈∇u× n,w〉Σ + 〈curl(∇u),w〉L2(Q) = 0

for all u ∈ C∞c (Q) and w ∈H1,1/2(Q).

To see that curlΣ ϕ ∈H−1/2,−1/4(Σ) and that curlΣ is continuous as a mapping from
H1/2,1/4(Σ) to H−1/2,−1/4(Σ) we estimate

|〈curlΣ ϕ,ψ〉Σ| = |〈∇EΣϕ, curl(EΣψ)〉L2(Q)| ≤ ‖∇EΣϕ‖L2(Q)‖ curl(EΣψ)‖L2(Q)

≤ c ‖EΣϕ‖H1,1/2(Q)‖EΣψ‖H1,1/2(Q) ≤ c c2
IT‖ϕ‖H1/2,1/4(Σ)‖ψ‖H1/2,1/4(Σ),

where cIT denotes the boundedness constant of the extension operators EΣ.

The only thing left to show is (4.5) for ϕ̃ ∈ C2(Q) and ϕ = ϕ̃|Σ. Since the de�nition
of curlΣ in (4.4) is independent of the extension of ϕ we can use the particular
extension ϕ̃ to get

〈curlΣ ϕ,ψ〉Σ = 〈∇ϕ̃, curl(EΣψ)〉L2(Q) = 〈∇ϕ̃× n,ψ〉Σ + 〈curl(∇ϕ̃), EΣψ〉L2(Q)

= 〈∇ϕ̃× n,ψ〉Σ

for all ψ ∈H1/2,1/4(Σ), where we used integration by parts in the second step. This
means that curlΣ ϕ = ∇ϕ̃× n in H−1/2,−1/4(Σ).

4.1 Auxiliary de�nitions and results 33

4.1.3 The heat equation � selected results

In Section 3.2 we have seen how boundary integral equations can be used for the
solution of initial boundary value problems for the transient heat equation. Here
we present additional solvability results for an initial Dirichlet problem with homo-
geneous initial conditions. In addition, we discuss the classical parabolic maximum
principle and a generalization of it, which we will need in Section 4.2.2.

The �rst theorem which we state is a classical existence and uniqueness result that
can be found in a more general form in [7, Theorem 6.2.8].

Theorem 4.4. Let g ∈ C(Σ) such that g(x, 0) = 0 for all x ∈ Γ. Then the ini-
tial Dirichlet boundary value problem (1.1)�(1.3) with initial datum u0 = 0 admits a
unique classical solution u ∈ C(Q) ∩ C∞(Q).

In Section 3.2 we have already seen that we can construct the solution of an initial
Dirichlet boundary value problem with Dirichlet datum g ∈ H1/2,1/4(Σ) by means of
integral operators. Theorem 4.5 shows that this is even possible for g ∈ L2(Σ) when
interpreting boundary values in terms of non-tangential limits. The non-tangential
limit of a function u in Q at (x, t) ∈ Σ is de�ned by

lim
γ(x,t)3(y,τ)→(x,t)

u(y, τ), (4.7)

where γ(x, t) ⊂ Q is the so-called parabolic non-tangential approach region of a point
(x, t) ∈ Σ. Since a rigorous de�nition of this region γ(x, t) is slightly technical and
we do not use it extensively here, we refer to [19, Section 1] for it.

Theorem 4.5 (cf. [19, Theorems 8.1 and 8.3]). The operator (−1/2 Id + K) as a
map from L2(Σ) to L2(Σ) is an isomorphism. In particular, for any g ∈ L2(Σ) the
function

u = W
((
− 1

2
Id +K

)−1

g
)

(4.8)

is well-de�ned. Furthermore, it is the unique function that satis�es:

(i) u ∈ C∞(Q) and (∂/∂t− α∆)u = 0.

(ii) u ∈ C(Ω× [0, T)) and u(·, 0) = 0.

(iii) The non-tangential maximal function N(u) of u is in L2(Σ), where

N(u)(x, t) := sup{|u(y, τ)| : (y, τ) ∈ γ(x, t)} for all (x, t) ∈ Σ, (4.9)

and γ(x, t) ⊂ Q is the parabolic non-tangential region of (x, t) as in (4.7).

(iv) u = g on Σ in the sense of non-tangential limits almost everywhere.

34 4 An integration by parts formula for the hypersingular operator

The next result is known as the parabolic maximum principle; see e.g. Theorem 4 in
Section 2.3.3 of [30].

Proposition 4.6. Let u ∈ C(Q) ∩ C2(Q) satisfy (1.1). Then

max
(x,t)∈Q

u(x, t) = max
(x,t)∈(Σ∪(Ω×{0}))

u(x, t)

and the same holds if the maximum is replaced by the minimum on both sides.

We conclude this section with Theorem 4.7, which is a generalization of the maximum
principle in Proposition 4.6 and will be required in the proof of Theorem 4.17.

Theorem 4.7 (Extended parabolic maximum principle). Let g ∈ L∞(Σ) and u be
the solution (4.8) to the initial Dirichlet boundary value problem (1.1)�(1.3) with the
initial datum u0 = 0. Then there holds

sup{|u(x, t)| : (x, t) ∈ Q} ≤ ‖g‖L∞(Σ). (4.10)

Proof. The theorem is proven in three steps. First we approximate the boundary
datum g in L2(Σ) by a sequence {gn}n in C(Σ) such that gn(x, 0) = 0 for all x ∈ Γ
and ‖gn‖L∞(Σ) ≤ ‖g‖L∞(Σ). Secondly, we construct solutions un of the homogeneous
heat equation by Theorems 4.4 and 4.5 such that un = gn on Σ. Finally, we show
assertion (4.10) by contradiction using Proposition 4.6 for un and a continuity argu-
ment.

We start with the construction of the sequence {gn}n. Due to the density of C(Σ) in
L2(Σ) we �nd a sequence {fn}n in C(Σ) such that fn → g in L2(Σ) as n→∞. Let
us �rst de�ne g̃n by

g̃n(x, t) :=

{
fn(x, t) if (x, t) is such that |fn(x, t)| ≤ ‖g‖L∞(Σ),

sign(fn(x, t))‖g‖L∞(Σ) otherwise.

One can show that g̃n ∈ C(Σ) and ‖g̃n‖L∞(Σ) ≤ ‖g‖L∞(Σ) for all n ∈ N. In addition,
g̃n → g in L2(Σ) as n→∞, which follows from the estimate

|g̃n(x, t)− g(x, t)| ≤ |fn(x, t)− g(x, t)|
for all n ∈ N and almost all (x, t) ∈ Σ. Since g̃n(x, 0) = 0 might be violated for some
x ∈ Γ we set

gn(x, t) :=

{
n t g̃n(x, t) if 0 ≤ t ≤ 1

n
,

g̃n(x, t) otherwise.

By construction, there holds gn ∈ C(Σ), gn(·, 0) = 0 on Γ and ‖gn‖L∞(Σ) ≤ ‖g‖L∞(Σ)

for all n ∈ N. In addition, gn − g̃n → 0 in L2(Σ) as n → ∞, which implies the
convergence of gn to g in L2(Σ). Therefore, {gn}n is a sequence in C(Σ) with the
desired properties.

4.2 A general integration by parts formula for the hypersingular operator 35

By Theorem 4.4, we can �nd for each n ∈ N a unique un ∈ C∞(Q) ∩ C(Q) which
solves the heat equation (1.1) and satis�es un(x, 0) = 0 for all x ∈ Ω as well as
un = gn on Σ. Hence, un satis�es the properties (i), (ii) and (iv) of Theorem 4.5 and
we need to show only (iii) to obtain the representation

un = W
((
− 1

2
Id +K

)−1

gn

)
. (4.11)

Due to the de�nition of N(un) in (4.9) and the inclusion γ(x, t) ⊂ Q there holds

N(un) ≤ sup{|un(x, t)| : (x, t) ∈ Q}.

From the classical parabolic maximum principle in Proposition 4.6 we can further
estimate

sup{|un(x, t)| : (x, t) ∈ Q} ≤ ‖gn‖L∞(Σ) ≤ ‖g‖L∞(Σ). (4.12)

Therefore, N(un) ≤ ‖g‖L∞(Σ) on Σ and, in particular, N(un) ∈ L2(Σ), which is
property (iii) in Theorem 4.5.

With the representation (4.11) we can show that un → u locally in Q in L2 as n→∞.
In fact, let Qε := {(x, t) ∈ Q : dist(x,Γ) > ε}. Then the convergence of un to u in
L2(Qε) follows immediately from gn → g in L2(Σ), because the operator (−1

2
Id+K) is

an isomorphism in L2(Σ) as stated in Theorem 4.5, and becauseW : L2(Σ)→ L2(Qε)
is continuous, which is easy to see.

Suppose now that (4.10) does not hold true. Then there exists a point (x0, t0) ∈ Q
such that |u(x0, t0)| > ‖g‖L∞(Σ). Since u is continuous in Q due to Theorem 4.5 (ii),
we can �nd some ε > 0, δ > 0 and an open set A ⊂ Qε with measure |A| > 0 such
that (x0, t0) ∈ A and |u(x, t)| > ‖g‖L∞(Σ) + δ for all (x, t) ∈ A. Together with (4.12)
it follows that

∫∫

Qε

|un(x, t)− u(x, t)|2 dx dt ≥
∫∫

A

|un(x, t)− u(x, t)|2 dx dt > δ2|A|

for all n ∈ N, which is a contradiction to un → u in L2(Qε). Therefore, (4.10) is
satis�ed.

4.2 A general integration by parts formula for the

hypersingular operator

In Theorem 4.8 we �nally present a general form of the integration by parts formula
for the bilinear form 〈D·, ·〉Σ of the hypersingular operator. In the rest of the section
we prove this theorem and discuss the formula in detail.

36 4 An integration by parts formula for the hypersingular operator

Theorem 4.8. Let Ω ⊂ R3 be a bounded Lipschitz domain with boundary Γ and let
Σ = Γ× (0, T). For ϕ, ψ ∈ H1/2,1/4(Σ) there holds the integration by parts formula

〈Dϕ,ψ〉Σ = α2〈curlΣ ψ, V (curlΣ ϕ)〉Σ + α b(ϕ, ψ). (4.13)

Here, the single layer boundary integral operator V is applied componentwise to
curlΣ ϕ and the bilinear form b(·, ·) : H1/2,1/4(Σ)×H1/2,1/4(Σ)→ R is de�ned by

b(ϕ, ψ) :=

(
∂

∂t
(γint

0,Σ)′
(
V (ϕn) · n

))
[ψ̃] := −

〈
V (ϕn),

∂

∂t
ψn

〉

Σ

, (4.14)

for ϕ ∈ H1/2,1/4(Σ), ψ ∈ γint
0,Σ(C∞c (R3 × (0, T))) and ψ̃ ∈ C∞c (R3 × (0, T)) such that

ψ = ψ̃|Σ, and as its continuous extension for general ψ ∈ H1/2,1/4(Σ).

We will give a rigorous proof of this theorem in Section 4.2.1. A corresponding result
for the 2D case has been given in [24, Theorem 6.1], including an outline of the proof.
In that paper the bilinear form b is represented by b(ϕ, ψ) = 〈∂/∂t V (ϕn), ψn〉Σ and
it is stated in the proof that it has to be interpreted in the sense of a continuous
extension. For the 3D case a similar statement can be found in [27, Section 4.7] and
[51, Section 3.1.3], but no proof is given. In addition, the latter authors formulate the
result in a less rigorous way and do not clarify how the second term on the right-hand
side of (4.13), which they represent as

− α
∫ T

0

∫

Γ

ψ(x, t)n(x) ·
∫ t

0

∫

Γ

∂Gα

∂τ
(x− y, t− τ)ϕ(y, τ)n(y) dsy dτ dsx dt, (4.15)

has to be understood for general ϕ and ψ. In fact, we cannot interpret it as a standard
Lebesgue integral, as we show next.

Proposition 4.9. The function

((x, t), (y, τ)) 7→ ∂Gα

∂τ
(x− y, t− τ) (4.16)

is not Lebesgue integrable on Σ× Σ.

The following proof is valid for arbitrary Lipschitz boundaries Γ. For smooth bound-
aries Γ a more elegant proof is available, which is given in [77, see Proposition 5.1].

Proof. We start by computing the derivative

∂Gα

∂τ
(x−y, t−τ) =

[
6α(t− τ)− |x− y|2
(4α)5/2π3/2(t− τ)7/2

]
exp

(
− |x− y|

2

4α(t− τ)

)
for t > τ. (4.17)

4.2 A general integration by parts formula for the hypersingular operator 37

For �xed t, x and y satisfying 6αt > |x − y|2 and x 6= y, we observe that
τ 7→ ∂τGα(x− y, t− τ) is positive for τ < τ ∗ := t − |x − y|2/6α and negative
for τ > τ ∗. Thus, we get

∫ t

0

∣∣∣∣
∂Gα

∂τ
(x− y, t− τ)

∣∣∣∣dτ =

∫ τ∗

0

∂Gα

∂τ
(x− y, t− τ) dτ −

∫ t

τ∗

∂Gα

∂τ
(x− y, t− τ) dτ

= 2Gα(x− y, t− τ ∗)−Gα(x− y, t),

where t− τ ∗ = |x− y|2/6α is independent of t and

Gα

(
x− y, |x− y|

2

6α

)
=

(6)3/2 exp(−3/2)

(4π)3/2|x− y|3 . (4.18)

If instead t ≤ |x− y|2/6α, there holds
∫ t

0

∣∣∣∣
∂Gα

∂τ
(x− y, t− τ)

∣∣∣∣dτ = Gα(x− y, t).

To simplify the arguments let us assume for a moment that T > |x− y|2/6α for all
points x and y on Γ. Then we immediately see that

∫ T

0

∫ t

0

∣∣∣∣
∂Gα

∂τ
(x− y, t− τ)

∣∣∣∣dτ dt =

∫ |x−y|2/6α

0

Gα(x− y, t) dt (4.19)

−
∫ T

|x−y|2/6α
Gα(x− y, t) dt+ 2

(
T − |x− y|

2

6α

)
Gα

(
x− y, |x− y|

2

6α

)

for all x and y in Γ with x 6= y. It remains to integrate (4.19) over Γ × Γ. The
�rst two terms are integrable on Γ × Γ, which is a consequence of the estimate
[59, cf. Chapter 13 �3]

|Gα(r, t)| = 1

(4παt)3/2
exp

(−|r|2
4αt

)
=

(|r|2
4αt

)3/4

exp

(−|r|2
4αt

)
1

π3/2(4αt)3/4|r|3/2

≤
(

3

4

)3/4

exp

(
−3

4

)
1

π3/2(4αt)3/4|r|3/2 = c(α)
1

t3/4
1

|r|3/2 (4.20)

for t > 0, where we used that qm exp(−q) ≤ mm exp(−m) for all m, q ≥ 0. The
integral over the last term on the right-hand side of (4.19), however, is unbounded
due to the strong singularity of (4.18). Therefore, (4.16) is not Lebesgue integrable
on Σ×Σ. In the general case, the estimate T > |x−y|2/6α still holds on local parts
of Γ which is enough to show the assertion.

38 4 An integration by parts formula for the hypersingular operator

In this work, the problematic integral term (4.15) is replaced by α b(ϕ, ψ) in the
integration by parts formula. Since we de�ne b as the continuous extension of (4.14)
it is a priori not clear, how to evaluate it for nonsmooth ψ. The reason is that neither
V (ϕn) nor ψ does admit a weak derivative with respect to time in general, which is
why the second term in (4.14) has to be understood in the stated distributional sense
for smooth ψ as above. In Section 4.2.2 we present an alternative representation of b
which is valid for functions with a certain tensor product structure and overcomes
this de�ciency.

4.2.1 A proof of the general integration by parts formula

The proof of Theorem 4.8 is split into three main steps, to each of which we dedicate a
separate paragraph. In the �rst paragraph we derive a distributional representation
of α∇Wϕ. The steps in the second and third paragraphs are based on the ideas
given in [24, Proof of Theorem 6.1]. We show an integration by parts formula on an
auxiliary boundary inside of the space-time domain Q in the second paragraph, using
the representation of α∇Wϕ from the �rst one. In the third paragraph we construct
a sequence of auxiliary boundaries Σm inside of Q which approximate Σ and show
that the integration by parts formula on Σ is obtained from the formulas on Σm in
the limit as m tends to in�nity. The actual proof of Theorem 4.8 is given at the end
of the third paragraph.

Throughout this section we use the general de�nitions of the single layer potential
operator

Ṽ q = Gα ∗
(
(γint

0,Σ)′q
)

(4.21)

for q ∈ H−1/2,−1/4(Σ) and the double layer potential operator

Wϕ = Gα ∗
(
(αγint

1,Σ)′ϕ
)

(4.22)

for ϕ ∈ H1/2,1/4(Σ), cf. [24, Section 3]. Here, (γint
0,Σ)′ and (γint

1,Σ)′ are the adjoint
trace operators which we have introduced at the end of Section 4.1.1 and the con-
volution with the fundamental solution (r, t) 7→ Gα(r, t) in (3.4) is understood as a
convolution of distributions.

A distributional representation of the gradient of Wϕ

The hypersingular operator D is de�ned as the Neumann trace γint
1,Σ of the double

layer potential operator W . Since γint
1,Σ = n · ∇ holds for smooth functions � see

Proposition 2.10 � we are interested in the evaluation of ∇Wϕ for ϕ ∈ H1/2,1/4(Σ).
In the following proposition we compute this gradient in a distributional sense. This
approach is motivated by the proof of the integration by parts formula for elliptic
operators in [63, Section 3.3.4].

4.2 A general integration by parts formula for the hypersingular operator 39

Proposition 4.10. Let ϕ ∈ H1/2,1/4(Σ) and u = Wϕ be de�ned by (4.22). Then
there holds

α∇u = −Gα ∗
(
α curl curl(γint

0,Σ)′(αϕn) +
∂

∂t
(γint

0,Σ)′(αϕn)

)
+ (γint

0,Σ)′(αϕn) (4.23)

in the distributional sense on R3×R, where the convolution is understood componen-
twise. In particular, inside of Q there holds

α∇u = −
(
α curl curl(γint

0,Σ)′(αϕn)
)
∗Gα −

(
∂

∂t
(γint

0,Σ)′(αϕn)

)
∗Gα (4.24)

in the classical sense, and the terms on the right-hand side can be understood as
functions in C∞(Q).

Proof. Let v ∈ C∞c (R3 × R). Applying the distributional gradient ∇u to v yields

α∇u [v] = −αu[div v] = −α
(
Gα ∗ ((αγint

1,Σ)′ϕ)
)

[div v]

= −α(Gα)(x,t)

[
((αγint

1,Σ)′ϕ)(y,τ)[div v(·x + ·y, ·t + ·τ)]
]
, (4.25)

where we used the de�nition of the convolution of distributions in (4.1). With the
de�nition of (γint

1,Σ)′ in (4.3) and (γint
0,Σ)′ in (4.2) it follows that

((αγint
1,Σ)′ϕ)(y,τ)[div v(x+ ·y, t+ ·τ)]

= 〈(αγint
1,Σ)y,τ (div v(x+ ·y, t+ ·τ)), ϕ〉Σ

=

∫ T

0

∫

Γ

ϕ(y, τ)αn(y) · ∇ div v(x+ y, t+ τ) dsy dτ

= ((γint
0,Σ)′(αϕn))(y,τ)[∇ div v(x+ ·y, t+ ·τ)]

for each (x, t) ∈ R3 × R. By inserting this into (4.25) and using the identity
∇ div v = curl curlv + ∆v, where ∆ is applied componentwise to v, we get

α∇u [v] = −α(Gα)(x,t)

[
((γint

0,Σ)′(αϕn))(y,τ)[(curl curl +∆)v(·x + ·y, ·t + ·τ)]
]

= −α
(
Gα ∗ ((γint

0,Σ)′(αϕn))
)

[curl curlv + ∆v]

= −α curl curl
(
Gα ∗ ((γint

0,Σ)′(αϕn))
)

[v]− α∆
(
Gα ∗ ((γint

0,Σ)′(αϕn))
)

[v].

Here and in the following the convolution of Gα and a vector-valued distribution like
(γint

0,Σ)′(αϕn) is understood componentwise. By di�erentiation rules for convolutions
of distributions, which follow from the one stated in Proposition 4.1, it follows

−α curl curl
(
Gα ∗ ((γint

0,Σ)′(αϕn))
)

[v] = −
(
Gα ∗

(
α curl curl(γint

0,Σ)′(αϕn)
))

[v],

−α∆
(
Gα ∗ ((γint

0,Σ)′(αϕn))
)

[v] =
(

(−α∆Gα) ∗ ((γint
0,Σ)′(αϕn))

)
[v].

40 4 An integration by parts formula for the hypersingular operator

Since Gα is the fundamental solution of the heat equation with heat capacity con-
stant α, there holds ∂tGα − α∆Gα = δ0, where δ0 denotes the delta distribution
concentrated at 0. As a consequence, we can rewrite the second equation as

(
(−α∆Gα) ∗ ((γint

0,Σ)′(αϕn))
)

[v] =
((
− ∂

∂t
Gα + δ0

)
∗ ((γint

0,Σ)′(αϕn))
)

[v]

= −
(
Gα ∗

(∂
∂t

(γint
0,Σ)′(αϕn)

))
[v] + (γint

0,Σ)′(αϕn)[v].

Collecting all results, we see that

α∇u [v] =−
(
Gα ∗

(
α curl curl(γint

0,Σ)′(αϕn) +
∂

∂t
(γint

0,Σ)′(αϕn)
))

[v]

+ (γint
0,Σ)′(αϕn)[v].

Since v ∈ C∞c (R3 × R) was arbitrary, we conclude that (4.23) holds.

Let us now interpret both sides of (4.23) as elements in D′(Q) by restricting the test
functions to C∞c (Q). Since the support of (γint

0,Σ)′(αϕn) is a subset of Σ there holds

α∇u [v] = −
(
Gα ∗

(
α curl curl(γint

0,Σ)′(αϕn) +
∂

∂t
(γint

0,Σ)′(αϕn)
))

[v]

for all v ∈ C∞c (Q). The left-hand side can be interpreted as a regular distribution

on Q induced by α∇u ∈ L2(Q), because u ∈ H
1,1/2
;0, (Q). The �rst term on the

right-hand side can be rewritten as

Gα ∗
(
α curl curl(γint

0,Σ)′(αϕn)
)

=
(
α curl curl(γint

0,Σ)′(αϕn)
)
∗Gα.

Since the distribution curl curl(γint
0,Σ)′(αϕn) has support in Σ and (r, t) 7→ Gα(r, t)

is in C∞((R3 × R)\{0}), one can show that (curl curl(γint
0,Σ)′(αϕn)) ∗ Gα is a reg-

ular distribution on Q and can be interpreted as a function in C∞(Q). The same
arguments apply to

Gα ∗
(∂
∂t

(γint
0,Σ)′(αϕn)

)
=
(∂
∂t

(γint
0,Σ)′(αϕn)

)
∗Gα.

For later reference we de�ne g1, g2 ∈ C∞(Q) in agreement with Proposition 4.10
by

g1 := −
(
α curl curl(γint

0,Σ)′(αϕn)
)
∗Gα, (4.26)

g2 := −
(∂
∂t

(γint
0,Σ)′(αϕn)

)
∗Gα. (4.27)

Equation (4.24) can then be written in the short form

α∇u = g1 + g2 in Q. (4.28)

4.2 A general integration by parts formula for the hypersingular operator 41

An integration by parts formula inside the space-time domain Q

The next major step in the proof of Theorem 4.8 is to show a result equivalent to the
integration by parts formula (4.13) on an auxiliary boundary Σm inside of Q. This
is formulated in Proposition 4.11. The approach is motivated by the smoothness of
u = Wϕ or rather α∇u inside of Q, which permits us to represent normal derivatives
of u on Σm in a classical way. Furthermore, it allows us to interpret derivatives
appearing in duality products 〈·, ·〉Σm in a distributional sense, and thus to integrate
by parts.

Proposition 4.11. Let Ωm be a Lipschitz domain satisfying Ωm ⊂ Ω with outward
normal vector nm and boundary Γm. Let Qm := Ωm× (0, T) and Σm := Γm × (0, T).
Let ϕ ∈ H1/2,1/4(Σ), u = Wϕ and ψm ∈ H1/2,1/4(Σm). Then

−α 〈γint
1,Σmu, ψm〉Σm = α2〈curlΣm ψm, γ

int
0,ΣmṼ (curlΣ ϕ)〉Σm

+ α

〈
nm · γint

0,Σm

(
∂

∂t
Ṽ (ϕn)

)
, ψm

〉

Σm

.
(4.29)

Before we prove Proposition 4.11, we consider two lemmata. Keeping in mind the
decomposition (4.28), we focus �rst on g1 in (4.26). In Lemma 4.13 we show that
it is related to the �rst term on the right-hand side of (4.29). For this purpose, we
have to draw a connection between curl(γint

0,Σ)′(ϕn) and the surface curl of ϕ de�ned
in (4.4). This is done in Lemma 4.12. A similar result for purely spatial curls is
proven in [63, cf. Lemma 3.3.21].

Lemma 4.12. Let ϕ ∈ H1/2,1/4(Σ). Then

curl(γint
0,Σ)′(ϕn) = (γint

0,Σ)′(curlΣ ϕ) (4.30)

in D′(R3 × R).

Proof. For all w ∈ C∞c (R3 × R) there holds

curl(γint
0,Σ)′(ϕn)[w] = (γint

0,Σ)′(ϕn)[curlw] =

∫ T

0

∫

Γ

ϕ(x, t)n(x) · curlw(x, t) dsx dt.

Let us �rst assume that ϕ ∈ γint
0,Σ(C∞c (Ω×(0, T))), i.e. there exists ϕ̃ ∈ C∞c (Ω×(0, T))

such that ϕ = ϕ̃|Σ. Then we can rewrite

ϕ(x, t) curlw(x, t) = curl(ϕ̃w)(x, t)−∇ϕ̃(x, t)×w(x, t)

for all x ∈ Γ and t ∈ (0, T). By inserting this into the previous equation we get

∫ T

0

∫

Γ

n(x) · curl(ϕ̃w)(x, t) dsx dt−
∫ T

0

∫

Γ

n(x) · (∇ϕ̃(x, t)×w(x, t)) dsx dt.

42 4 An integration by parts formula for the hypersingular operator

The �rst integral vanishes, which follows by applying the divergence theorem and
using the identity div curl(ϕ̃w) = 0. The integrand of the second integral is

n(x) · (∇ϕ̃(x, t)×w(x, t)) = −w(x, t) · (∇ϕ̃(x, t)×n(x)) = −w(x, t) · (curlΣ ϕ),

where we used (4.5) in the last step. Hence,

curl(γint
0,Σ)′(ϕn)[w] =

∫ T

0

∫

Γ

w(x, t) · (curlΣ ϕ)(x, t) dsx dt = (γint
0,Σ)′(curlΣ ϕ)[w],

and thus (4.30) holds for all ϕ ∈ γint
0,Σ(C∞c (Ω× (0, T))).

Let us now consider a general ϕ ∈ H1/2,1/4(Σ). The space γint
0,Σ(C∞c (Ω × (0, T))) is

dense in H1/2,1/4(Σ), which follows from Proposition 2.5. Therefore, we can �nd a
sequence {ϕk}k in γint

0,Σ(C∞c (Ω× (0, T))) such that ϕk → ϕ in H1/2,1/4(Σ) as k →∞.
It follows that

curl(γint
0,Σ)′(ϕkn)→ curl(γint

0,Σ)′(ϕn)

in the distributional sense as k →∞. In fact, for all w ∈ C∞c (R3 × R) there holds

lim
k→∞

curl(γint
0,Σ)′(ϕkn)[w] = lim

k→∞

∫ T

0

∫

Γ

ϕk(x, t)n(x) · curlw(x, t) dsx dt

= lim
k→∞
〈ϕk,n · curlw〉Σ = 〈ϕ,n · curlw〉Σ

= curl(γint
0,Σ)′(ϕn)[w].

At the same time

lim
k→∞

curl(γint
0,Σ)′(ϕkn)[w] = lim

k→∞
(γint

0,Σ)′(curlΣ ϕk)[w] = lim
k→∞
〈curlΣ ϕk, γ

int
0,Σw〉Σ

= 〈curlΣ ϕ, γ
int
0,Σw〉Σ = (γint

0,Σ)′(curlΣ ϕ)[w]

for all w ∈ C∞c (R3 × R) due to the continuity of curlΣ in H1/2,1/4(Σ). Hence,

curl(γint
0,Σ)′(ϕn) = (γ int

0,Σ)′(curlΣ ϕ)

holds for general ϕ ∈ H1/2,1/4(Σ).

Lemma 4.13. Let Σm be given as in Proposition 4.11 and g1 be de�ned by (4.26).
Let ϕ ∈ H1/2,1/4(Σ) and ψm ∈ H1/2,1/4(Σm). Then

− 〈nm · γint
0,Σmg1, ψm〉Σm = α2〈curlΣm ψm, γ

int
0,ΣmṼ (curlΣ ϕ)〉Σm . (4.31)

4.2 A general integration by parts formula for the hypersingular operator 43

Proof. Since g1 ∈ C∞(Q) we can interpret

−〈nm · γint
0,Σmg1, ψm〉Σm = −

∫ T

0

∫

Γm

ψm(x, t)nm(x) · g1(x, t) dsx dt

= −(γint
0,Σm)′(ψmnm)[g1],

with (γint
0,Σm

)′(ψmnm) ∈ E ′(Q). By (4.26) we have

g1 = −
(
α curl curl(γint

0,Σ)′(αϕn)
)
∗Gα = −α2 curl

((
curl(γint

0,Σ)′(ϕn)
)
∗Gα

)

and we see that

−(γint
0,Σm)′(ψmnm)[g1] = α2(γint

0,Σm)′(ψmnm)
[
curl

((
curl(γint

0,Σ)′(ϕn)
)
∗Gα

)]

= α2 curl(γint
0,Σm)′(ψmnm)

[(
curl(γint

0,Σ)′(ϕn)
)
∗Gα

]
,

i.e. we can integrate by parts in a distributional sense in the duality pairing of E ′(Q)
and C∞(Q). Identity (4.30), which obviously still holds if Σ is replaced by Σm,
combined with the previous equations yields

−〈nm · γint
0,Σmg1, ψm〉Σm = α2(γint

0,Σm)′(curlΣm ψm)
[(

(γint
0,Σ)′(curlΣ ϕ)

)
∗Gα

]

= α2(γint
0,Σm)′(curlΣm ψm)

[
Ṽ (curlΣ ϕ)

]

= α2〈curlΣm ψm, γ
int
0,ΣmṼ (curlΣ ϕ)〉Σm ,

where we used the de�nition of Ṽ in (4.21) in the second line and understand its
application here in a componentwise way.

Proof of Proposition 4.11. We have seen in (4.28) that the scaled gradient α∇u can
be written as the sum of the functions g1, g2 ∈ C∞(Q) given in (4.26) and (4.27). As
a consequence, the scaled Neumann trace αγint

1,Σm
u on the boundary Σm inside of Q

is simply given by

αγint
1,Σmu = αnm · γint

0,Σm(∇u) = nm · γint
0,Σmg1 + nm · γint

0,Σmg2

and, hence,

−α 〈γint
1,Σmu, ψm〉Σm = −〈nm · γint

0,Σmg1, ψm〉Σm − 〈nm · γint
0,Σmg2, ψm〉Σm

for all ψm ∈ H1/2,1/4(Σm). By Equation (4.31) the �rst term on the right-hand side
of this equation coincides with the �rst term on the right-hand side of (4.29). Since

g2 = −
(∂
∂t

(γint
0,Σ)′(αϕn)

)
∗Gα = −α ∂

∂t

(
((γint

0,Σ)′(ϕn)) ∗Gα

)
= −α ∂

∂t
Ṽ (ϕn),

where Ṽ from (4.21) is applied componentwise again, the equality of the other terms
follows immediately.

44 4 An integration by parts formula for the hypersingular operator

The integration by parts formula (4.13) as the limit case of (4.29)

Proposition 4.11 provides us with an integration by parts formula (4.29) on arti�-
cial boundaries Σm inside of Q. The �nal step in the proof of Theorem 4.8 is to
deduce the actual integration by parts formula (4.13) therefrom. For this purpose,
we consider a sequence {Ωm}m of smooth domains approximating Ω as established
by Theorem 2.3 and denote Qm := Ωm× (0, T) and Σm := Γm× (0, T) as before. We
will refer to {Σm}m in the following as a smooth approximating sequence of Σ. Let
ϕ, ψ ∈ H1/2,1/4(Σ) and de�ne ψm ∈ H1/2,1/4(Σm) by

ψm := γint
0,Σm(EΣ;,0ψ). (4.32)

Then, the left-hand side and the �rst term on the right-hand side of (4.29) converge
to the respective terms of (4.13) in the limit as m tends to in�nity. This is the
content of the next two lemmata. For the convergence of the remaining term, which
is handled in Lemma 4.16, additional assumptions on ψ are required.

Lemma 4.14. Let {Σm}m be a smooth approximating sequence of Σ as introduced at
the beginning of the current paragraph. Let ϕ, ψ ∈ H1/2,1/4(Σ), u = Wϕ, and ψm be
de�ned by (4.32). Then

lim
m→∞

−α 〈γint
1,Σmu, ψm〉Σm = 〈Dϕ,ψ〉Σ. (4.33)

Proof. By the de�nition of γint
1,Σ via Green's �rst identity in (2.10) there holds

〈Dϕ,ψ〉Σ = −α〈γint
1,Σu, ψ〉Σ = −α

(∫ T

0

∫

Ω

∇u · ∇(EΣ;,0ψ) dx dt+ d(u,EΣ;,0ψ)

)
,

where we use that (∂t − α∆)u = 0, since u = Wϕ. The Neumann trace on Σm is
de�ned analogously, and thus

−α 〈γint
1,Σmu, ψm〉Σm = −α

(∫ T

0

∫

Ωm

∇u · ∇(EΣ;,0ψ) dx dt+ dQm(u,EΣ;,0ψ)

)
,

where the bilinear form dQm : H
1,1/2
;0, (Qm) ×H1,1/2

;,0 (Qm) → R is de�ned in the same
way as the bilinear form d in (2.7) for Ωm instead of Ω, and we use that EΣ;,0ψ is an

extension of ψm into H
1,1/2
;,0 (Qm). Here and in the following we identify u and EΣ;,0ψ

with the restrictions u|Qm and (EΣ;,0ψ)|Qm , respectively, when operating on Qm to
simplify the notation. By subtracting the second equation from the �rst one we can
estimate
∣∣∣〈Dϕ,ψ〉Σ + α 〈γint

1,Σmu, ψm〉Σm
∣∣∣ (4.34)

≤ α

∣∣∣∣
∫ T

0

∫

Ω\Ωm
∇u · ∇(EΣ;,0ψ) dx dt

∣∣∣∣+ α |d(u,EΣ;,0ψ)− dQm(u,EΣ;,0ψ)| .

4.2 A general integration by parts formula for the hypersingular operator 45

The �rst term on the right-hand side converges to 0 asm→∞. This follows from the
Cauchy�Schwarz inequality, which we can use since ∇u, ∇EΣ;,0ψ ∈ L2(Q) because
u, EΣ;,0ψ ∈ H1,1/2(Q), and |Ω\Ωm| → 0.

It is slightly more di�cult to see that the second term of the right-hand side in (4.34)
converges to zero. The problem is that d and dQm are de�ned only as continuous

extensions of (2.7) for general functions in H
1,1/2
;0, (Q) and H

1,1/2
;,0 (Q). Therefore, let

{un}n be a sequence of functions in C∞c (Ω× (0, T]) converging to u in H
1,1/2
;0, (Q) and

{vn}n be a sequence in C∞c (Ω×[0, T)) converging to v := EΣ;,0ψ in H
1,1/2
;,0 (Q). The re-

strictions un|Qm ∈ C∞c (Ωm × (0, T]) and vn|Ωm ∈ C∞c (Ωm × [0, T)) of these functions

converge to u|Qm in H
1,1/2
;0, (Qm) and v|Qm in H

1,1/2
;,0 (Qm), respectively. In particular,

lim
n→∞

d(un, vn) = d(u, v), lim
n→∞

dQm(un, vn) = dQm(u, v),

due to the continuity of d and dQm stated in Proposition 2.9. This motivates us to
estimate

|d(u, v)− dQm(u, v)| ≤ |d(u, v)− d(un, vn)|+ |d(un, vn)− dQm(un, vn)|
+ |dQm(un, vn)− dQm(u, v)|

(4.35)

and to show that the right-hand side can be bounded by an arbitrarily small ε for a
suitably chosen n and su�ciently large m.

Let ε > 0 be �xed. The last summand in (4.35) can be estimated by

|dQm(un, vn)− dQm(u, v)| ≤ |dQm(un, vn)− dQm(u, vn)|+ |dQm(u, vn)− dQm(u, v)|
≤cd‖u− un‖H1,1/2

;0, (Qm)
‖vn‖H1,1/2

;,0 (Qm)
+ cd‖u‖H1,1/2

;0, (Qm)
‖v − vn‖H1,1/2

;,0 (Qm)

≤cd
(

sup
n∈N

{
‖vn‖H1,1/2

;,0 (Q)

}
+ ‖u‖

H
1,1/2
;0, (Q)

)(
‖u− un‖H1,1/2

;0, (Q)
+ ‖v − vn‖H1,1/2

;,0 (Q)

)
.

Here we used that the Sobolev norms of functions restricted to Qm can be estimated
by the respective norms on Q and that the bilinear forms dQm can be bounded by a
constant cd independent of the domains Ωm, as stated in Proposition 2.9. Due to the
convergence of un to u and vn to v there exists an n(ε) independent of m such that

max
{
‖u−un‖H1,1/2

;0, (Q)
, ‖v−vn‖H1,1/2

;,0 (Q)

}
<

ε

6cd

(
sup
n∈N

{
‖vn‖H1,1/2

;,0 (Q)

}
+‖u‖

H
1,1/2
;0, (Q)

)−1

for all n > n(ε). For all such n we conclude that

|dQm(un, vn)− dQm(u, v)| < ε

3
.

46 4 An integration by parts formula for the hypersingular operator

By repeating the same arguments for the �rst term in (4.35) it follows that

|d(u, v)− d(un, vn)| < ε

3

for all n > n(ε), with the same n(ε) as before. The second summand in (4.35) is
given by

|d(un, vn)− dQm(un, vn)| =
∣∣∣∣
∫ T

0

∫

Ω\Ωm

∂un
∂t

(x, t)vn(x, t) dx dt

∣∣∣∣ .

Note that we can use the explicit representation (2.7) of d and dQm since un and vn
are smooth. The convergence of |Ω\Ωm| to zero as m tends to in�nity allows us to
�nd an m(ε, n) such that

|d(un, vn)− dQm(un, vn)| < ε

3

for all m > m(ε, n). Hence, for a �xed n > n(ε) and all m > m(ε, n) we can bound
the right-hand side of (4.35) by ε. Therefore, both terms on the right-hand side
of (4.34) converge to zero as m→∞.

Lemma 4.15. Let {Σm}m be a smooth approximating sequence of Σ as introduced at
the beginning of the current paragraph. Let ϕ, ψ ∈ H1/2,1/4(Σ) and ψm be de�ned
by (4.32). Then

lim
m→∞

〈curlΣm ψm, γ
int
0,ΣmṼ (curlΣ ϕ)〉Σm = 〈curlΣ ψ, V (curlΣ ϕ)〉Σ. (4.36)

Proof. By the de�nition of the surface curl in (4.4) there holds

〈curlΣ ψ, V (curlΣ ϕ)〉Σ = 〈∇EΣ;,0ψ, curl(Ṽ (curlΣ ϕ))〉L2(Q)

=

∫ T

0

∫

Ω

(∇EΣ;,0ψ)(x, t) · curl(Ṽ (curlΣ ϕ))(x, t) dx dt,

where we used that Ṽ (curlΣ ϕ) is an extension of V (curlΣ ϕ) and that the de�nition
in (4.4) is independent of the extensions of the function ψ and the test function; see
Proposition 4.3. Similarly, it follows that

〈curlΣm ψm, γ
int
0,ΣmṼ (curlΣ ϕ)〉Σm

=

∫ T

0

∫

Ωm

(∇EΣ;,0ψ)(x, t) · curl(Ṽ (curlΣ ϕ))(x, t) dx dt,

by using in addition, that (EΣ;,0ψ)|Qm is an extension of ψm due to its de�nition
in (4.32). Therefore,
∣∣∣〈curlΣ ψ, V (curlΣ ϕ)〉Σ − 〈curlΣm ψm, γ

int
0,ΣmṼ (curlΣ ϕ)〉Σm

∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω\Ωm
(∇EΣ;,0ψ)(x, t) · curl(Ṽ (curlΣ ϕ))(x, t) dx dt

∣∣∣∣ .

4.2 A general integration by parts formula for the hypersingular operator 47

Note that (∇EΣ;,0ψ) and curl(Ṽ (curlΣ ϕ)) are in L2(Q), because Ṽ (curlΣ ϕ) is

in H
1,1/2
;0, (Q). Hence, the right-hand side in the last equation converges to zero

as m→∞ because |Ω\Ωm| → 0.

To show a similar convergence result for the second term of the right-hand side
in (4.29) we need to require the test function ψ to be more regular. The following
result holds.

Lemma 4.16. Let ψ ∈ γint
0,Σ(C∞c (Ω × (0, T))) and ψ̃ ∈ C∞c (R3 × (0, T)) be such that

ψ = ψ̃|Σ. Let ϕ ∈ H1/2,1/4(Σ). Let {Σm}m be a smooth approximating sequence of Σ

as introduced at the beginning of the current paragraph and ψm := ψ̃|Σm. Then

lim
m→∞

〈
nm · γint

0,Σm

(∂
∂t
Ṽ (ϕn)

)
, ψm

〉
Σm

= b(ϕ, ψ), (4.37)

with the bilinear form b de�ned in (4.14).

Proof. We start by showing the identity

〈
nm · γint

0,Σm

(∂
∂t
Ṽ (ϕn)

)
, ψm

〉
Σm

=
∂

∂t
(γint

0,Σm)′
(
γint

0,Σm(Ṽ (ϕn)) · nm
)

[ψ̃], (4.38)

where the right-hand side is understood as the application of a distribution on
R3 × (0, T) to the test function ψ̃ ∈ C∞c (R3 × (0, T)). For the duality product on
the left-hand side there holds

〈
nm · γint

0,Σm

(∂
∂t
Ṽ (ϕn)

)
, ψm

〉
Σm

=

∫ T

0

∫

Γm

∂

∂t
(Ṽ (ϕn))(x, t) · nm(x)ψ̃(x, t) dsx dt

= −
∫ T

0

∫

Γm

Ṽ (ϕn)(x, t) · nm(x)
∂ψ̃

∂t
(x, t) dsx dt,

where we used classical integration by parts in the second step, which is possible
since Ṽ (ϕn) ∈ C∞(Q), ψ̃ ∈ C∞c (R3 × (0, T)) and Σm ⊂ Q. The right-hand side of
this equation corresponds to the duality product

−(γint
0,Σm)′

(
γint

0,Σm(Ṽ (ϕn)) · nm
)[∂ψ̃

∂t

]
=

∂

∂t
(γint

0,Σm)′
(
γint

0,Σm(Ṽ (ϕn)) · nm
)

[ψ̃]

on D′(R3 × (0, T)) × C∞c (R3 × (0, T)), where the last equality is just the de�nition
of the distributional time derivative. Therefore, (4.38) holds true.

Due to (4.38) the convergence in (4.37) follows if we can show that

∂

∂t
(γint

0,Σm)′
(
γint

0,Σm(Ṽ (ϕn)) ·nm
)
→ ∂

∂t
(γint

0,Σ)′
(
V (ϕn) ·n

)
in D′(R3×(0, T)). (4.39)

48 4 An integration by parts formula for the hypersingular operator

For this purpose, let w ∈ C∞c (R3 × (0, T)). Then

∣∣∣∣
∂

∂t
(γint

0,Σ)′
(
V (ϕn) · n

)
[w]− ∂

∂t
(γint

0,Σm)′
(
γint

0,Σm(Ṽ (ϕn)) · nm
)

[w]

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Γ

V (ϕn)(x, t) · n(x)
∂w

∂t
(x, t) dsx dt

−
∫ T

0

∫

Γm

Ṽ (ϕn)(x, t) · nm(x)
∂w

∂t
(x, t) dsx dt

∣∣∣∣.

Since the product of ∂w/∂t and Ṽ (ϕn) is in L2(0, T ;H1(Ω)) we can apply the di-
vergence theorem to both surface integrals in the previous equation and get

∣∣∣∣
∫ T

0

∫

Ω

(
div(Ṽ (ϕn))(x, t)

∂w

∂t
(x, t) + Ṽ (ϕn)(x, t) · ∇

(∂w
∂t

)
(x, t)

)
dx dt

−
∫ T

0

∫

Ωm

(
div(Ṽ (ϕn))(x, t)

∂w

∂t
(x, t) + Ṽ (ϕn)(x, t) · ∇

(∂w
∂t

)
(x, t)

)
dx dt

∣∣∣∣

≤
∣∣∣∣
∫ T

0

∫

Ω\Ωm
div(Ṽ (ϕn))(x, t)

∂w

∂t
(x, t) dx dt

∣∣∣∣

+

∣∣∣∣
∫ T

0

∫

Ω\Ωm
Ṽ (ϕn)(x, t) · ∇

(∂w
∂t

)
(x, t) dx dt

∣∣∣∣

≤ ‖ div(Ṽ (ϕn))‖L2(Q\Qm)

∥∥∥∥
∂w

∂t

∥∥∥∥
L2(Q\Qm)

+ ‖Ṽ (ϕn)‖L2(Q\Qm)

∥∥∥∥∇
(∂w
∂t

)∥∥∥∥
L2(Q\Qm)

.

The norms in the last line are bounded for all m and converge to 0 as m → ∞,
since |Q\Qm| → 0. Therefore, we have established the convergence in (4.39) and
thus in (4.37).

Finally, we are ready to give a proof of Theorem 4.8 by collecting all the results.

Proof of Theorem 4.8. Let {Σm}m be a smooth approximating sequence of Σ as in-
troduced at the beginning of the current paragraph. As in Lemma 4.16 we assume
�rst that ψ ∈ γint

0,Σ(C∞c (Ω× (0, T))), i.e. ψ = ψ̃|Σ for some ψ̃ ∈ C∞c (R3 × (0, T)), and

denote ψm := ψ̃|Σm . On each boundary Σm the integration by parts formula (4.29)
from Proposition 4.11 is valid for ϕ and ψm. By applying Lemmata 4.14�4.16 we see
that the limit of (4.29) as m→∞ is given by

〈Dϕ,ψ〉Σ = α2〈curlΣ ψ, V (curlΣ ϕ)〉Σ + α b(ϕ, ψ),

which is the desired integration by parts formula (4.13) on Σ.

4.2 A general integration by parts formula for the hypersingular operator 49

It remains to show that (4.13) holds also for general ψ ∈ H1/2,1/4(Σ) in the appro-
priate sense. By reordering the terms in the integration by parts formula we get

α b(ϕ, ψ) = 〈Dϕ,ψ〉Σ − α2〈curlΣ ψ, V (curlΣ ϕ)〉Σ

for ψ ∈ γint
0,Σ(C∞c (Ω × (0, T))). The right-hand side of this equation is continuous

as a bilinear form on H1/2,1/4(Σ)×H1/2,1/4(Σ). This follows from the continuity of
the operators D : H1/2,1/4(Σ)→ H−1/2,−1/4(Σ), curlΣ : H1/2,1/4(Σ)→H−1/2,−1/4(Σ)
and V : H−1/2,−1/4(Σ)→H1/2,1/4(Σ). Hence, also the left-hand side, i.e. the bilinear
form

b(·, ·) : H1/2,1/4(Σ)× γint
0,Σ(C∞c (Ω× (0, T)))→ R

(ϕ, ψ) 7→ b(ϕ, ψ) =
〈
V (ϕn),

∂

∂t
ψn
〉

Σ

is continuous with respect to the norm in H1/2,1/4(Σ) ×H1/2,1/4(Σ) and it admits a
unique, continuous extension to this space due to the density of γint

0,Σ(C∞c (Ω× (0, T)))

in H1/2,1/4(Σ). In particular, the integration by parts formula (4.13) holds for general
ϕ, ψ ∈ H1/2,1/4(Σ) by continuity, if we identify b with its continuous extension.

4.2.2 An integral representation of the bilinear form b

In this section we focus on special situations in which we can express the bilinear
form b(·, ·) on the right-hand side of the general integration by parts formula (4.13)
in terms of weakly singular integrals. In Proposition 4.9 we have seen that (4.15)
is not an appropriate representation of b, since the corresponding integral kernel is
not Lebesgue integrable. Nonetheless, it was used in applications where it yielded
satisfactory results; see e.g. [51, Example 3.2]. Let us further comment on this.

Let Σh be a space-time tensor product mesh of Σ and S1⊗0
hx,ht

(Σh) be de�ned as in

Section 2.4. Let ϕ1
x,jxϕ

0
t,jt be one of the basis functions in S

1⊗0
hx,ht

(Σh) that vanishes
outside of the time interval (tjt−1, tjt). By a very formal computation we can evaluate
α b(ϕ1

x,jxϕ
0
t,jt , ϕ

1
x,jxϕ

0
t,jt) via (4.15) as follows:

α b(ϕ1
x,jxϕ

0
t,jt , ϕ

1
x,jxϕ

0
t,jt)

form.
= −α

∫ tjt

tjt−1

∫

Γ

ϕ1
x,jx(x)n(x) ·

∫ t

tjt−1

∫

Γ

∂Gα

∂τ
(x− y, t− τ)ϕ1

x,jx(y)n(y)dsydτdsxdt

form.
= −α

∫

Γ

∫

Γ

ϕ1
x,jx(x)ϕ1

x,jx(y)n(x) · n(y)

∫ tjt

tjt−1

∫ t

tjt−1

∂Gα

∂τ
(x− y, t− τ)dτdtdsydsx

form.
= α

∫

Γ

∫

Γ

ϕ1
x,jx(x)ϕ1

x,jx(y)n(x) · n(y)

∫ tjt

tjt−1

Gα(x− y, t− tjt−1)dtdsydsx, (4.40)

50 4 An integration by parts formula for the hypersingular operator

where we used that Gα(x−y, 0) is zero if x−y 6= 0 for the last step. The remaining
expression is then unproblematic since the kernel ((x, t),y) 7→ Gα(x − y, t − tj−1)
is Lebesgue integrable on (Γ× (tjt−1, tjt))× Γ. However, the steps taken to get this
expression cannot be easily justi�ed. Indeed, we cannot apply Fubini's theorem to
change the order of integration, since the kernel (4.16) is not Lebesgue integrable
on the integration domain as we have seen in Proposition 4.9, and we cannot ignore
the singularities of (x,y) 7→ Gα(x − y, 0) at x = y. Nonetheless, numerical results
indicate that the result in (4.40) is valid.

In Theorem 4.17 we provide a representation of α b(·, ·) that is similar to (4.15) but
overcomes the problem of the locally non-integrable kernel. This formula is only
valid for functions ϕ in suitable tensor product spaces on Σ. To de�ne such a space
we need to consider a partition Iht of the time interval (0, T) as in Section 2.4 with
subintervals (tjt−1, tjt) for jt ∈ {1, . . . , Et}. We introduce

C1
pw(Iht) :=

{
f ∈L∞(0, T) : f |(tjt−1,tjt)

∈ C1(tjt−1, tjt),

(f |(tjt−1,tjt)
)′ ∈ L∞(tjt−1, tjt) for all jt ∈ {1, . . . , Et}

} (4.41)

and in addition the tensor product space (L∞(Γ) ∩H1/2(Γ))⊗ C1
pw(Iht), which is a

subspace of H1/2,1/4(Σ).

Theorem 4.17. Let b be the bilinear form de�ned in Theorem 4.8. Let Iht be a
partition of the time interval (0, T) into subintervals {(tjt−1, tjt)}Etjt=1. For functions

ϕ ∈ (L∞(Γ) ∩H1/2(Γ))⊗ C1
pw(Iht) and ψ ∈ H1/2,1/4(Σ) ∩ L∞(Σ) there holds

b(ϕ, ψ) =
Et∑

jt=1

∫ tjt

tjt−1

∫

Γ

ψ(x, t)n(x) (4.42)

·
[
−
∫ tjt−1

0

∫

Γ

∂Gα

∂τ
(x− y, t− τ)ϕ(y, τ)n(y) dsy dτ

+

∫

Γ

Gα(x− y, t− tjt−1)ϕ(y, tjt−1+)n(y) dsy

+

∫ t

tjt−1

∫

Γ

Gα(x− y, t− τ)
∂ϕ

∂τ
(y, τ)n(y) dsy dτ

]
dsx dt,

where ϕ(·, tjt−1+) denotes the right limit of ϕ with respect to time in tjt−1. In par-
ticular, all occurring integrands are Lebesgue integrable on the respective integration
domains.

To prove Theorem 4.17 we follow a strategy that is similar to the one in the proof
of Theorem 4.8. First, we show a corresponding result on a sequence of auxiliary
boundaries {Σm}m in Lemma 4.18 and then we show that (4.42) follows in the limit
as m tends to in�nity.

4.2 A general integration by parts formula for the hypersingular operator 51

Lemma 4.18. Let Ωm be a Lipschitz domain with boundary Γm such that Ωm ⊂ Ω.
Let Σm = Γm × (0, T), ϕ ∈ (L∞(Γ) ∩ H1/2(Γ)) ⊗ C1

pw(Iht) and ψm ∈ H1/2,1/4(Σm).
Then
〈
nm · γint

0,Σm

(
∂

∂t
Ṽ (ϕn)

)
, ψm

〉
Σm

(4.43)

=
Et∑

jt=1

∫ tjt

tjt−1

∫

Γm

ψm(x, t)nm(x) ·
[
−
∫ tjt−1

0

∫

Γ

∂Gα

∂τ
(x− y, t− τ)ϕ(y, τ)n(y) dsy dτ

+

∫

Γ

Gα(x− y, t− tjt−1)ϕ(y, tjt−1+)n(y) dsy

+

∫ t

tjt−1

∫

Γ

Gα(x− y, t− τ)
∂ϕ

∂τ
(y, τ)n(y) dsy dτ

]
dsx dt.

Proof. The left-hand side of (4.43) admits the integral representation
〈
nm · γint

0,Σm

(
∂

∂t
Ṽ (ϕn)

)
, ψm

〉
Σm

=
Et∑

jt=1

∫ tjt

tjt−1

∫

Γm

ψm(x, t)nm(x) · ∂
∂t
Ṽ (ϕn)(x, t) dsx dt.

(4.44)

Note that we subdivided the integral over (0, T) into a sum of integrals over the
subintervals {(tjt−1, tjt)}Etjt=1 of the partition Iht . For an index jt ∈ {1, . . . , Et}, a
time t ∈ (tjt−1, tjt), and a point x ∈ Γm ⊂ Ω there holds

∂

∂t
Ṽ (ϕn)(x, t) =

∂

∂t

(∫ t

0

∫

Γ

Gα(x− y, t− τ)ϕ(y, τ)n(y) dsy dτ

)

=

∫ t

0

∫

Γ

∂Gα

∂t
(x− y, t− τ)ϕ(y, τ)n(y) dsy dτ, (4.45)

where we used the smoothness of Gα away from zero to apply the Leibniz integral
rule and that Gα(x − y, 0) = 0 for all y ∈ Γ. Next, we replace ∂tGα(x− y, t− τ)
by −∂τGα(x − y, t − τ) and split the temporal integral in (4.45) into integrals
over (0, tjt−1) and (tjt−1, t). For the latter we apply the standard integration by
parts formula to get

−
∫ t

tjt−1

∫

Γ

∂Gα

∂τ
(x− y, t− τ)ϕ(y, τ)n(y) dsy dτ

=

∫

Γ

Gα(x− y, t− tjt−1)ϕ(y, tjt−1+)n(y) dsy

+

∫ t

tjt−1

∫

Γ

Gα(x− y, t− τ)
∂ϕ

∂τ
(y, τ)n(y) dsy dτ.

Again, we used that Gα(x−y, 0) = 0 for all y ∈ Γ. Inserting the resulting represen-

tation of ∂tṼ (ϕn)(x, t) into (4.44) yields (4.43).

52 4 An integration by parts formula for the hypersingular operator

Proof of Theorem 4.17. Let {Ωm}m, {Λm}m and {ωm}m be given as in Theorem 2.3,

Γm := ∂Ωm and Σm := Γm× (0, T). For ψ ∈ H1/2,1/4(Σ)∩L∞(Σ) let ψ̃ be the unique
solution of the initial boundary value problem (1.1)�(1.3) with Dirichlet datum ψ

and initial datum u0 = 0. Note that ψ̃ admits the representation

ψ̃ = W ((−1/2 Id + K)−1ψ), (4.46)

cf. Theorem 4.5. In particular, ψ̃ ∈ C∞(Q), and thus we can de�ne ψm := ψ̃|Σm in
the classical sense. The idea of the proof is to show that for this choice of Σm and ψm
the terms on the right-hand side of (4.43) converge to the respective terms of (4.42)
in the limit m→∞.

We start with the �rst term on the right-hand side of (4.43). By transforming the
integral over Γm into an integral over Γ we get

Et∑

jt=1

∫ tjt

tjt−1

∫

Γm

∫ tjt−1

0

∫

Γ

ψm(x, t)nm(x) · ∂Gα

∂τ
(x− y, t− τ)ϕ(y, τ)n(y) dsy dτ dsx dt

=
Et∑

jt=1

∫ tjt

tjt−1

∫

Γ

∫ tjt−1

0

∫

Γ

hm(Λm(x),y, t, τ) · f(y, τ)ωm(x) dsy dτ dsx dt, (4.47)

where we introduced the functions

hm(x,y, t, τ) :=
∂Gα

∂τ
(x− y, t− τ)ψm(x, t)nm(x), (4.48)

f(y, τ) := ϕ(y, τ)n(y) (4.49)

and used the homeomorphism Λm : Γ → Γm and (iv) of Theorem 2.3. Let {Zj}Jj=1

be a �nite family of coordinate cylinders covering Γ as in (ii) of Theorem 2.3; see
also De�nition 2.1. We split the outer spatial integrals in (4.47) into segments

Uj := Γ ∩ Zj

related to these coordinate cylinders. For this purpose, let {Φj}Jj=1 be a smooth
partition of unity on Γ subordinate to {Zj}Jj=1, i.e. Φj ∈ C∞(R3), supp(Φj) ⊂ Zj,
0 ≤ Φj ≤ 1 and

∑
j Φj(x) = 1 for all x ∈ Γ. Then (4.47) is further equal to

Et∑

jt=1

J∑

j=1

∫ tjt

tjt−1

∫

Uj

∫ tjt−1

0

∫

Γ

Φj(x)hm(Λm(x),y, t, τ)

· f(y, τ)ωm(x) dsy dτ dsx dt.

(4.50)

4.2 A general integration by parts formula for the hypersingular operator 53

In particular, the convergence of the �rst term in (4.43) to the �rst term in (4.42)
follows if we can show that

lim
m→∞

(∫ tjt

tjt−1

∫

Uj

∫ tjt−1

0

∫

Γ

Φj(x)hm(Λm(x),y, t, τ) · f(y, τ)ωm(x) dsy dτ dsx dt

)

=

∫ tjt

tjt−1

∫

Uj

∫ tjt−1

0

∫

Γ

Φj(x)h(x,y, t, τ) · f(y, τ) dsy dτ dsx dt (4.51)

for all jt ∈ {1, . . . , Et} and j ∈ {1, . . . , J}, where

h(x,y, t, τ) :=
∂Gα

∂τ
(x− y, t− τ)ψ(x, t)n(x).

For this purpose, we split the inner integral of y over Γ into an integral over

Vj := 3Zj ∩ Γ

and one over the remainder Γ\Vj and show the convergence of both parts using the
classical dominated convergence theorem.

First, we consider

∫ tjt

tjt−1

∫

Uj

∫ tjt−1

0

∫

Γ\Vj
Φj(x)hm(Λm(x),y, t, τ) · f(y, τ)ωm(x) dsy dτ dsx dt (4.52)

and observe the pointwise convergence of ωm(x)hm(Λm(x),y, t, τ) to h(x,y, t, τ) al-
most everywhere in the integration domain as m tends to in�nity. In fact, ωm → 1
pointwise almost everywhere on Γ by Theorem 2.3 (iv). For the respective conver-
gence of hm(Λm(x),y, t, τ) in (4.48) to h(x,y, t, τ) we show the convergence of the
individual terms. By (iii) of Theorem 2.3 we get that nm(Λm(x))→ n(x) for al-
most all x ∈ Γ. Furthermore Λm(x) → x even uniformly on Γ, by (i). Thus, we
obtain the convergence of ∂Gα/∂τ(Λm(x)− y, t− τ) to ∂Gα/∂τ(x− y, t− τ) for all

x,y ∈ Γ and τ < t. Finally, we know that ψm = ψ̃|Σm and that ψ̃ given by (4.46)
attains the Dirichlet boundary values ψ on Σ in the sense of non-tangential limits
almost everywhere; see Theorem 4.5. Hence, ψm(Λm(x), t) → ψ(x, t) since Λm(x)
approaches x non-tangentially by point (i) of Theorem 2.3.

It remains to �nd an integrable function that dominates the sequence of integrands.
Obviously there holds Φj ≤ 1 on Uj by construction and |f(y, τ)| ≤ ‖ϕ‖L∞(Σ) al-
most everywhere on Σ. By Theorem 2.3 (iv) we get in addition, that ωm(x) ≤ c−1

for a constant c > 0 independent of m and all x ∈ Γ. Furthermore, there holds
|ψm(Λm(x))nm(Λm(x))| ≤ ‖ψ‖L∞(Σ) for almost all x ∈ Γ by the extended maximum
principle in Theorem 4.7. The only term left to bound is ∂Gα/∂τ(Λm(x)− y, t− τ).
Let r and h be the radius and the height of the congruent cylinders Zj, respectively,

54 4 An integration by parts formula for the hypersingular operator

and let δ := min(r, h). Due to (2.2) we can assume without loss of generality that
|x−Λm(x)| < δ for all x ∈ Γ and all m. Then we immediately get Λm(x) ∈ 2Zj for
all x ∈ Uj = Γ ∩ Zj, and thus |Λm(x) − y| > δ for x ∈ Uj and y ∈ Γ\Vj = Γ\3Zj.
This allows us to bound∣∣∣∣

∂Gα

∂τ
(Λm(x)− y, t− τ)

∣∣∣∣ ≤
∥∥∥∥
∂Gα

∂t

∥∥∥∥
L∞((BR(0)\Bδ(0))×[0,T])

for all x ∈ Uj, y ∈ Γ\Vj, and 0 < τ < t < T , where BR(0) and Bδ(0) are balls
centered around the origin with radii R and δ, respectively, and R is so large that
Ω ⊂ BR/2(0). The right-hand side in this estimate is bounded since the function
(r, t) 7→ ∂Gα/∂t(r, t) is in C∞(R3\{0} × [0, T]). Altogether we have found the
desired dominating function, as

|Φj(x)hm(Λm(x),y, t, τ) · f(y, τ)ωm(x)|

≤ ‖ϕ‖L∞(Σ)‖ψ‖L∞(Σ)

∥∥∥∥
∂Gα

∂t

∥∥∥∥
L∞((BR(0)\Bδ(0))×[0,T])

almost everywhere in the integration domain of (4.52). Therefore, we have established
the convergence of (4.52) to

∫ tjt

tjt−1

∫

Uj

∫ tjt−1

0

∫

Γ\Vj
Φj(x)h(x,y, t, τ) · f(y, τ) dsy dτ dsx dt. (4.53)

To show (4.51) we have to consider the remaining part
∫ tjt

tjt−1

∫

Uj

∫ tjt−1

0

∫

Vj

Φj(x)hm(Λm(x),y, t, τ) · f(y, τ)ωm(x) dsy dτ dsx dt. (4.54)

We use the parametrization of the regions Λm(Uj) and Vj by the Lipschitz func-

tions η
(m)
j and ηj, respectively, established in Theorem 2.3 (ii). This is possible, since

Λm(Uj) ⊂ Γm ∩ 2Zj as seen before. For the sake of simplicity, we assume that the
coordinates associated with the cylinder Zj correspond to the original rectangular
coordinates, i.e. we neglect additional translations and rotations. Then (4.54) can be
transformed into
∫ tjt

tjt−1

∫

B2r(0)

∫ tjt−1

0

∫

B3r(0)

1U(m)
j

(x̂)Φj(Λ
−1
m (Γm(x̂)))hm(Γm(x̂),Γ(ŷ), t, τ)

·f(Γ(ŷ), τ)gm(x̂)g(ŷ) dx̂ dτ dŷ dt.

(4.55)

where Γ(ŷ) := (ŷ, ηj(ŷ)), Γm(x̂) := (x̂, η
(m)
j (x̂)), r is still the radius of Zj, B3r(0) the

parameter region of Vj, U (m)
j ⊂ B2r(0) the parameter region of Λm(Uj), and gm(x̂)

and g(ŷ) denote the surface elements given by

gm(x̂) =

√
1 + |∇η(m)

j (x̂)|2, g(ŷ) =
√

1 + |∇ηj(ŷ)|2.

4.2 A general integration by parts formula for the hypersingular operator 55

We compute the limit of (4.55) form→∞ using the dominated convergence theorem
again. First we show that the integrand in (4.55) converges to

1Br(0)(x̂)Φj(Γ(x̂))h(Γ(x̂),Γ(ŷ), t, τ) · f(Γ(ŷ), τ)g(x̂)g(ŷ) (4.56)

for almost all x̂, ŷ, t and τ in the integration domain as m → ∞. In general,
there holds Γm(x̂) 6= Λm(Γ(x̂)), so we cannot use the previous results about point-
wise convergence to show this. Instead, we consider again all terms of the inte-
grand in (4.55) depending on m separately to show pointwise convergence. Recall

the de�nition of hm in (4.48) for this purpose. Theorem 2.3 (ii) implies that η
(m)
j

converges uniformly to ηj. As a result, Γm(x̂) → Γ(x̂) for all x̂ ∈ B2r(0), and
thus ∂Gα/∂τ(Γm(x̂),Γ(ŷ), t, τ) converges to ∂Gα/∂τ(Γ(x̂),Γ(ŷ), t, τ) for all such x̂,
and ŷ, t and τ in the respective domains of integration. Since the convergence of
Γm(x̂) to Γ(x̂) is non-tangential it follows as before that ψm(Γm(x̂), t)→ ψ(Γ(x̂), t)
for almost all x̂ ∈ B2r(0) and t ∈ (tjt−1, tjt). From Theorem 2.3 (ii) we know in

addition that ∇η(m)
j converges pointwise almost everywhere to ∇ηj in R2. This im-

plies gm(x̂)→ g(x̂) for almost all x̂ and furthermore the convergence of nm(Γm(x̂))
to n(Γ(x̂)) for almost all x̂ ∈ B2r(0), due to the representations

nm(Γm(x̂)) =
1

gm(x̂)
(∇η(m)

j (x̂)>,−1)>, n(Γ(x̂)) =
1

g(ŷ)
(∇ηj(x̂)>,−1)>.

Next we show the convergence of 1U(m)
j

to 1Br(0) pointwise almost everywhere in the

ball B2r(0). From (2.2) it follows that for all x̂ ∈ B2r(0) and su�ciently small ε > 0
there exists an m(ε) such that for all m > m(ε)

Λ−1
m (Γm ∩ Zε/2(x̂)) ⊂ (Γ ∩ Zε(x̂)), (4.57)

where Zρ(x̂) := {(ξ̂, ŝ) ∈ R3 : |ξ̂ − x̂| < ρ, ŝ < hj} is the cylinder with center (x̂, 0),
radius ρ > 0 and the same height hj as Zj. If x̂ ∈ Br(0) and ε is so small that
(Γ ∩ Zε(x̂)) ⊂ Uj, (4.57) implies that Γm(x̂) ∈ Λm(Uj) for all m > m(ε). This

means that x̂ ∈ U (m)
j , and thus 1U(m)

j
(x̂) = 1 = 1Br(0)(x̂) for all m > m(ε). Like-

wise, if x̂ ∈ B2r(0)\Br(0) and ε is so small that (Γ ∩ Zε(x̂)) ∩ Uj = ∅, we get
1U(m)

j
(x̂) = 0 = 1Br(0)(x̂) for all m > m(ε). Together this proves 1U(m)

j
→ 1Br(0)

almost everywhere in B2r(0).

Finally we have to show that Φj(Λ
−1
m (Γm(x̂))) converges to Φj(Γ(x̂)) in B2r(0).

Since Φj is continuous it su�ces to show the convergence of its arguments. This
follows again from (4.57). Indeed, for each ε > 0 we know by (4.57) that for all
m > m(ε) there exists a ŷm such that Λ−1

m (Γm(x̂)) = Γ(ŷm) and |ŷm − x̂| < ε. As a
consequence there holds

|Λ−1
m (Γm(x̂))−Γ(x̂)| = |Γ(ŷm)−Γ(x̂)| = |(ŷm, ηj(ŷm))− (x̂, ηj(x̂))| ≤ ε

√
1 + L2

j ,

56 4 An integration by parts formula for the hypersingular operator

where Lj is the Lipschitz constant of ηj. This yields the desired convergence. In
particular, we have shown that the integrand in (4.55) converges pointwise almost
everywhere to (4.56).

For the application of the dominated convergence theorem we bound the integrands
in (4.55) uniformly by using the estimates

|1U(m)
j

(x̂)Φj(Λ
−1
m (Γm(x̂)))| ≤ 1,

|ϕ(Γ(ŷ), τ)n(Γ(ŷ))| ≤ ‖ϕ‖L∞(Σ),

|ψm(Γm(x̂), t)nm(Γm(x̂))| ≤ ‖ψ‖L∞(Σ),

|g(ŷ)| ≤
√

1 + ‖∇ηj‖L∞(R2),

|gm(x̂)| ≤
√

1 + ‖∇η(m)
j ‖L∞(R2) ≤

√
1 + ‖∇ηj‖L∞(R2)

for almost all x̂, ŷ, t and τ in the integration domain. The �rst estimate is clear
by de�nition. The second one holds true due to the assumption that ϕ ∈ L∞(Σ).
The third estimate is again a consequence of the parabolic maximum principle in
Theorem 4.7. The last two estimates follow from the de�nition of the surface elements
and the fact that ‖∇η(m)

j ‖L∞(R2) ≤ ‖∇ηj‖L∞(R2); see Theorem 2.3 (ii). Therefore, the
product of all these functions is bounded by a constant C independent of m. The
remaining term, i.e. the derivative of the heat kernel which we computed in (4.17),
can be estimated by

∣∣∣∣
∂Gα

∂τ
(Γm(x̂),Γ(ŷ), t, τ)

∣∣∣∣ ≤
c(α)

(t− τ)7/4|Γm(x̂)− Γ(ŷ)|3/2

≤ c(α)

(t− τ)7/4|x̂− ŷ|3/2 (4.58)

almost everywhere in the integration domain. This estimate follows similarly as (4.20)
by considering the two terms in the numerator of (4.17) separately. Since the function
on the right-hand side of (4.58) is integrable on the considered integration domain
B2r(0) × (tjt−1, tjt) × B3r(0) × (0, tjt−1) we have found a function dominating the
sequence of integrands.

By the dominated convergence theorem we get that (4.55) converges to

∫ tjt

tjt−1

∫

Br(0)

∫ tjt−1

0

∫

B3r(0)

Φj(Γ(x̂))h(Γ(x̂),Γ(ŷ), t, τ) · f(Γ(ŷ), τ)g(x̂)g(ŷ) dx̂ dτ dŷ dt

=

∫ tjt

tjt−1

∫

Uj

∫ tjt−1

0

∫

Vj

Φj(x)h(x,y, t, τ) · f(y, τ) dsy dτ dsx dt.

Together with the convergence of (4.52) to (4.53) we conclude (4.51).

4.2 A general integration by parts formula for the hypersingular operator 57

Recall that we wanted to show that all terms on the right-hand side of (4.43) converge
to the respective terms of (4.42). Equation (4.51) implies the convergence of the �rst
term. In particular, the integrand of the �rst term on the right-hand side of (4.42)
is Lebesgue integrable in the corresponding integration domain, which is another
consequence of the dominated convergence theorem. The remaining two terms can
be handled analogously. For both terms one can transform the integrals of x over Γm
into integrals over Γ as in (4.47) and split the integrals up as in (4.50). The individual
parts can then be handled as before by splitting the inner integral of y over Γ into
integrals over Vj and Γ\Vj. For both one applies the dominated convergence theorem
where one can use (4.20) to bound the heat kernel and in addition the estimates

|ϕ(y, tjt−1+)| ≤ ‖ϕ(·, tjt−1+)‖L∞(Γ) for all y ∈ Γ,∣∣∣∣
∂ϕ

∂τ
(y, τ)

∣∣∣∣ ≤
∥∥∥∥
∂ϕ

∂τ

∥∥∥∥
L∞(Γ×(tjt−1,tjt))

for all y ∈ Γ and τ ∈ (tjt−1, tjt).

These estimates are justi�ed since ϕ ∈ (L∞(Γ) ∩H1/2(Γ))⊗ C1
pw(Iht) with the space

C1
pw(Iht) de�ned in (4.41).

The representation of the bilinear form b in (4.42) is tailored to boundary element
methods with tensor product spaces used for discretization, like in Section 2.4. In-
deed, the assumptions of Theorem 4.17 are satis�ed for ϕh, ψh ∈ S1⊗0

hx,ht
(Σh). Since the

derivative ∂τϕh(y, τ) is zero for such functions, we can simplify the representation
of b in (4.42) even further and obtain

b(ϕh, ψh) =
Et∑

jt=1

∫ tjt

tjt−1

∫

Γ

ψh(x, t)n(x) (4.59)

·
[
−
∫ tjt−1

0

∫

Γ

∂Gα

∂τ
(x− y, t− τ)ϕh(y, τ)n(y) dsy dτ

+

∫

Γ

Gα(x− y, t− tjt−1)ϕh(y, tjt−1+)n(y) dsy

]
dsx dt.

When we evaluate this bilinear form for ϕh = ψh = ϕ1
x,jxϕ

0
t,jt , where ϕ

1
x,jxϕ

0
t,jt is a

basis function of S1⊗0
hx,ht

(Σh), we obtain the same result as in (4.40). Hence, Theo-
rem 4.17 justi�es the calculations found in the literature.

4.2.3 Evaluating the BEM matrix of the hypersingular operator

With the integration by parts formula (4.13) and the representation of b in (4.59)
we can �nally describe the assembly of the matrix Dh in (3.32). The entries of this

58 4 An integration by parts formula for the hypersingular operator

matrix correspond to the values of the bilinear form 〈D·, ·〉Σ evaluated for pairs of
basis functions in S1⊗0

hx,ht
(Σh). They are given by

Dh[(kt − 1)Nx + kx, (jt − 1)Nx + jx]

= α2〈V curlΣ(ϕ1
x,jxϕ

0
t,jt), curlΣ(ϕ1

x,kxϕ
0
t,kt)〉Σ + αb(ϕ1

x,jxϕ
0
t,jt , ϕ

1
x,kxϕ

0
t,kt)

(4.60)

for all kt, jt ∈ {1, . . . , Et} and kx, jx ∈ {1, . . . , Nx}, where we use the notation from
Section 2.4. Let us take a closer look at the bilinear forms on the right-hand side.

The surface curls of functions in S1⊗0
hx,ht

(Σh) are in S0⊗0
hx,ht

(Σh), i.e. their components
are piecewise constant on the mesh Σh. In fact, there holds

curlΣ(ϕ1
x,kxϕ

0
t,kt) = curlΓ(ϕ1

x,kx)ϕ0
t,kt ,

where curlΓ : H1/2(Γ) → H−1/2(Γ) can be de�ned similarly as in (4.4), or by
curlΓ ϕ = ∇ϕ̃ × n for ϕ ∈ H1/2(Γ) and a suitably regular extension ϕ̃ on Ω. Com-
puting curlΓ ϕ

1
x,kx

and concluding that it is in S0
hx

(Γh) for a mesh Γh consisting of
plane triangles is a simple exercise; see [66, Section 12.5, Exercise 12.5]. It follows
that

〈V curlΣ(ϕ1
x,jxϕ

0
t,jt), curlΣ(ϕ1

x,kxϕ
0
t,kt)〉Σ (4.61)

=

∫ tkt

tkt−1

∫

Γ

∫ tjt

tjt−1

∫

Γ

Gα(x− y, t− τ) curlΓ(ϕ1
x,jx)(y) · curlΓ(ϕ1

x,kx)(x) dsy dτ dsx dt

and the entries of the single layer operator matrix Vh in (3.25) can be reused to eval-
uate this bilinear form. More details are given by the authors in [81, Section 3.3].

When evaluating the bilinear form b for basis functions in S1⊗0
hx,ht

with (4.59) we
distinguish three cases. There holds

b(ϕ1
x,jxϕ

0
t,jt , ϕ

1
x,kxϕ

0
t,kt) (4.62)

=

∫ tkt

tkt−1

∫

Γ

∫ tjt

tjt−1

∫

Γ

∂Gα

∂τ
(x− y, t− τ)ϕ1

x,jx(y)ϕ1
x,kx(x)n(x) · n(y) dsy dτ dsx dt

for jx, kx ∈ {1, . . . , Nx} and jt, kt ∈ {1, . . . , Et} with jt < kt. If jt > kt the result is
zero. Finally, if jt = kt,

b(ϕ1
x,jxϕ

0
t,jt , ϕ

1
x,kxϕ

0
t,jt) (4.63)

=

∫ tjt

tjt−1

∫

Γ

∫

Γ

Gα(x− y, t− tjt−1)ϕ1
x,jx(y)ϕ1

x,kx(x)n(x) · n(y) dsy dsx dt.

To evaluate the remaining integrals we can use an analytic integration in time and
numerical quadrature formulae in space. The details about this procedure can be
found again in [81, Section 3.3].

4.2 A general integration by parts formula for the hypersingular operator 59

Remark 4.19. For basis functions ϕ1
x,kx

ϕ0
t,kt

and ϕ1
x,jxϕ

0
t,jt with jt < kt − 1 we can

compute the corresponding entry of Dh alternatively by

Dh[(kt − 1)Nx + kx, (jt − 1)Nx + jx] = 〈Dϕ1
x,jxϕ

0
t,jt , ϕ

1
x,kxϕ

0
t,kt〉Σ (4.64)

= −
∫ tkt

tkt−1

∫

Γ

∫ tjt

tjt−1

∫

Γ

α2 ∂

∂nx

∂

∂ny
Gα(x− y, t− τ)ϕ1

x,jx(y)ϕ1
x,kx(x) dsy dτ dsx dt.

The integral is well-de�ned, since ((x, t), (y, τ)) 7→ ∂nx∂nyGα(x − y, t − τ) is uni-
formly bounded for x,y ∈ Γ, t ∈ (tkt−1, tkt), and τ ∈ (tjt−1, tjt) with tjt < tkt−1. This
alternative is particularly interesting for fast methods for the application of Dh like the
one considered in the next chapters. Note that we still have to use the representation
in (4.60) if jt ∈ {kt − 1, kt}.

5 A space-time FMM for the heat equation

A major di�culty in applying BEM for the solution of initial boundary value prob-
lems of the transient heat equation is that the matrices occurring in the corresponding
linear systems like (3.24) and (3.32) are dense. This is not a peculiarity of BEM for
the heat equation, but of BEM for the solution of PDEs in general due to the non-
local integrals that appear in the de�nition of typical boundary integral operators.
The matrix Vh ∈ REtEx×EtEx related to the single layer boundary integral operator V
of the heat equation, for example, has the lower triangular block structure (3.29),
but the entries of all blocks Vkt,jth with kt ≥ jt are non-zero. Therefore, assembling,
storing, or applying Vh, or solving systems of the form Vhq = f with a blockwise
forward elimination scheme has a complexity of O((EtEx)2) which is prohibitive for
large examples.

To overcome this problem several fast and data-sparse methods have been devel-
oped to compress and e�ciently handle matrices related to BEM in general and
BEM for the heat equation in particular. Some examples for the heat equation are
mentioned in the general introduction in Chapter 1. The fast method which we con-
sider in this work is closely related to the parabolic fast multipole method (pFMM);
see [52, 53, 67, 68]. In its original form the pFMM combines standard ideas and
principles of fast multipole methods (FMM) � like partitioning the computational
domain into a hierarchy of boxes and approximating interactions in well-separated
boxes by using suitable truncated series expansions of the related kernel functions
� with an e�cient forward-sweeping execution scheme that can be used for a block
forward elimination procedure to solve linear systems like (3.24) and (3.32). Since
one of the aims of this work is to develop a fast method that allows for an e�cient
parallelization in space and time, we describe how to compress and apply whole BEM
matrices like Vh at once, instead. The resulting method is called space-time FMM
to distinguish it from the pFMM.

The description of the space-time FMM in this chapter is similar to the description
in [78]. In Section 5.1 we describe the truncated series expansion of the heat kernel
that is used for the FMM and analyze the corresponding approximation error. The
space-time FMM itself is described in full detail in Section 5.2. While we focus on
the single layer operator matrix Vh in this description, we also mention the necessary
changes to obtain fast methods for the application of the BEM matrices Kh, K

>x
h

and Dh introduced in Section 3.3.

61

62 5 A space-time FMM for the heat equation

5.1 A separable approximation of the heat kernel

The FMM presented in this chapter is based on a suitable separable approximation
of the heat kernel (3.4) that combines an interpolation in time with a truncated
Chebyshev expansion in space. The expansion has been considered in the same
form in [51, 68]. We start by �xing the notation and stating a few results from the
literature.

The Chebyshev polynomial Tm of order m ∈ N0 on the interval [−1, 1] is given by
Tm(x) = cos(m arccos(x)). The polynomial Tm+1 has m+ 1 distinct roots on [−1, 1]

which are known as the Chebyshev nodes of orderm+1 and are denoted by {ξ(m)
k }mk=0.

Let I = [a, b] be non-empty and ϕI be the a�ne map from [−1, 1] to I de�ned
by ϕI(x) := (a(1− x) + b(1 + x))/2. The transformed Chebyshev polynomials TI,m
on the interval I are given by TI,m := Tm ◦ ϕ−1

I and the transformed Chebyshev

nodes {ξ(m)
I,k }mk=0 of degree m+ 1 by ξ

(m)
I,k := ϕI(ξ

(m)
k) for all k ∈ {0, . . . ,m}.

Let Pm(I) be the space of all polynomials with degrees less than or equal to m on an
interval I = [a, b]. When interpolating a function f ∈ C(I) by polynomials in Pm(I)
we use the transformed Chebyshev nodes as interpolation points and obtain

I
(m)
I [f] =

m∑

k=0

f(ξ
(m)
I,k)L

(m)
I,k , (5.1)

where I
(m)
I : C(I) → Pm(I) denotes the corresponding interpolation operator and

{L(m)
I,k }mk=0 are the Lagrange polynomials given by

L
(m)
I,k (t) :=

m∏

j=0
j 6=k

t− ξ(m)
I,k

ξ
(m)
I,j − ξ

(m)
I,k

. (5.2)

The norm of the operator I
(m)
I is known as the Lebesgue constant and is given by

Λm := sup
u∈C(I)\{0}

‖I(m)
I [u]‖∞,I
‖u‖∞,I

. (5.3)

Note that Λm depends on the choice of the interpolation points on the interval I,
but it does not depend on the particular interval I as long as the same interpolation
points � up to an a�ne transformation � are used. For transformed Chebyshev
nodes as interpolation points we can estimate [61, cf. Theorem 1.2]

Λm ≤
2

π
log(m+ 1) + 1. (5.4)

5.1 A separable approximation of the heat kernel 63

For two non-empty intervals I1 and I2 we de�ne the two-sided interpolation operator
I

(m)
I1×I2 : C(I1 × I2)→ Pm(I1)⊗ Pm(I2) by I

(m)
I1×I2 := I

(m)
I1
⊗ I

(m)
I2

. It acts on a function
f ∈ C(I1 × I2) by

I
(m)
I1×I2 [f](t, τ) =

m∑

j=0

m∑

k=0

f(ξ
(m)
I1,j
, ξ

(m)
I2,k

)L
(m)
I1,j

(t)L
(m)
I2,k

(τ).

We will use this interpolation operator to approximate the heat kernel (3.4) in the
temporal variables t and τ .

For the approximation of the heat kernel (3.4) in the spatial variables x, y ∈ R3

we use a truncated Chebyshev expansion. The Chebyshev series of f ∈ C([−1, 1]) is
given by

S[f](x) =
∞∑

j=0

cjTj(x) for all x ∈ [−1, 1], cj =
λj
π

∫ 1

−1

f(x)Tj(x)w(x) dx, (5.5)

where w(x) := (1 − x2)−1/2 and λj = 2 − δ0j with the Kronecker delta δ0j. The
partial sums of this series converge to f pointwise in [−1, 1] and also with respect
to the norm in L2(−1, 1); see e.g. [46, Chapter 5]. For an arbitrary interval I and
functions in C(I) an analogous series representation with transformed Chebyshev
polynomials TI,m holds.

In higher dimensions we can consider related Chebyshev series by using tensor prod-
ucts of Chebyshev polynomials. For a box [a, b] :=

∏3
j=1[aj, bj] ⊂ R3 we de�ne the

tensor product Chebyshev polynomials T[a,b],κ on [a, b] by

T[a,b],κ(x) :=
3∏

j=1

T[aj ,bj],κj(xj) (5.6)

for all multi-indices κ ∈ N3
0. Let X1 = [a, b] and X2 = [c,d] be two boxes in R3. A

function f ∈ C(X1 ×X2) can be represented by the Chebyshev series

SX1×X2 [f](x,y) =
∑

κ∈N3
0

∑

ν∈N3
0

fκ,νTX1,ν(x)TX2,κ(y), (5.7)

fκ,ν =
λκλν
π6

∫

[−1,1]3

∫

[−1,1]3
f̂(x̂, ŷ)T[−1,1]3,κ(ŷ)T[−1,1]3,ν(x̂)wprod(x̂, ŷ) dx̂ dŷ, (5.8)

where λκ :=
∏3

j=1 λκj and wprod(x̂, ŷ) :=
∏3

j=1(w(x̂j)w(ŷj)) for λj and w as in (5.5)

and f̂(x̂, ŷ) := f(ϕX1(x̂),ϕX2(ŷ)) with the a�ne maps ϕXj : [−1, 1]3 → Xj. An
approximation of f is given by the truncated series

S
(m)
X1×X2

[f](x,y) =
∑

κ:|κ|≤m

∑

ν:|κ+ν|≤m
fκ,νTX1,ν(x)TX2,κ(y)

that includes only polynomials of total degree less than or equal to some m ∈ N0.

64 5 A space-time FMM for the heat equation

Let us now consider the heat kernel ((x, t), (y, τ)) 7→ Gα(x−y, t−τ) in (3.4) for (x, t)
and (y, τ) in axis-parallel, 4D boxes Ztar = X1 × I1 and Zsrc = X2 × I2, respectively.
We focus on the case where the spatial parts X1 and X2 of the boxes are cubes with
edge length 2h̃x, i.e. X1 = [c, c + 2h̃x1] and X2 = [d,d + 2h̃x1] for some c, d ∈ R3.
Furthermore, we assume that the time intervals I1 = [a1, b1] and I2 = [a2, b2] are such
that a1 > b2 to ensure that the heat kernel is non-zero and bounded on Ztar × Zsrc.
By combining a two-sided interpolation in the temporal variables t and τ with a
truncated Chebyshev expansion in the spatial variables x and y we can approximate
the heat kernel Gα by

S
(mx)
X1×X2

I
(mt)
I1×I2 [Gα](x, t,y, τ)

=
mt∑

a,b=0

∑

κ,ν∈N3
0:

|κ+ν|≤mx

Ea,b
κ,ν TX1,ν(x)TX2,κ(y)L

(mt)
I1,b

(t)L
(mt)
I2,a

(τ) (5.9)

for (x, t) ∈ Ztar and (y, τ) ∈ Zsrc. The coe�cients E
a,b
κ,ν correspond to the expansion

coe�cients in (5.8) when expanding the function (x,y) 7→ Gα(x − y, ξ(mt)
I1,b
− ξ(mt)

I2,a
).

They admit the product structure

Ea,b
κ,ν :=

1

(4πα(ξ
(mt)
I1,b
− ξ(mt)

I2,a
))3/2

3∏

j=1

Eκj ,νj(rj, da,b), with (5.10a)

rj := (cj − dj)/h̃x, da,b := 4α(ξ
(mt)
I1,b
− ξ(mt)

I2,a
)/h̃2

x, (5.10b)

Ek,`(r, da,b) :=
λkλl
π2

∫ 1

−1

∫ 1

−1

exp

(
−|r + x̂− ŷ|2

da,b

)
T`(x̂)Tk(ŷ)w(x̂)w(ŷ)dx̂ dŷ,

(5.10c)

where λj and w are the same as in (5.5), cf. [68, Section 5.3, p. 209]. Note that there is
not any closed formula known for the evaluation of the integrals in (5.10c). Therefore,
we approximate them by a Gauÿ�Chebyshev quadrature rule in the application as
proposed in [69, p. 3563] which yields

Ek,`(r, da,b) ≈
λkλl

(mx + 1)2

mx∑

n,m=0

exp

(
−|r + ξ

(mx)
n − ξ(mx)

m |2
da,b

)
T`(ξ

(mx)
n)Tk(ξ

(mx)
m).

In the following sections we investigate the error that results when we approximate
the heat kernel by (5.9).

5.1.1 Analysis of the interpolation error in time

The error that results when we interpolate the heat kernel (3.4) in two separated
time intervals decays exponentially with increasing interpolation degree. This result

5.1 A separable approximation of the heat kernel 65

is stated, for example, in [67, Section 3.1] and is also proven in [51, p. 73]. In
Theorem 5.1 we present the corresponding error estimate in a slightly more general
form.

To simplify the notation we �x the heat capacity constant α and the spatial points
x and y, and set

g(t1, t2) := Gα(x− y, t1 − t2) =
1

(4πα(t1 − t2))3/2
exp

(
− r2

4α(t1 − t2)

)
(5.11)

for all t1 > t2 and r2 = |x − y|2. We interpolate g on suitable pairs of inter-
vals I1 = [a1, b1] and I2 = [a2, b2] and use |Ij| = bj − aj to denote their size and
dist(I1, I2) := min{|t− τ | : t ∈ I1, τ ∈ I2} for their distance.

Theorem 5.1 (Two-sided interpolation error, cf. [51, p. 73]). Let η2 ∈ R>0 and
q2 := 1 + 3/(2 η2). Let I1 = [a1, b1] and I2 = [a2, b2] be two non-empty intervals such
that a1 > b2. Let the admissibility criterion

η2 dist(I1, I2) ≥ max{|I1|, |I2|} (5.12)

be satis�ed. Then there exists a constant c2 > 0 such that

‖g − I
(m)
I1×I2 [g]‖∞,I1×I2 ≤

c2

(α dist(I1, I2))3/2
q
−(m+1)
2 . (5.13)

The admissibility criterion (5.12) is a standard criterion used to identify pairs of
sets on which so-called asymptotically smooth functions can be approximated well,
cf. e.g. [35, Section 4.2.3]. In particular, interpolation error estimates like the one in
Theorem 5.1 are well known for such functions. They can be de�ned as follows.

Definition 5.2 (Asympotically smooth functions; see [35, De�nition 4.14]). Let
d ∈ N and X, Y ⊂ Rd. Let f be a function on X × Y such that f is arbitrarily
often di�erentiable with respect to x ∈ X and y ∈ Y with x 6= y. Then f is called
asymptotically smooth if there exists an s ∈ R and suitable constants C, ρ and γ such
that

|Dα
xD

β
yf(x,y)| ≤ has(α+ β) |x− y|−|α|−|β|−s with has(ν) := Cν!|ν|ργ|ν| (5.14)

for all x ∈ X and y ∈ Y with x 6= y and all multi-indices α, β ∈ Nd
0 such that

α+ β 6= 0.

The proof of Theorem 5.1 relies on the fact that g in (5.11) is asymptotically smooth,
which we show next.

66 5 A space-time FMM for the heat equation

Proposition 5.3 (cf. [51, p. 73]). For the function g de�ned in (5.11) there exists
a constant cas such that

|∂kt1∂`t2g(t1, t2)| ≤ cas (k + `)!(k + `+ 1)3/2

α3/2(t1 − t2)k+`+3/2
∀ k, ` ∈ N0 and all t1 > t2. (5.15)

In particular, g is asymptotically smooth on intervals I1 and I2 as in Theorem 5.1.

Proof. The proof follows the lines of [51, proof of Lemma 4.1], where an estimate
analogous to (5.15) is shown for a similar function. Since g depends only on the
di�erence of the variables t1 and t2 it su�ces to bound |∂nt1g(t1, 0)| for all t1 > 0 to
show (5.15). For n = 0 the estimate in (5.15) is clearly satis�ed for all constants
cas ≥ 1/(4π)3/2. For the case n ≥ 1 we consider the function z 7→ g̃(z) := g(z, 0),
which is holomorphic on C \ R≤0. Hence, we can use Cauchy's integral formula to
get

dn

dzn
g̃(t1) =

n!

2πi

∫

∂B(t1,δ)

g̃(ζ)

(ζ − t1)(n+1)
dζ

for all t1 ∈ R>0 and δ < t1, where B(t1, δ) ⊂ C is the ball with center t1 and radius δ.
For all ζ ∈ ∂B(t1, δ) there holds |ζ| ≥ <(ζ) > (t1 − δ) and <(−r2/(4αζ)) < 0, so it
follows that

|g̃(ζ)| = 1

(4πα)3/2

∣∣∣∣
1

ζ3/2
exp

(
− r2

4αζ

)∣∣∣∣ ≤
1

(4πα)3/2

1

(t1 − δ)3/2
.

Therefore, we can estimate

∣∣∣ dn

dzn
g̃(t1)

∣∣∣ ≤ n!

2π

∫

∂B(t1,δ)

|g̃(ζ)|
|ζ − t1|(n+1)

dζ

≤ n!

2π

∫

∂B(t1,δ)

1

(4πα(t1 − δ))3/2δ(n+1)
dζ =

n!

(4πα(t1 − δ))3/2δn
.

The optimal radius δ∗ to minimize this bound is δ∗ = 2nt1/(2n+ 3). By inserting δ∗

in the previous estimate we get

∣∣∣ dn

dzn
g̃(t1)

∣∣∣ ≤ n!

(4πα)3/2

(
2n+ 3

3

)3/2(
1 +

3

2n

)n
1

t
n+3/2
1

≤ e3/2

(4π)3/2

n!(n+ 1)3/2

α3/2t
n+3/2
1

.

This yields (5.15) for all n ≥ 1 with cas = e3/2/(4π)3/2. The asymptotical smoothness
of g on I1 × I2 with I1 and I2 as in Theorem 5.1 follows directly from (5.15).

Proof of Theorem 5.1. According to [14, Corollary 4.21] it su�ces to show that there
exist Cg ∈ R≥0, γg ∈ R>0 and σ ∈ N such that

‖∂ntkg‖∞,I1×I2 ≤
Cg
γng

(n+ σ − 1)!

(σ − 1)!
∀n ∈ N0 and k ∈ {1, 2} (5.16)

5.1 A separable approximation of the heat kernel 67

to conclude that

‖g − I
(m)
I1×I2 [g]‖∞,I1×I2 (5.17)

≤ 4eCg(Λm + 1)2(m+ 2)σ
(

1 +
max{|I1|, |I2|}

γg

)
%

(
2γg

max{|I1|, |I2|}

)−(m+1)

,

where %(r) := r +
√

1 + r2 and Λm is the Lebesgue constant de�ned in (5.3). From
the estimate (5.15) and the admissibility criterion (5.12) it follows that

‖∂ntkg‖∞,I1×I2 ≤ max
(t1,t2)∈I1×I2

cas n!(n+ 1)3/2

α3/2(t1 − t2)n+3/2
=

cas n!(n+ 1)3/2

α3/2 dist(I1, I2)n+3/2

≤ cas n! cββ
n

α3/2 dist(I1, I2)3/2

(
η2

max{|I1|, |I2|}

)n
,

where β > 1 is arbitrary and the constant cβ is chosen such that (n+1)3/2 ≤ cββ
n for

all n ≥ 0. Thus, (5.16) is satis�ed for the choice σ = 1, γg = max{|I1|, |I2|}/(η2 β)
and Cg = cascβ/(α dist(I1, I2))3/2. Since cβ → ∞ as β → 1 we �x β = 4/3 and a
proper constant cβ. Inserting these choices of σ, γg and Cg into (5.17) yields

‖g − I
(m)
I1×I2 [g]‖∞,I1×I2 ≤

4ecascβ(Λm + 1)2(m+ 2)

(α dist(I1, I2))3/2

(
1 +

4

3
η2

)
%

(
3

2η2

)−(m+1)

.

Similarly as in [14, Remark 4.23], we want to simplify this estimate. For this purpose,
we set q2 = 1 + 3/(2 η2), and µ2 = %

(
3/(2 η2)

)
/q2. Since %(r) > 1 + r for all r ∈ R we

see that µ2 > 1. Thus, we can rewrite the right-hand side of the above estimate as

4ecascβ(Λm + 1)2(m+ 2)(1 + 4 η2/3)

µm+1
2

1

(α dist(I1, I2))3/2
q
−(m+1)
2 .

The �rst fraction is a zero sequence inm and can thus be bounded by a constant c2. In
fact, its numerator grows like log(m+ 1)2(m+ 2) due to (5.4), while its denominator
grows exponentially with increasing m. Therefore, we end up with the estimate
in (5.13).

Remark 5.4. The result in Theorem 5.1 holds for general intervals I1 = [a1, b1] and
I2 = [a2, b2] with a1 > b2 as long as they are separated. However, the convergence
rate q2 deteriorates as the constant η2 in the admissibility criterion (5.12) increases.
The smallest value η2 for two given intervals I1 and I2 for which (5.12) holds is
η2 = max{|I1|, |I2}/ dist(I1, I2). This ratio will always be reasonably bounded in the
applications in this chapter.

68 5 A space-time FMM for the heat equation

5.1.2 Analysis of the approximation error in space

The approximation error of the truncated Chebyshev expansion of the heat kernel
for a �xed temporal setting has been investigated in [51, 68]. Here we collect and
slightly improve those results. We start by citing an estimate of the absolute value
of the expansion coe�cients de�ned in (5.10c).

Lemma 5.5 (cf. [68, Lemma 1]). For the coe�cients Ek,`(r, δ) in (5.10c) there holds

|Ek,`(r, δ)| ≤
λkλ`
ak+`

exp

(
1

δ

(
a− 1

a

)2)
, (5.18)

where a ∈ R>0 can be chosen arbitrarily.

Remark 5.6. The estimate in (5.18) is slightly sharper than the one in the referenced
paper where an additional multiplicative factor 4 is included in the argument of the
exponential function. This factor can be dropped in the last step of the proof in [68];
see [39, Satz 4.13].

Theorem 5.7 (Chebyshev series truncation error, cf. [68, p. 209]). Let c̃st ∈ R>0.

Let X1 and X2 be two cubes with edge length 2h̃x. Let t, τ ∈ R such that t > τ and

4α(t− τ)

h̃2
x

≥ c̃st. (5.19)

Let the function σ : R>0 → R be de�ned by

σ(s) :=
1

2

(
ln
(
s+
√

1 + s2
)
−
√
s2 + 1− 1

s

)
. (5.20)

Then there exists a constant cx > 0 such that

‖(Id−S
(mx)
X1×X2

)[Gα(·x − ·y, t− τ)]‖∞,X1×X2

≤ cx
(mx + 2)5

(α(t− τ))3/2
exp

(
− (mx + 1) σ

(
(mx + 1)c̃st/12

))
.

(5.21)

Proof. The proof is based on the proof of [51, Corollary 4.1] and the idea to minimize
the right-hand side of (5.18) in [69, p. 3551], where the function κ corresponds to σ
here. To estimate the error we represent it as the remainder of the Chebyshev series,
namely

(Id−S
(mx)
X1×X2

)[Gα(·x − ·y, t− τ)](x,y) =
∞∑

n=mx+1

∑

κ,ν∈N3
0:

|κ+ν|=n

E−κ,ν(t, τ)TX1,ν(x)TX2,κ(y),

5.1 A separable approximation of the heat kernel 69

where E−κ,ν(t, τ) = (4πα(t − τ))−3/2
∏3

j=1 Eκj ,νj(rj, δ) with δ = 4α(t− τ)/h̃2
x and rj

and Eκj ,νj(rj, δ) from (5.10). The polynomials TX1,ν and TX2,κ are tensor prod-
ucts of transformed Chebyshev polynomials as de�ned in (5.6). Thus, there holds
|TX1,ν(x)| ≤ 1 for all x ∈ X1 and all ν ∈ N3

0 and the same for TX2,κ in X2. Hence,
we can estimate

‖(Id−S
(mx)
X1×X2

)[Gα(·x − ·y, t− τ)]‖∞,X1×X2 ≤
∞∑

n=mx+1

∑

κ,ν∈N3
0:

|κ+ν|=n

|E−κ,ν(t, τ)|. (5.22)

For a given n and κ, ν ∈ N3
0 such that |κ+ ν| = n the estimate in (5.18) yields

(4πα(t− τ))3/2|E−κ,ν(t, τ)| ≤ exp

(
1

δ

(
an −

1

an

)2)3 3∏

j=1

λκjλνj

a
κj+νj
n

≤ 64

ann
exp

(
3

δ

(
an −

1

an

)2)
,

where an ∈ R>0 can be chosen arbitrarily. To �nd the optimal an we minimize the
function fn on the right-hand side, which can be rewritten in the form

fn(an) = 64 exp

(
−n ln(an) +

3

δ

(
an −

1

an

)2
)
.

From the necessary condition f ′n(a∗n) = 0 we obtain a∗n =
√
nδ/12 +

√
1 + (nδ/12)2,

which is indeed a minimizer of fn in R>0 since fn becomes unbounded for an tending
to zero or in�nity. Therefore, the minimum of fn is given by

fn(a∗n) = 64 exp

(
−n
(

ln(a∗n)− 12

4nδ

(
a∗n −

1

a∗n

)2
))

= 64 exp
(
− nσ

(
nδ/12

))

with the function σ from (5.20) and we obtain

|E−κ,ν(t, τ)| ≤ 64

(4πα(t− τ))3/2
exp

(
− nσ

(
nδ/12

))
.

By using this estimate and #{(κ,ν) ∈ N3
0×N3

0 : |κ+ν| = n} =
(
n+5

5

)
we can further

estimate the approximation error in (5.22) by

‖(Id−S
(mx)
X1×X2

)[Gα(·x − ·y, t− τ)]‖∞,X1×X2 (5.23)

≤ 64

(4πα(t− τ))3/2

∞∑

n=mx+1

(
n+ 5

5

)
exp

(
− nσ

(
nδ/12

))
.

70 5 A space-time FMM for the heat equation

The function σ is monotonically increasing. In fact, one can show that σ′(s) > 0
for all s > 0. Hence, we can use (5.19), which corresponds to the estimate δ =

4α(t− τ)/h̃2
x ≥ c̃st, to get for all n > mx

exp
(
− nσ

(
nδ/12

))
≤ exp

(
− nσ

(
(mx + 1)c̃st/12

))
= qn,

where q := exp
(
− σ

(
(mx + 1)c̃st/12

))
. In particular, the series on the right-hand

side of (5.23) is bounded by
∑∞

n=mx+1

(
n+5

5

)
qn. There holds

∞∑

n=mx+1

(
n+ 5

5

)
qn = qmx+1

∞∑

n=0

(
n+ 5 +mx + 1

5

)
qn

≤ qmx+1(mx + 2)5

∞∑

n=0

(
n+ 5

5

)
qn = qmx+1 (mx + 2)5

(1− q)6
, (5.24)

where we used the estimate (n+k+mx+1) ≤ (n+k)(mx+2) for all n ≥ 0 and k ≥ 1.
Note that the last identity in (5.24) follows immediately by identifying 5!(1 − q)−6

as the �fth derivative of the geometric series
∑∞

n=0 q
n. Since q depends on mx but

converges to 0 as mx → ∞, we can bound the term (1 − q)−6 by a constant c for
all mx ≥ 0. Together with (5.23) and (5.24) this yields

‖(Id−S
(mx)
X1×X2

)[Gα(·x − ·y, t− τ)]‖∞,X1×X2 ≤
64

(4πα(t− τ))3/2
c (mx + 2)5qmx+1,

which is (5.21) with cx = 64c/(4π)3/2.

Remark 5.8. The behavior of the function σ in (5.20) determines the approximation
error in (5.21). In the proof of Theorem 5.7 we have already pointed out that σ
is monotonically increasing. Furthermore there holds σ(s) ∼ s/4 for s→ 0 and
σ(s) ∼ ln(2s)/2 for s → ∞; see [69, p. 3551]. Thus, the convergence in (5.21)
is super-exponential in mx. Note that the approximation quality depends on the
constant c̃st in (5.19), which appears in the argument of σ. For small values of c̃st

the estimate su�ers. Thus, we have to ensure that (5.19) holds for a reasonably large
constant c̃st in the later application. This means that we have to adapt the size of the
cubes X1 and X2 to the temporal con�guration.

5.1.3 The space-time approximation error

By combining the results from the previous two sections we can estimate the approx-
imation error of the expansion (5.9) in Ztar × Zsrc.

5.1 A separable approximation of the heat kernel 71

Theorem 5.9 (Full space-time expansion error, [51, cf. Lemma 7.4]). Let c̃st ∈ R>0,
η2 ∈ R>0 and q2 := 1 + 3/(2 η2). Let Λmt be the Lebesgue constant de�ned in (5.3)
and σ be the function in (5.20). Let I1 = [a1, b1] and I2 = [a2, b2] be two non-empty
intervals with a1 > b2 that satisfy the admissibility criterion (5.12). Let X1 and X2

be two cubes in R3 with edge length 2h̃x such that

4α dist(I1, I2)

h̃2
x

≥ c̃st. (5.25)

Let Ztar = X1 × I1 and Zsrc = X2 × I2. Then there exist constants c2, cx ∈ R>0 such
that

‖(Id−S
(mx)
X1×X2

I
(mt)
I1×I2)[Gα]‖∞,Ztar×Zsrc ≤

1

(α dist(I1, I2))3/2
(5.26)

×
(
c2q
−(mt+1)
2 + cxΛ2

mt(mx + 2)5 exp
(
− (mx + 1)σ

(
(mx + 1)c̃st/12

)))
.

Proof. Throughout this proof we use ‖ · ‖∞ to denote ‖ · ‖∞,Ztar×Zsrc to shorten the
notation. We start to estimate the approximation error by adding and subtracting
I

(mt)
I1×I2 [Gα] and using the triangle inequality to get

‖(Id−S
(mx)
X1×X2

I
(mt)
I1×I2)[Gα]‖∞
≤ ‖(Id− I

(mt)
I1×I2)[Gα]‖∞ + ‖(Id−S

(mx)
X1×X2

)I
(mt)
I1×I2 [Gα]‖∞.

The �rst term can be further estimated by using Theorem 5.1. In fact, the function g
de�ned in (5.11) which is considered in that theorem is just the heat kernel for �xed
spatial points x and y and the estimate does not depend on these points. Thus,

‖(Id− I
(mt)
I1×I2)[Gα]‖∞ ≤

c2

(α dist(I1, I2))3/2
q
−(mt+1)
2

with c2 from Theorem 5.1. For the second term we observe that

‖(Id−S
(mx)
X1×X2

)I
(mt)
I1×I2 [Gα]‖∞ ≤ sup

f∈C(Ztar×Zsrc)\{0}

‖I(mt)
I1×I2 [f]‖∞
‖f‖∞

‖(Id−S
(mx)
X1×X2

)[Gα]‖∞,

where we used that the operators S
(mx)
X1×X2

and I
(mt)
I1×I2 commute. The operator norm

of I
(mt)
I1×I2 is bounded by Λ2

mt , which follows from (5.3). For the other term we use
assumption (5.25) and apply Theorem 5.7 to get

‖(Id−S(mx)
X1×X2

)[Gα]‖∞

≤ sup
(t,τ)∈I1×I2

{
cx

(mx + 2)5

(α(t− τ))3/2
exp

(
− (mx + 1) σ

(
(mx + 1)c̃st/12

))}

≤ cx
(mx + 2)5

(α dist(I1, I2))3/2
exp

(
− (mx + 1) σ

(
(mx + 1)c̃st/12

))
.

Combining all these estimates completes the proof.

72 5 A space-time FMM for the heat equation

Theorem 5.9 shows that we can control the approximation error of the expansion (5.9)
if we can control the respective errors in time and space separately. The spatial sizes
of the boxes Ztar and Zsrc have to be adapted to the distance of their temporal
components according to the criterion (5.25).

Remark 5.10. In [51, 67, 68, 76] a criterion di�erent from (5.25) is used to deter-
mine the proper spatial size of the boxes for the expansion (5.9). There it is required
that there exists a constant cst such that

h̃2
x

4α h̃t
≤ cst (5.27)

for each space-time box, where h̃x denotes the half length of the edges of its spatial
component and h̃t the half length of its temporal interval. However, criterion (5.25)
follows from (5.27) for two boxes Ztar = X1×I1 and Zsrc = X2×I2, if the admissibility
criterion (5.12) holds in addition. Indeed,

4α dist(I1, I2)

h̃2
x

≥ 4αmax{|I1|, |I2|}
h̃2
xη2

≥ 2

cstη2

, (5.28)

which is (5.25) with c̃st = 2(cstη2)−1. Therefore, we use the space-time con�gura-
tion criterion (5.27) instead of (5.25) in the rest of this work to allow for easier
comparison with previous articles.

5.2 Description of the space-time FMM

In this section we describe the space-time FMM for the fast computation of matrix-
vector products for BEM matrices of the heat equation like Vh. As stated at the
beginning of this chapter, the space-time FMM here is closely related to the pFMM
in [52, 67, 68], but realizes the full matrix-vector product at once instead of in a
forward-sweeping manner. The description in this section is similar to those in [76]
and [78]. We consider a space-time tensor product mesh Σh = Γh⊗Iht of the lateral
space-time boundary Σ of a space-time cylinder Q as in Section 2.4 and the BEM
matrices from Section 3.3. As a �rst step, we create a hierarchy of space-time boxes
that subdivides the elements in Σh; see Section 5.2.1. This hierarchy, which is often
denoted as a box cluster tree, will allow us to �nd a suitable partition of a BEM
matrix into blocks that can be approximated using the expansion in Section 5.1,
and a small remainder of non-approximable blocks. For the partitioning process we
construct suitable operation lists in Section 5.2.2. While these lists are independent
of the considered BEM matrices Vh, Kh, K

>x
h , or Dh, the related approximation of

admissible blocks is not. In Section 5.2.3 we describe the approximation of these

5.2 Description of the space-time FMM 73

blocks and the corresponding FMM operations. Additional nested FMM operations
which are needed for higher e�ciency are discussed in Section 5.2.4 together with
the resulting space-time FMM.

5.2.1 A 4D space-time box cluster tree

In this section we construct a hierarchy of 4D boxes to partition a given space-time
tensor product mesh Σh. The construction is based on a recursive subdivision of an
initial box Z(0) ⊂ R4 that contains the whole mesh. The resulting structure is denoted
as a box cluster tree TΣ. Similar trees have already been considered in [51, 67, 68].
In those works separate trees for the spatial mesh Γh and the temporal partition Iht
were constructed �rst and then combined to obtain a space-time box cluster tree. The
direct subdivision of 4D boxes, which we consider here, is a more general approach
applicable also to space-time meshes without a strict tensor product structure.

Note that from here on we consider half-open boxes Z = (a,a+ 2h̃x1]× (c, d] ⊂ R4

since they allow for a simple, non-overlapping partition into smaller half-open boxes.
The spatial parts of boxes Z will be cubes throughout this work. By h̃x(Z) we

denote the half edge length of the spatial part of Z and by h̃t(Z) the half length
of the temporal part of Z. We implicitly assign a space-time boundary element
σjt,jx = γjx × (tjt−1, tjt) of the given space-time tensor product mesh Σh to a box Z

if the geometrical center of σjt,jx is contained in Z. By Ẑ we denote the set of all
indices (jt, jx) corresponding to elements σjt,jx ∈ Σh that are assigned to Z. The

cardinality of Ẑ is denoted by #Ẑ.

Algorithm 5.1 describes the recursive construction of a space-time box cluster tree TΣ

for a mesh Σh = Γh ⊗ Iht . In the algorithm it is assumed that an initial box

Z(0) = (a,a+ 2h̃
(0)
x 1]× (0, T] is already given. The spatial part of this box can

be constructed, for example, by determining the minimal axis-parallel bounding box
containing Γh and extending it to a half-open cube that contains Γh. The box Z

(0)

is the root of the tree TΣ. It is subdivided into smaller boxes which are added to TΣ

as children of Z(0) and further subdivided recursively. If an empty box Zk is ob-
tained in the recursive subdivision process, i.e. a box such that #Ẑk = 0, it is not
added to TΣ and not further subdivided. The subdivision process is also stopped
for a box Z if the number #Ẑ of space-time elements assigned to Z is lower than a
certain number nmax. This number nmax has to be provided as an input argument
for the algorithm as well as the constant cst > 0 for the space-time con�guration
criterion (5.27). The concrete subdivision of a box Z = (a, b]× (c, d] in lines 7 and 9
is executed as follows:

(i) Purely temporal subdivision (line 7): We split the time interval (c, d] into (c, c̃]
and (c̃, d], where c̃ is the grid point tj of the time partition Iht closest to the

74 5 A space-time FMM for the heat equation

midpoint (c+d)/2. Then we subdivide Z into the two boxes Z1 = (a, b]× (c, c̃]
and Z2 = (a, b]× (c̃, d].

(ii) Space-time subdivision (line 9): We subdivide the time interval (c, d] as in (i).
The spatial box (a, b] is uniformly split into 8 boxes (a, ã], . . . , (ã, b], where
ã = 1/2 (a+b) is the center of (a, b]. By considering all possible combinations
of the resulting time intervals and spatial boxes we get a subdivision of Z into
16 space-time boxes.

Space-time boxes are only subdivided if it is feasible. We say that a temporal subdivi-
sion of Z = X×I is feasible, if the interval I contains more than one time step of the
partition Iht . A spatial subdivision of Z is feasible, if max(jt,jx)∈Ẑ diam(γjx) ≤ h̃x(Z),
where diam(γjx) := max{|x − y| : x,y ∈ γjx} is the diameter of the spatial ele-
ment γjx . This means that we do not re�ne a box in space if it contains a space-time
element whose spatial size is larger than the spatial half length of the box itself. A
space-time subdivision of Z = X × I is feasible if the temporal subdivision and the
spatial subdivision of Z are feasible.

Algorithm 5.1 Construction of a 4D space-time box cluster tree TΣ for Σh.

Require: Let a space-time tensor product mesh Σh be given.
Let nmax be a bound for the number of elements in a leaf box.
Let cst > 0 for the space-time con�guration criterion (5.27) be given.

Let Z(0) = (a,a+2h̃
(0)
x 1]× (0, T] ⊂ R4 be given such that Σh is contained in Z(0)

and h̃
(0)
x and h̃t(Z

(0)) = T/2 satisfy (5.27).
1: Construct an empty tree TΣ and add Z(0) as its root.
2: Call SubdivideCluster(Z(0), TΣ)

3: function SubdivideCluster(Z, TΣ)
4: if #Ẑ ≥ nmax

5: Let `t = `t(Z) be the temporal level of Z, h̃
(`t+1)
t = 2−`t−1h̃t(Z

(0))

6: if h̃
(`t+1)
t and h̃x(Z) satisfy (5.27) and a temporal subdivision is feasible

7: Temporal subdivision of Z into nC = 2 children {Zk}nC
k=1.

8: else if a space-time subdivision is feasible
9: Space-time subdivision of Z into nC = 16 children {Zk}nC

k=1.
10: else

11: return. // No subdivision is feasible. Stop the recursion.

12: for k = 1, . . . , nC

13: if #Ẑk 6= 0
14: Add Zk to TΣ as a child of Z and call SubdivideCluster(Zk, TΣ).

In the rest of this work we will use the terms box and cluster interchangeably when
talking about boxes in TΣ. In addition, we use standard terms of graph theory

5.2 Description of the space-time FMM 75

related to rooted trees: We denote the parent of a box Z ∈ TΣ by par(Z), the set
of all its children by child(Z) and its level by `(Z), which is the length of the path
between Z and the root of TΣ in this tree. The largest level in the tree TΣ is denoted
by depth(TΣ). In addition, we de�ne the temporal level `t(Z) of a box Z in TΣ by
setting `t(Z

(0)) := 0 for the root Z(0) and de�ning `t(Z) for all other Z ∈ TΣ as the
number of performed temporal subdivisions starting from Z(0) to obtain Z. This
temporal level is used in line 5 of Algorithm 5.1. Similarly, we de�ne the spatial
level `x(Z) of a box Z in TΣ by setting `x(Z(0)) := 0 and de�ning `x(Z) for all
other Z ∈ TΣ as the number of performed spatial subdivisions starting from Z(0) to
obtain Z.

A simple illustration of the recursive subdivision process in Algorithm 5.1 is given in
Figure 5.1. In general, we switch between purely temporal and space-time subdivi-
sions of boxes in the tree construction due to criterion (5.27) � at least after some
initial, purely temporal subdivisions which might be su�cient to guarantee (5.27) for
the �rst tree levels. Note that we assume that the criterion (5.27) is already satis�ed

for Z(0), or rather h̃x(Z(0)) and h̃t(Z
(0)). If this is not the case, we can subdivide Z(0)

in space as often as necessary to obtain boxes {Zk}Ninit
k=1 for which (5.27) is satis�ed.

The tree construction can then be continued by adding the boxes Zk that satisfy
#Ẑk > 0 as children of Z(0) to TΣ and calling the function SubdivideCluster in
line 3 of Algorithm 5.1 for them.

The described splitting in time yields the following property: If a space-time element
σjt,jx = γjx × (tjt−1, tjt) is assigned to a box Z = X × I, the temporal part (tjt−1, tjt)

x

t

Jkt

γkx

a) Mesh in a box Z(0).

x

t

Jkt

γkx

b) Boxes at level 1.

x

t

Jkt

γkx

c) Boxes at level 2. d) Resulting tree TΣ.

Figure 5.1: Construction of a space-time cluster tree in 2D. Instead of 4D space-time
elements σ we consider 2D rectangular elements consisting of temporal intervals
{Jkt}Etkt=1 and spatial 1D elements {γkx}Ex

kx=1. First, a box Z(0) at level zero is
constructed that contains all these elements; see a). This box is re�ned recursively
as described in Algorithm 5.1. A purely temporal re�nement leads to the two boxes
at level one in b). Re�ning these boxes in space and time results in eight boxes at
level two; see c). By connecting all child boxes with their respective parent box
we obtain the space-time tree in d).

76 5 A space-time FMM for the heat equation

is fully contained in the temporal interval I of Z. We want to ensure in addition that
the inclusion γjx ⊂ X holds for all space-time elements σjt,jx assigned to Z. If this is
not the case, we pad the boxes in TΣ appropriately in a post-processing step, i.e. we
extend the spatial size of a box Z such that σjt,jx ⊂ Zpad for the extended box Zpad

and all σjt,jx with (jt, jx) ∈ Ẑ. For a box Z = X × I with X = (a,a + 2h̃x1] we
set

h̃pad,x(Z) = max

{
min
x∈X
‖x− y‖∞ : y ∈ γjx , (jt, jx) ∈ Ẑ

}
,

where ‖ · ‖∞ denotes the maximum norm in R3. The box with spatial padding

h̃pad,x(Z) is given by
(
a− h̃pad,x(Z)1, a+ (2h̃x+ h̃pad,x(Z))1

]
× I, and all σjt,jx with

(jt, jx) ∈ Ẑ are fully contained in the closure of this extended box. The corresponding
padding of a box X ∈ R3 is illustrated in Figure 5.2. Note that we might lose
the spatial uniformity of the boxes in TΣ if we pad all boxes Z by an individual
amount h̃pad,x(Z). Furthermore, the relation Zc ⊂ Z for Zc ∈ child(Z) might not be
satis�ed anymore for the padded boxes. Since we want to exploit these properties
in the FMM, we pad all boxes at the same level ` in TΣ by the same amount h̃`pad,x

which we de�ne by

h̃`pad,x := max{h̃k,loc
pad,x : k ∈ {`, . . . , depth(TΣ)}},

h̃`,loc
pad,x := max{h̃pad,x(Z) : Z ∈ TΣ, `(Z) = `}.

(5.29)

Note that the space-time con�guration criterion (5.27) with the constant cst provided

in Algorithm 5.1 might be violated for the lengths h̃x(Zpad) and h̃t(Zpad) of the

padded version Zpad of a box Z ∈ TΣ, because h̃x(Z) is increased. The criterion might

x1

x3 x2

a) Part of a mesh Γh.

x1

x3 x2

b) Box X without padding.

x1

x3 x2

c) Padded box Xpad.

Figure 5.2: Illustration of the padding of a spatial box X. In a) we see a planar part
of a spatial surface mesh Γh. The spatial box X in b) intersects this mesh. The
parts of the triangles which are contained in X are colored in a darker shade of
gray while the protruding parts are colored in white. By padding X we obtain
the larger box Xpad in c) which fully contains all triangles.

5.2 Description of the space-time FMM 77

even be violated for an non-padded box Z, since we ensure only that (5.27) holds for

the quantity h̃
(`t(Z))
t = 2−`t(Z)h̃t(Z

(0)) instead of the actual temporal half length h̃t(Z)

of Z in line 6 of Algorithm 5.1. However, we assume in the following that h̃t(Z) di�ers

only slightly from h̃
(`t(Z))
t and that the amount of padding is reasonably small related

to the original spatial size of Z. Then (5.27) is satis�ed for a constant cst slightly
larger than the original one. Note that the assumption on the spatial padding is
justi�ed since we stop the subdivision process in Algorithm 5.1 earlier if a spatial
subdivision of a box is not feasible.

In the following sections we identify a box Z with its padded version Zpad to simplify
the notation. Furthermore, we use the following naming convention: The spatial
part of a box Z is denoted by X and the temporal part by I. If an index is used
to specify Z, the spatial and temporal components are labeled with the same index.
For example, Zsrc = Xsrc × Isrc and Ztar = Xtar × Itar.

5.2.2 Matrix partitioning using operation lists

Let TΣ be a space-time box cluster tree constructed by Algorithm 5.1. The boxes
in TΣ can be used to partition BEM matrices for the heat equation. For this purpose,
we introduce suitable operation lists in this section. Similar lists have already been
considered, for example, in [51, 68, 76], but the description here has a more algorith-
mic nature. The operation lists of clusters in TΣ will be constructed by a recursive
procedure based on purely geometrical criteria related to the approximation of the
heat kernel (3.4) in Section 5.1. In particular, they can be used to partition any of
the matrices Vh, Kh, K

>x
h or Dh from Section 3.3. We start by describing the desired

partition for the matrix Vh whose entries are given in (3.25). This will reveal how
to construct the operation lists of clusters in TΣ. The corresponding partition of the
other BEM matrices is described at the end of the section.

For two boxes Ztar and Zsrc in TΣ let Vh|Ẑtar×Ẑsrc
be the block of Vh formed by

the rows corresponding to indices (jt, jx) ∈ Ẑtar and the columns corresponding to
indices (kt, kx) ∈ Ẑsrc. Let Z

(0) be the root of TΣ. The block Vh|Ẑ(0)×Ẑ(0) corresponds

to the full matrix Vh. We can subdivide it into n2
c blocks Vh|Ẑ(1)

i ×Ẑ
(1)
j
, where {Z(1)

j }nc
j=1

are the children of Z(0) in TΣ. For the FMM we recursively subdivide the matrix into
blocks in this manner. The subdivision is stopped for a block Vh|Ẑtar×Ẑsrc

if Ztar

and Zsrc allow for the approximation (5.9) of the heat kernel (3.4) due to a proper
temporal separation. Such a block is called admissible. We will see in Section 5.2.3
how to approximate admissible blocks of Vh e�ciently. All other blocks are called
inadmissible and are further subdivided. This is possible as long as Ztar and Zsrc

have children in the tree TΣ.

78 5 A space-time FMM for the heat equation

The operation lists mentioned at the beginning of the section are used to identify
and keep track of the blocks Vh|Ẑtar×Ẑsrc

in the �nal partition of Vh. We intro-
duce interaction lists and near�eld lists for clusters Ztar in TΣ. The interaction list
IM2L(Ztar) is �lled with clusters Zsrc such that the block Vh|Ẑtar×Ẑsrc

is admissible, but
the corresponding block of the parents of Ztar and Zsrc is inadmissible. The subscript
M2L of this list is related to the associated FMM operation, which we introduce
in Section 5.2.3. The near�eld list or simply the near�eld N (Ztar) of Ztar contains
clusters Zsrc corresponding to blocks Vh|Ẑtar×Ẑsrc

which are inadmissible and cannot
be further subdivided to obtain admissible subblocks. For a given cluster Ztar one or
even both of these lists might be empty.

Before we can describe the construction of the near�eld lists and interaction lists of
clusters in TΣ, we have to specify how to identify admissible blocks. In Theorem 5.9
and Remark 5.10 we have shown that the expansion (5.9) of the heat kernel (3.4) is
well-suited for Ztar and Zsrc if the temporal intervals Itar and Isrc satisfy the standard
admissibility criterion (5.12) for a constant η2 > 0 and if the space-time con�guration
criterion (5.27) is satis�ed for a constant cst > 0. Criterion (5.12) can be checked ex-
plicitly during the recursive construction of the operation lists, while criterion (5.27) is
always satis�ed due to the construction of the boxes of the tree TΣ in Algorithm 5.1.

The partitioning of BEM matrices like Vh and the construction of the related opera-
tion lists is further in�uenced by the causality and the exponential decay of the heat
kernel Gα in (3.4). Due to the causality, Gα(x−y, t− τ) vanishes for all (x, t) ∈ Ztar

and (y, τ) ∈ Zsrc with Itar = (a1, b1] and Isrc = (a2, b2] if a2 ≥ b1. We say that Isrc

is causally relevant for Itar in the contrary case, i.e. if a2 < b1. If Isrc is not causally
relevant for Itar, all entries of the block Vh|Ẑtar×Ẑsrc

are zero and we can ignore it.
This is related to the lower triangular block structure of Vh; see (3.29). In particular,
the near�eld and interaction list of a cluster Ztar will be �lled only with clusters Zsrc

whose temporal component Isrc is causally relevant for Itar.

The exponential decay of the heat kernel allows to neglect interactions between clus-
ters that are su�ciently separated in space. We identify such pairs of clusters as
follows. Let Ztar be a cluster in TΣ with spatial level `x = `x(Z). Due to the uniform
subdivision strategy employed in the construction of TΣ, Xtar is one of 8`x possible
3D boxes in a regular grid G`x . We can label the boxes in this grid with multi-indices
in {0, . . . , 2`x − 1}3 in a regular way (ascending componentwise) and use these in-
dices to measure the distance of boxes. For two spatial boxes X and Y in G`x with
corresponding multi-indices ξ and ζ we de�ne the grid distance of X and Y by

griddist(X, Y) := max
j=1,...,3

{|ξj − ζj|}. (5.30)

For a �xed truncation parameter ntr we de�ne the interaction area IA(X) of X in G`x
by

IA(X) := {Y ∈ G`x : griddist(X, Y) ≤ ntr}. (5.31)

5.2 Description of the space-time FMM 79

Blocks of BEM matrices like Vh|Ẑtar×Ẑsrc
that are related to Ztar and Zsrc can be ne-

glected if Xsrc /∈ IA(Xtar). Therefore, we do not have to include such clusters Zsrc

in the operation lists of Ztar. From [68, Section 5.4] it follows that a single, prop-
erly chosen truncation parameter ntr can be used for the de�nition of the interaction
area and the related truncation for various pairs of clusters Ztar and Zsrc. A suit-
able requirement is that the ratio h̃2

x/max{|Itar|, |Isrc|} of these clusters is similar,

where h̃x = h̃x(Ztar) = h̃x(Zsrc). This will be the case in the construction of the
operation lists for clusters Zsrc and Ztar in the part of TΣ where we alternate between
purely temporal and space-time subdivisions. Note that in the remaining, initial part
of the tree no spatial truncation is possible since all clusters are subdivided only in
time and, therefore, share the same spatial component.

Finally, we are ready to describe the construction of the operation lists of clusters in
a tree TΣ. It is based on the recursive routine DetermineOperationLists in Al-
gorithm 5.2 that acts on pairs of clusters, and is �rst called for (Z(0), Z(0)) where Z(0)

denotes the root of TΣ. In the following we call pairs of clusters (Zsrc, Ztar) blocks
due to their connection to blocks of BEM matrices. In the routine Determine-
OperationLists we �rst check if Xsrc ∈ IA(Xtar) and if Isrc is causally relevant
for Itar (line 3). If this is not the case we can ignore the current block as seen before.
Otherwise, we check whether the admissibility criterion (5.12) is satis�ed (line 4) and
add Zsrc to the interaction list IM2L(Ztar) if this is the case. In the contrary case, we
want to subdivide the block. If neither Zsrc nor Ztar is a leaf in TΣ, we can subdivide
the block by calling the routine DetermineOperationLists in line 9 for all pairs
of children of Zsrc and Ztar. If either Zsrc or Ztar is a leaf, further subdivisions are
not possible or would not yield admissible subblocks anymore, so we add Zsrc to the

Algorithm 5.2 Recursive construction of the operation lists in TΣ.

Require: Let TΣ be a space-time cluster tree with root Z(0).
Fix a constant η2 ∈ R>0 for criterion (5.12) and ntr for the de�nition of (5.31).

1: Call DetermineOperationLists(Z(0), Z(0)).

2: function DetermineOperationLists(Zsrc, Ztar)
3: if Xsrc ∈ IA(Xtar) and Isrc is causally relevant for Itar

4: if Isrc and Itar satisfy the admissibility criterion (5.12)
5: Add Zsrc to IM2L(Ztar).
6: else

7: if Ztar and Zsrc are not leaves in TΣ

8: for all (Zsrc,c, Ztar,c) with Zsrc,c ∈ child(Zsrc), Ztar,c ∈ child(Ztar)
9: Call DetermineOperationLists(Zsrc,c, Ztar,c).

10: else

11: Add Zsrc to N (Ztar).

80 5 A space-time FMM for the heat equation

near�eld N (Ztar) (line 11). Note that by construction the levels `(Ztar) and `(Zsrc)
coincide whenever Zsrc ∈ IM2L(Ztar) or Zsrc ∈ N (Ztar).

Remark 5.11 (Subdividing inadmissible blocks). If Zsrc is a cluster in the near�eld
N (Ztar) of a cluster Ztar, one of the two clusters is a leaf by construction. Let us
assume that Zsrc is a leaf but Ztar is not. If the cluster Ztar contains many space-
time elements, the inadmissible block Vh|Ẑtar×Ẑsrc

has many rows. In particular, the
inadmissible blocks of Vh might vary greatly in size. In Chapter 6 we will talk about
the parallelization of the FMM presented in the current sections, where such varying
block sizes are undesirable since they make a balanced distribution of work more di�-
cult. However, we can split Vh|Ẑtar×Ẑsrc

into smaller blocks by further subdividing Ztar

and thereby the rows of the block. In this way, we obtain the set of matrix blocks
{Vh|Ẑd×Ẑsrc

}d, where {Zd}d denotes the set of all descendants of Ztar in TΣ which are
leaves. While these blocks are still inadmissible, their sizes are uniformly bounded in
general.

To adapt the near�eld lists according to the described subdivision of the inadmissi-
ble block Vh|Ẑtar×Ẑsrc

, we remove Zsrc from the near�eld N (Ztar) and add it to the
near�eld N (Zd) of each leaf descendant Zd of Ztar. If, instead, Ztar is a leaf while
Zsrc ∈ N (Ztar) is not, we can similarly remove Zsrc from N (Ztar) and add all leaf
descendants of Zsrc to N (Ztar). If all near�eld lists of clusters in TΣ are treated in
this way, the resulting near�eld lists of non-leaf clusters in TΣ are empty, and the
near�eld lists of leaf clusters contain only leaf clusters. When we talk about par-
allelization in later sections we will assume that this is the case. For the further
description of the FMM it does not make a di�erence.

The partitioning of the matrices Kh, K
>x
h and Dh with the operation lists constructed

by Algorithm 5.2 is slightly more complicated. Let us �rst consider the matrix Kh,
whose entries are given in (3.26). Each column index (jt, jx) is related to a basis
function ϕ1

x,jxϕ
0
t,jt ∈ S1⊗0

hx,ht
. Recall that ϕ1

x,jx is a piecewise linear nodal basis function
on Γh that satis�es

ϕ1
x,jx(xkx) = δjxkx

for the vertices {xkx}Nx
kx=1 of Γh. Hence, we have to assign such �nodal� indices (jt, jx)

to clusters in TΣ to partition the columns of Kh with respect to these clusters. For
this purpose we de�ne the nodal index set Ž of a cluster Z by

Ž := {(jt, jx) : ∃(jt, nx) ∈ Ẑ such that xjx ∈ γnx}. (5.32)

In other words: For each space-time element σjt,nx assigned to Z we consider the
vertices {xjx}jx of the related spatial triangle γnx and assign the corresponding nodal
index pairs {(jt, jx)}jx to Z. While each space-time element σjt,nx is assigned to at
most one cluster Z(`) at level ` of the tree TΣ, a nodal index pair (jt, jx) can be

5.2 Description of the space-time FMM 81

assigned to several clusters at a single level `. We account for this by de�ning the
block Kh|Ẑtar×Žsrc

of Kh by

Kh|Ẑtar×Žsrc
[(kt − 1)Ex + kx, (jt − 1)Nx + jx] (5.33)

=

∫ tkt

tkt−1

∫

γkx

∫ tjt

tjt−1

∫

SΓ(Zsrc)

α
∂

∂ny
Gα(x− y, t− τ)ϕ1

x,jx(y) dsy dτ dsx dt

for all (kt, kx) ∈ Ẑtar and all (jt, jx) ∈ Žsrc, where SΓ(Zsrc) is the subset of the spatial
surface Γ given by

SΓ(Zsrc) :=
⋃

(jt,nx)∈Ẑsrc

γnx . (5.34)

Note that here we use global indices instead of local indices to access blocks of BEM
matrices like Kh|Ẑtar×Žsrc

in (5.33), since it simpli�es the description. The de�nition
of blocks of Kh in (5.33) leads to an overlapping partition of the matrix, where an
entry Kh[(kt − 1)Ex + kx, (jt − 1)Nx + jx] is distributed among blocks {Kh|Ẑtar×Žn}n
with (kt, kx) ∈ Ẑtar and (jt, jx) ∈ ⋂n Žn. In the later application, we apply a block
like Kh|Ẑtar×Žsrc

to the local part g|Žsrc
of a vector g ∈ REtNx that contains the full

entries of g corresponding to indices in Žsrc.

The matrix K>x
h which discretizes the adjoint time-reversed double layer operator K ′T

is obtained from the matrix Kh by a suitable blockwise transposition; see (3.33). Since
this transposition is not very intuitive to handle when we work with blocks related
to clusters Ztar and Zsrc, we de�ne the block K>x

h |Žtar×Ẑsrc
of K>x

h directly by

K>x
h |Žtar×Ẑsrc

[(kt − 1)Nx + kx, (jt − 1)Ex + jx] (5.35)

=

∫ tkt

tkt−1

∫

SΓ(Ztar)

∫ tjt

tjt−1

∫

γjx

α
∂

∂nx
Gα(x− y, t− τ)ϕ1

x,kx(x) dsy dτ dsx dt

for all (kt, kx) ∈ Žtar and all (jt, jx) ∈ Ẑsrc.

The matrix Dh can be partitioned similarly into blocks Dh|Žtar×Žsrc
, but we distinguish

two cases. If Zsrc ∈ IM2L(Ztar), we can use the representation in (4.64) and de�ne

Dh|Žtar×Žsrc
[(kt − 1)Nx + kx, (jt − 1)Nx + jx] (5.36)

= −
∫ tkt

tkt−1

∫

SΓ(Ztar)

∫ tjt

tjt−1

∫

SΓ(Zsrc)

α
∂

∂nx

∂

∂ny
Gα(x− y, t− τ)

× ϕ1
x,kx(x)ϕ1

x,jx(y)dsydτdsxdt

for all (kt, kx) ∈ Žtar and all (jt, jx) ∈ Žsrc. This is possible, since Isrc satis�es the
admissibility criterion (5.12) in this case and, therefore, there holds jt < kt−1 for all
such indices. If instead Zsrc ∈ N (Ztar), we use the representation (5.36) for the entries

82 5 A space-time FMM for the heat equation

of the block Dh|Žtar×Žsrc
for pairs of indices (kt, kx) ∈ Žtar and (jt, jx) ∈ Žsrc with

jt < kt − 1. For all other entries we use the representation based on the integration
by parts formula in (4.60) and treat the spatial integrals in both bilinear forms in
the same way as those in (5.36) to distribute entries corresponding to shared nodal
indices among the involved blocks. Note that using these two representations together
is unproblematic, as long as we do not mix the representations for a single matrix
entry corresponding to two or more blocks. This is guaranteed, since we use (4.64)
whenever jt < kt − 1 holds for the involved temporal indices and (4.60) otherwise.

Remark 5.12 (Important terms). The terms collected in the following list play an
important role in the rest of the thesis, which is why we repeat them here:

� Admissible block: A block Vh|Ẑtar×Ẑsrc
is called admissible in this work if the

corresponding clusters Ztar and Zsrc allow for the approximation (5.9) of the
heat kernel (3.4). Admissible blocks of Kh, K

>x
h and Dh are de�ned analogously.

A block that is not admissible is called inadmissible.

� Interaction list: The interaction list of a cluster Ztar is denoted by IM2L(Ztar).
It is de�ned by the construction in Algorithm 5.2. A cluster Zsrc is contained
in IM2L(Ztar) if the block of a BEM matrix corresponding to Ztar and Zsrc is
admissible, but the block corresponding to their parent clusters is not.

� Near�eld list (or simply near�eld): The near�eld of a cluster Ztar is denoted
by N (Ztar) and de�ned by the construction in Algorithm 5.2. A cluster Zsrc

is contained in N (Ztar) if the block of a BEM matrix corresponding to Ztar

and Zsrc is inadmissible, and either Ztar or Zsrc cannot be further subdivided.

5.2.3 Approximation of admissible matrix blocks

In this section we describe how to e�ciently approximate admissible blocks of the
BEM matrices Vh, Kh, K

>x
h and Dh that are obtained from the partition constructed

in Section 5.2.2. The approximation of blocks is based on the approximation of the
heat kernel in (5.9) in Section 5.1.

Let TΣ be a space-time box cluster tree constructed by Algorithm 5.1 and the op-
eration lists of clusters in TΣ be constructed by Algorithm 5.2. We focus on the
matrix Vh �rst. For Ztar and Zsrc in TΣ we consider the matrix-vector product
f loc = Vh|Ẑtar×Ẑsrc

q|Ẑsrc
, where q|Ẑsrc

is the local part of a vector q ∈ REtEx . There
holds

f loc
kt,kx =

∑

(jt,jx)∈Ẑsrc

qjt,jx

∫ tkt

tkt−1

∫

γkx

∫ tjt

tjt−1

∫

γjx

Gα(x− y, t− τ) dsy dτ dsx dt (5.37)

5.2 Description of the space-time FMM 83

for all indices (kt, kx) ∈ Ẑtar, where we used the representation of the entries of Vh
in (3.25). If the block Vh|Ẑtar×Ẑsrc

is admissible, i.e. Zsrc is contained in the interaction
list IM2L(Ztar), we can approximate (5.37) in an e�cient way by replacing the heat

kernel with its approximation in (5.9). The resulting vector f̃ loc can be computed in
three steps:
S2M (source to moment): We compute the moments µ(Zsrc) by

µa,κ(Zsrc) =
∑

(jt,jx)∈Ẑsrc

qjt,jx

∫ tjt

tjt−1

∫

γjx

TXsrc,κ(y)L
(mt)
Isrc,a

(τ) dsy dτ (5.38)

for all a ∈ {0, ...,mt} and all multi-indices κ ∈ N3
0 with |κ| ≤ mx.

M2L (moment to local): We compute the local contributions λ(Ztar, Zsrc) by

λb,ν(Ztar, Zsrc) =
mt∑

a=0

∑

κ∈N3
0:|κ+ν|≤mx

Ea,b
κ,ν µa,κ(Zsrc) (5.39)

for all b ∈ {0, ...,mt} and all multi-indices ν ∈ N3
0 with |ν| ≤ mx, where E

a,b
κ,ν are the

coe�cients in (5.10).
L2T (local to target): For all (kt, kx) in Ẑtar we evaluate

f̃ loc
kt,kx =

mt∑

b=0

∑

|ν|≤mx

λb,ν(Ztar, Zsrc)

∫ tkt

tkt−1

∫

γkx

TXtar,ν(x)L
(mt)
Itar,b

(t) dsx dt. (5.40)

The integrals of polynomials in the S2M and L2T operations can be computed by
numerical quadrature formulae. For the integrals of the Lagrange polynomials L

(mt)
I,a

over a time interval (tjt−1, tjt) we use a Gauÿ�Legendre quadrature formula with
d(mt + 1)/2e quadrature points, which is exact in this case. For the integrals of
the Chebyshev polynomials over a triangle γjx we use quadrature rules de�ned on
triangles. In practice, a 7-point formula proves to be accurate enough.

For the execution of an S2M operation O(Ẑsrc

(
mx+3

3

)
+nt(Ẑsrc)

(
mx+3

3

)
(mt+1)) arith-

metic operations are required, where nt(Ẑsrc) denotes the number of all distinct time-
indices in Ẑsrc or, in other words, the number of time intervals (tjt−1, tjt) in Isrc. This
can be seen by rearranging the operation in (5.38) as

µa,κ(Zsrc) =
∑

jt

∫ tjt

tjt−1

L
(mt)
Isrc,a

(τ) dτ
∑

jx

qjt,jx

∫

γjx

TXsrc,κ(y) dsy.

Similarly, an L2T operation requires O(Ẑtar

(
mx+3

3

)
+ nt(Ẑtar)

(
mx+3

3

)
(mt + 1)) arith-

metic operations. A naive realization of the M2L operation in (5.39) would require

O(
(
mx+3

3

)2
(mt + 1)2) arithmetic operations. In [69, Section 4.3] an e�cient alterna-

tive is proposed which requires only O((mx + 1)4(mt + 1)2) operations. We use this
alternative in our implementation.

84 5 A space-time FMM for the heat equation

Admissible blocks Kh|Ẑtar×Žsrc
, K>x

h |Žtar×Ẑsrc
and Dh|Žtar×Žsrc

of the BEM matrices Kh,

K>x
h and Dh are also approximated by replacing the corresponding kernel functions

with suitable approximations. The related matrix-vector multiplications can then
again be executed by appropriate S2M, M2L, and L2T operations. We will see
that the S2M and L2T operations depend on the considered matrix, while the M2L
operations are the same for all matrices. In the following, we describe these operations
in more detail. As before, we will use µ(Zsrc) and λ(Ztar, Zsrc) to denote the moments

and local contributions corresponding to clusters Zsrc and Ztar, and f̃
loc to denote the

result of the approximate matrix-vector multiplication for a given block of a BEM
matrix. While all these objects depend on the considered BEM matrix and are not
necessarily the same as those in (5.38), (5.39) and (5.40), we use the same names to
keep the notation simple. In the following paragraphs and sections we will always
focus on a single BEM matrix, so there is no risk of confusion.

The kernel function ((x, t), (y, τ)) 7→ ∂nyGα(x− y, t− τ) corresponding to the ma-
trix Kh can be approximated by the normal derivative ∂ny of (5.9), i.e.

∂

∂ny
S

(mx)
Xtar×Xsrc

I
(mt)
Itar×Isrc [Gα](x, t,y, τ)

=
mt∑

a,b=0

∑

κ,ν∈N3
0:

|κ+ν|≤mx

Ea,b
κ,ν TXtar,ν(x)

∂

∂ny
TXsrc,κ(y)L

(mt)
Itar,b

(t)L
(mt)
Isrc,a

(τ)

for all (x, t) ∈ Ztar ∩ Σ and (y, τ) ∈ Zsrc ∩ Σ with Zsrc ∈ IM2L(Ztar). The S2M
operation for the related, approximate matrix-vector product Kh|Ẑtar×Žsrc

g|Žsrc
with

Kh|Ẑtar×Žsrc
de�ned in (5.33) is to compute the moments µa,κ(Zsrc) for all indices

a ∈ {0, . . . ,mt} and all multi-indices κ ∈ N3
0 with |κ| ≤ mx by

µa,κ(Zsrc) =
∑

(jt,jx)∈Žsrc

gjt,jx

∫ tjt

tjt−1

∫

SΓ(Zsrc)

α
∂

∂ny
TXsrc,κ(y)ϕ1

x,jx(y)L
(mt)
Isrc,a

(τ) dsy dτ, (5.41)

where SΓ(Zsrc) is de�ned in (5.34). The subsequent M2L and L2T operations are the
same as in the case of the single layer operator matrix Vh, i.e. (5.39) and (5.40).

For an admissible block K>x
h |Žtar×Ẑsrc

of K>x
h the S2M and M2L operations for the

approximation of K>x
h |Žtar×Ẑsrc

q|Ẑsrc
are the same as in (5.38) and (5.39), while the

L2T operation for the evaluation of the local contributions λ(Zsrc, Ztar) is given by

f̃ loc
kt,kx =

mt∑

b=0

∑

|ν|≤mx

λb,ν(Ztar, Zsrc)

∫ tkt

tkt−1

∫

SΓ(Ztar)

α
∂

∂nx
TXtar,ν(x)ϕ1

x,kx(x)L
(mt)
Itar,b

(t) dsx dt

(5.42)
for all (kt, kx) ∈ Žtar.

5.2 Description of the space-time FMM 85

Finally, we consider an admissible block Dh|Žtar×Žsrc
of Dh as de�ned in (5.36). By

applying the normal derivatives−∂nx and ∂ny to the approximation of the heat kernel
in (5.9), we get an approximation of the kernel function in (5.36). The corresponding
approximation of the matrix-vector product Dh|Žtar×Žsrc

g|Žsrc
consists of the S2M

operation in (5.41), the M2L operation in (5.39) and the L2T operation in (5.42) up
to a minus sign, i.e.

f̃ loc
kt,kx = −

mt∑

b=0

∑

|ν|≤mx

λb,ν(Ztar, Zsrc)

∫ tkt

tkt−1

∫

SΓ(Ztar)

α
∂

∂nx
TXtar,ν(x)ϕ1

x,kx(x)LItar,b(t) dsx dt

(5.43)
for all (kt, kx) ∈ Žtar.

Remark 5.13. An alternative strategy is to use the integration by parts formula rep-
resentation (4.60) for the entries of all blocks of Dh. In this case, one has to handle
the two bilinear forms (4.61) and (4.62) separately when approximating an admissible
block. Since the functions y 7→ curlΓ(ϕ1

x,jx)(y) and x 7→ curlΓ(ϕ1
x,kx

)(x) in (4.61)
and the functions y 7→ ϕ1

x,jx(y)n(y) and x 7→ ϕ1
x,kx

(x)n(x) in (4.62) are vector-
valued, one has to execute three groups of S2M, M2L and L2T operations for the �rst
bilinear form � one for each component of the vector-valued functions � and addi-
tional three groups for the second bilinear form. Due to the computational overhead
of this approach, we use the integration by parts formula representation (4.60) only
for values of Dh in inadmissible blocks as discussed at the end of Section 5.2.2.

5.2.4 Nested FMM operations and the space-time FMM

In this section we present a space-time FMM for the computation of the matrix-
vector product Vhq for a given vector q. We focus on the matrix Vh, but the BEM
matrices Kh, K

>x
h and Dh can be treated similarly as we will see in Remark 5.14 at

the end of this section.

The FMM uses the partition of Vh into admissible and inadmissible blocks via the
operation lists constructed in Algorithm 5.2 for a blockwise application. Inadmissible
blocks are applied directly to the corresponding part of the vector q, while admis-
sible blocks can be approximated and applied as described in Section 5.2.3. In the
following, we describe how the application of admissible blocks is handled even more
e�ciently in the FMM, before presenting the full method in Algorithm 5.3.

Recall that an admissible block Vh|Ẑtar×Ẑsrc
of Vh is applied to a local part of a vector q

by executing the S2M operation (5.38), followed by the M2L operation (5.39) and
the L2T operation (5.40). An important observation is that the computation of the
moments µ(Zsrc) in the S2M operation (5.38) is independent of the target cluster Ztar.
Due to this property, we have to compute the moments µ(Zsrc) only once and can

86 5 A space-time FMM for the heat equation

reuse them for the approximate evaluation of all admissible blocks of Vh involving Zsrc

and other target clusters. Likewise, the L2T operation used to evaluate the local
contributions λ(Ztar, Zsrc) in (5.40) is independent of the source cluster Zsrc. We can
exploit this by adding up the local contributions λ(Ztar, Zsrc) of the cluster Ztar and

all source clusters Zsrc ∈ IM2L(Zsrc) to get a vector of local contributions λ̃(Ztar)
that can be evaluated by a single L2T operation. Note that the same holds for all
the other S2M and L2T operations in Section 5.2.3 corresponding to other BEM
matrices.

The computation of moments and evaluation of local contributions for large clusters
in TΣ can be further improved. In fact, it is possible to compute the moments µ(Zsrc)
of a non-leaf cluster Zsrc in TΣ from the moments of its children. Furthermore, we
can transform the local contributions λ̃(Ztar) of a non-leaf cluster Ztar into local
contributions of its children, add them to the local contributions of these children,
and evaluate them in a single e�ort. This nested computation of moments and local
contributions is a standard approach in FMM algorithms, and was used already
in [51, 67, 68]. The related operations are based on suitable changes of bases of
the temporal Lagrange polynomials and spatial Chebyshev polynomials, which we
describe next.

Let I and Ic be two intervals with Ic ⊂ I, and {L(mt)
I,b }mtb=0 and {L(mt)

Ic,a
}mta=0 be the

Lagrange polynomials of degree mt on I and Ic, respectively, as de�ned in (5.2).

The restriction L
(mt)
I,b |Ic of L

(mt)
I,b to Ic is a polynomial of degree mt on Ic for all

b ∈ {0, . . . ,mt}. Hence, we can express it in terms of the basis {L(mt)
Ic,a
}mta=0 by

L
(mt)
I,b |Ic =

mt∑

a=0

q
(t)
a,b(Ic, I)L

(mt)
Ic,a

, q
(t)
a,b(Ic, I) := L

(mt)
I,b (ξ

(mt)
Ic,a

) for a ∈ {0, . . . ,mt}, (5.44)

where {ξ(mt)
Ic,a
}mta=0 are the Chebyshev nodes of order mt + 1 on Ic. This representation

follows immediately from the identity L
(mt)
I,b |Ic = I

(mt)
Ic

[
L

(mt)
I,b |Ic

]
, which holds since

the interpolation operator I
(mt)
Ic

is a projection on C(Ic) whose image is the space of
polynomials Pmt(Ic).

We can also consider Chebyshev polynomials TI,b and TIc,a for a, b ∈ {0, . . . ,mx}
on the intervals I and Ic. Since TI,b|Ic is a polynomial of degree b on Ic, it can be
represented as a linear combination of the polynomials {TIc,a}ba=0 by

TI,b|Ic =
b∑

a=0

q
(x)
a,b (Ic, I)TIc,a. (5.45)

To compute the coe�cients q
(x)
a,b (Ic, I) we compare this representation with the Cheby-

shev series expansion in (5.5), or rather its equivalent on Ic, and conclude

q
(x)
a,b (Ic, I) =

λa
π

∫ 1

−1

TI,b(ϕIc(x))Ta(x)w(x) dx,

5.2 Description of the space-time FMM 87

where λa and w are the same quantities as in (5.5), and ϕIc is the a�ne map
from [−1, 1] to Ic. By evaluating these integrals for all a, b ∈ {0, . . . ,mx} with a
Gauÿ�Chebyshev quadrature rule with mx + 1 points we get

q
(x)
a,b (Ic, I) =

λa
mx + 1

mx∑

n=0

TI,b(ξ
(mx)
Ic,n

)Ta(ξ
(mx)
n). (5.46)

Since the quadrature rule is exact for polynomials in P2mx+1(−1, 1) and a and b are
bounded bymx we do not introduce an approximation error here. For tensor products
of Chebyshev polynomials we get a similar representation. Let X = (a, b] ⊂ R3 and
Xc = (c,d] ⊂ R3 be two boxes with Xc ⊂ X. Then there holds

TX,ν |Xc =
∑

κ∈N3
0:κ≤ν

q(x)
κ,ν(Xc, X)TXc,κ, q(x)

κ,ν(Xc, X) :=
3∏

k=1

q(x)
κk,νk

((cj, dj], (aj, bj]) (5.47)

for all ν ∈ N3
0 with |ν| ≤ mx, where the inequality κ ≤ ν is understood component-

wise and we use the coe�cients from (5.46).

The identities (5.44) and (5.47) allow us to compute moments and local contributions
of clusters in TΣ in a nested way. The corresponding operations are known as moment
to moment (M2M) and local to local (L2L) operations. As in [68, Sections 5.5.2
and 5.5.3] we distinguish two cases for each of them.

Temporal M2M : Let Z = X × I in TΣ be a cluster whose children were constructed
by a purely temporal subdivision in Algorithm 5.1. For the moments µ(Z) of Z as
de�ned in (5.38) there holds

µa,ν(Z) =
∑

Zc∈child(Z)
Zc=X×Ic

∑

(jt,jx)∈Ẑc

∫ tjt

tjt−1

∫

γjx

TX,ν(y)L
(mt)
I,a (τ) dsy dτ

=
∑

Zc∈child(Z)
Zc=X×Ic

mt∑

ac=0

q(t)
ac,a(Ic, I)

∑

(jt,jx)∈Ẑc

∫ tjt

tjt−1

∫

γjx

TX,ν(y)L
(mt)
Ic,ac

(τ) dsy dτ

=
∑

Zc∈child(Z)
Zc=X×Ic

mt∑

ac=0

q(t)
ac,a(Ic, I)µac,ν(Zc)

for all a ∈ {0, . . . ,mt} and ν ∈ N3
0 with |ν| ≤ mx. The equality in the �rst line

is clear since the index set Ẑ of Z is equal to the union of the index sets of all the
children of Z. The equality in the second line follows by using the identity (5.44)
for LI,a on the intervals (tjt−1, tjt) ⊂ Ic and changing the order of summation and

88 5 A space-time FMM for the heat equation

integration. By identifying the moments µ(Zc) of a child cluster Zc we obtain the
last line. We conclude that µ(Z) can be computed by

µ(Z) =
∑

Zc∈child(Z)
Zc=X×Ic

µ(Z,Zc),

where the moments µ(Z,Zc) are obtained by transforming the moments µ(Zc) of a
child cluster Zc = X × Ic into moments of Z with the temporal M2M operation

µa,ν(Z,Zc) =
mt∑

ac=0

q(t)
ac,a(Ic, I)µac,ν(Zc) (5.48)

for all a ∈ {0, . . . ,mt} and ν ∈ N3
0 with |ν| ≤ mx. Recall that q

(t)
ac,a(Ic, I) are the

coe�cients from (5.44).

Space-time M2M : Let Z = X × I be a cluster whose children were constructed by a
space-time subdivision in Algorithm 5.1. Its moments µ(Z) can be computed by

µ(Z) =
∑

Zc∈child(Z)
Zc=Xc×Ic

µ(Z,Zc),

where the moments µ(Z,Zc) of Z related to a child Zc = Xc × Ic are computed by
the space-time M2M operation

µa,ν(Z,Zc) =
mt∑

ac=0

∑

κ:κ≤ν
q(t)
ac,a(Ic, I) q(x)

κ,ν(Xc, X)µac,κ(Zc) (5.49)

for all a ∈ {0, . . . ,mt} and ν ∈ N3
0 with |ν| ≤ mx. The coe�cients q

(t)
ac,a(Ic, I)

and q
(x)
κ,ν(Xc, X) are given in (5.44) and (5.47), respectively. This operation can be

derived analogously as the one in (5.48) by using the representation of polynomi-
als TX,ν |Xc in (5.47) in addition.

Temporal L2L: Let Z = X × I be in TΣ and Zc = X × Ic with Ic ⊂ I be a purely
temporally subdivided child of Z. We consider the evaluation of the local contribu-
tions λ(Z) as in (5.40), but only for indices (kt, kx) in Ẑc instead of Ẑ. This can be
reformulated by

f̃ loc
kt,kx =

mt∑

b=0

∑

|ν|≤mx

λb,ν(Z)

∫ tkt

tkt−1

∫

γkx

TX,ν(x)L
(mt)
I,b (t) dsx dt

=
mt∑

b=0

∑

|ν|≤mx

λb,ν(Z)

∫ tkt

tkt−1

∫

γkx

TX,ν(x)
mt∑

bc=0

q
(t)
bc,b

(Ic, I)L
(mt)
Ic,bc

(t) dsx dt

=
mt∑

bc=0

∑

|ν|≤mx

(
mt∑

b=0

q
(t)
bc,b

(Ic, I)λb,ν(Z)

)∫ tkt

tkt−1

∫

γkx

TX,ν(x)L
(mt)
Ic,bc

(t) dsx dt,

5.2 Description of the space-time FMM 89

where we used (5.44) to obtain the identity in the second line. The expression in the
last line corresponds to an L2T operation for the cluster Zc and the local contributions
λ(Zc, Z) obtained by the temporal L2L operation

λbc,ν(Zc, Z) :=
mt∑

b=0

q
(t)
bc,b

(Ic, I)λb,ν(Z) (5.50)

for all bc ∈ {0, . . . ,mt} and ν ∈ N3
0 with |ν| ≤ mx. We can add λ(Zc, Z) and the

local contributions λ̃(Zc) of Zc that are obtained by M2L operations to get

λ(Zc) = λ̃(Zc) + λ(Zc, Z).

In particular, we can evaluate all these local contributions of Zc at once.

Space-time L2L: Let Z = X × I be in TΣ and Zc = Xc × Ic with Xc ⊂ X and Ic ⊂ I
be a child of Z obtained by a space-time subdivision. The local contributions λ(Z)
can be transformed into local contributions λ(Zc, Z) of Zc by the space-time L2L
operation

λbc,κ(Zc, Z) :=
mt∑

b=0

q
(t)
bc,b

(Ic, I)
∑

ν:ν≥κ
q(x)
κ,ν(Xc, X)λb,ν(Z) (5.51)

for all bc ∈ {0, . . . ,mt} and κ ∈ N3
0 with |κ| ≤ mx. This operation can be derived

in the same way as the one in (5.50) by using the representation (5.47) in addition.
As in the case of the temporal L2L operation, we can add up λ(Zc, Z) and the local

contributions λ̃(Zc) and evaluate them together.

A nested computation of moments and local contributions is not only possible for the
matrix Vh but also for the other BEM matrices. In fact, the corresponding M2M and
L2L operations are even the same regardless of the considered matrix. Let us compare
the S2M operations (5.38) and (5.41), for example. The main di�erence � apart from
the di�erent basis function � is that the normal derivative ∂nTXsrc,κ of the Chebyshev
polynomial TXsrc,κ appears in the integral in (5.41) instead of TXsrc,κ. From (5.47) we
obtain that

∂

∂n
TX,ν |Xc =

∑

κ:κ≤ν
q(x)
κ,ν(Xc, X)

∂

∂n
TXc,κ.

By using this relation and repeating the above steps to derive the M2M operations
we end up with the same temporal and space-time M2M operations as in (5.48)
and (5.49). The same holds for the di�erent types of L2T operations.

In Algorithm 5.3 we �nally present the space-time FMM for the single layer operator
matrix Vh. The computation is split into four phases. The �rst phase is the forward
transformation (lines 2�11) where all the moments of clusters in TΣ are determined.
The moments of leaf clusters are computed by S2M operations, while suitable M2M

90 5 A space-time FMM for the heat equation

operations are used for the computation of the moments of non-leaf clusters. After
this phase all moments are available, so all M2L operations can be executed in the
second phase, the multiplication phase (lines 12�15). The third phase is the backward
transformation (lines 16�23) where the resulting local contributions are passed from
the clusters in TΣ to their children by suitable L2L operations. The local contributions
of leaf clusters are �nally evaluated by an L2T operation. In the last phase, the
near�eld evaluation, the inadmissible blocks are applied directly (lines 24�26).

In [67, Section 5.4] and [51, Section 4.5.3] it is stated that the runtime complexity
of the pFMM for the application of Vh is O(m4

xm
2
tEtEx). Recall that the pFMM is

closely related to the space-time FMM which we consider in this work. In fact, the
FMM operations executed in both methods are the same, but in the pFMM they
are executed in a forward-sweeping manner. Thus, our space-time FMM has the
same runtime complexity O(m4

xm
2
tEtEx), while a direct application of the matrix Vh

has the complexity O((EtEx)2). Note that the complexity estimate for the FMM is
only valid if the considered space-time tensor product mesh is globally quasi-uniform
in space and time and its temporal and spatial mesh sizes ht and hx satisfy the
relation ht ∼ h2

x. In [52] an additional near�eld compression scheme was introduced
for meshes where hx is too �ne compared to ht. We will further comment on this
topic in Chapter 8, where we present an alternative near�eld compression scheme.

Remark 5.14. The FMM for the matrices Kh, K
>x
h and Dh is obtained from Algo-

rithm 5.3 by replacing the S2M and L2T operations in lines 5 and 23, respectively, by
the appropriate operations from Section 5.2.3 and the near�eld operations in line 26
accordingly. Due to this similarity, we focus on the single layer matrix Vh and the
corresponding FMM in the following chapters.

The space-time FMM in Algorithm 5.3 can be seen as a collection of operations in the
space-time cluster tree TΣ. The S2M and L2T operations (lines 5 and 23, respectively)
act on leaf clusters in TΣ. The M2M operations (lines 9 and 11), and L2L operations
(lines 19 and 21) are operations between clusters and their children, i.e. they take
place between clusters in TΣ that are connected by an edge. The remaining M2L
operations (line 15) and near�eld operations (line 26) act on pairs of clusters in TΣ

that are identi�ed by the corresponding operation lists. In the next chapter we
show that the FMM can even be interpreted as a collection of operations in a purely
temporal tree structure. Based on this interpretation, we develop a parallel version
of the FMM in shared and distributed memory.

5.2 Description of the space-time FMM 91

Algorithm 5.3 The space-time FMM for the approximate evaluation of f = Vhq.

Require: Let a space-time box cluster tree TΣ as in Algorithm 5.1 be given.
Let the operation lists be constructed by Algorithm 5.2.
Let the expansion degrees mt and mx be given.

1: Initialize f = 0
// Forward transformation

2: for all Z ∈ TΣ

3: Initialize the moments by setting µ(Z) = 0

4: for all leaves Z ∈ TΣ

5: S2M: Compute µ(Z) by (5.38).

6: for all levels ` = depth(TΣ), . . . , 1
7: for all Z ∈ TΣ with `(Z) == `
8: if Z results from par(Z) by a temporal subdivision:
9: Temporal M2M: Add the result µ(par(Z), Z) from (5.48) to µ(par(Z)).

10: else

11: Space-time M2M:
Add the result µ(par(Z), Z) from (5.49) to µ(par(Z)).

// Multiplication phase
12: for all boxes Ztar ∈ TΣ

13: Initialize the local contributions by setting λ(Ztar) = 0.
14: for all boxes Zsrc ∈ IM2L(Ztar)
15: M2L: Add the result λ(Ztar, Zsrc) from (5.39) to λ(Ztar).

// Backward transformation
16: for all levels ` = 1, . . . , depth(TΣ)
17: for all boxes Z ∈ TΣ with `(Z) == `
18: if Z results from par(Z) by a temporal subdivision:
19: Temporal L2L: Add the result λ(Z, par(Z)) from (5.50) to λ(Z).
20: else

21: Space-time L2L: Add the result λ(Z, par(Z)) from (5.51) to λ(Z).

22: for all leaves Z ∈ TΣ

23: L2T: Evaluate λ(Z) by (5.40) and add the result to f |Ẑ .
// Near�eld evaluation

24: for all Ztar ∈ TΣ

25: for all Zsrc ∈ N (Ztar)
26: Near�eld operation: Add the product Vh|Ẑtar×Ẑsrc

q|Ẑsrc
to f |Ẑtar

.

6 A task based parallelization of the

space-time FMM

An advantage of space-time methods over classical time stepping methods for the
solution of time dependent partial di�erential equations is that they allow for a
parallelization in space and time. Such a parallelization has been considered for
standard space-time boundary element methods for the heat equation in [29], but
to the best of our knowledge, the parallelization of a related fast method like the
space-time FMM presented in Chapter 5 has not been considered yet. However,
a lot of attention has been devoted to the parallelization of FMM algorithms for
purely spatial problems; see e.g. the non-exhaustive list in the general introduction
in Chapter 1. The task based parallelization of the space-time FMM for the heat
equation, which we discuss in this chapter, can be best compared with the task based
parallelization in [4, 5], but it is tailored to exploit the speci�c temporal structure of
the space-time FMM.

The temporal structure of the space-time FMM allows us to group FMM operations
in the original space-time box cluster tree TΣ to obtain a temporal version of the
FMM with operations in a suitable time cluster tree TI . We de�ne tasks correspond-
ing to the operations in TI and use a task scheduler to execute them in parallel based
on individual dependencies. For a distributed memory parallelization the clusters
in the tree TI and the corresponding tasks are distributed among the available pro-
cesses. The inter-process communication required for this kind of parallelization can
be handled in the temporal tree in an asynchronous way, which allows to overlap com-
munication and computation. By de�ning the tasks as well as the communication in
the time tree TI instead of the original space-time tree TΣ, the resulting dependencies
between tasks and communication patterns between processes are simple and can be
handled e�ciently. To increase the parallel performance we subdivide tasks in TI
into smaller, concurrently executable tasks during their execution.

In the following sections we present the described parallelization strategy which was
originally published in [76] in more detail. We focus on the FMM for the matrix Vh,
but the FMM for the matrices Kh, K

>x
h and Dh can be parallelized in the same way.

For our description and implementation we use basic concepts of high performance
computing like multithreading for shared memory parallelization and the parallel
execution of programs by multiple processes for distributed memory parallelization.

93

94 6 A task based parallelization of the space-time FMM

We assume that the reader is familiar with these concepts and has a basic under-
standing of the standard programming interfaces OpenMP and MPI which we use.
A good overview of these topics and high performance computing in general is given
in [70].

The rest of this chapter is structured as follows. In Section 6.1 we present a temporal
version of the space-time FMM on which the parallelization is based. The paral-
lelization is �rst described for shared memory systems in Section 6.2. In Section 6.3
we discuss how to extend this parallel algorithm to distributed memory systems.
The related data and workload distribution is the topic of Section 6.4. The chap-
ter is concluded by Section 6.5, where we present numerical experiments in which
we investigate the parallel performance of the introduced algorithms in shared and
distributed memory. The corresponding C++ implementation is publicly available in
the library besthea [49].

6.1 A temporal version of the space-time FMM

In [68, Section 5.6] it was pointed out that the general structure of the considered
parabolic FMM for the heat equation corresponds to the one of a one-dimensional
FMM in the time domain. The same holds for the space-time FMM in this work
due to its close relation to the original parabolic FMM. We emphasize this here by
working with temporal projections to introduce a temporal version of the space-time
FMM in Algorithm 5.3. This version forms the basis for the parallelization considered
in the following sections.

The temporal projection Πt : R3 × R → R is de�ned by Πt(x, t) = t for all x ∈ R3

and t ∈ R. For a set A ⊂ R3 × R we de�ne the image of A under Πt as

Πt[A] = {Πt(a) : a ∈ A}. (6.1)

In particular, there holds Πt[Z] = I for a space-time box Z = X × I.
With the projection operator Πt we can de�ne the temporal projection of a space-time
box cluster tree TΣ.

Definition 6.1 (Temporal projection of TΣ). Let TΣ be a space-time box cluster tree
constructed by Algorithm 5.1. The temporal projection TI := Πt[TΣ] of TΣ is a graph
that is de�ned as follows:

� The vertices of TI are the distinct intervals in {I : ∃Z ∈ TΣ with Πt[Z] = I}.
� Two intervals I1 and I2 in TI are connected by an edge in TI if there exist
clusters Z1 and Z2 in TΣ such that Πt[Z1] = I1, Πt[Z2] = I2, and there is an
edge between Z1 and Z2 in TΣ.

6.1 A temporal version of the space-time FMM 95

In the following, we consider a �xed space-time box cluster tree TΣ constructed by
Algorithm 5.1 and denote its temporal projection by TI . The vertices of TI are
referred to as intervals, clusters, or time clusters. We use the same standard terms
of graph theory for clusters in TI as we do for clusters in TΣ. We de�ne the root of
TI by I(0) = Πt[Z

(0)], where Z(0) is the root of TΣ. Then TI is a binary tree that is
full but not necessarily perfect. This follows immediately from the de�nition of TI
and the subdivision strategy in Algorithm 5.1. Furthermore there holds

� If I ∈ TI and Z ∈ TΣ with Πt[Z] = I, the level `(I) of I in TI corresponds to
the temporal level `t(Z) of Z in TΣ.

� Ic ∈ child(I) if and only if there exist clusters Z,Zc ∈ TΣ with Πt[Z] = I,
Πt[Z] = Ic and Zc ∈ child(Z).

A cluster Z ∈ TΣ is associated with I ∈ TI if Πt[Z] = I. The set of all clusters in TΣ

associated with I ∈ TI is de�ned by

Zassoc(I) = {Z ∈ TΣ : Πt[Z] = I}. (6.2)

Operation lists for time clusters Itar in TI are de�ned via projections of the opera-
tion lists of clusters Ztar in TΣ, which are constructed in Algorithm 5.2 and re�ned
according to Remark 5.11. The interaction list of Itar is de�ned by

IM2L(Itar) := {Isrc ∈ TI : ∃Ztar ∈ TΣ and Zsrc ∈ IM2L(Ztar)

with Πt[Zsrc] = Isrc and Πt[Ztar] = Itar}
(6.3)

and its near�eld by

N (Itar) := {Isrc ∈ TI : ∃Ztar ∈ TΣ and Zsrc ∈ N (Ztar)

with Πt[Zsrc] = Isrc and Πt[Ztar] = Itar}.
(6.4)

Note that both operation lists contain only causally relevant clusters Isrc. Further-
more, Isrc is contained in IM2L(Itar) only if Isrc and Itar satisfy the admissibility
criterion (5.12) and par(Isrc) and par(Itar) do not. Likewise, Isrc is contained in
N (Itar) only if (5.12) is violated for Isrc and Itar. As in the space-time setting, the
levels `(Itar) and `(Isrc) coincide if Isrc is in IM2L(Itar). The near�eld list N (Itar) of a
cluster Itar can also contain clusters Isrc with levels `(Isrc) < `(Itar), even if Isrc is not
a leaf in TI . This is possible, if Zassoc(Isrc) contains a leaf Zsrc in TΣ which is in the
near�eld of a cluster Ztar ∈ Zassoc(Itar). An illustration of near�eld and interaction
lists of time clusters in a tree TI is given in Figure 6.1.

We want to use the time clusters in TI and the related operation lists to de�ne
a temporal version of the FMM in Algorithm 5.3. That algorithm consists of a
collection of operations in the space-time box cluster tree TΣ. In the following we
de�ne corresponding operations in the temporal tree TI by grouping FMM operations
in TΣ based on the lists of associated clusters Zassoc(I) for I ∈ TI . The sets of moments
and local contributions of clusters in TI are de�ned by a grouping as well.

96 6 A task based parallelization of the space-time FMM

t
. . . I

(3)
4 I

(3)
5 I

(3)
6 I

(3)
7

N (I
(3)
6)I(I(3)6)

nearfield interaction list

a) Interaction and near�eld lists of I
(3)
6 .

t
. . . I

(3)
4 I

(3)
5 I

(3)
6 I

(3)
7

N (I
(3)
7)I(I(3)7)

nearfield interaction list

b) Interaction and near�eld lists of I
(3)
7 .

Figure 6.1: Illustration of the interaction lists (6.3) and near�elds (6.4) of clusters
in the temporal projection TI of a suitable tree TΣ. The time clusters/intervals
are sorted in ascending order on each level in the �gure. The depiction of the
interaction lists is representative of trees with uniformly sized intervals on each
level and the constant η2 = 1 used for the admissibility criterion (5.12). The de-
picted near�eld lists in TI can contain additional clusters in general. For example,
the near�eld list N (I

(3)
6) of the cluster I

(3)
6 in a) might also contain par(I

(3)
5) in

addition to I
(3)
5 if Zassoc(par(I

(3)
5)) contains leaf clusters in TΣ.

Definition 6.2. The moment set µ(I) of a cluster I in TI is de�ned as the set of
the moments of its associated space-time clusters, i.e.

µ(I) := {µ(Z) : Z ∈ Zassoc(I)}. (6.5)

The local contribution set λ(I) is de�ned similarly by

λ(I) := {λ(Z) : Z ∈ Zassoc(I)}. (6.6)

For each FMM operation in TΣ we de�ne corresponding operations in TI :

(i) S2M operations for I: For each leaf cluster Z ∈ Zassoc(I) compute the corre-
sponding moments in µ(I) by the S2M operation (5.38).

(ii) M2M operations between I and par(I): For each Z ∈ Zassoc(I) compute the
moments µ(par(Z), Z) by an M2M operation (either (5.48) or (5.49), depend-
ing on the con�guration of par(Z) and Z) and add them to the corresponding
moments in µ(par(I)).

(iii) M2L operations between Itar and Isrc ∈ IM2L(Itar): For each Ztar ∈ Zassoc(Itar)
and each Zsrc ∈ IM2L(Ztar) with Πt[Zsrc] = Isrc compute λ(Ztar, Zsrc) by the
M2L operation (5.39) and add the result to the corresponding local contributions
in λ(Itar).

6.1 A temporal version of the space-time FMM 97

(iv) L2L operations between par(I) and I: For each Z ∈ Zassoc(I) compute the lo-
cal contributions λ(Z, par(Z)) by an L2L operation (either (5.50) or (5.51),
depending on the con�guration of par(Z) and Z) and add them to the corre-
sponding local contributions in λ(I).

(v) L2T operations for I: For each leaf cluster Z in Zassoc(I) evaluate the corre-
sponding local contributions in λ(I) by the L2T operation (5.40).

(vi) Near�eld operations between Itar and Isrc ∈ N (Itar): For each Ztar ∈ Zassoc(Itar)
and each Zsrc ∈ N (Ztar) with Πt[Zsrc] = Isrc execute the corresponding near�eld
operation; see line 26 of Algorithm 5.3.

Algorithm 6.1 The temporal version of the space-time FMM in Algorithm 5.3.

Require: Let all requirements from Algorithm 5.3 be met.
Let TI be the temporal projection of TΣ.

1: Initialize f = 0.
// Forward transformation

2: for all I ∈ TI
3: Initialize all moments in µ(I) by zeros.

4: for all levels ` = depth(TI), . . . , 1
5: for all I ∈ TI with `(I) == `
6: if Zassoc(I) contains leaves in TΣ

7: Execute S2M operations for I (De�nition 6.2 (i)).

8: Execute M2M operations for I and par(I) (De�nition 6.2 (ii)).

// Multiplication phase
9: for all Itar ∈ TI

10: Initialize the local contributions in λ(I) by zeros.
11: for all Isrc ∈ IM2L(Itar)
12: Execute M2L operations for Itar and Isrc (De�nition 6.2 (iii)).

// Backward transformation
13: for all levels ` = 1, . . . , depth(TΣ)
14: for all I ∈ TI with `(I) == `
15: Execute L2L operations for par(I) and I (De�nition 6.2 (iv)).
16: if Zassoc(I) contains leaves in TΣ

17: Execute L2T operations for I (De�nition 6.2 (v)).

// Near�eld evaluation
18: for all Itar ∈ TI
19: for all Isrc ∈ N (Itar)
20: Execute near�eld operations for Itar and Isrc (De�nition 6.2 (vi)).

98 6 A task based parallelization of the space-time FMM

Remark 6.3. S2M and L2T operations have to be executed for all leaves in the tem-
poral tree TI , but also for some non-leaf clusters. In fact, even for a non-leaf cluster I
the set of associated space-time clusters Zassoc(I) might contain leaves in TΣ for which
S2M and L2T operations have to be executed.

In Algorithm 6.1 we present the temporal version of the space-time FMM from Al-
gorithm 5.3. The two algorithms are equivalent, which is clear by construction. The
new temporal version allows us to view the FMM as a collection of operations in the
temporal tree TI . This view reveals the temporal structure of the FMM, which we
exploit in the parallelization described in the subsequent sections.

6.2 A task based shared memory parallelization

In this section we restructure the temporal version of the space-time FMM presented
in Algorithm 6.1 to obtain a task based execution scheme where groups of FMM op-
erations are executed based on individual dependencies. We discuss a shared memory
parallelization of this approach. The extension to obtain a distributed memory par-
allelization is discussed in Section 6.3.

In Algorithm 5.3 and its temporal version Algorithm 6.1 we separate the FMM
operations into four distinct phases. This ordering of operations allows for a concise
and comprehensible presentation of the algorithms. In addition, it ensures that the
FMM operations are processed in a correct order when they are executed by a single
thread. However, this strict separation of phases might be suboptimal when it comes
to parallelization. Let us, for example, consider the forward transformation phase
of the space-time FMM in Algorithm 5.3. Here we compute the moments of all
clusters in the space-time tree TΣ. After the computation of the moments of all
leaf clusters, we proceed with the computation of the remaining moments by M2M
operations in a level-wise manner starting with the largest level ` = depth(TΣ).
The number of clusters per level decreases with decreasing levels and thereby the
number of operations per level decreases. As a consequence, it may not be possible
to distribute the operations of the forward transformation phase equally among the
available parallel threads on all levels of the tree TΣ which may cause undesired idle
times during their execution.

By breaking the strict separation of phases in the FMM we can obtain more �exibility
in its parallel execution. For example, we could execute some of the M2M operations
of the forward transformation phase in parallel with some of the M2L operations of
the multiplication phase, for which the required moments are already available. To
make this possible, we consider Algorithm 6.1 and decompose it into groups of tasks
that can be executed based on individual dependencies. These dependencies can be

6.2 A task based shared memory parallelization 99

determined by taking a closer look at the FMM operations in the temporal tree TI
in Algorithm 6.1, which are given in De�nition 6.2. We can subdivide them into 3
classes based on their input data:

(i) Operations that require parts of the source vector q: These are the S2M opera-
tions and the near�eld operations in De�nition 6.2 (i) and (vi), respectively. We
assume that the source vector q is always accessible without any restrictions.

(ii) Operations that require the set of moments µ(I) of a cluster I ∈ TI to be
computed: These are the M2M operations between I and par(I), and the M2L
operations between Itar ∈ TI and I ∈ IM2L(Itar) in De�nition 6.2 (ii) and (iii),
respectively.

(iii) Operations that require the set of local contributions λ(I) of I ∈ TI to be
computed: These are the L2L operations between I and Ic ∈ child(I), and the
L2T operations for I in De�nition 6.2 (iv) and (v), respectively.

In principle, an FMM operation can be executed once its input data are available.
Hence, we can execute the FMM operations in Algorithm 6.1 in a more �exible order,
as long as we respect the above data dependencies. For this purpose, we introduce
so-called FMM tasks for clusters I ∈ TI . By grouping some of the FMM operations
we obtain the following four kinds of FMM tasks:

� The M-list task for I ∈ TI which comprises the S2M operations for I and M2M
operations between I and par(I).

� The M2L-list task for I ∈ TI which includes the M2L operations between I
and all Isrc ∈ IM2L(I), and additionally the L2T operations for I, if the list of
associated clusters Zassoc(I) contains leaf clusters.

� The L-list task for I ∈ TI which includes the L2L operations between par(I)
and I, and additionally the L2T operations for I, if the list of associated clusters
Zassoc(I) contains leaf clusters.

� The N-list task for I ∈ TI which comprises the near�eld operations between I
and all Isrc ∈ N (I).

As the names of the tasks suggest we collect them in four di�erent lists. We will use
a task scheduler to manage their execution in the later algorithm.

Note that the L2T operations for I are included in the M2L-list task as well as in
the L-list task for I, but may be executed only once the local contributions λ(I) are
fully available. Recall that these local contributions are computed in parts by the
M2L operations between I and Isrc ∈ IM2L(I) in the M2L-list task for I and in parts
by the L2L operations between par(I) and I in the L-list task for I. These L2L and
M2L operations are independent of each other. Hence, we can process the M2L- and

100 6 A task based parallelization of the space-time FMM

L-list tasks for I in an arbitrary order and execute the L2T operations in the task
that is executed last.

Let us now describe the task based execution model for the FMM in Algorithm 6.1.
Before we present the full algorithm, we discuss the data dependencies of the above
FMM tasks, the construction of the corresponding task lists, the basic task scheduling
procedure, and the desired parallel execution scheme.

Data dependencies of the tasks and the construction of the task lists. The
data dependencies of the di�erent FMM tasks introduced above correspond to the
dependencies of the associated FMM operations. We say that a task A depends on
some data B if A can be executed only if B is fully available. The FMM tasks have
the following dependencies:

� The M-list task for I depends on the moments µ(I). If I does not have any
children, these moments are computed by the S2M operations in the M-list task
of I, so this task does not have any dependencies. Otherwise, the moments are
computed in parts by the M-list tasks of the children of I.

� The M2L-list task for I depends on the moments µ(Isrc) of all time clusters Isrc

in the interaction list IM2L(I).

� The L-list task for I depends on the local contributions λ(par(I)) of its parent.

� The N-list task for I does not have any data dependencies, since we assume
that the source vector q is always fully available.

To keep track of all the tasks which need to be executed in the FMM we construct
four task lists, namely the M-list, M2L-list, L-list, and N-list. These lists are �lled
with the corresponding FMM tasks introduced above. The individual tasks in each
list are uniquely identi�ed by the corresponding clusters in TI on which they act, so
we can interpret them as lists of clusters as well. A cluster I ∈ TI is added to a list
if the corresponding task has to be executed for I.

A cluster I is added to the M2L-list only if the interaction list IM2L(I) is not empty,
and to the N-list only if the near�eld list N (I) is not empty. Also M-list and L-list
tasks do not necessarily have to be executed for all clusters in TI . In fact, we need
to execute an M-list task for a cluster only if its moments are needed in the FMM.
We can determine these clusters, and simultaneously �ll the M-list by a recursive
traversal of the tree TI starting at its root. During the recursion we add a cluster I
to the M-list if I is in the interaction list IM2L(Itar) of another cluster Itar ∈ TI , or
if par(I) is in the M-list. Likewise, we need to execute an L-list task for a cluster only
if its local contributions are needed in the FMM. We �ll the L-list by a recursive tree
traversal, where we add a cluster I to the L-list if the interaction list IM2L(par(I))
of par(I) is not empty or if par(I) is in the L-list.

6.2 A task based shared memory parallelization 101

The basic task execution procedure. Once the task lists have been determined,
we can start with the task based execution of the FMM operations. For this purpose,
we need a task scheduler. The task scheduler has to check the data dependencies
of the individual tasks and keep track of open tasks. In our implementation we
use a simple custom scheduler for this purpose instead of an existing solution like
the scheduler provided in OpenMP for the corresponding task constructs or a third
party solution like, e.g., StarPU [9]. The primal motivation for our decision is that
the task scheduler has to be suitable for the later distributed memory parallelization.
In particular, it has to be able to handle communication and dependencies between
di�erent MPI processes. The OpenMP task scheduler (OpenMP API 5.0 speci�ca-
tion [58]) is not suitable for this purpose, so we decided to use a custom solution to
avoid dependencies on third party software.

Our custom scheduler iterates through the four lists of tasks. If it �nds a task whose
dependencies are satis�ed, this task can be executed and removed from the list. When
all lists are empty, all tasks and, therefore, all FMM operations from Algorithm 6.1
have been executed.

The parallel, multithreaded execution of tasks. The reason why we consider a
new task based version of the FMM is to enable an e�cient parallelization. Therefore,
let us describe how the FMM tasks, i.e. the M-, M2L-, L-, and N-list tasks, can
be executed in parallel. As described in the last paragraph, we use a custom task
scheduler to keep track of the data dependencies of the FMM tasks and initiate FMM
tasks whose dependencies are satis�ed. For the parallel, multithreaded execution of
these tasks we use the OpenMP task construct in our implementation. The following
description is based on these OpenMP tasks, but other task based execution models
could be used for the implementation as well. To distinguish the FMM tasks from
OpenMP tasks, we use the term FMM task for the former and denote the latter in
monospaced font from now on.

OpenMP tasks are generated with certain explicit constructs in a code, like the task
and taskloop constructs which we encounter and describe in more detail later. We
can imagine that tasks created by such constructs are added to a general pool of
tasks and can be executed by all available threads concurrently. Various tasks of
di�erent kinds can be added to the pool of tasks at the same time which leads to
a high �exibility of this parallelization approach. It is even possible to create tasks
in a nested way, i.e. when executing a task a thread can generate new tasks which
are added to the global pool of tasks. The actual task execution is managed by
the task scheduler of the OpenMP runtime system that assigns tasks to the available
threads.

In our task based version of the FMM we use OpenMP tasks as follows. Once our
custom task scheduler detects a ready FMM tasks, i.e. one whose dependencies are
satis�ed, it creates an OpenMP task for its execution and continues looking for other

102 6 A task based parallelization of the space-time FMM

ready FMM tasks. This allows us to execute several ready FMM tasks in parallel.
The FMM tasks can be quite large, so we want to further subdivide them. In fact,
an FMM task for a time cluster I ∈ TI consists of the related FMM operations
for this time cluster which are groups of FMM operations for space-time clusters
Z ∈ Zassoc(I); see De�nition 6.2. To execute these FMM operations for space-time
clusters inside of an FMM task in parallel, we create additional OpenMP tasks. In
Algorithm 6.2 we present a sketch of the resulting task based version of the FMM.

Algorithm 6.2 A parallel, task based version of the FMM in Algorithm 6.1.

1: Initialize f = 0.
2: for all I ∈ TI
3: Initialize µ(I) and λ(I) by zeros.

4: Fill the M_list, M2L_list, L_list, and N_list with clusters in TI .
5: #pragma omp parallel

6: #pragma omp single

7: while the FMM task lists are not empty
8: [I, list]

= FindNextReadyFMMTask(M_list, L_list, M2L_list)
9: if list == M_list

10: Remove I from the M_list.
11: #pragma omp task // + depend clause; see Remark 6.4.
12: MListTask(I)

13: else if list == L_list

14: Remove I from the L_list.
15: #pragma omp task // + depend clause; see Remark 6.4.
16: LListTask(I)

17: else if list == M2L_list

18: Remove I from the M2L_list.
19: #pragma omp task // + depend clause; see Remark 6.4.
20: M2LListTask(I)

21: else // No ready task in the M_list, L_list or M2L_list
22: if N_list is not empty
23: Choose I as the �rst cluster in the N_list.
24: Remove I from the N_list.
25: #pragma omp task

26: NListTask(I)

In the �rst lines of Algorithm 6.2 we initialize the sets of moments and local contribu-
tions of clusters in TI and �ll the FMM task lists as described above. In line 5 we use
the OpenMP parallel pragma to create a parallel region for the execution of tasks
using multiple threads. The remaining lines in the algorithm describe our custom

6.2 A task based shared memory parallelization 103

task scheduler. The scheduling is handled by a single thread, which is guaranteed by
the pragma in line 6.

In the scheduling procedure we �rst search for a ready FMM task in the M-, L-
or M2L-list. For this purpose, we use the routine FindNextReadyFMMTask in
line 8 to loop through each of these lists consecutively at most once and check the
dependencies of the contained FMM tasks. To be able to identify satis�ed depen-
dencies we have to keep track of the fully computed moments and local contributions
in TI , e.g., by using some auxiliary variables which we do not specify here. As soon
as a ready FMM task is detected in the routine FindNextReadyFMMTask, the
corresponding time cluster I and the name of the list in which it was found are
returned.

The pair [I, list] is used to create a new OpenMP task for the execution of the
related FMM task. Let us assume, for example, that we found a ready FMM task for
a cluster I in the M-list. In this case, we jump to line 10, where I is removed from
the M-list before initiating the corresponding task with the routine MListTask
in line 12. Due to the OpenMP task pragma in line 11, this routine is not pro-
cessed directly, but instead an OpenMP task is generated for its execution, which
is added to the above mentioned pool of tasks. To be more precise, the scheduling
thread could immediately execute the task or postpone its execution according to
the OpenMP API 5.0 speci�cation [58, Section 2.10]. In the latter case, any of the
available threads may execute this task, while the scheduling thread can continue
with the scheduling procedure. The routine MListTask is given in Algorithm 6.3
and discussed in more detail below. Tasks in the L-list and M2L-list are handled
analogously. To avoid data races during the parallel execution of the created tasks,
we introduce additional dependencies between them, which can be handled by the
OpenMP task scheduler itself. This is discussed in more detail in Remark 6.4.

The tasks in the N-list are handled separately. Since they do not have any depen-
dencies, they could be scheduled at any time. However, there are not any tasks
which depend on N-list tasks, so executing N-list tasks does not have a high priority.
Therefore, we consider the N-list only if no task was found in any of the other lists;
see line 21. In this case, we schedule the �rst N-list task in the N-list in the same
way as we scheduled the FMM tasks of the other lists.

The scheduling thread repeats the steps in lines 8�26 of Algorithm 6.1 and schedules
new FMM tasks once they are ready. When all task lists are empty and all the sched-
uled tasks have been executed, the application of the FMM is complete and we obtain
the same approximation f of the matrix-vector product Vhq as in Algorithm 5.3.

Remark 6.4 (Additional dependencies between FMM tasks). We have to ensure
that the parallel execution of FMM tasks in Algorithm 6.2 works correctly without
any data races between the di�erent threads. Special care is necessary for M-list

104 6 A task based parallelization of the space-time FMM

tasks of clusters I1 and I2 that share the same parent, i.e. Ipar = par(I1) = par(I2),
because the results of the corresponding M2M operations are written to the same set
of moments µ(Ipar). To avoid race conditions we can either use atomic operations
for the writing access of these operations, or prohibit the simultaneous execution of
such M-list tasks. In our implementation we choose the latter approach for which
we use the depend clause for OpenMP tasks; see [58, Section 2.17.11]. With this
clause we introduce dependencies between tasks which ensure that they are executed
in a sequential order. These additional dependencies are handled by the OpenMP
task scheduler itself, in contrast to the data dependencies of FMM tasks that we
introduced above and handle manually in our custom task scheduler. Recall that this
was a design choice to enable the later distributed memory parallelization. Additional
dependencies are also introduced to prohibit the simultaneous execution of the L-list
and M2L-list tasks for a cluster I since the corresponding operations a�ect the same
set of local contributions λ(I).

The routines for the execution of the FMM tasks in Algorithm 6.2 are speci�ed in
Algorithms 6.3 and 6.4. In these routines the actual FMM operations in the space-
time tree TΣ are handled. The routine MListTask in line 1 of Algorithm 6.3 is
used to execute S2M and M2M operations for a time cluster I. The S2M operation
for I has to be executed only if the set Zassoc(I) of space-time clusters associated
with I contains leaves in TΣ. In this case, the S2M operations of all associated
leaves are executed in lines 4�5. To parallelize them, we use the taskloop construct
of OpenMP in line 3; see [58, Section 2.10.2]. Due to this directive, the iterations
in the subsequent for loop are subdivided into tasks that are added to the global
pool of tasks and handled by the task scheduler of the OpenMP runtime system.
A concurrent execution of the loop iterations is possible here without any restrictions,
since in each iteration a separate vector of moments µ(Z) is computed. The moments
computed by the S2M operations are needed for the subsequent M2M operations, so
we have to ensure that the main thread executing the routine MListTask waits for
the completion of the S2M operations before it proceeds with the steps in lines 6�9.
By default, the taskloop pragma in OpenMP introduces a so-called taskgroup

which guarantees this; see [58, Section 2.17.6]. The following M2M operations for
clusters Z ∈ Zassoc(I) are grouped with respect to their parent clusters. This leads
to the nested loops in lines 7 and 8. The outer loop is parallelized by the taskloop
directive again. Due to the grouping of operations, the generated tasks can be
executed concurrently without any restrictions.

The other FMM tasks are realized analogously. For the L2L operations for a cluster I
in the routine LListTask of Algorithm 6.3 we use again a grouping of clusters
Z ∈ Zassoc(I) with respect to their parent clusters as we did for the M2M operations.
The L2T operations are executed either in the L-list task or the M2L-list task once
the local contributions λ(I) are fully available, as we already mentioned above. Note

6.2 A task based shared memory parallelization 105

that we use atomic operations [58, see Section 2.17.7] when adding the results of the
L2T operations to the output vector f to avoid race conditions when several threads
try to access the same entries of f at the same time.

Algorithm 6.3 The M- and L-list tasks from Algorithm 6.2.

1: function MListTask(I)
2: if Zassoc(I) contains leaves in TΣ

// Execution of the S2M operations for I:
3: #pragma omp taskloop

4: for all leaves Z ∈ Zassoc(I)
5: S2M: Compute µ(Z) in the set µ(I) by (5.38).

// Execution of the M2M operations between I and par(I):
6: #pragma omp taskloop

7: for all Zpar ∈ Zassoc(par(I))
8: for all Z ∈ child(Zpar) with Πt[Z] = I
9: M2M: Compute µ(Zpar, Z) (by (5.48) or (5.49) as appropriate).

Add µ(Zpar, Z) to µ(Zpar) in µ(par(I)).

10: function LListTask(I)
// Execution of the L2L operations between par(I) and I:

11: #pragma omp taskloop

12: for all Zpar ∈ Zassoc(par(I))
13: for all Z ∈ child(Zpar) with Πt[Z] = I
14: L2L: Compute λ(Z,Zpar) (by (5.50) or (5.51) as appropriate).

Add λ(Z,Zpar) to λ(Z) in λ(I).

15: if Zassoc(I) contains leaves in TΣ

16: if λ(I) is complete // Only after potential M2L-list operations.
// Execution of the L2T operations for I:

17: #pragma omp taskloop

18: for all leaves Z ∈ Zassoc(I)
19: L2T: Evaluate λ(Z) in λ(I) by (5.40).

Add the result to f |Ẑ atomically.

The M2L operations of a cluster I in the routine M2LListTask of Algorithm 6.4
are handled by a nested loop; see lines 3�5. In the outer loop we iterate over all
associated space-time clusters of I, while in the inner loop we iterate over their
interaction lists. In this way, we can use the taskloop construct to subdivide the
outer loop into groups of tasks that can be executed concurrently. The near�eld
operations in the routine NListTask are handled analogously. When adding the
results of the near�eld operations to the output vector f we use atomic operations
again. Note that the assembly of the near�eld blocks Vh|Ẑtar×Ẑsrc

used in line 15

106 6 A task based parallelization of the space-time FMM

involves the numerical evaluation of the integrals in (3.25) which is computationally
expensive. Therefore, one should assemble and store these blocks in a preprocessing
phase. A simple and e�cient way of doing this is using two nested loops. In the
outer loop we iterate over all clusters Ztar ∈ TΣ with non-empty near�eld lists. The
near�eld blocks corresponding to Ztar and all clusters Zsrc ∈ N (Zsrc) are computed in
the inner loop. The assembly can be parallelized by using the OpenMP for construct
[58, see Section 2.9.2] for the outer loop with a dynamic scheduling with chunk size
one. This way each available thread is assigned a single cluster Ztar, assembles all
near�eld blocks corresponding to Ztar and requests a new cluster afterwards. A good
workload balance is achieved with this parallelization strategy if the target clusters
with non-empty near�eld lists are sorted according to the total sizes of their near�eld
blocks before the parallel assembly.

Algorithm 6.4 The M2L- and N-list tasks from Algorithm 6.2.

1: function M2LListTask(I)
// Execution of the M2L operations for I:

2: #pragma omp taskloop

3: for all Ztar ∈ Zassoc(I)
4: for all Zsrc ∈ IM2L(Ztar)
5: M2L: Compute λ(Ztar, Zsrc) by (5.39) and add it to λ(Ztar) in λ(I).

6: if Zassoc(I) contains leaves in TΣ

7: if λ(I) is complete // Only after potential L-list operations.
// Execution of the L2T operations for I:

8: #pragma omp taskloop

9: for all leaves Z ∈ Zassoc(I)
10: L2T: Evaluate λ(Z) in λ(I) by (5.40).

Add the result to f |Ẑ atomically.

11: function NListTask(I)
// Execution of the near�eld operations for I:

12: #pragma omp taskloop

13: for all Ztar ∈ Zassoc(I)
14: for all Zsrc ∈ N (Ztar)
15: Near�eld operation: Add Vh|Ẑtar×Ẑsrc

q|Ẑsrc
to f |Ẑsrc

atomically.

Remark 6.5. The task based execution of the FMM in Algorithm 6.2 is based on the
temporal version of the FMM in Algorithm 6.1 and uses two levels of tasks. FMM
operations for time clusters in TI are collected in suitable FMM tasks, which are ini-
tiated based on individual dependencies by a lightweight, custom task scheduler and
executed using the OpenMP task construct. Once the FMM tasks in TI are exe-
cuted, they initiate the actual FMM operations in the underlying space-time tree TΣ,
which form the second level of tasks. Alternatively one could also de�ne tasks and

6.2 A task based shared memory parallelization 107

corresponding dependencies directly in the space-time tree TΣ. Such an approach is
described in [4] for an FMM related to the Laplace equation in R3. However, cre-
ating tasks for individual clusters in TΣ leads to a very large number of tasks and
dependencies between them, which cannot be handled e�ciently anymore in general.
Therefore, the authors in [4] proposed to group clusters into similarly sized blocks in
a suitable manner and to create tasks for these blocks. In this way, a suitable task
granularity can be obtained which allows for an e�cient execution of tasks and an
e�cient management of dependencies between them. Our approach is similar to this
block- and task based parallelization of the FMM. With the somewhat natural grouping
of clusters with respect to their temporal projections we obtain �blocks� of di�erent
sizes but bene�t from the simple temporal structure and dependencies between tasks.
These two aspects are particularly important for the distributed memory paralleliza-
tion which we describe in Section 6.3. Note that a distributed memory parallelization
of the approach in [4] is also possible and is described in [5].

6.2.1 Additional aspects for a better parallel performance

In our C++ implementation in [49] we consider a few additional aspects to increase the
performance of the task based parallel FMM in Algorithm 6.2. Our goal is to reduce
the idle times of all threads involved in the parallel execution of tasks as much as
possible. For this purpose, we in�uence the order in which FMM tasks are executed
by introducing priorities. Furthermore, we bound the number of scheduled N-list
tasks in certain situations and use the taskyield directive to include the scheduling
thread in the computation. The details are given in the following paragraphs.

Assign priorities to FMM tasks. For the parallel performance of Algorithm 6.2
it is bene�cial if there are always several FMM tasks scheduled for execution at the
same time to keep all available threads busy. We can facilitate this by assigning
priorities to FMM tasks to in�uence the order in which they are executed.

We assign the highest priorities to M-list tasks, the second highest to L-list tasks, the
third highest to M2L-list tasks, and the lowest priorities to N-list tasks. This choice
is motivated heuristically based on dependencies. FMM tasks computing moments or
local contributions on which many other FMM tasks depend � directly or indirectly
via chains of dependencies � should be executed as soon as possible. This is why
we prioritize M-list tasks the most. L-list tasks are prioritized over M2L-list tasks
since their dependencies are more restrictive than those of M2L-list tasks. In fact,
the M2L-list task of a cluster I can be executed once the moments of the clusters in
IM2L(I) are available while the L-list task of a typical cluster I is ready only once
the M2L-list task and L-list task of its parent is completed. Hence, we can unlock
more new L-list tasks, by focusing on the execution of L-list tasks once they are

108 6 A task based parallelization of the space-time FMM

ready. N-list tasks obtain the lowest priority since there are not any FMM tasks
which depend on them.

We can also distinguish priorities between FMM tasks of the same kind. A natural
choice is to use the levels of the corresponding clusters for such a distinction. M-list
tasks for clusters with high levels should be executed before M-list tasks for clusters
with low levels. For L-list tasks and M2L-list tasks the opposite is true. This choice
of priorities corresponds to the natural order in which the corresponding operations
are executed in the original Algorithm 6.1. When it comes to N-list tasks, it might be
bene�cial to execute small N-list tasks �rst. In fact, we would like to use N-list tasks
only as bu�ers to keep all threads busy, as long as other FMM tasks are available.
Large N-list tasks initiated at an early stage might hinder threads from executing
other, more important FMM tasks.

We account for the priorities of the FMM tasks in our implementation in several ways.
First, we sort the tasks in the individual FMM task lists according to their priorities.
E.g., we sort the tasks/clusters in the M-list such that clusters with large levels come
�rst. Secondly, we respect the priorities when searching for new ready tasks in line 8
of Algorithm 6.2 by traversing the M-list �rst, the L-list second and the M2L-list
third. The N-list is only considered if there is not any ready task in any of the other
lists. Finally, we use the priority clause of OpenMP tasks when we schedule the
FMM tasks. This clause allows to specify priority values for tasks, which can be used
by the OpenMP runtime system as hints to determine the execution order; see [58,
Section 2.10.1, p. 138]. In our implementation we use di�erent priority values for
the di�erent kinds of FMM tasks, but do not distinguish priorities between di�erent
tasks of the same kind.

Bound the number of scheduled N-list tasks. Since N-list tasks have the lowest
priority we would like to prioritize other FMM tasks in the execution. This is why
we consider the N-list in the scheduling process in Algorithm 6.2 only if we do not
�nd a ready FMM task in any of the other lists. If the scheduling thread does not
participate in the execution of tasks, it might however schedule many N-list tasks
at a very early stage. In fact, once there are no ready M-, M2L-, and L-list tasks,
it schedules the �rst N-list task before jumping to line 8 of Algorithm 6.2 to look
again for ready tasks. Since the scheduling of tasks and searching for ready tasks is
typically way faster than the execution of these tasks, the scheduling thread is likely
to schedule many or even all N-list tasks at once in such a scenario. To avoid such a
behavior, we introduced a bound for the number of N-list tasks that can be scheduled
concurrently with other FMM tasks in our implementation.

Include the scheduling thread in the computation. The scheduling thread is
trapped in the scheduling loop in lines 6�26 of Algorithm 6.2 until all FMM tasks
have been scheduled. Hence, it does not participate in the execution of tasks most of
the time in general. In [76] we propose to use the taskyield construct of OpenMP

6.3 A task based distributed memory parallelization 109

to change this behavior. When a thread encounters this construct it can suspend
the execution of the current task to work on a di�erent one; see [58, Section 2.10.4].
Note that this is a non-binding request, so it is not guaranteed that the thread
actually suspends the current task. In fact, we do not observe any changes when
using taskyield in the scheduling routine with the GCC compiler (v9.3). In the case
of the Intel Compiler (v19.1.1 and newer), however, the taskyield construct shows
the desired e�ect. More details about the behavior of the taskyield construct for
various compilers are given in [65].

6.3 A task based distributed memory parallelization

The task based, parallel version of the FMM in Section 6.2 can be extended to allow
for a parallel execution on distributed memory systems. In this section we present
such an extension, which was originally published in [76]. We start by describing the
general idea.

For the data and workload distribution, the time clusters in the temporal projection
tree TI are distributed among all available processes. In the application of the FMM,
each process executes a version of Algorithm 6.2 where it carries out tasks only
for clusters that are assigned to it. Since a process might need data computed
by other processes for some of its own tasks, communication between processes is
necessary. We communicate sets of moments µ(I) and local contributions λ(I) for
clusters I ∈ TI as a whole instead of single moments and local contributions for
clusters Z ∈ TΣ. This reduces the number of communication events and leads to a
simple communication pattern in the tree TI . To hide possible communication delays
we overlap the computation and communication by using asynchronous, non-blocking
communication routines in MPI.

A more detailed description of this distributed memory parallelization is given in the
following subsections. In Section 6.3.1 we make a few assumptions about the data
and work distribution for the parallel execution of the FMM, which we assume to
be satis�ed in all the following subsections. A strategy to obtain such a distribution
is presented later in Section 6.4. In Section 6.3.2 we describe how each process
determines the FMM tasks that it has to execute and how communication between
processes is handled. The distributed, task based version of the FMM is �nally
presented in Section 6.3.3.

6.3.1 Assumptions about the data distribution

For the distributed, task based FMM we make a few assumptions about the data
and work distribution that we assume to be satis�ed in the subsequent Sections 6.3.2

110 6 A task based parallelization of the space-time FMM

and 6.3.3. These assumptions will be discussed in more detail in the following para-
graphs and are stated in the following list:

(i) nproc processes are available for the computation. They are identi�ed by corre-
sponding IDs in the set {0, . . . , nproc − 1}.

(ii) The space-time tensor product mesh Σh is distributed suitably among all avail-
able processes.

(iii) An assignment of process IDs to clusters in TI is given such that each cluster
has exactly one process ID. A process is responsible for a time cluster I ∈ TI if
its ID is assigned to this cluster.

(iv) Only sets of moments and local contributions have to be communicated between
processes during the parallel, distributed execution of the FMM. The processes
have all the additional information that they need to carry out their own tasks
and to handle the communication.

From the assignment of process IDs to clusters in the temporal tree TI in (iii) we get
an assignment of process IDs to clusters in the space-time cluster tree TΣ as well.
In fact, we can assign the process ID of a cluster I to all Z ∈ Zassoc(I). In this
way, a process that is responsible for a time cluster I is responsible for all space-time
clusters associated with I.

In Assumption (iv) above we mentioned additional information that each process
needs for its own tasks in the FMM. The required information includes local mesh
information related to the distribution of the mesh Σh in Assumption (ii), and in-
formation about local parts of the space-time box cluster tree TΣ and its temporal
projection TI . We specify the required information in the following paragraphs. A
strategy for process assignments as in Assumption (iii) and a description of how to
provide each process with the required data are given later in Section 6.4.

Locally required mesh information. The individual processes do not need the
information of the full space-time tensor product mesh Σh. The mesh is distributed
among all available processes and each one stores only a local part related to some
space-time clusters for which it is responsible. Recall that we assigned space-time
elements σjt,jx of the mesh Σh to space-time clusters Z in the construction of the
space-time box cluster tree TΣ in Section 5.2.1. It is su�cient if a process p has the
mesh information of all space-time elements assigned to the following clusters:

� All leaf clusters Z ∈ TΣ for which process p is responsible.

� All clusters Zsrc such that Zsrc ∈ N (Z) for a cluster Z for which process p is
responsible.

6.3 A task based distributed memory parallelization 111

We assume that each process p stores this individual mesh information locally. It is
needed for the S2M, L2T, and near�eld operations in the FMM related to clusters Z
for which process p is responsible. For these operations a process p needs to access
corresponding local parts of the source vector q, which we assume to be stored locally
as well. Likewise, we assume that each process p stores the local part of the result
vector f that it computes in the FMM.

Locally required information about the time tree TI . Each process p needs
only a local part of the full time tree TI . We call this part the locally essential time
tree T LE,p

I of p. The concept of locally essential trees has already been introduced
in [75]. In our setting, the locally essential time tree T LE,p

I is a subtree of TI that
contains all the clusters and process IDs which process p needs to determine and
execute its tasks in the FMM, and the information for the related communication.

For a rigorous de�nition of the locally essential time tree T LE,p
I of a process p we de�ne

local and essential clusters for p in De�nition 6.6. An explanation as to why essential
clusters are relevant for the FMM is given in the paragraphs after this de�nition.

Definition 6.6. A cluster I ∈ TI is local (for process p) if process p is responsible
for I. A cluster I is essential (for p) if it satis�es at least one of the following
conditions:

(i) I is local.

(ii) I ∈ N (Itar) for a local cluster Itar.

(iii) I ∈ IM2L(Itar) for a local cluster Itar.

(iv) There exists a local cluster Isrc such that Isrc ∈ IM2L(I).

(v) I = par(Ic) for a local cluster Ic.

(vi) I ∈ child(Ip) for a local cluster Ip.

The essential clusters for a process p are related to local FMM tasks, i.e. the FMM
tasks for local clusters in TI . A cluster I is de�ned to be essential either because
it is local, or because its data is required for a local FMM task, or because the
data which is computed in a local FMM task is needed for an FMM task of I. If a
cluster I satis�es (ii) in De�nition 6.7 it is obviously essential in this regard because
its information is needed for the near�eld operations in the N-list task of a local
cluster Itar.

A cluster I satisfying (iii) in De�nition 6.7 is essential since its moments µ(I) are
needed for the M2L operations in the M2L-list task of the corresponding local clus-
ter Itar. If I is assigned to a di�erent process q, this process q needs to send the
moments µ(I) to process p once they are computed. Likewise, process p needs to

112 6 A task based parallelization of the space-time FMM

send the moments of a local cluster Isrc to a process q if Isrc ∈ IM2L(I) and q is
responsible for I. This is why clusters satisfying (iv) in De�nition 6.7 are essential
for process p.

The parent of a local cluster Ic is essential according to (v) in De�nition 6.7. The
reason is that the moments µ(par(Ic)) are computed in parts by the M2M operations
in the M-list task of Ic, and the local contributions λ(par(Ic)) are needed for the L2L
operations in the L-list task of Ic. Communication is required if par(Ic) is assigned to
a di�erent process q. In this case, process p needs to send the parts of the moments
of par(Ic) which it has computed in the M-list task of Ic to q, and process q needs
to send the local contributions of par(Ic) to p for the L-list task of Ic. This explains
why children of local clusters are essential as well; see De�nition 6.7 (iv).

The locally essential time tree of a process p consists of all its essential clusters, some
additional clusters which allow process p to identify all the FMM tasks that it needs
to execute, and some auxiliary clusters to turn this set of clusters into a subtree of TI .
More rigorously, we de�ne the locally essential time tree as follows.

Definition 6.7 (Locally essential time tree). The locally essential time tree T LE,p
I

of a process p is de�ned as the subtree of TI that contains a cluster I ∈ TI if it satis�es
at least one of the following conditions:

(a) I is essential.

(b) There exists a cluster Isrc ∈ TI such that Isrc ∈ IM2L(I) and Isrc lies on the path
between a local cluster Iloc and the root of TI .

(c) There exists a cluster Itar ∈ TI such that I ∈ IM2L(Itar) and Itar lies on the path
between a local cluster Iloc and the root of TI .

(d) I lies on the path between the root of TI and a cluster Iinc that satis�es at least
one of the conditions (a)�(c).

The clusters satisfying (d) in De�nition 6.7 are added to the locally essential time
tree T LE,p

I of process p to obtain a subtree of TI . Organizing the essential clusters in
a tree simpli�es some preparatory steps in the FMM. For example, it is possible to
determine the local FMM task lists for process p by a traversal of T LE,p

I similarly as
described in Section 6.2. To be able to determine the M-list tasks and L-list tasks
in general trees correctly, we add clusters satisfying (b) and (c) in De�nition 6.7
to T LE,p

I . An illustration of a locally essential time tree is given in Figure 6.2.

We assume that each process p has the following information about every time clus-
ter I in its locally essential tree T LE,p

I :

� the interval bounds of I,

6.3 A task based distributed memory parallelization 113

� the process ID assigned to I,

� the locally essential part of the list N (I), i.e. all Isrc ∈ N (I) ∩ T LE,p
I ,

� the locally essential part of the list IM2L(I), i.e. all Isrc ∈ IM2L(I) ∩ T LE,p
I .

d

d

d

iii

iii ii

iii

i

v

d

iv iv

i

vi vi

d

b b

Figure 6.2: Illustration of a locally essential time tree T LE,p
I of a process p. In this

example, process p is responsible for the clusters represented by the solid black
circles labeled with i. The clusters represented by red dashed circles are part of
the (non-uniform) tree TI but are not contained in the locally essential tree T LE,p

I .
Green circles represent clusters which are in T LE,p

I because they are essential,
i.e. they satisfy one of the conditions on the list in De�nition 6.6. The label of
such a cluster corresponds to a condition on that list that it satis�es. Clusters rep-
resented by blue squares are not essential, but satisfy one of the conditions (b), (c)
or (d) in De�nition 6.7 which is speci�ed by the label again.

Locally required information about the space-time tree TΣ. Similarly as in
the case of the time tree TI , each process needs only a local part of the space-time
tree TΣ for the distributed version of the task based FMM. It su�ces that a process p
knows all the space-time clusters which appear in FMM operations of local FMM
tasks. Recall that local FMM tasks are FMM tasks of clusters I for which p is
responsible. This motivates the following de�nition.

Definition 6.8 (Locally essential space-time tree). A space-time cluster Z ∈ TΣ is
essential (for the process p) if it satis�es at least one of the following conditions:

(i) Z is local, i.e. process p is responsible for Z.

(ii) Z ∈ N (Ztar) for a local cluster Ztar.

(iii) Z ∈ IM2L(Ztar) for a local cluster Ztar.

(iv) Z = par(Zc) for a local cluster Zc.

The locally essential space-time cluster tree T LE,p
Σ of process p is de�ned as the small-

est subtree of TΣ that contains the root Z(0) of TΣ and all essential clusters.

114 6 A task based parallelization of the space-time FMM

When comparing the de�nitions of essential time clusters and essential space-time
clusters in De�nitions 6.6 and 6.8 we see that children of local time clusters are essen-
tial for process p, while children of local space-time clusters are not. Likewise, there
is not any criterion equivalent to criterion (iv) from De�nition 6.6 in De�nition 6.8.
The reason is that such clusters are not needed for local FMM tasks. Let us, for
example, assume that I is a time cluster assigned to a process q, and Isrc ∈ IM2L(I)
is assigned to a di�erent process p. The M2L-list task for the cluster I is carried out
by process q in this case, and it needs to receive the whole set of moments µ(Isrc)
from process p to execute it. For the actual execution, process q needs to know the
space-time clusters associated to I and Isrc, i.e. Zassoc(I) and Zassoc(Isrc). Process p
sends the whole set of moments µ(Isrc) corresponding to clusters in Zassoc(Isrc) to
process q once they are computed. For this purpose, it su�ces that p knows that the
time cluster I exists and is assigned to q. Process p does not need to know the actual
space-time clusters Zassoc(I), which is why they are not essential for p. Children of
local space-time clusters are not essential for the same reason.

We assume that each process p has the geometrical information about every space-
time cluster Z = X × I in its locally essential tree T LE,p

Σ and knows the process ID
assigned to it. If Z is a local cluster in T LE,p

Σ also the near�eld N (Z) and interaction
list IM2L(Z) are assumed to be available.

In Section 6.4 we discuss how distributed meshes and locally essential time- and space-
time trees can be constructed in practice. Before that, we continue with Section 6.3.2
in which we describe how to set up the FMM task lists in a distributed way and handle
the communication between processes, before presenting the distributed, task based
FMM algorithm in Section 6.3.3.

6.3.2 Distributed FMM task lists and inter-process communication

In the distributed version of the task based FMM each process needs to execute the
FMM tasks corresponding to its local time clusters, i.e. those time clusters which
are assigned to it. For some of these tasks, communication is necessary as we al-
ready mentioned in Section 6.3.1. In this section we describe how to construct the
corresponding FMM task lists and how we handle the communication in practice
using MPI.

The construction of the local FMM task lists. To organize its FMM tasks
each process constructs a local version of the four FMM task lists introduced in
Section 6.2. The M2L-list of a process p is �lled with all local time clusters whose
interaction lists are not empty. Similarly, the N-list of p is �lled with all the local
time clusters whose near�eld lists are not empty. To construct the M-list of p in a
correct way, we traverse the locally essential time tree T LE,p

I and proceed in the same

6.3 A task based distributed memory parallelization 115

way as described in Section 6.2. In a �rst step, we insert local and non-local clusters
alike into the M-list. In a second step, all non-local clusters can be removed from this
list to obtain the actual M-list of p. The same is possible for the L-list of p. Due to
our de�nition of locally essential time trees, all local FMM tasks can be determined
correctly in this way.

The inter-process communication in the FMM. The whole communication be-
tween processes in our parallel FMM is handled on the level of the time tree TI . All
processes send and receive whole sets of moments µ(I) or local contributions λ(I) of
time clusters I whenever it is necessary. The situations in which communication is
necessary have been discussed in the paragraphs following De�nition 6.6. To summa-
rize, there are two scenarios in which two processes p and q need to communicate: If
they are responsible for two clusters that are connected by an edge in TI � i.e. a clus-
ter and one of its children � or two clusters where one is in the interaction list IM2L

of the other. Hence, the communication pattern is simple and the number of overall
communication events is small. In general, this is desirable as long as the workload
of all processes is high enough so that they do not become idle while waiting for
data.

Each process p can determine the data it needs to receive during the FMM procedure
from its FMM task lists. To simplify the description we introduce three di�erent lists
for each process p to keep track of clusters for which data needs to be received and
to identify the corresponding senders:

� The M-receive list: A pair (I, q) is added to this list if I is a local cluster in
the M-list of p, and a child Ic is assigned to process q.

� The M2L-receive list: A pair (Isrc, q) is added to this list if Isrc ∈ IM2L(I) for
a local cluster I in the M2L-list of p, and q is responsible for Isrc.

� The L-receive list: A pair (Ipar, q) is added to this list if Ipar is the parent of a
local cluster I in the L-list of p, and q is responsible for Ipar.

Each process has to identify in addition the data it needs to send to other processes.
To keep track of this information we create two sets of process IDs for each cluster I
for which p is responsible:

� The M2L-recipient set of I: A process q is added to this set if there exists a
cluster Itar ∈ T LE,p

I such that I ∈ IM2L(Itar) and q is responsible for Itar.

� The L-recipient set of I: A process q is added to this set if it is responsible for
a child Ic of I in T LE,p

I .

These lists can be �lled by each process independently during a traversal of its locally
essential time tree T LE,p

I . One could construct an additional M-recipient set of I and
add a process q to this set if it is responsible for par(I). Since this information

116 6 A task based parallelization of the space-time FMM

is directly obtainable by checking the process ID of par(I), we do not create this
additional list explicitly.

The actual communication during the FMM procedure can be handled asynchro-
nously with non-blocking MPI send and receive operations. At the beginning of the
FMM procedure each process p starts a non-blocking receive operation for each pair in
the M-receive list, M2L-receive list, and L-receive list using the routine MPI_Irecv.
For this purpose it has to allocate the memory for the expected incoming data,
e.g., the moments in µ(I) for a pair (I, q) in the M-receive list, and provide it
to the routine MPI_Irecv together with some additional information like the ID
of the sending process and a tag to identify the message. MPI_Irecv initiates the
receive operation and returns immediately, so the thread that called it can proceed
with other assignments. A request object provided by MPI is then used to check if
data has actually been received. More details about MPI_Irecv and non-blocking
communication in MPI can be found in [50, Section 3.7]. After starting all non-
blocking receive operations, each process p can start working on its FMM tasks
and check the MPI request objects regularly to update dependencies when data has
actually been received.

Remark 6.9 (Processing received data). When a process p has actually received a
set of moments µ(Isrc) for a pair (Isrc, q) in the M2L-receive list or a set of local
contributions λ(Ip) for a pair (Ip, q) in the L-receive list, it has to update the de-
pendencies of all its FMM tasks that require this data. Moments µ(I) received for a
pair (I, q) in the M-receive list, on the other hand, may not be complete yet. In fact,
the received moments are those that process q computed by M2M operations between I
and the children of I for which q is responsible, which may be only one of the two
children. Hence, process p needs to add all parts of the moments µ(I) for a cluster I
in the M-receive list and ensure that the moments are completely determined before
it can update the dependencies of the related M-list task for I.

The sending operations take place during the execution of the FMM tasks. A pro-
cess p identi�es the processes that need the data it has computed for a cluster I using
the introduced M2L- or L-recipient sets of I or the process ID of par(I). Then it
uses the non-blocking send operation MPI_Isend to initiate the sending process. In
this routine the ID of the receiving process needs to be speci�ed and, in addition, a
suitable tag that allows the recipient to identify the message. Similarly as the routine
MPI_Irecv, the routine MPI_Isend returns immediately. More details can be found
again in [50, Section 3.7]. We specify the concrete sending operations in Section 6.3.3
when talking about the updated FMM task routines.

6.3 A task based distributed memory parallelization 117

6.3.3 The distributed algorithm

In Algorithm 6.5 we present a sketch of the distributed, task based version of the
FMM. Each process p handles its own tasks by using a local version of the task
scheduler described in Section 6.2 and computes a local part f loc,p of the global
result vector f . The local part f loc,p includes all entries of f corresponding to local
space-time elements, i.e. those associated to space-time leaf clusters in T LE,p

Σ for
which p is responsible. In particular, {f loc,p}nproc

p=0 is a disjoint partition of the global
vector f in our setting.

Algorithm 6.5 A distributed, task based version of the FMM in Algorithm 6.1.

Require: Let the assumptions (i)�(iv) at the beginning of Section 6.3 be satis�ed.
// Each available process p executes the following steps:

1: Initialize f loc,p = 0.
2: for all local clusters I ∈ T LE,p

I

3: Initialize µ(I) and λ(I) by zeros.

4: Fill the M_list, M2L_list, L_list, and N_list with local clusters in T LE,p
I .

5: #pragma omp parallel

6: #pragma omp single

7: StartMPIReceiveOperations()
8: while the FMM task lists are not empty
9: CheckMPIForReceivedData()

10: Execute the scheduling procedure in lines 8�26 of Algorithm 6.2.
// Use the routines of Algorithm 6.6 for the M-, L-, and M2L-list tasks.

11: return f loc,p as part of the global result vector f .

In the �rst steps of Algorithm 6.5 each process p initializes its local result vector
and the sets of moments and local contributions of the time clusters assigned to it.
Then it �lls the FMM tasks lists with local clusters as described above and starts the
scheduling procedure. This scheduling procedure is almost the same as the one in
Algorithm 6.2. The only di�erences are the additional communication routines. The
routine StartMPIReceiveOperations starts the non-blocking receive operations
as we have discussed in the corresponding paragraph above. In each new iteration
of the scheduling loop, the scheduling thread checks for received data with the rou-
tine CheckMPIForReceivedData and processes it according to Remark 6.9. In
particular, it updates the dependencies of its FMM tasks. For the execution of these
FMM tasks we use OpenMP tasks as in Algorithm 6.2, but the routines for the M-,
L- and M2L-list tasks have to be adapted to incorporate the new sending routines.

In Algorithm 6.6 we present the updated M-, L- and M2L-list tasks. In the new
M-list task in line 1, a process p sends the moments µ(I) of the considered clus-
ter I to all processes in the M2L-recipient set of I after the completion of potential

118 6 A task based parallelization of the space-time FMM

S2M operations. Note that the recipient set might be empty in which case the mo-
ments µ(I) do not have to be sent to any other process. Since the non-blocking
routine MPI_Isend is used for a potential send operation, the executing thread can
directly continue with the following M2M operations in any case. Once these M2M
operations are completed, process p needs to check whether it has to send its part
of the moments µ(par(I)) of par(I) to another process q. This is the case, if q is
responsible for par(I). If p is responsible only for I and not the other child Isib

of par(I) it can send the computed moments immediately to q, because they are
�locally complete�. Otherwise, p sends the moments to q in the M-list task of I or Isib

that is executed last. This is the meaning of the if clause in line 7. In this way, we
avoid additional, unnecessary communication.

Algorithm 6.6 M-, L- and M2L-list tasks for distributed parallel execution.

// All functions are assumed to be executed by a process p.
1: function MListTask(I)
2: Execute potential S2M operations as in lines 2�5 of Algorithm 6.3.
3: for each process q in M2L_Recipient_Set(I)
4: Send the moments µ(I) to q using MPI_Isend.

5: Execute the M2M operations as in lines 6�9 of Algorithm 6.3.
6: if par(I) is assigned to a di�erent process q.
7: if the computation of µ(par(I)) is locally complete
8: Send the moments µ(par(I)) to q using MPI_Isend.

9: function LListTask(I)
10: Execute the L2L operations as in lines 11�14 of Algorithm 6.3.
11: if λ(I) is complete // Only after potential M2L-list operations.
12: if I is not a leaf in the locally essential time tree T EL,p

I

13: for each process q in L_Recipient_Set (I)
14: Send the local contributions λ(I) to q using MPI_Isend.

15: if Zassoc(I) contains leaves in TΣ

16: Execute the L2T operations as in lines 17�19 of Algorithm 6.3.

17: function M2LListTask(I)
18: Execute the M2L operations as in lines 2�5 of Algorithm 6.4.
19: if λ(I) is complete // Only after potential L-list operations.
20: Proceed as in lines 12�16 above.

The new L-list task is given in line 9 of Algorithm 6.6. The process p executes the L2L
operations for the cluster I �rst. Like in the original version in Algorithm 6.3 it then
checks if the local contributions are complete, i.e. if the M2L-list task of the cluster I
is already completed. If this is the case, process p sends the local contributions λ(I)

6.4 A data and workload distribution strategy 119

to all processes in the L-recipient set of I, if I is not a leaf cluster. Note that this set
is empty, if p is responsible for both children of I or if I does not have any children.
Afterwards, process p can proceed with potential L2T operations like in the original
L-list task. The same sending operation is added to the new M2L-list task for a
cluster I in line 17. It is executed, if the M2L-list task for a cluster I is carried out
after the L-list task for I.

The N-list tasks in the distributed, task based version of the FMM are the same as
in Algorithm 6.4. Additional communication is not required since each process has
all the information it needs to assemble and apply the near�eld blocks in all its N-list
tasks. The assembly of the near�eld blocks should be handled in a preprocessing
phase as described in Section 6.2. The same nested loop construct described in
that section can be used for the assembly where each process needs to consider only
clusters Ztar assigned to it in the outer loop.

Remark 6.10. The additional implementation aspects which we discussed in Sec-
tion 6.2.1 for the task based shared memory parallelization of the space-time FMM
are also relevant for the distributed memory parallelization. Bounding the number
of scheduled N-list tasks and prioritizing other FMM tasks is even more important
here. In fact, a process p might need the data computed in an FMM task of another
process q. If process q executes all N-list tasks �rst, process p might run out of tasks
while waiting for the data of q, which would have a negative impact on the parallel
performance. Hence, each process prioritizes FMM tasks that compute data needed
by other processes in our implementation.

6.4 A data and workload distribution strategy

Let Σ = Γ× (0, T) and Σh = Γh ⊗ Iht be a space-time tensor product mesh of Σ as
in Section 2.4. We want to distribute the mesh Σh among a set of nproc processes
and create a corresponding space-time box cluster tree TΣ and a related time tree TI
in a distributed way to enable the distributed memory parallelization of the FMM
described in Section 6.3. Our data distribution relies on a subdivision of the time
interval (0, T) into a set of time slices which are groups of consecutive time steps
in Iht . We arrange these time slices in a coarse temporal cluster tree, assign pro-
cess IDs to clusters in this tree and use this assignment of clusters to determine the
data distribution. In this way, we can distribute the data and workload among all
processes before the actual tree TΣ and its temporal projection TI are constructed.
Let a set of time slices related to the partition Iht of (0, T) be given. We construct
a binary tree for the time slices by a purely temporal version of Algorithm 5.1 in
Section 5.2.1, where we subdivide the initial time cluster (0, T) recursively until the
resulting clusters contain only a single time slice. The resulting tree is denoted

120 6 A task based parallelization of the space-time FMM

by T crs
I . If the time slices are chosen suitably, the coarse tree T crs

I is a subtree of
the temporal projection TI of the space-time box cluster tree TΣ which we construct
later. We assume that this is the case in the rest of this section.

For the data distribution we need to de�ne interaction lists and near�eld lists for
clusters in T crs

I . In Section 6.1 we de�ned such lists in a time tree TI via projections
of related lists in the corresponding space-time tree TΣ; see (6.3) and (6.4). Since we
do not have a space-time tree corresponding to T crs

I we determine the lists directly
by using Algorithm 6.7. This is a temporal version of Algorithm 5.2, where we
incorporate the ideas from Remark 5.11 to ensure that near�eld lists are non-empty
only for leaf clusters in T crs

I and contain only leaf clusters.

Algorithm 6.7 Recursive construction of the operation lists in T crs
I .

Require: Let I(0) be the root of T crs
I .

Let η2 ∈ R>0 be the same constant for (5.12) as in Algorithm 5.2.
1: Call DetermineTemporalOperationLists(I(0), I(0)).

2: function DetermineTemporalOperationLists(Isrc, Itar)
3: if Isrc is causally relevant for Itar

4: if Isrc and Itar satisfy the admissibility criterion (5.12)
5: Add Isrc to IM2L(Itar).
6: else

7: if Itar and Isrc are not leaves in TI
8: for all (Isrc,c, Itar,c) with Isrc,c ∈ child(Isrc), Itar,c ∈ child(Itar)
9: Call DetermineTemporalOperationLists(Isrc,c, Itar,c).

10: else // Inadmissible pair
11: if Itar and Isrc are leaves in TI
12: Add Isrc to N (Itar).
13: else if Itar is a leaf in TI
14: for all leaf descendants Id of Isrc

15: Add Id to N (Itar).

16: else // Isrc is a leaf, while Itar is not.
17: for all leaf descendants Id of Itar

18: Add Isrc to N (Id).

The data distribution is determined by an assignment of process IDs to clusters
in T crs

I . We discuss a possible assignment strategy at the end of this section. For
now we assume that such an assignment is given and use it to describe the data
distribution and construction of distributed trees.

Mesh distribution. The space-time tensor product mesh Σh is decomposed into
chunks corresponding to the leaves in T crs

I . Recall that these leaves are the chosen

6.4 A data and workload distribution strategy 121

time slices. A process is responsible for a leaf I in T crs
I if its ID is assigned to I. We

provide process p with a chunk of Σh corresponding to a leaf I in T crs
I if

� p is responsible for I, or

� I is in the near�eld N (Itar) of a leaf Itar for which p is responsible.

Hence, each process p obtains a part of the mesh Σh related to a set of leaves {Ipk}k
in T crs

I . We distinguish the local mesh of p and the near�eld mesh of p. The local
mesh consists of chunks of Σh corresponding to local clusters in the set {Ipk}k. The
remaining mesh obtained by p is related to non-local clusters in {Ipk}k and is called
the near�eld mesh of p. Note that the mesh Σh is the disjoint union of the local
meshes of all nproc processes.

Distributed tree construction. For the FMM we need to construct a space-time
box cluster tree TΣ and its temporal projection TI . In Section 6.3 we have seen that
each process involved in the distributed execution of the FMM needs only a locally
essential part of these trees. We start by constructing the locally essential space-time
trees as introduced in De�nition 6.8 in a collaborative manner. For this purpose, we
provide each process with the coarse time tree T crs

I and the related process assign-
ment information. From this tree a process p can deduce the temporal structure of
the coarse initial part of TΣ and determine its locally essential space-time clusters in
this part. This allows us to use a distributed version of Algorithm 5.1 for the tree
construction, where the processes collaborate to determine if a cluster Z is subdi-
vided. Collaboration is necessary since the temporal part Πt[Z] of a cluster Z can
contain several time slices whose meshes may be distributed among several processes.
Each process counts the number of space-time elements in its local mesh which are
assigned to Z. Then the total number #Ẑ of space-time elements in Z is determined
by a global summation using communication. If Ẑ is larger than the provided thresh-
old nmax, all processes can subdivide Z using, in particular, the temporal information
in T crs

I . Note that each process can determine if a cluster Z constructed during this
process is locally essential for it and keep track of locally essential clusters only. The
collaborative subdivision is stopped for a cluster Z if the temporal projection Πt[Z]
is a leaf in the coarse tree T crs

I . In this way, each process p determines a coarse
version of its locally essential tree T LE,p

Σ . The remaining part of T LE,p
Σ can then be

constructed by each process p individually by further subdividing clusters whose el-
ements are fully contained in the local or near�eld mesh of p. Clusters constructed
during this local subdivision procedure are not assigned to any process a priori, since
their temporal projection is not included in T crs

I . Therefore, we assign the process ID
of Z to all Zc ∈ child(Z) during this additional subdivision of clusters, and use this
assignment to determine locally essential clusters.

Remark 6.11. To reduce the number of communication events in the collaborative
construction of the space-time box cluster tree TΣ one can use a level-wise subdivi-

122 6 A task based parallelization of the space-time FMM

sion procedure. In this procedure, each process counts the number of local space-time
elements for all its clusters at a level ` at once. All these numbers are communicated
among all processes with a single global communication routine and summed up to
determine the clusters at level ` which have to be subdivided. In this way, a single
communication event per level in the tree su�ces.

To obtain the locally essential time tree T LE,p
I as introduced in De�nition 6.7, each

process p constructs the temporal projection T̃ LE,p
I of its locally essential space-time

tree T LE,p
Σ . The projection TI of the global space-time tree TΣ is obtained from these

time trees {T̃ LE,p
I }p by a global communication between the processes. Since the

coarse tree T crs
I is a subtree of TI , some but not all clusters in TI have a process ID

assigned to them. If a cluster I has a process ID but its children do not, we assign
the ID of I to them. In this way, we get process assignments for all clusters in TI .
Each process p uses these IDs to construct its locally essential tree T LE,p

I from TI by
removing clusters which do not satisfy the properties in De�nition 6.7.

Remark 6.12. If we follow the above strategy to distribute the space-time mesh Σh

among all available processes and to construct the locally essential trees, each process
has the necessary information for the distributed execution of the FMM in Algo-
rithm 6.5 in general. However, this might not be the case if there exist early leaf
clusters Z in the global space-time box cluster tree TΣ. We denote a leaf Z ∈ TΣ

as an early leaf if its temporal projection Πt[Z] is in the coarse time tree T crs
I , but

Πt[Z] is not a leaf in that tree. Some of the space-time elements of an early leaf Z
might not be included in the local mesh or near�eld mesh of the process p which is
responsible for Πt[Z] and Z. To overcome this problem we subdivide early leaves in
the collaborative construction of TΣ further � ignoring the fact that they contain
less than nmax space-time elements � until the temporal components of the resulting
clusters are leaves in T crs

I .

A process assignment strategy for clusters in T crs
I . We still need to specify

how to assign process IDs to the clusters in the coarse time tree T crs
I . This process

assignment does not only determine the data distribution discussed above but also
the distribution of FMM tasks and the communication in the distributed parallel
version of the FMM in Section 6.3. Hence, it is crucial to assign process IDs to
clusters in T crs

I such that each process ends up with a similar workload and such that
communication is avoided as much as possible. Here we propose a heuristic process
assignment strategy for perfect binary trees T crs

I , which are obtained for space-time
meshes with uniform time steps in general.

To motivate our process assignment strategy we �rst investigate the computational
e�ort of FMM tasks in a time tree TI and recall the situations in which communication
between processes is necessary. The M2L operations and near�eld operations are the

6.4 A data and workload distribution strategy 123

dominant operations in terms of the computational e�ort in the FMM in general.
We will see this, for example, in the numerical experiments in Section 6.5. Hence, we
want to ensure that the number of M2L and near�eld operations which every process
has to execute due to our process assignment strategy is balanced. The following
observations are relevant in this regard:

(i) The near�eld lists of time clusters on the same level of a time tree TI have a
similar size. This is illustrated in Figures 6.1a and 6.1b. An exception is the
leftmost cluster on a level, i.e. the one whose lower interval bound is 0. The
near�eld of this cluster is always smaller since there are not any other clusters
in its history.

(ii) The sizes of the interaction lists of time clusters vary. With the typical choice
of the parameter η2 in the admissibility criterion (5.12), the right child of a
cluster I has two clusters in its interaction list, while the left child of I has only
one; see again Figures 6.1a and 6.1b. The two leftmost time clusters always
have empty interaction lists.

(iii) Due to the re�nement strategy in the construction of the space-time cluster
tree TΣ, the number of space-time clusters in the set Zassoc(I) of a time clus-
ter I ∈ TI increases with increasing level of I in general. Therefore, more M2L
operations in TΣ have to be executed for a cluster I1 ∈ TI than for a cluster
I2 ∈ TI if the level `(I1) of I1 in TI is larger than the level `(I2) of I2, at least
in general.

Item (i) suggests that process IDs should be assigned to the leaves in a time tree TI as
uniformly as possible. In this way, we can balance the number of near�eld operations
that each process needs to execute. Due to our mesh distribution strategy, also the
memory that each process requires is balanced in this case. Due to item (iii) such
a balanced process ID assignment is, in general, desirable for clusters at large levels
where the M2L operations of time clusters are more costly. The varying sizes of
interaction lists mentioned in item (ii) might still cause a slight imbalance which can
be compensated by the process assignments for clusters at lower levels in TI .
To understand the e�ect of the process assignment strategy on the required commu-
nication in the FMM, we recall that there are two situations in which two processes
need to communicate:

(a) If a cluster I and its parent par(I) are assigned di�erent process IDs, the
two processes need to communicate for the M2M and L2L operations in the
respective M- and L-list task.

(b) If two clusters Isrc and Itar with Isrc ∈ IM2L(Itar) are assigned di�erent process
IDs, the two processes need to communicate for the M2L operations in the
M2L-list task of Itar.

124 6 A task based parallelization of the space-time FMM

From item (a) we conclude that it is advantageous in terms of communication if we
assign the same process IDs to a cluster I and its parent. If a cluster Isrc is in the
interaction list of a cluster Itar, they lie in a close neighborhood of each other since
their parents violate the admissibility criterion 5.12. Therefore, item (b) suggests that
groups of neighboring clusters should be assigned the same process ID, if possible.

Based on the above considerations we came up with the following strategy for the
assignment of nproc process IDs in the set {0, . . . , nproc−1} to clusters in a perfect bi-
nary tree T crs

I . For the sake of simplicity, we assume that nproc = 2k for some k ∈ N in
the description. The process IDs are assigned to the available clusters in a level-wise
manner starting with the largest level depth(T crs

I). The actual assignment strategy
depends on the level ` of the considered clusters:

� If ` ≥ k = log2 nproc there are 2`−k clusters at level ` per process ID. We assign
process IDs to groups of 2`−k clusters in ascending order, i.e. the �rst 2`−k

clusters are assigned process ID 0, the next 2`−k clusters process ID 1, and so
on.

� If ` = k− 1 there are twice as many process IDs as there are clusters at level `.
Each cluster I at this level is assigned the process ID of its left child.

� If ` < k − 1 we �rst determine for each process ID p the number n`p of clusters
at levels ˜̀> ` in T crs

I that are assigned this ID. We group the process IDs into
2` sets of consecutive IDs, i.e. one for each cluster at level `, and determine in
each set a process ID p with a minimal number n`p. The corresponding ID of
the �rst set is assigned to the �rst cluster at level `, the one of the second set
to the second cluster, and so on.

The described process assignment strategy leads to a balanced distribution for clus-
ters at large levels ` ≥ k in the tree T crs

I which is favorable in terms of workload
balance as we observed above. By assigning neighboring clusters the same IDs and
using an assignment in ascending order on each level ` ≥ k we reduce the necessary
communication. At level ` = k each process is responsible for a single cluster, but
the workload for these clusters di�ers due to the di�erently sized interaction lists
mentioned in item (ii) above. The assignment strategy at level ` = k − 1 helps to
compensate for the resulting workload imbalance since only processes with a lower
workload at level k are responsible for a cluster at level k − 1. With the assignment
strategy for levels ` < k − 1 we try to further balance the workload between all the
processes. The process assignment strategy is illustrated in Figure 6.3.

Note that the proposed strategy cannot be optimal in general. In fact, the process
with ID 0 obtains the two leftmost clusters on all levels ` > log2 nproc, for which it
does not have to execute any M2L operations. However, the resulting imbalance in
the workload is not critical as long as there are enough other clusters assigned to
process 0.

6.5 Numerical experiments 125

3

1

0

0

0 0

1

1 1

2

2

2 2

3

3 3

5

4

4

4 4

5

5 5

6

6

6 6

7

7 7

Figure 6.3: Illustration of the proposed process assignment strategy for a coarse time
tree T crs

I with depth 4 and nproc = 8 processes. Each cluster is represented by a
circle. The label of a cluster corresponds to the process ID assigned to it.

Remark 6.13 (Process assignment strategy for general values of nproc). The proposed
process assignment strategy can be generalized for values of nproc which are not powers
of two. In this case, we use the value k = dlog2(nproc)e to distinguish the strategy for
each level. For levels ` ≥ k we split the clusters at level ` into nproc groups, whose
sizes di�er between m` and m` + 1, where m` is de�ned by the Euclidean division
2` = m` nproc + r` with r` ∈ {0, . . . , nproc−1}. Process IDs are assigned to groups of
clusters as before. The di�erent group sizes introduce a slight workload imbalance at
level `. We can compensate for this by the process assignment at level ` − 1. For
clusters at levels ` with ` < k − 1 we use the same process assignment strategies as
described above.

6.5 Numerical experiments

The parallel, task based version of the space-time FMM for shared and distributed
memory systems described in Sections 6.2 and 6.3 has been implemented in the
publicly available C++ library besthea [49]. In this section we present numerical
experiments that demonstrate the e�ciency of the presented algorithms and our im-
plementation, in which we use SIMD vectorization to make the most of modern CPUs
with vector arithmetic units. The results for the distributed memory parallelization
here correspond to those published in [76] and were executed on the Salomon clus-
ter at IT4Innovations National Supercomputing Center in Ostrava, Czech Republic.
The results for the shared memory parallelization in [76] are replaced by new ones
to ensure a more consistent choice of FMM parameters throughout the thesis. Since
the operation of Salomon was discontinued by the end of 2021, we carried out the
new experiments on the VSC-4 cluster in Vienna, Austria. More details about the

126 6 A task based parallelization of the space-time FMM

hardware speci�cations of these supercomputers and the compilers used on each of
them are given in Appendix A.

6.5.1 Numerical experiments in shared memory

To investigate the performance of the shared memory parallelization of the space-time
FMM described in Section 6.2, we consider the direct boundary integral approach in
Section 3.2 to solve an initial Dirichlet boundary value problem (1.1)�(1.3) for the
heat equation which is speci�ed as follows: We choose the time interval (0, 0.25), the
spatial domain Ω = (−0.5, 0.5)3 and the heat capacity constant α = 1, as well as the
initial datum u0 = 0 and the Dirichlet datum

u(x, t) = G1(x− y∗, t) for (x, t) ∈ Σ,

where y∗ = (1.5, 1.5, 1.5)> and G1 is the fundamental solution of the heat equation
in (3.4). To determine an approximation of the unknown Neumann datum γint

1,Σu we
solve the linear system (3.24) on a space-time tensor product mesh Σh = Γh ⊗ Iht ,
where Γh contains 3 072 congruent triangles on the surface of the cube (−0.5, 0.5)3

and Iht consists of 128 uniform time steps. The system (3.24) is solved by using
the GMRES method without a preconditioner and with a desired relative accuracy
of 10−8. The BEM matrices Vh and Kh are applied using the task based version of
the space-time FMM in Section 6.2.

For the space-time FMM we construct a space-time box cluster tree TΣ using Al-
gorithm 5.1 with the cluster parameters nmax = 800 and cst = 4.1, and determine
the operation lists of clusters in TΣ by using Algorithm 5.2 with the spatial trun-
cation parameter ntr = 2 and the constant η2 = 1 for admissibility criterion (5.12).
The expansion degrees mt = 4 and mx = 12 are used for the FMM operations in
the space-time tree TΣ. All these parameters are chosen such that the FMM works
e�ciently and does not a�ect the approximation quality of the BEM in a negative
way.

The linear system (3.24) was solved on a single node of the VSC-4 cluster with a
varying number of threads. To ensure that each thread is assigned to a separate
physical core of the two 24-core CPUs of the computing node, and to control the
thread a�nity we set the OpenMP environment variables OMP_PLACES=cores and
OMP_PROC_BIND=close. More details about the e�ects of these environment variables
are given in [58, Sections 2.6.2, 6.4 and 6.5].

Independent of the number of used threads, 39 iterations of the GMRES method
are required to compute the approximate solution q to the system (3.24) for the
considered mesh and data. The error between the corresponding discrete func-
tion qh ∈ S0⊗0

hx,ht
and the exact Neumann datum q(x, t) = γint

1,ΣG1(x − y∗, t) in the

6.5 Numerical experiments 127

relative L2 norm is ‖q − qh‖L2(Σ)/‖q‖L2(Σ) ≈ 0.064, which is close to the L2 best
approximation error 0.054. This indicates that our implementation is correct and
that the parameters for the FMM are chosen properly.

Table 6.1 shows the measured computation times for varying numbers of threads. We
list the assembly times for the matrices Vh and Kh, as well as the application times
for Kh and the iteration times required for a single GMRES iteration. Note that the
time it takes to apply Vh is by far the most time-consuming part of a GMRES iteration
in our setting, so we can interpret the GMRES iteration times simply as application
times of Vh. The application times of the matrix Kh were determined in a separate
routine where Kh was applied several times in a row to ensure that initialization
times of libraries like the MKL, which we use for matrix-vector multiplications of
inadmissible blocks, do not spoil the measurements.

No. threads 1 2 4 8 16 24 48

Assemble Kh
time [s] 3063 1587 787.6 393.1 195.9 131.5 74.2

e�ciency [%] 100.0 96.5 97.2 97.4 97.7 97.1 86.0

Apply Kh
time [s] 173.8 87.5 43.5 21.7 10.9 7.6 3.8

e�ciency [%] 100.0 99.3 99.9 100.1 99.7 95.3 95.3

Assemble Vh
time [s] 3667 1833 915.9 459.1 229.7 153.2 76.9

e�ciency [%] 100.0 100.1 100.1 99.8 99.8 99.7 99.3

GMRES it.
time [s] 174.8 88.1 44.3 22.0 11.1 7.48 3.87

e�ciency [%] 100.0 99.2 98.6 99.3 98.4 97.4 94.1

Table 6.1: Results of a strong scalability test on a single node of VSC-4 for a BEM
problem with 393 216 space-time surface elements (128 time steps in the interval
(0, 0.25), 3 072 spatial elements on the surface of the cube (−0.5, 0.5)3). The
assembly and application times for the matrix Kh, the assembly times for the
matrix Vh, and the times per GMRES iteration are presented for di�erent numbers
of OpenMP threads. The GMRES iteration time is dominated by the application
time of the matrix Vh.

The assembly times of Vh and Kh indicate how long it takes to assemble the inad-
missible blocks of these matrices. Recall that the assembly of these blocks and the
related parallelization were shortly discussed in Section 6.2. In our implementation
we use SIMD vectorization for the numerical evaluation of the occurring integrals.
The details are given in [81, Section 5.2]. In Table 6.1 we see that the e�ciency of the
parallel matrix assembly is close to optimal for the single layer operator matrix Vh for
the full range of threads. The same is true for the double layer operator matrix Kh
when using up to 24 threads on a single socket of the node. When using all 48 threads

128 6 A task based parallelization of the space-time FMM

the e�ciency slightly drops. This might be related to the fact that the memory ac-
cess in the construction of Kh is more complicated than in the construction of Vh and
that this memory access is less e�cient when using both sockets of the computing
node instead of one. To store the inadmissible blocks of the matrix Kh, 11.74 GiB
of memory are required. Since Kh is applied only once, the memory can be freed
afterwards. The inadmissible blocks of the matrix Vh require 16.28 GiB of memory.
In comparison, all moments and local contributions needed for the application of the
FMM require only 0.13 GiB of memory.

The application times of Kh and the times per GMRES iteration in Table 6.1 are very
similar. This is not too surprising, since the same number of operations are executed
in the space-time FMM for Vh and Kh. Only the near�eld operations and the kind of
S2M operations di�er for the matrices Vh and Kh as we mentioned in Remark 5.14 in
Section 5.2.4. The S2M operations are slightly more expensive for Kh since normal
derivatives of tensor product Chebyshev polynomials have to be evaluated, while
the near�eld operations are slightly cheaper for Kh since the number of columns
of an inadmissible block Kh|Ẑtar×Žsrc

is smaller than the number of columns of an
inadmissible block Vh|Ẑtar×Ẑsrc

� the former depends on the number of spatial nodes
in Xtar and the latter on the number of spatial elements in this box. When comparing
the application and iteration times for di�erent numbers of threads we observe an
almost optimal parallel e�ciency which never drops below 94%. This shows that our
parallelization strategy works well for the considered example.

Remark 6.14. In our implementation we do not check whether the time steps of a
space-time tensor product mesh are uniform in time. In particular, we do not exploit
the lower triangular block Toeplitz structure of the BEM matrices in such situations.
By making use of this structure, the storage requirements and assembly times of the
matrices Vh and Kh could be reduced signi�cantly, while the application times would
stay the same. Instead of focusing on this kind of optimization we chose to consider
the space-time FMM for more general meshes as a step towards a space-time adaptive
method.

To get a better understanding of the way in which operations are executed in the task
based FMM, we included the possibility to measure the execution times of individual
FMM tasks and groups of FMM operations that each thread executes in our imple-
mentation. In Figure 6.4 we present the measured times for the application of Vh in
the previous example when using 48 threads for the computation. As explained in
the caption of the �gure, each rectangle stands for a single iteration of a taskloop

in one of the FMM tasks in Algorithms 6.3 and 6.4. For example, a red rectangle
drawn in the line of a thread means that this thread executed the M2L operations
for a single cluster Ztar associated with a time cluster Itar and all Zsrc ∈ IM2L(Ztar)
in line 3 of Algorithm 6.4.

6.5 Numerical experiments 129

Figure 6.4: Illustration of the detailed execution times for the task based FMM for
the matrix Vh while running the example from Table 6.1 on 48 threads. For each
thread a line of colored rectangles is depicted. Each colored rectangle stands for a
single iteration of a taskloop in one of the FMM tasks executed by the respective
thread; see Algorithms 6.3 and 6.4. The S2M and M2M operations are depicted
in shades of yellow and orange, the M2L operations in shades of red, the L2L and
L2T operations in shades of green, and the near�eld operations in shades of blue.
The thread responsible for scheduling the FMM tasks is thread 33 in this example.

Figure 6.4 is another indicator of the good performance of our task based paralleliza-
tion. It can be clearly seen that the operations of the di�erent FMM phases are
executed in parallel. For example, some threads execute M2L operations (red) of
corresponding M2L-list tasks while others are still busy with S2M and M2M opera-
tions (yellow/ orange) of M-list tasks during the starting period of the application.
Also L2L operations (green) of corresponding L-list tasks are executed concurrently
with M2L-list tasks. Near�eld operations (blue) of N-list tasks are executed only
at the end. The reason is that we bound the number of N-list tasks that can be
executed while other FMM tasks are available in our implementation as described in
Section 6.2.1. For the examples in this thesis, this bound is set to zero. We choose
this strict bound to ensure that other FMM tasks are always preferred, which is rel-
evant, in particular, for the distributed parallelization as motivated in Remark 6.10.
As long as enough other FMM-list tasks are available this choice is �ne and might
only lead to some negligible idle times before the execution of the N-list tasks, which
can also be seen in Figure 6.4 at second glance. A more careful choice of the bound
of N-list tasks might, however, be bene�cial for examples with few tasks.

In general, one can see that the parallel execution of tasks is almost, but not com-
pletely perfect in our implementation. Throughout the application we can see spon-
taneous gaps in some of the lines in Figure 6.4, where threads are idle. Overall, these
idle times make up only a negligible portion of the total runtime here. Nonetheless,

130 6 A task based parallelization of the space-time FMM

let us explain why these idle times exist in the �rst place. If a thread executes an
FMM task like, e.g., an M2L-list task created in line 20 of Algorithm 6.2, it generates
new tasks with the taskloop construct in line 2 of Algorithm 6.4. The thread can
only continue with the remaining assignments of the M2L-list task after all created
tasks have been completed. This ensures the correctness of our method but causes
the observed idle times.

If the thread that is responsible for scheduling new FMM tasks has to wait for the
completion of a taskloop, other threads might run out of tasks as well. Such a
situation can be seen in Figure 6.5, which shows the starting period of the application
in more detail. Here we see that the scheduling thread 33 becomes idle shortly
before time t = 12 · 104 µs. From the measured execution times of FMM tasks,
we can tell that this thread is waiting for the completion of an M2L-list task here
until time t ≈ 13 · 104 µs. At the same time, we see that many other threads
become idle because there are not any tasks available for execution. At the time
t ≈ 13 · 104 µs, the thread 33 schedules new FMM tasks and the other threads start
to work again. Thread 33 joins them in the execution of tasks again shortly before
time t = 14 · 104 µs. The possibility that events like this occur, where multiple
threads become idle at the same time, is the price we have to pay for including
the scheduling thread in the execution of tasks by using the taskyield pragma
as described in Section 6.2.1. One could exclude the scheduling thread from the
execution of the large FMM tasks while allowing it to execute smaller tasks to
mitigate this problem. However, we are not aware of any feature of OpenMP that
allows one to hinder a certain thread from executing a speci�c task. Otherwise, one
could also refrain from using taskyield and thereby let the scheduling thread focus
on the scheduling of new FMM tasks until the very end of the application. If enough
threads are available this might work well, but it might be less e�cient for small
numbers of threads.

Figure 6.5: Enlarged view of the initial period of the execution times in Figure 6.4.

6.5 Numerical experiments 131

Despite the few small shortcomings discussed above, we have seen that our parallel,
task based FMM works e�ciently in practice for problems in shared memory. In
the following section we investigate if this is also true for the distributed memory
parallelization described in Section 6.3.

6.5.2 Numerical experiments in distributed memory

The results presented in this section correspond to those published in [76, Section 5.2].
To test the scalability of our hybrid MPI-OpenMP implementation of the distributed
task based FMM in Section 6.3 we used the Salomon cluster, whose hardware speci�-
cations are given in Appendix A, to solve the linear system (3.24) related to the same
initial Dirichlet boundary value problem as in Section 6.5.1, but on a �ner space-time
tensor product mesh Σh consisting of 12 288 spatial triangles and 1 024 time steps,
i.e. a total of 12 582 912 space-time boundary elements.

For the distributed parallelization, the space-time mesh Σh needs to be distributed
among the available processes. For this purpose we subdivide the mesh into 256
uniform time slices � each containing 4 time steps � and proceed as described in
Section 6.4: We build a temporal tree T crs

I for the time slices, distribute the clusters
in this tree among the available processes with the assignment strategy described at
the end of that section, and use the process assignments for the data distribution.
For the collaborative construction of the space-time box cluster tree TΣ, or rather
the corresponding locally essential parts, we use the same parameters nmax = 800
and cst = 4.1 as in Section 6.5.1. The remaining parameters are also chosen as in
that section, i.e. ntr = 2 and η2 = 1 for the construction of the operation lists in
the space-time tree and the expansion degrees mt = 4 and mx = 12 for the FMM
operations.

When running our code on the Salomon cluster we assigned a single MPI pro-
cess to each cluster node and use all 24 available cores per node for the paral-
lel execution of tasks with OpenMP. The a�nity of threads on each node was
set using the environment variables KMP_AFFINITY=granularity=core,compact and
KMP_HW_SUBSET=2s,12c. For the computations we used between 16 and 256 nodes.
The large memory demand of the considered problem did not permit us to run the
problem on fewer nodes. In fact, a total of 666.2 GiB of memory is needed to store all
inadmissible blocks of Kh and 890.8 GiB for the inadmissible blocks of Vh. In com-
parison 2.92 GiB of memory are needed to store the moments and local contributions
of all clusters for the application of the FMM in this example.

In total, 60 iterations of the non-preconditioned GMRES method are required to
compute the solution q in this example. The relative L2 error between the corre-
sponding function qh ∈ S0⊗0

hx,ht
and the exact Neumann datum q is equal to 0.031,

132 6 A task based parallelization of the space-time FMM

which is close to the relative L2 best approximation error 0.027 of q in S0⊗0
hx,ht

. In
Table 6.2 we present the corresponding computation times for the assembly of the
system matrices Vh and Kh and the times required for a single GMRES iteration when
using between 16 and 256 nodes of the Salomon cluster. To compute the e�ciencies,
we take the times measured when using 16 nodes as reference values. We observe that
the parallel e�ciency of the assembly of the system matrices Vh and Kh is almost op-
timal in this example. The iteration times scale also well when using up to 128 nodes.
However, a clear drop in e�ciency is observed for 256 nodes. This is related to the
size of the considered problem. The mesh is decomposed into 256 time slices which
form the leaves of the temporal tree T crs

I . Recalling the process assignment strategy
at the end of Section 6.4, we see that each of the 256 processes/nodes is responsi-
ble for only a single leaf in T crs

I and some additional clusters in the remaining tree.
Hence, the number of FMM tasks that each process needs to execute is small in this
situation which increases the probability of threads becoming idle. This reveals the
limits of our parallelization strategy. It is remarkable that we are still able to achieve
an e�ciency of more than 60% when using 256 nodes under these circumstances.

No. nodes 16 32 64 128 256

Assemble Vh
time [s] 769.8 385.5 194.4 97.1 50.0

e�ciency [%] 100.0 99.8 99.0 99.1 96.2

Assemble Kh
time [s] 502.4 252.5 128.6 63.0 31.9

e�ciency [%] 100.0 99.5 97.7 99.7 98.4

GMRES it.
time [s] 14.7 7.3 3.7 2.1 1.5

e�ciency [%] 100.0 101.5 99.4 89.4 62.6

Table 6.2: Results of a strong scalability test on up to 256 nodes of the Salomon
cluster for a BEM problem with 12 582 912 space-time surface elements (1 024
time steps in the interval (0, 0.25), 12 288 spatial elements on the surface of the
cube (−0.5, 0.5)3).

Remark 6.15. The application times of Kh are missing in Table 6.2. In fact, they
are also missing in [76, Section 5] where we decided to focus only on the GMRES
iteration times, since the time of a single application of Kh is negligible compared to
the accumulated times of multiple applications of Vh in the GMRES. In particular,
we did not run separate tests to measure the application times of Kh for that publica-
tion which would be necessary to determine the e�ective application times without any
artifacts. Therefore, we refrain from presenting the application times of Kh deter-
mined in the original experiments. Note that they should not di�er too much from the
application times of Vh in general as we observed in the shared memory experiments
in Section 6.5.1.

6.5 Numerical experiments 133

We conclude this section by demonstrating the performance of our distributed mem-
ory parallelization of the space-time FMM for the heat equation for a more realistic
example. For this purpose, we solve the same linear system (3.24) as in the last
two examples related to an initial Dirichlet boundary value problem with the same
initial and boundary data as before. This time, however, we consider a more com-
plicated geometry Ω, namely a crankshaft, whose surface is discretized by a mesh Γh
consisting of 42 888 plane spatial triangles; see Figure 6.6. Combining this mesh
with 1 024 uniform time steps in the time interval (0, 0.25) yields a space-time tensor
product mesh Σh consisting of 43 917 312 space-time elements which we consider for
the computations. We subdivide this mesh into 128 uniform time slices for the mesh
distribution and use the parameters nmax = 800, cst = 4.5, ntr = 2, η2 = 1, mt = 3
and mx = 12 for the FMM. 7 910 GiB of memory are required to store the inadmis-
sible parts of the corresponding matrix Kh and 12 369 GiB for the matrix Vh. This
high memory demand could be drastically reduced by exploiting the uniformity of
the time steps, as we mentioned in Remark 6.14. Since we do not consider this in our
implementation, we used 128 nodes of the Salomon cluster to set up and solve the
system in (3.24). The corresponding computation times are summarized in Table 6.3.
Since we do not use a preconditioner for the GMRES method in this experiment, 399
iterations are needed to achieve a relative GMRES accuracy of 10−6. In total, we are
able to solve the problem in less than two hours. The solution at the end of the time
interval is depicted in Figure 6.6.

Figure 6.6: Visualization of the approximated Neumann datum on the surface of the
crankshaft at time t = 0.25. The surface is discretized by 42 888 plane triangles.

134 6 A task based parallelization of the space-time FMM

No. utilized nodes assembly of Vh assembly of Kh solution using GMRES
128 1161.58 s 1223.97 s 2927.70 s

Table 6.3: Computation times for setting up and solving the system in (3.24) for a
space-time tensor product mesh Σh = Γh⊗Iht with 43 917 312 space-time surface
elements (1024 time steps in the interval (0, 0.25), 42 888 spatial elements), where
Γh is a triangular mesh that describes the surface of a crankshaft.

7 A time-adaptive version of the

space-time FMM

The space-time FMM described in Chapter 5 and the related pFMM in [52, 67, 68]
were originally developed for space-time tensor product meshes with uniform time
steps. Uniform time steps lead to BEM system matrices with a block Toeplitz struc-
ture which can be exploited to avoid recomputing several matrix entries. However,
if the solution of a boundary value problem requires a small time step size to re-
solve some local aspects, a huge number of uniform time steps of that size might be
needed to cover the whole time interval. Instead, the time step sizes can be cho-
sen adaptively to reduce the total number of required time steps signi�cantly and
thereby the total number of degrees of freedom of the considered linear systems. The
smaller system matrices can make up for the lost Toeplitz structure when consider-
ing temporally adaptive meshes. However, also the e�ciency of the space-time FMM
from Chapter 5 might su�er for such meshes. Therefore, we present a time-adaptive
version of the FMM in this chapter.

In the context of the Laplace equation adaptive versions of the FMM have been de-
veloped, for example, in [21, 22, 54]. A key idea of these methods is to introduce
additional FMM operations between boxes of di�erent sizes for which the standard
FMM operations cannot be used because of a violated admissibility criterion. These
operations are based on one-sided kernel expansions and are sometimes denoted as
S2L (source to local, also called Q2L) and M2T (moment to target, also called M2P)
operations. In this chapter, we introduce similar new FMM operations based on
temporally one-sided expansions of the heat kernel to extend the existing space-time
FMM and obtain a fast method that is better suited for the treatment of tempo-
rally adaptive meshes. The corresponding results have been accepted for publication
in [78].

The rest of the chapter is structured as follows. In Section 7.1 we introduce two tem-
porally one-sided approximations of the heat kernel and analyze in which situations
they are better suited for the kernel approximation than the temporally two-sided
approximation in Section 5.1. In Section 7.2 we describe the new time-adaptive FMM
in detail. Here we focus on the single layer operator matrix Vh, but the matrices Kh,
K>x
h and Dh can be treated similarly. To enable the time-adaptive FMM we mod-

ify the construction of the space-time cluster trees in Section 7.2.1, introduce new
operation lists in Section 7.2.2, and new FMM operations based on the temporally

135

136 7 A time-adaptive version of the space-time FMM

one-sided kernel expansions in Section 7.2.3. The new time-adaptive FMM algorithm
for the application of Vh is presented in Section 7.2.4. In Section 7.3 we comment on
the runtime complexity and the storage requirements of the new FMM operations
and in Section 7.4 we discuss how the parallelization strategy from Chapter 6 can
be applied to the time-adaptive FMM. Finally, we present numerical experiments for
meshes with non-uniform time steps in Section 7.5 to demonstrate the bene�ts of the
new time-adaptive FMM.

7.1 Temporally one-sided approximations of the heat kernel

The space-time FMM in Chapter 5 is based on the separable expansion (5.9) of the
heat kernel (3.4) that is discussed in Section 5.1. For this expansion we have con-
sidered the heat kernel ((x, t), (y, τ)) 7→ Gα(x− y, t− τ) for (x, t) and (y, τ) in two
suitable axis-parallel, 4D boxes Ztar = X1 × I1 and Zsrc = X2 × I2, interpolated it in
the two time intervals I1 and I2, and approximated it with a truncated Chebyshev
expansion inX1 andX2. The corresponding approximation error is estimated in The-
orem 5.9. In Remark 5.4 we have pointed out that the temporal convergence rate q2 in
the approximation error estimate deteriorates if the ratio max{|I1|, |I2|}/ dist(I1, I2)
becomes large. This is not an issue for the space-time FMM in Chapter 5 since the
stated ratio is bounded from above by a constant η2 through the admissibility crite-
rion (5.12) whenever we approximate the heat kernel in this way for two clusters Ztar

and Zsrc. However, this admissibility criterion limits the cases in which we can use the
expansion (5.9). Thus, the corresponding standard space-time FMM might become
ine�cient for meshes that are adaptive in time. Therefore, we introduce two new,
temporally one-sided approximations of the heat kernel in this section that are ac-
curate as long as min{|I1|, |I2|}/ dist(I1, I2) is bounded. These approximations allow
us to identify new kinds of admissible blocks of BEM matrices like Vh and introduce
new FMM operations that improve the performance of the FMM signi�cantly for
space-time tensor product meshes which are adaptive in time.

In this section we use the same notation as in Section 5.1. We consider two axis-
parallel, 4D boxes Ztar = X1×I1 and Zsrc = X2 × I2 where X1 and X2 are cubes with
the same edge length 2h̃x, and I1 = [a1, b1] and I2 = [a2, b2] are two time intervals
such that a1 > b2. The only new operators that we introduce are the one-sided
interpolation operators

I
(m)
dir,I1

: C(I1 × I2)→ Pm(I1)⊗ C(I2), I
(m)
dir,I1

= I
(m)
I1
⊗ Id,

I
(m)
dir,I2

: C(I1 × I2)→ C(I1)⊗ Pm(I2), I
(m)
dir,I2

= Id⊗ I
(m)
I2
,

with the one-dimensional interpolation operators I
(m)
I1

and I
(m)
I2

de�ned as in (5.1).
We use these operators for the following new approximations of the heat kernel.

7.1 Temporally one-sided approximations of the heat kernel 137

One-sided interpolation in the source interval I2. By interpolating the heat
kernel in the temporal variable τ ∈ I2 and approximating it with a truncated Cheby-
shev expansion (5.7) in both spatial variables x ∈ X1 and y ∈ X2 we get the
expansion

S
(mx)
X1×X2

I
(mt)
dir,I2

[Gα](x, t,y, τ) =
mt∑

a=0

∑

κ,ν∈N3
0:

|κ+ν|≤mx

Ea,
κ,ν(t)TX1,ν(x)TX2,κ(y)L

(mt)
I2,a

(τ) (7.1)

for (x, t) ∈ Ztar and (y, τ) ∈ Zsrc, where {L(mt)
I2,a
}a are Lagrange polynomials as de�ned

in (5.2), and {TX1,ν}ν and {TX2,κ}κ are tensor product Chebyshev polynomials as
in (5.6). The expansion coe�cients Ea,

κ,ν(t) depend explicitly on t ∈ I1 and are given
by

Ea,
κ,ν(t) =

1

(4πα(t− ξ(mt)
I2,a

))3/2

3∏

j=1

Eκj ,νj(rj, 4α(t− ξ(mt)
I2,a

)/h̃2
x), (7.2)

where rj and Eκj ,νj are the same quantities as in (5.10) and {ξ(mt)
I2,a
}mta=0 are the trans-

formed Chebyshev nodes of ordermt+1 on I2. The superscript of E
a,
κ,ν should indicate

that the corresponding approximation involves an interpolation in the source interval
but does not involve an interpolation in the target interval.

One-sided interpolation in the target interval I1. By combing an interpolation
in the temporal variable t ∈ I1 with a truncated Chebyshev expansion in both spatial
variables x ∈ X1 and y ∈ X2 we obtain

S
(mx)
X1×X2

I
(mt)
dir,I1

[Gα](x, t,y, τ) =
mt∑

b=0

∑

κ,ν∈N3
0:

|κ+ν|≤mx

E ,b
κ,ν(τ)TX1,ν(x)TX2,κ(y)L

(mt)
I1,b

(t), (7.3)

E ,b
κ,ν(τ) =

1

(4πα(ξ
(mt)
I1,b
− τ))3/2

3∏

j=1

Eκj ,νj(rj, 4α(ξ
(mt)
I1,b
− τ)/h̃2

x) (7.4)

for (x, t) ∈ Ztar and (y, τ) ∈ Zsrc, where the expansion coe�cients E ,b
κ,ν depend

explicitly on τ ∈ I2.

We plan to use the approximation (7.1) of the heat kernel for two boxes Ztar = X1 × I1

and Zsrc = X2 × I2 if the source interval I2, in which we interpolate, is considerably
smaller than the target interval I1 and there holds dist(I1, I2) & |I2|. Likewise, we
want to use the approximation (7.3) if the target interval I1 is considerably smaller
than the source interval I2 and there holds dist(I1, I2) & |I1|. In the following subsec-
tion we analyze the approximation error of the two approximations (7.1) and (7.3)
to show that they work well in these situations.

138 7 A time-adaptive version of the space-time FMM

7.1.1 Analysis of the approximation error

The approximation error of the temporally one-sided expansions (7.1) and (7.3) can
be estimated in the same way as the approximation error of the standard, temporally
two-sided expansion (5.9) in Sections 5.1.1�5.1.3. We �rst focus on the interpola-
tion error in time. As in Section 5.1.1 we consider the function (t1, t2) 7→ g(t1, t2)
in (5.11) for this purpose, which corresponds to the heat kernel for �xed spatial
points x,y ∈ R3 and a �xed heat capacity constant α. The error that results when
we consider this function g on a pair of time intervals I1 and I2 and interpolate it in
the shorter one is estimated in the following theorem.

Theorem 7.1 (One-sided interpolation error). Let g be the function in (5.11).
Let η1 > 0 and q1 := 1 + 3/(2 η1). Let I1 = [a1, b1] and I2 = [a2, b2] be two non-empty
intervals such that a1 > b2. Let the admissibility criterion

η1 dist(I1, I2) ≥ min{|I1|, |I2|} (7.5)

be satis�ed. Let k be such that Ik is the shorter time interval. Then there exists a
constant c1 > 0 such that

‖g − I
(mt)
dir,Ik

[g]‖∞,I1×I2 ≤
c1

(α dist(I1, I2))3/2
q
−(mt+1)
1 . (7.6)

Proof. The proof is very similar to the proof of Theorem 5.1 in Section 5.1.1. If we
can show under the assumptions in Theorem 7.1 that g satis�es an estimate of the
form (5.16), i.e.

‖∂ntkg‖∞,I1×I2 ≤
C̃g
γ̃ng

(n+ σ̃ − 1)!

(σ̃ − 1)!
∀n ∈ N0

for constants C̃g, γ̃g ∈ R>0 and σ̃ ∈ N, we can apply [14, Lemma 4.19] to obtain the
estimate

‖g − I
(mt)
dir,Ik

[g]‖∞,I1×I2 ≤ 2eC̃g(Λmt + 1)(mt + 2)σ̃
(

1 +
|Ik|
γ̃g

)
%

(
2γ̃g
|Ik|

)−(mt+1)

,

where Λmt is the Lebesgue constant de�ned in (5.3) and %(r) := r +
√

1 + r2. By
using the admissibility criterion (7.5), we can show that (5.16) holds for σ̃ = 1,

γ̃g = 3 min{|I1|, |I2|}/(4η1) and C̃g = cascβ/(α dist(I1, I2))3/2 in the same way as we
did in the proof of Theorem 5.1. Therefore,

‖g − I
(mt)
dir,Ik

[g]‖∞,I1×I2 ≤ 2eC̃g(Λmt + 1)(mt + 2)σ̃
(

1 +
4

3
η1

)
%

(
3

2η1

)−(mt+1)

.

This estimate can be simpli�ed in the same way as the corresponding result in the
proof of Theorem 5.1 to show (7.6).

7.1 Temporally one-sided approximations of the heat kernel 139

By combining the interpolation error estimate in Theorem 7.1 with the truncation
error estimate of the Chebyshev expansion in space in Theorem 5.7 we can estimate
the approximation errors of the temporally one-sided expansions (7.1) and (7.3) as
in the proof of Theorem 5.9 in Section 5.1.3. This yields the following result.

Theorem 7.2 (Temporally one-sided space-time expansion errors). Let c̃st ∈ R>0,
η1 ∈ R>0 and q1 := 1 + 3/(2 η1). Let Λmt be the Lebesgue constant de�ned in (5.3)
and σ be the function in (5.20). Let I1 = [a1, b1] and I2 = [a2, b2] be two non-empty
intervals with a1 > b2 that satisfy the admissibility criterion (7.5). Let X1 and X2 be

two cubes in R3 with edge length 2h̃x such that the criterion (5.25) holds, i.e.

4α dist(I1, I2) h̃−2
x ≥ c̃st.

Let Ztar = X1 × I1 and Zsrc = X2 × I2. Let k ∈ {1, 2} be such that Ik is the shorter
time interval. Then there exist constants c1, cx ∈ R>0 such that

‖(Id−S
(mx)
X1×X2

I
(mt)
dir,Ik

)[Gα]‖∞,Ztar×Zsrc ≤
1

(α dist(I1, I2))3/2
(7.7)

×
(
c1q
−(mt+1)
1 + cxΛmt(mx + 2)5 exp

(
− (mx + 1)σ

(
(mx + 1)c̃st/12

)))
.

Remark 7.3. By comparing the error estimates for the two-sided interpolation in
Theorem 5.1 in Section 5.1.1 with the error estimates for the one-sided interpolation
in Theorem 7.1, we see that in both estimates the error bound decreases exponen-
tially with increasing interpolation degree mt. The convergence rate depends on the
constants η2 and η1 from the admissibility criteria (5.12) and (7.5), respectively,
and su�ers if they become large. For two �xed, separate intervals I1 and I2 we can
choose η2 = max{|I1|, |I2}/ dist(I1, I2) and η1 = min{|I1|, |I2|}/ dist(I1, I2) as the
smallest constants for which (5.12) and (7.5) hold. Hence, in all situations where
max{|I1|, |I2|}/ dist(I1, I2) is considerably larger than min{|I1|, |I2|}/ dist(I1, I2) the
one-sided interpolation in the shorter time interval is expected to perform signi�cantly
better than the two-sided interpolation. This property carries over to the temporally
one-sided space-time expansions (7.1) and (7.3) of the heat kernel when we compare
them with the standard expansion (5.9).

Remark 7.4. In Theorem 7.2 we use criterion (5.25) to determine a proper spatial
size of the boxes for the expansions (7.1) and (7.3). This is the same criterion that
we have used in Theorem 5.9 for the standard expansion (5.9), but in practice we
have replaced it with the space-time con�guration criterion (5.27) which requires that

h̃2
x

4αh̃t
≤ cst

holds for a constant cst and each of the considered boxes Zsrc and Ztar, where h̃x de-
notes the half length of the edges of their spatial components and h̃t the half length of

140 7 A time-adaptive version of the space-time FMM

their temporal intervals; see Remark 5.10. In the setting of Theorem 7.2 we can also
eliminate (5.25) if we require instead that the space-time con�guration criterion (5.27)
is satis�ed for the space-time box Ztar or Zsrc corresponding to the smaller time in-
terval. In fact, since the spatial sizes of the two boxes coincide and the admissibility
criterion (7.5) is satis�ed, we get

4α dist(I1, I2)

h̃2
x

≥ 4αmin{|I1|, |I2|}
h̃2
xη1

≥ 2

cstη1

in this case, which is criterion (5.25) with c̃st = 2(cstη1)−1. Therefore, we continue
to use (5.27) instead of (5.25) in the rest of this work.

7.2 Description of the time-adaptive FMM

In this section we discuss how to adapt the space-time FMM in Chapter 5 to ob-
tain the new time-adaptive FMM which is better suited for the compression of BEM
matrices related to temporally adaptive meshes. The key idea is that certain inad-
missible blocks of the BEM matrices in the standard FMM can be further subdivided
and partially approximated by using the temporally one-sided expansions of the heat
kernel from Section 7.1. In the following sections we present this subdivision process,
the resulting new operation lists, and the new FMM operations stemming from the
temporally one-sided kernel expansions. We start by revisiting and extending the
underlying space-time box cluster trees.

7.2.1 Extended space-time box cluster trees

In Section 5.2.1 we have described how to construct a space-time box cluster tree TΣ

to partition a space-time tensor product mesh Σh = Γh ⊗ Iht . The corresponding
Algorithm 5.1 can also be applied to a mesh Σh whose temporal partition Iht contains
non-uniform time intervals. However, the resulting tree TΣ may contain some large
leaf clusters with many associated space-time elements. In fact, in the recursive
construction of TΣ the clusters are always subdivided either with respect to time or
with respect to space and time. If the temporal component I of a cluster Z contains
only a single time interval (tjt−1, tjt) in Iht , a temporal subdivision is not possible
anymore, and thus Z is not further subdivided even if it still contains many space-
time elements. This is undesired because large leaves correspond to large inadmissible
blocks in the FMM in Chapter 5 which may break its e�ciency. In this section we
describe how to extend a tree TΣ by further subdividing such kind of clusters in
space. The new clusters obtained in this manner will enable us to introduce new
FMM operations in the following sections.

7.2 Description of the time-adaptive FMM 141

To describe the additional subdivision of clusters in this section, we use the same
notation as in Section 5.1. In particular, we use Ẑ to denote the set of all indices
(jt, jx) corresponding to elements σjt,jx ∈ Σh that are assigned to a cluster Z. The

quantity nt(Ẑ) denotes the number of all distinct time-indices in Ẑ, i.e. the number of
time intervals (tjt−1, tjt) contained in the temporal part I of Z. So-called temporally
indivisible clusters are of particular interest.

Definition 7.5. A cluster Z is called temporally indivisible if nt(Ẑ) = 1.

We extend a given space-time box cluster tree TΣ by recursively subdividing tem-
porally indivisible clusters in space. The resulting extended space-time box cluster
tree is denoted by T ext

Σ to distinguish it from the original tree TΣ. The corresponding
procedure is described in Algorithm 7.1.

Algorithm 7.1 Construction of an extended space-time box cluster tree T ext
Σ .

Require: Let a space-time tensor product mesh Σh be given.
Let a tree TΣ be constructed by Algorithm 5.1 with parameters cst and nmax.

1: Initialize T ext
Σ by TΣ.

2: for each temporally indivisible leaf Z in TΣ

3: Call SubdivideClusterInSpace(Z, T ext
Σ).

4: function SubdivideClusterInSpace(Z, T ext
Σ)

5: if #Ẑ ≥ nmax and a spatial subdivision is feasible
6: Spatial subdivision of Z into eight children {Zk}8

k=1.
7: for k = 1, . . . , 8
8: if #Ẑk 6= 0
9: Add Zk to T ext

Σ as a child of Z.
10: Call SubdivideClusterInSpace(Zk, T ext

Σ).

A temporally indivisible leaf cluster Z = X × I in TΣ is recursively subdivided in
the routine SubdivideClusterInSpace if more than nmax space-time elements are
assigned to it and if a spatial subdivision is feasible. Recall from Section 5.2.1 that a
spatial subdivision of Z is feasible, if max(jt,jx)∈Ẑ diam(γjx) ≤ h̃x(Z), where h̃x(Z) is
the half edge length of X. For the spatial subdivision of Z we split the box X = (a, b]
uniformly into eight boxes (a, ã], . . . , (ã, b], where ã = 1/2(a + b) is the center
of (a, b]. The resulting boxes are combined with the time interval I to get eight space-
time boxes {Zk}8

k=1. Note that the same kind of subdivision in space combined with
an additional subdivision in time is used to subdivide clusters with respect to space
and time in Algorithm 5.1. A box Zk obtained by a spatial subdivision of Z is added
to the extended tree T ext

Σ only if it is not empty, i.e. if there are space-time elements
in Σh assigned to it. Then it is further subdivided if possible. The construction of
the extended tree T ext

Σ is complete after all temporally indivisible clusters of TΣ have
been recursively subdivided in this manner.

142 7 A time-adaptive version of the space-time FMM

We denote the level of a cluster Z in the extended tree T ext
Σ by `(Z) and de�ne

the temporal level `t(Z) and the spatial level `x(Z) of Z in the same way as in
Section 5.2.1, i.e. as the number of temporal or spatial subdivisions performed to
obtain Z from the root Z(0) of T ext

Σ . Similarly as in that section, we also pad the
clusters in T ext

Σ to ensure that a space-time element σjt,jx assigned to a cluster Z is
fully contained in it. For this purpose, we use a similar uniform padding strategy as
in Section 5.2.1, where we pad all boxes with the same spatial level `x in T ext

Σ by the
same amount. In the following sections we assume that clusters are padded in this
way and identify clusters in T ext

Σ with their padded versions as we did in Chapter 5.

7.2.2 Operation lists for the time-adaptive FMM

The operation lists which we have constructed in Section 5.2.2 for clusters in a space-
time box cluster tree TΣ induce a partition of the matrix Vh into admissible blocks,
which we approximate in the FMM, and inadmissible blocks which are applied di-
rectly. The extension T ext

Σ of TΣ and the two new expansions (7.1) and (7.3) of the
heat kernel (3.4) allow us to further subdivide certain blocks which are inadmissible in
the setting of Section 5.2.2, and to obtain new kinds of admissible blocks Vh|Ẑtar×Ẑsrc

for which the standard approximation in Section 5.2.3 would not work well in general.
In this section we construct new operation lists corresponding to these new kinds of
admissible blocks. Their approximation is then described in Section 7.2.3.

As a �rst step, we need to identify pairs of clusters Ztar and Zsrc for which the
temporally one-sided expansions (7.1) and (7.3) of the heat kernel are well-suited. In
Theorem 7.2 and Remark 7.4 we have seen that the expansion (7.1) of the heat kernel
in two clusters Ztar and Zsrc of the same spatial size approximates the heat kernel
well if the temporal intervals Itar and Isrc satisfy the admissibility criterion (7.5),
Isrc is the shorter interval, and the cluster Zsrc satis�es the space-time con�guration
criterion (5.27). For the expansion (7.3) the spatial sizes of Ztar and Zsrc have to
coincide, the admissibility criterion (7.5) has to be satis�ed, Itar has to be the shorter
time interval, and Ztar has to satisfy the space-time con�guration criterion (5.27). In
both cases, it su�ces to consider pairs of clusters Ztar and Zsrc where Isrc is causally
relevant for Itar because for all other pairs the heat kernel is constantly zero and so
are the related subblocks of Vh.

In Section 5.2.2 we have introduced the interaction lists IM2L(Ztar) of clusters Ztar

in TΣ to keep track of corresponding clusters Zsrc for which the standard expan-
sion (5.9) of the heat kernel is suitable. These lists were �lled using a recursive sub-
division procedure in Algorithm 5.2 which ensures that interactions between clusters
take place on the coarsest level possible. For the new kernel expansions we intro-
duce two new operation lists in addition to those in Section 5.2.2, namely the M2Lx
and Mx2L interaction lists of clusters in T ext

Σ . A cluster Zsrc is added to the M2Lx

7.2 Description of the time-adaptive FMM 143

interaction list IM2Lx(Ztar) of Ztar if the temporally one-sided expansion (7.1) is suit-
able for Ztar and Zsrc, but the standard expansion (5.9) is not. Similarly, Zsrc is
added to the Mx2L interaction list IMx2L(Ztar) of Ztar if the temporally one-sided
expansion (7.3) is suitable, but (5.9) is not. The new lists are named after the cor-
responding FMM operations which we introduce in Section 7.2.3. They are �lled
together with the original operation lists by a recursive procedure, which is pre-
sented in Algorithm 7.2. In the following we call blocks Vh|Ẑtar×Ẑsrc

admissible if
Zsrc ∈ IM2L(Ztar), and temporally one-sided admissible if either Zsrc ∈ IMx2L(Ztar) or
Zsrc ∈ IM2Lx(Ztar).

Algorithm 7.2 Construction of the operation lists for the time-adaptive FMM.

Require: Let T ext
Σ be an extended space-time cluster tree with root Z(0).

Fix constants η1, η2 ∈ R>0 for the admissibility criteria (5.12) and (7.5).
Fix a constant ntr for the de�nition of the spatial interaction areas IA in (5.31).

1: Call DetermineOperationListsExt(Z(0), Z(0)).

2: function DetermineOperationListsExt(Zsrc, Ztar)
3: if Xsrc ∈ IA(Xtar) and Isrc is causally relevant for Itar

4: if Isrc and Itar satisfy the admissibility criterion (5.12)
5: Add Zsrc to IM2L(Ztar).
6: else

7: if Ztar is not a leaf and Ztar is not temporally indivisible
8: if Zsrc is not a leaf and Zsrc is not temporally indivisible
9: for all (Zsrc,c, Ztar,c) with Zsrc,c ∈ child(Zsrc), Ztar,c ∈ child(Ztar)

10: Call DetermineOperationListsExt(Zsrc,c, Ztar,c).

11: else // Zsrc is a leaf or a temporally indivisible cluster.
12: if Zsrc is temporally indivisible
13: for all Ztar,c ∈ child(Ztar)
14: Call DetermineMx2LAndNFLists(Zsrc, Ztar,c).

15: else // Zsrc is not a temporally indivisible cluster but a leaf.
16: Add Zsrc to N (Ztar).

17: else // Ztar is a leaf or a temporally indivisible cluster.
18: if Ztar is temporally indivisible
19: if Zsrc is not a leaf and Zsrc is not temporally indivisible
20: for all Zsrc,c ∈ child(Zsrc)
21: Call DetermineM2LxAndNFLists(Zsrc,c, Ztar).

22: else

23: Add Zsrc to N (Ztar).

24: else // Ztar is not a temporally indivisible cluster but a leaf.
25: Add Zsrc to N (Ztar).

144 7 A time-adaptive version of the space-time FMM

Algorithm 7.2 can be seen as an extension of Algorithm 5.2 in Section 5.2.2. The
operation lists are constructed by using the recursive routine DetermineOper-
ationListsExt that acts on pairs of clusters (Zsrc, Ztar) in the extended cluster
tree T ext

Σ , which we denote as blocks in this context. Lines 3�10 of Algorithm 7.2 are
similar to lines 3�9 in Algorithm 5.2. Here we check if Isrc is causally relevant for Itar or
if a block can be neglected, which is the case if Xsrc /∈ IA(Xtar); see (5.31) and the re-
lated discussion. If Isrc and Itar satisfy the standard admissibility criterion (5.12), the
corresponding block is admissible and we add Zsrc to the interaction list IM2L(Ztar).
Otherwise, we subdivide the block recursively. As long as Zsrc and Ztar are neither
leaves nor temporally indivisible clusters in T ext

Σ , we subdivide the corresponding
block as in Algorithm 5.2 by considering all pairs of blocks related to children of Zsrc

and Ztar in recursive calls of the routine DetermineOperationListsExt.

Lines 11�25 in Algorithm 7.2 are new compared to Algorithm 5.2. Here we deal with
the situations where Zsrc or Ztar is temporally indivisible or a leaf in T ext

Σ . Such
clusters would be leaves in the non-extended tree TΣ, so we would add Zsrc to the
near�eld N (Ztar) of Ztar in these cases in Algorithm 5.2. Instead, we try to iden-
tify temporally one-sided admissible blocks by special one-sided block subdivisions
in Algorithm 7.2. Such a subdivision is performed in lines 12�14 and 19�21 if ei-
ther Zsrc or Ztar is temporally indivisible and the respective other cluster can be
further subdivided in time, i.e. it is neither a leaf nor temporally indivisible. If Zsrc

is temporally indivisible and Ztar can be further subdivided in time, we can consider
the blocks of Vh corresponding to Zsrc and Ztar,c ∈ child(Ztar). For these blocks a
temporally one-sided expansion (7.3) instead of the full expansion (5.9) may be ad-
missible, since the subdivision of Ztar in time leads to a temporal separation between
some of the children of Ztar and Zsrc, see Figures 7.1a and 7.1b. We check the blocks
for this kind of admissibility in the subroutine DetermineMx2LAndNFLists in
line 14, which is described in Algorithm 7.3 and further discussed below. Similarly,
if Ztar is temporally indivisible and Zsrc is neither a leaf nor temporally indivisible,
we can subdivide Zsrc and treat the corresponding blocks separately in the routine
DetermineM2LxAndNFLists in line 21 and Algorithm 7.4.

For some clusters Zsrc and Ztar in lines 11�25 of the routine DetermineOpera-
tionListsExt further subdivisions of the corresponding blocks are not possible or
would not yield e�ciently approximable subblocks anymore. This is the case if:

� Zsrc is a leaf, which is not temporally indivisible, i.e. Isrc contains more than
one time interval in the temporal partition Iht corresponding to Σh.

� Ztar is a leaf, which is not temporally indivisible.

� Ztar and Zsrc are both temporally indivisible.

In all these cases we add Zsrc to the near�eld N (Ztar) of Ztar; see lines 16, 23 and 25.

7.2 Description of the time-adaptive FMM 145

x

t

a) Clusters Zsrc and Ztar.

x

t

b) First subdivision case.

x

t

c) Second subdivision case.

Figure 7.1: Illustration of the special subdivision of blocks/pairs (Zsrc, Ztar) to detect
temporally one-sided admissible blocks. For the sake of simplicity, the mesh Σh

and the clusters are drawn in 2D instead of 4D like in Figure 5.1. In a) a temporally
indivisible source cluster Zsrc is drawn with dashed blue lines and a non-leaf target
cluster Ztar with solid green lines. The children of Ztar are either subdivided only in
time (see b)), or in space and time (see c)). In both cases, Zsrc is separated in time
from the children of Ztar which are hatched in green. In b), Zsrc and the hatched
child of Ztar form a temporally one-sided admissible block/pair. In c), we have to
subdivide Zsrc in space to get clusters whose spatial sizes coincide with the spatial
sizes of the children of Ztar. Then, the spatially subdivided children of Zsrc and
the hatched children of Ztar form temporally one-sided admissible blocks again.

The routine DetermineMx2LAndNFLists in Algorithm 7.3 is used to determine
pairs/blocks (Zsrc, Ztar) for which the approximation (7.3) is appropriate. Whenever
we call this routine for two candidates Zsrc and Ztar, Zsrc is a temporally indivisi-
ble cluster whose temporal level `t(Zsrc) is smaller than the temporal level `t(Ztar)
of Ztar. The spatial sizes of the boxes Ztar and Zsrc have to coincide for the approxi-
mation (7.3), which is the case if the spatial levels `x(Ztar) and `x(Zsrc) of the clusters
are the same. This is checked in line 2. Let us �rst assume that the spatial levels
coincide. Then we can check if the temporal components Itar and Isrc satisfy the ad-
missibility criterion (7.5). If this is the case, we have detected a temporally one-sided
admissible block, and thus we add Zsrc to the Mx2L interaction list IMx2L(Ztar) of Ztar;
see line 4. Otherwise, we want to recursively subdivide the current block. If Ztar is a
leaf or temporally indivisible, a further subdivision is not possible or would not yield
admissible subblocks anymore, so we add Zsrc to the near�eld N (Ztar) of Ztar; see
line 7. In the contrary case, we subdivide the current block by recursively calling the
routine DetermineMx2LAndNFLists for Zsrc and all children of Ztar; see line 10.
Note that we subdivide only Ztar here, because Zsrc is temporally indivisible. Thus,
only a subdivision of Ztar leads to a di�erent temporal con�guration of the resulting
blocks which might then satisfy the admissibility criterion (7.5).

146 7 A time-adaptive version of the space-time FMM

Algorithm 7.3 Determine Mx2L interaction lists by asymmetric subdivisions.

1: function DetermineMx2LAndNFLists(Zsrc, Ztar)
2: if `x(Zsrc) == `x(Ztar)
3: if Isrc and Itar satisfy the admissibility criterion (7.5)
4: Add Zsrc to IMx2L(Ztar).
5: else

6: if Ztar is temporally indivisible or Ztar is a leaf
7: Add Zsrc to N (Ztar).
8: else // Subdivision of Ztar in space and time.
9: for all Ztar,c ∈ child(Ztar)

10: Call DetermineMx2LAndNFLists(Zsrc, Ztar,c).

11: else

12: if Zsrc is a leaf
13: Add Zsrc to N (Ztar).
14: else // Spatial subdivision of Zsrc.
15: for all Zsrc,c ∈ child(Zsrc)
16: Call DetermineMx2LAndNFLists(Zsrc,c, Ztar).

Let us now discuss the case when the spatial levels of the clusters Zsrc and Ztar in
the routine DetermineMx2LAndNFLists in Algorithm 7.3 do not coincide; see
lines 11�16. Whenever we call this routine, there holds `x(Zsrc) ≤ `x(Ztar), so `x(Zsrc)
is less than `x(Ztar) in this case. The proper spatial level is the one of Ztar. This
follows from Remark 7.4 and the construction of the original space-time box cluster
tree TΣ, whose boxes satisfy the space-time con�guration criterion (5.27). Therefore,
we have to subdivide Zsrc to obtain clusters with larger spatial levels. If Zsrc is a leaf
in T ext

Σ this is not possible, and we add Zsrc to the near�eld N (Ztar) of Ztar regardless
of whether the temporal components satisfy (7.5) or not; see line 13. Otherwise we
can subdivide Zsrc and call the routine DetermineMx2LAndNFLists recursively
for Ztar and all children of Zsrc; see line 16. Since Zsrc is a temporally indivisible
cluster, its children in T ext

Σ are subdivided only with respect to space. Hence, their
spatial level `x is larger than the spatial level `x(Zsrc) of Zsrc as desired.

To summarize, the main goal of the routine DetermineMx2LAndNFLists in Al-
gorithm 7.3 is to identify temporally one-sided admissible blocks by recursively subdi-
viding the target cluster Ztar in time until the admissibility criterion (7.5) is satis�ed
for the temporal components of the resulting clusters or until a �nal inadmissible
block is detected. During this procedure, the source cluster might need to be subdi-
vided to ensure that the considered pairs of clusters have the same spatial level. This
is also illustrated in Figure 7.1. Note that we do not check for an additional spatial
truncation in Algorithm 7.3. This is motivated by the fact that the temporal con�g-
uration does not change signi�cantly when only the target cluster is re�ned in time.

7.2 Description of the time-adaptive FMM 147

Since the decay of the heat kernel in space depends on the temporal con�guration,
an additional spatial truncation is thus not feasible.

The routine DetermineM2LxAndNFLists in Algorithm 7.4 is the analog of De-
termineMx2LAndNFLists when the roles of source and target clusters are inter-
changed, i.e. when Ztar is temporally indivisible while Zsrc is not. In this case, we
want to �nd blocks (Zsrc, Ztar) for which the approximation (7.1) is admissible. The
recursion strategy including the choice of spatial levels is completely analogous to
the one in DetermineM2LxAndNFLists.

Algorithm 7.4 Determine M2Lx interaction lists by asymmetric subdivisions.

1: function DetermineM2LxAndNFLists(Zsrc, Ztar)
2: if `x(Ztar) == `x(Zsrc)
3: if Isrc and Itar satisfy the admissibility criterion (7.5)
4: Add Zsrc to IM2Lx(Ztar).
5: else

6: if Zsrc is temporally indivisible or Zsrc is a leaf
7: Add Zsrc to N (Ztar).
8: else // Subdivision of Zsrc in space and time.
9: for all Zsrc,c ∈ child(Zsrc)

10: Call DetermineM2LxAndNFLists(Zsrc,c, Ztar).

11: else

12: if Ztar is a leaf
13: Add Zsrc to N (Ztar).
14: else // Spatial subdivision of Ztar.
15: for all Ztar,c ∈ child(Ztar)
16: Call DetermineM2LxAndNFLists(Zsrc, Ztar,c).

Remark 7.6. A purely spatially re�ned cluster Zsrc in the tree T ext
Σ can only be con-

sidered as a source cluster in the subroutine DetermineMx2LAndNFLists in Al-
gorithm 7.3, if the corresponding target cluster Ztar has the same spatial level. In
particular, there might exist spatially re�ned clusters in T ext

Σ which are never consid-
ered in this routine. For the same reason, such clusters might never be considered
as target clusters in the subroutine DetermineM2LXandNearfieldLists in Al-
gorithm 7.4. Hence, T ext

Σ might contain clusters that are never visited in the routine
DetermineOperationListsExt and its subroutines. These clusters are not rel-
evant for the FMM and could be removed from the tree T ext

Σ . On the other hand,
one could use them to subdivide large inadmissible blocks into smaller parts for a
better parallel e�ciency as we described in Remark 5.11. For the sake of a simpler
description, we assume in the following that such �ne clusters do not exist or have
been removed from T ext

Σ .

148 7 A time-adaptive version of the space-time FMM

7.2.3 Block approximation and new FMM operations

In Section 5.2.3 we discussed how the kernel approximation (5.9) is used to e�ciently
approximate admissible blocks Vh|Ẑtar×Ẑsrc

of Vh related to clusters Zsrc and Ztar

with Zsrc ∈ IM2L(Ztar) in the application of Vh in the space-time FMM. In this sec-
tion we consider the new temporally one-sided admissible blocks Vh|Ẑtar×Ẑsrc

where
Zsrc ∈ IM2Lx(Ztar) or Zsrc ∈ IMx2L(Ztar) and use the temporally one-sided kernel ex-
pansions (7.1) and (7.3) to approximate their application. As a result, we get new
kinds of FMM operations and related purely spatial moments and local contribu-
tions of clusters in T ext

Σ . As in Section 5.2.4 we introduce additional nested FMM
operations for the computation and evaluation of these spatial moments and local
contributions.

To derive the new FMM operations related to the temporally one-sided admissible
blocks we consider a vector q ∈ REtEx and the local product f loc = Vh|Ẑtar×Ẑsrc

q|Ẑsrc
.

The entries of f loc are given by

f loc
kt,kx =

∑

(jt,jx)∈Ẑsrc

qjt,jx

∫ tkt

tkt−1

∫

γkx

∫ tjt

tjt−1

∫

γjx

Gα(x− y, t− τ) dsy dτ dsx dt (7.8)

for all indices (kt, kx) ∈ Ẑtar. In Section 5.2.3 we assumed that Ztar and Zsrc are
clusters with Zsrc ∈ IM2L(Ztar) and replaced the heat kernel in (7.8) with the expan-
sion (5.9) to derive the FMM operations. Here we assume that Vh|Ẑtar×Ẑsrc

is a tem-
porally one-sided admissible block and distinguish the two cases Zsrc ∈ IM2Lx(Ztar)
and Zsrc ∈ IMx2L(Ztar).

Case 1: Let Zsrc ∈ IM2Lx(Ztar). By the construction of the M2Lx interaction lists in
Algorithms 7.2 and 7.4, Ztar is temporally indivisible in this case and, therefore, Ẑtar

contains only a single time-index kt. We use the temporally one-sided expansion (7.1)
to replace the heat kernel in (7.8) and get

f loc
kt,kx ≈

∫ tkt

tkt−1

∫

γkx

mt∑

a=0

∑

κ,ν∈N3
0:

|κ+ν|≤mx

Ea,
κ,ν(t)TXtar,ν(x) dsx dt µa,κ(Zsrc) (7.9)

for all (kt, kx) ∈ Ẑtar, where the moments µ(Zsrc) are the same as in (5.38), i.e.

µa,κ(Zsrc) =
∑

(jt,jx)∈Ẑsrc

qjt,jx

∫ tjt

tjt−1

∫

γjx

TXsrc,κ(y)L
(mt)
Isrc,a

(τ) dsy dτ

for all a ∈ {0, . . . ,mt} and κ ∈ N3
0 with |κ| ≤ mx. The temporal integral in (7.9) is

evaluated by using a Gauÿ�Legendre quadrature rule with ρt + 1 points, i.e.
∫ tkt

tkt−1

Ea,
κ,ν(t) dt ≈

ρt∑

b=0

ωkt,bE
a,
κ,ν(ζkt,b), (7.10)

7.2 Description of the time-adaptive FMM 149

where {ζkt,b}ρtb=0 and {ωkt,b}ρtb=0 are the corresponding Gauÿ�Legendre quadrature
points and weights on the time interval (tkt−1, tkt). In this way, we get an approxi-

mation f̃ loc of f loc which we compute in three steps:
S2M: We compute the moments µ(Zsrc) by (5.38).
M2Lx: We compute the spatial local contributions λ(x)(Ztar, Zsrc) by

λ(x)
ν (Ztar, Zsrc) =

ρt∑

b=0

ωkt,b
∑

κ∈N3
0:

|κ+ν|≤mx

mt∑

a=0

Ea,
κ,ν(ζkt,b)µa,κ(Zsrc) (7.11)

for all ν ∈ N3
0 with |ν| ≤ mx, where the coe�cient function t 7→ Ea,

κ,ν(t) is given
in (7.2).
Lx2T: For all kx such that (kt, kx) ∈ Ẑtar we evaluate

f̃ loc
kt,kx =

∑

|ν|≤mx

∫

γkx

TXtar,ν(x) dsxλ
(x)
ν (Ztar, Zsrc). (7.12)

Case 2: Let Zsrc ∈ IMx2L(Ztar). In this case, Zsrc is temporally indivisible and Ẑsrc

contains only a single time-index jt. We substitute the heat kernel in (7.8) with the
temporally one-sided expansion in (7.3) and proceed similarly as in case 1 to obtain

an approximation f̃ loc of f loc in the following three steps:
S2Mx: We compute the spatial moments µ(x)(Zsrc) by

µ(x)
κ (Zsrc) =

∑

jx : (jt,jx)∈Ẑsrc

qjt,jx

∫

γjx

TXsrc,κ(y) dsy (7.13)

for all κ ∈ N3
0 with |κ| ≤ mx.

Mx2L: We compute the local contributions λ(Ztar, Zsrc)

λb,ν(Ztar, Zsrc) =

ρt∑

a=0

∑

κ∈N3
0:

|κ+ν|≤mx

ωjt,aE
,b
κ,ν(ζjt,a)µ

(x)
κ (Zsrc) (7.14)

for b ∈ {0, . . . ,mt} and ν ∈ N3
0 with |ν| ≤ mx, where {ζjt,a}ρta=0 and {ωjt,a}ρta=0 are

Gauÿ�Legendre quadrature points and weights on the time interval (tjt−1, tjt), and
τ 7→ E ,b

κ,ν(τ) is the coe�cient function given in (7.4).
L2T: We evaluate the local contributions λ(Ztar, Zsrc) by (5.40), i.e. we compute

f̃ loc
kt,kx =

mt∑

b=0

∑

|ν|≤mx

λb,ν(Ztar, Zsrc)

∫ tkt

tkt−1

∫

γkx

TXtar,ν(x)L
(mt)
Itar,b

(t) dsx dt

for all (kt, kx) ∈ Ẑtar.

150 7 A time-adaptive version of the space-time FMM

The abbreviations Mx and Lx in the M2Lx, Lx2T, S2Mx and Mx2L operations in-
dicate that these operations involve purely spatial moments and local contributions.
For example, in the M2Lx operation (7.11) a standard moment (M) is transformed
into a spatial local contribution (Lx). These FMM operations and the correspond-
ing purely spatial moments and local contributions are new compared to the FMM
operations in Section 5.2.3. This is related to the fact that the expansions (7.1)
and (7.3) of the heat kernel incorporate an interpolation in only one of the temporal
variables instead of an interpolation in both variables as the expansion (5.9) does.
However, all three expansions include an additional truncated Chebyshev expansion
in both spatial variables. Thus, we have an expansion in space and time in Zsrc and
only an expansion in space in Ztar in the case of (7.1), and vice versa in the case
of (7.3). The spatial local contributions in (7.11) and (7.12) and the spatial moments
in (7.13) and (7.14) originate from this purely spatial expansion in the respective clus-
ter. Note that the spatial moments depend explicitly on the time interval (tjt−1, tjt)
contained in Isrc and the spatial local contributions depend explicitly on the time
interval (tkt−1, tkt) contained in Itar. Since these time clusters contain only a single
time interval whenever we construct spatial moments or spatial local contributions
we do not indicate this dependence in the notation.

In comparison to the standard S2M and L2T operations in (5.38) and (5.40), the
temporal integrals over the Lagrange polynomials are missing in the S2Mx and Lx2T
operations in (7.13) and (7.12). The corresponding integration in time is included
in the Mx2L and M2Lx operations in (7.14) and (7.11) instead where it is carried
out by a numerical quadrature; see (7.10). It is not surprising that these Mx2L and
M2Lx operations are similar to the M2L operation in (5.39), since the additional
interpolation in the kernel expansion (5.9), which leads to the M2L operation, can be
interpreted as an alternative quadrature formula in the context of (7.10). However,
we can freely choose the quadrature formula in (7.10) for the M2Lx operations �
and likewise for the Mx2L operations � and adapt it for individual time intervals
to obtain better accuracy. The discussion in Remark 7.3 indicates that quadrature
formulae with higher accuracies are required in those situations, where we use the
temporally one-sided expansions. Alternatively, we could analytically evaluate the
integrals of the expansion coe�cients Ea,

κ,ν(·t) and E ,b
κ,ν(·τ) for the M2Lx and Mx2L

operations, respectively. However, this would destroy the product structure of the
coe�cients and prohibit an e�cient execution as in [69, Section 4.3] which we use for
the Mx2L and M2Lx operations in the same way as for the M2L operations in our
implementation.

The newly introduced spatial moments µ(x)(Z) and spatial local contribution λ(x)(Z)
of clusters Z ∈ T ext

Σ can be computed and evaluated in a nested way like the standard
moments µ(Z) and standard local contributions λ(Z) in Section 5.2.4. The corre-
sponding new FMM operations are called Mx2Mx and Lx2Lx operations in this work
and can be derived like the space-time M2M and L2L operations in (5.49) and (5.51)

7.2 Description of the time-adaptive FMM 151

by using the identity (5.47) in Section 5.2.4, i.e. a suitable change of basis of the
involved Chebyshev polynomials. Furthermore, the spatial moments µ(x)(Z) of a
cluster Z can be used to compute its standard moments µ(Z) if both are needed,
and standard local contributions of Z can be transformed into spatial local contri-
butions of Z. We describe the related Mx2M and L2Lx operations together with the
Mx2Mx and Lx2Lx operations in the following.

Mx2Mx: Let Z = X × I be a temporally indivisible cluster in T ext
Σ , whose children

are obtained by a purely spatial subdivision. Its spatial moments µ(x)(Z) can be
computed by

µ(x)(Z) =
∑

Zc∈child(Z)
Zc=Xc×I

µ(x)(Z,Zc),

where the spatial moments µ(x)(Z,Zc) of Z related to a child Zc = Xc × I are
computed by the Mx2Mx operation

µ(x)
ν (Z,Zc) =

∑

κ≤ν
q(x)
κ,ν(Xc, X)µ(x)

κ (Zc) (7.15)

for all ν ∈ N3
0 with |ν| ≤ mx. The coe�cients q

(x)
κ,ν(Xc, X) which are used here are

those in (5.47).

Mx2M: For a temporally indivisible cluster Z = X × I in T ext
Σ we can compute the

standard moments µ(Z) de�ned in (5.38) from the spatial moments µ(x)(Z) de�ned
in (7.13) by including the temporal integrals of the Lagrange polynomials. This yields
the Mx2M operation

µa,κ(Z) = µ(x)
κ (Z)

∫ tjt

tjt−1

L
(mt)
I,a (τ) dτ (7.16)

for all a ∈ {0, . . . ,mt} and κ ∈ N3
0 with |κ| ≤ mx, where (tjt−1, tjt) is the only time

interval contained in the temporal part I of the temporally indivisible cluster Z. Note
that such a conversion is only necessary for a cluster Z if its parent is not temporally
indivisible. The standard moments of all other temporally indivisible clusters are not
needed.

L2Lx: For a temporally indivisible cluster Z = X × I in T ext
Σ we can transform the

standard local contributions λ(Z) into spatial local contributions λ(x),trf(Z) by using
the L2Lx operation

λ(x),trf
ν (Z) =

mt∑

b=0

λb,ν(Z)

∫ tkt

tkt−1

L
(mt)
I,b (t) dt (7.17)

for all ν ∈ N3
0 with |ν| ≤ mx, where (tkt−1, tkt) is the only time interval contained

in the temporal part I of the temporally indivisible cluster Z. This corresponds to

152 7 A time-adaptive version of the space-time FMM

an evaluation of the local contributions λ(Z) with respect to time only. The result-
ing spatial local contributions λ(x),trf(Z) can be added to the spatial local contribu-

tions λ̃(x)(Z), which are those obtained by summing up all spatial local contributions
related to M2Lx operations for Z and Zsrc ∈ IM2Lx(Z) in (7.11), i.e.

λ̃(x)(Z) =
∑

Zsrc∈IM2Lx(Z)

λ(x)(Z,Zsrc). (7.18)

In this way, we get the spatial local contributions

λ(x)(Z) = λ̃(x)(Z) + λ(x),trf(Z)

that can be evaluated with a single Lx2T operation or further processed with an
Lx2Lx operation. Note that the standard local contributions λ(Z) of a temporally
indivisible cluster Z will be computed in the later algorithm only if the parent of Z
is not temporally indivisible. In particular, only for such clusters an L2Lx operation
will be executed.

Lx2Lx: Let Z = X×I be a temporally indivisible cluster in T ext
Σ and let Zc = Xc × I

be a child of Z obtained by a purely spatial subdivision. The spatial local contri-
butions λ(x) can be transformed into spatial local contributions λ(x)(Zc, Z) of Zc by
the Lx2Lx operation

λ(x)
κ (Zc, Z) =

∑

ν≥κ
q(x)
κ,ν(Xc, X)λν(Z) (7.19)

for all κ ∈ N3
0 with |κ| ≤ mx, where the coe�cients q

(x)
κ,ν(Xc, X) are given in (5.47).

We can add λ(x)(Zc, Z) and the spatial local contributions λ̃(x)(Zc) of Zc that are
de�ned as in (7.18) to get the spatial local contributions λ(x)(Zc), which can be
evaluated by a single Lx2T operation or further processed by additional Lx2Lx op-
erations.

7.2.4 The time-adaptive space-time FMM

In Algorithm 7.5 we present the new time-adaptive version of the space-time FMM
in Chapter 5. This algorithm can be seen as an extension of Algorithm 5.3. The
additional subdivision of formerly inadmissible blocks by Algorithms 7.3 and 7.4
leads to new FMM operations which allow for a more e�cient treatment of space-
time tensor product meshes which are adaptive in time. The related new purely
spatial moments and local contributions are compatible with the standard moments
and local contributions which allows us to compute and evaluate all of them in a
nested way to avoid redundant computations.

7.2 Description of the time-adaptive FMM 153

Algorithm 7.5 The time-adaptive FMM for the approximate evaluation of f = Vhq.

Require: Let a space-time box cluster tree T ext
Σ as in Algorithm 7.1 be given.

Let the operation lists be constructed by Algorithm 7.2.
Let expansion degrees mt and mx and a parameter ρt (for (7.10)) be given.

1: Initialize f = 0.
2: Call ForwardTransformationTimeAdaptiveFMM(). // Alg. 7.6

3: for all boxes Ztar ∈ T ext
Σ // Multiplication phase

4: if Ztar is temporally indivisible
5: Initialize the spatial local contributions by setting λ(x)(Ztar) = 0.
6: if par(Ztar) is not temporally indivisible
7: Initialize the local contributions by setting λ(Ztar) = 0.

8: else // Ztar is not temporally indivisible.
9: Initialize the local contributions by setting λ(Ztar) = 0.

10: for all boxes Zsrc ∈ IM2L(Ztar)
11: M2L: Add the result λ(Ztar, Zsrc) from (5.39) to λ(Ztar).

12: for all boxes Zsrc ∈ IMx2L(Ztar)
13: Mx2L: Add the result λ(Ztar, Zsrc) from (7.14) to λ(Ztar).

14: for all boxes Zsrc ∈ IM2Lx(Ztar)
15: M2Lx: Add the result λ(x)(Ztar, Zsrc) from (7.11) to λ(x)(Ztar).

16: for all levels ` = 1, . . . , depth(T ext
Σ) // Backward transformation

17: for all boxes Z ∈ T ext
Σ with `(Z) == `

18: if par(Z) is temporally indivisible:
19: Lx2Lx: Add the result λ(x)(Z, par(Z)) from (7.19) to λ(x)(Z).
20: else

21: if Z results from par(Z) by a temporal re�nement:
22: Temporal L2L: Add the result λ(Z, par(Z)) from (5.50) to λ(Z).
23: else

24: Space-time L2L: Add the result λ(Z, par(Z)) from (5.51) to λ(Z).

25: if Z is temporally indivisible:
26: L2Lx: Add the result λ(x),trf from (7.17) to λ(x)(Z).

27: for all leaves Z ∈ T ext
Σ

28: if Z is temporally indivisible:
29: Lx2T: Evaluate λ(x)(Z) by (7.12) and add the result to f |Ẑ .
30: else

31: L2T: Evaluate λ(Z) by (5.40) and add the result to f |Ẑ .

32: for all Ztar ∈ T ext
Σ // Near�eld evaluation

33: for all Zsrc ∈ N (Ztar)
34: Near�eld operation: Add the product Vh|Ẑtar×Ẑsrc

q|Ẑsrc
to f |Ẑtar

.

154 7 A time-adaptive version of the space-time FMM

Algorithm 7.6 The forward transformation phase in Algorithm 7.5

1: function ForwardTransformationTimeAdaptiveFMM

2: for all Z ∈ T ext
Σ

3: if Z is temporally indivisible:
4: Initialize the spatial moments by setting µ(x)(Z) = 0.
5: else

6: Initialize the moments by setting µ(Z) = 0.

7: for all leaves Z ∈ T ext
Σ

8: if Z is temporally indivisible:
9: S2Mx: Compute µ(x)(Z) by (7.13).

10: else

11: S2M: Compute µ(Z) by (5.38).

12: for all levels ` = depth(T ext
Σ), . . . , 1

13: for all Z ∈ T ext
Σ with `(Z) == `

14: if par(Z) is temporally indivisible:
15: Mx2Mx: Compute µ(x)(par(Z), Z) by (7.15).
16: Add µ(x)(par(Z), Z) to µ(x)(par(Z)).
17: else

18: if Z is temporally indivisible
19: Mx2M: Compute µ(Z) from µ(x)(Z) by (7.16).

20: if Z results from par(Z) by a temporal subdivision:
21: Temporal M2M: Compute µ(par(Z), Z) by (5.48).
22: else

23: Space-time M2M: Compute µ(par(Z), Z) by (5.49).
24: Add µ(par(Z), Z) to µ(par(Z)).

The time-adaptive FMM in Algorithm 7.5 is split into the same four phases as the
standard space-time FMM in Algorithm 5.3. In the new forward transformation
phase, which is covered in Algorithm 7.6, we need to distinguish between temporally
indivisible clusters and others. Spatial moments µ(x)(Z) are computed for temporally
indivisible leaf clusters Z by S2Mx operations and passed to their temporally indi-
visible ancestors by Mx2Mx operations. For a temporally indivisible cluster Z whose
parent is not temporally indivisible also the standard moments µ(Z) are needed,
which are obtained by an Mx2M operation. The resulting moments are used to com-
pute the moments of clusters at lower levels in the tree with suitable M2M operations
just like in the original Algorithm 5.3. If a leaf cluster Z in T ext

Σ is not temporally
indivisible, we compute its moments µ(Z) directly by an S2M operation, and further
process them with M2M operations. In this way, all the required spatial moments and
standard moments of clusters in T ext

Σ are computed in the forward transformation
phase.

7.3 Complexity analysis for newly approximated blocks 155

In the subsequent multiplication phase of Algorithm 7.5, we execute all the M2L
operations as in Algorithm 5.3 and, in addition, all new M2Lx and Mx2L opera-
tions. The resulting local contributions and spatial local contributions are evaluated
in a nested way in the backward transformation phase. Standard local contribu-
tions λ(Z) are passed from a cluster Z to its children by suitable L2L operations.
As soon as a temporally indivisible cluster is encountered, the local contributions
are transformed into spatial local contributions with an L2Lx operation. The spatial
local contributions λ(x)(Z) are then passed from a cluster Z to its descendants by
Lx2Lx operations. In the last part of the backward transformation phase, the spatial
local contributions of temporally indivisible leaf cluster are evaluated by an Lx2T
operation, while for all other leaf clusters the standard local contributions are evalu-
ated by an L2T operation like in Algorithm 5.3. Finally, in the near�eld evaluation
phase, all inadmissible blocks are applied directly just like in the corresponding phase
of Algorithm 5.3.

7.3 Complexity analysis for newly approximated blocks

In this section we give an overview of the runtime complexities of the individual
operations in the time-adaptive FMM. Furthermore, we compare the costs of the
standard FMM in Algorithm 5.3 with the costs of the new time-adaptive FMM in
Algorithm 7.5 for certain groups of temporally one-sided admissible blocks to better
understand the bene�ts provided by the latter.

Note that we do not intend to give a complete complexity analysis of the full time-
adaptive FMM here. The reason is that the operations in the time-adaptive FMM
highly depend on the speci�c adaptive decomposition of the considered time interval
(0, T) which makes a general analysis without any restrictive assumptions di�cult.
Furthermore, an additional temporal near�eld compression is, in general, necessary
to reduce the costs of near�eld operations related to coarse time steps, which may
dominate the overall costs of the time-adaptive FMM. Such a near�eld compression
scheme is discussed in detail in Chapter 8.

The runtime complexities of the new FMM operations are listed in Table 7.1. To
enable a simple comparison we also list the runtime complexities of the original
FMM operations in this table. Recall that we estimated the complexity of the S2M
and L2T operations in Section 5.2.3 where we also discussed that the complexity
O((mx + 1)4(mt + 1)2) of the M2L operations is only achieved if they are executed
as proposed in [69, Section 4.3]. Executing the M2Lx and Mx2L operations in the
same way requires O((mx + 1)4(mt + 1)(ρt + 1)) arithmetic operations. The Mx2Mx
and Lx2Lx operations have the complexity given in Table 7.1 if the product structure
of the coe�cients q

(x)
κ,ν(Xc, X) in (7.15) and (7.19) is used to split up the sums in the

156 7 A time-adaptive version of the space-time FMM

computation; see also [67, Sections 4.2 and 4.3]. The same holds for the space-
time M2M and L2L operations. The complexity of all other FMM operations can
be estimated by simply counting the number of multiplications in the respective
equations. By comparing the numbers in Table 7.1 we conclude that the new FMM
operations are similarly e�cient as the related standard FMM operations.

Operations Runtime complexity

S2Mx/Lx2T ((7.13)/(7.12)) O(#Ẑ
(
mx+3

3

)
)

Mx2Mx/Lx2Lx ((7.15)/(7.19)) O(
(
mx+3

3

)
mx

4
)

Mx2M/L2Lx ((7.16)/(7.17)) O(
(
mx+3

3

)
(mt + 1))

M2Lx/Mx2L ((7.11)/(7.14)) O((mx + 1)4(mt + 1)(ρt + 1))

S2M/L2T ((5.38)/(5.40)) O(#Ẑ
(
mx+3

3

)
+ nt(Ẑ)

(
mx+3

3

)
(mt + 1))

Temporal M2M/L2L ((5.48)/(5.50)) O(
(
mx+3

3

)
(mt + 1)2)

Space-time M2M/L2L ((5.49)/(5.51)) O(
(
mx+3

3

)
(mt + 1)(mx

4
+ (mt + 1)))

M2L ((5.39)) O((mx + 1)4(mt + 1)2)

Table 7.1: Runtime complexities of all FMM operations in the time-adaptive space-
time FMM for the heat equation for given expansion orders mx and mt. The
cluster Z appearing in the estimated costs for the S2M, L2T, S2Mx and Lx2T
operations is the related source or target cluster and (ρt + 1) is the number of
quadrature points used in the M2Lx and Mx2L operations; cf. (7.10).

To study the e�ects of the approximation of temporally one-sided admissible blocks
of Vh we consider an extended space-time cluster tree T ext

Σ corresponding to a tensor-
product mesh Σh = Γh × Iht , where Iht is a non-uniform partition of the time
interval (0, T) and Γh is a su�ciently �ne spatial mesh with similarly sized elements.
We focus on two �xed time clusters Isrc and Itar related to clusters in T ext

Σ which
satisfy the admissibility criterion (7.5) but not the admissibility criterion (5.12), and
assume that Itar is temporally indivisible, i.e. it contains only a single time interval of
the partition Iht . The temporally one-sided admissible blocks of Vh related to these
time intervals are given by

B(Isrc, Itar) = {Vh|Ẑ1×Ẑ2
: Z1 = X1 × Itar, Z2 = X2 × Isrc, Z2 ∈ IM2Lx(Z1)}. (7.20)

In the following, we compare the costs for the direct application of these blocks in the
case of the standard FMM with the costs of the corresponding new time-adaptive
FMM operations. Note that the analysis for interchanged roles of Isrc and Itar �
i.e. a temporally indivisible cluster Isrc and blocks Vh|Ẑ1×Ẑ2

with Z2 ∈ IMx2L(Z1) �
can be done following the same lines due to the symmetric character of the related
FMM operations, which is why it is su�cient to focus on the above case.

7.3 Complexity analysis for newly approximated blocks 157

We start by estimating the number of blocks in (7.20) or rather the corresponding
pairs of clusters. From the construction of the operation lists in Algorithm 7.2 it
follows that these clusters have the same spatial level `x. Due to the uniform spatial
re�nements in the construction of the extended space-time box cluster tree T ext

Σ

in Algorithm 7.1, the spatial components of the clusters with spatial level `x are
contained in a regular grid G`x consisting of 8`x boxes, as we already noted for
the non-extended trees in Section 5.2.2. Since each target cluster Ztar related to a
block in (7.20) is a product of a spatial cluster in G`x and the time interval Itar, the
number Ntar of all such target clusters is bounded by

Ntar ≤ #G`x = 8`x .

For each target cluster Ztar = Xtar × Itar we need to estimate the number of clusters
in the M2Lx interaction list IM2Lx(Ztar) with temporal component Isrc. This number
of clusters is in�uenced by the truncation in space applied in the construction of the
operation lists in Algorithm 7.2, which is determined at the level of the coarsest tem-
porally indivisible ancestor Zanc

tar = Xanc
tar ×Itar of Ztar in T ext

Σ . In fact all relevant pairs
of clusters (Zsrc, Ztar) with Zsrc ∈ IM2Lx(Ztar) are obtained by recursive subdivisions
of this cluster Zanc

tar and a suitable source cluster Zanc
src = Xanc

src × Ianc
src , whose spatial

component Xanc
src is contained in the interaction area IA(Xanc

tar) due to the truncation
in space executed in line 3 of Algorithm 7.2. The number of clusters in IA(Xanc

tar) is
bounded by (2ntr + 1)3 in general, and is approximately equal to (2ntr + 1)2 if the
spatial clusters at this level are �ne enough to resolve the surface Γ, which we assume
for the sake of simplicity in the following. With this assumption, it also follows that
each cluster Zanc

src = Xanc
src × Ianc

src with Xanc
src ∈ IA(Xanc

tar) has approximately 4dx descen-
dants with temporal component Isrc and spatial level `x, where dx = `x − `x(Zanc

tar)
corresponds to the number of spatial re�nements required to obtain these descen-
dants. These are the clusters in IM2Lx(Ztar) with temporal component Isrc and their
number is approximately equal to (2ntr+1)24dx . Hence, we conclude that the number
of blocks in (7.20) satis�es

#B(Isrc, Itar) ≈ Ntar(2ntr + 1)24dx .

If the blocks in (7.20) are stored and applied without any approximation the related
storage and runtime complexity is directly proportional to the number of entries of
these blocks. This number is

O(#B(Isrc, Itar)nt(Isrc)n
2
`x), (7.21)

where we denote the number of time steps contained in Isrc by nt(Isrc) and the average
number of spatial elements contained in a cluster with spatial level `x by n`x .

In the time-adaptive FMM the blocks in (7.20) are approximated by computing the
moments of the involved source clusters, applying an M2Lx operation for each block,

158 7 A time-adaptive version of the space-time FMM

and evaluating the resulting spatial local contributions. As we have seen in Table 7.1,
the runtime complexity of a single M2Lx operation is O((mx + 1)4(mt + 1)(ρt + 1)),
so the runtime complexity for the execution of the M2Lx operations for all blocks
in (7.20) is

O(#B(Isrc, Itar)(mx + 1)4(mt + 1)(ρt + 1)). (7.22)

Due to the nested computation and evaluation of (spatial) moments and (spatial)
local contributions in the time-adaptive FMM, the costs of these operations should
not be estimated in a blockwise manner to avoid counting the same costs multiple
times. On a global level all (spatial) moments and (spatial) local contributions of
clusters in T ext

Σ are computed or evaluated only once in a nested way in the time-
adaptive FMM. Furthermore, the costs of the newly introduced operations are similar
to the costs of the standard FMM operations, as we have seen in Table 7.1. Therefore,
one can show that the overall storage and runtime costs for the computation of all
the moments by S2M, S2Mx, Mx2Mx, Mx2M, and M2M operations and evaluation
of local contributions by L2L, L2Lx, Lx2Lx, Lx2T, and L2T operations scale linearly
in the number of space-time elements EtEx as in the case of the standard space-time
FMM or pFMM; see [67, Section 5.4] and [51, Section 4.5.3]. In particular, it is
reasonable to focus on the costs of the M2Lx operations in (7.22) when comparing
the costs of the application of the blocks in (7.20) in the time-adaptive FMM with
the costs of their direct application in (7.21).

By comparing the costs in (7.21) and (7.22) we see that the approximation of the con-
sidered blocks in the time-adaptive FMM is more e�cient than the direct application
if

O((mx + 1)4(mt + 1)(ρt + 1)) < n2
`xnt(Isrc).

While the costs on the left-hand side are constant if the expansion degreesmt andmx

and the number of quadrature points ρt + 1 is �xed, the costs on the right-hand side
depend on the considered blocks. The number nt(Isrc) of time steps in Isrc in�uences
the costs of the direct application, but if the considered temporal partition is not
highly non-uniform, this in�uence is rather small. The in�uence of n`x , i.e. the
average number of spatial elements contained in the clusters with spatial level `x
in T ext

Σ that are associated with the considered blocks, is more pronounced. If `x
is small, n`x may be large. In this case, the approximation in the time-adaptive
FMM is signi�cantly more e�cient than the direct application, while for large spatial
levels `x and small numbers n`x the direct application might be faster. Note that
the approximation of the blocks in the time-adaptive FMM may still be favorable in
the latter case since the costly computation of the matrix entries in the assembly of
the blocks in (7.20) is omitted and since the costs for storing the related moments
and local contributions in the time-adaptive FMM are also signi�cantly lower than
the costs for storing the entries themselves in general. In the numerical examples in
Section 7.5 we will observe these e�ects.

7.4 Parallelization of the time-adaptive FMM 159

7.4 Parallelization of the time-adaptive FMM

The task based parallelization scheme for the space-time FMM from Chapter 6 can be
adapted to obtain a parallel version of the time-adaptive FMM in Algorithm 7.5. The
necessary modi�cations are described in this section. For the sake of simplicity, we
focus on the shared memory parallelization and comment on the distributed memory
parallelization only at the end of the section.

The starting point for the derivation of the parallel space-time FMM in Chapter 6
was the temporal version of the FMM in Algorithm 6.1. We obtained this version by
associating space-time clusters in the underlying space-time tree TΣ with temporal
clusters using projections and de�ning FMM operations for these time clusters. For
the time-adaptive FMM we follow the same approach. By applying the temporal
projection Πt in (6.1) to the extended space-time box cluster tree T ext

Σ we obtain
the same temporal tree TI as for the related non-extended tree TΣ. For a time
cluster I ∈ TI we de�ne the set of all associated space-time clusters in T ext

Σ by

Zext
assoc(I) = {Z ∈ T ext

Σ : Πt[Z] = I}. (7.23)

Note that a temporally indivisible cluster Z = X × I in TΣ and all its spatially
re�ned descendants in T ext

Σ are associated with the same temporal cluster I. Hence,
the set Zext

assoc(I) of a temporally indivisible clusters I may contain entire subtrees
of T ext

Σ in general.

For a time cluster Itar in TI we de�ne the operation lists related to the time-adaptive
FMM as in Section 6.1 by projections. The M2L interaction list IM2L(Itar) is de�ned
by (6.3) and the near�eldN (Itar) by (6.4). In addition we de�ne the M2Lx interaction
list of Itar by

IM2Lx(Itar) := {Isrc ∈ TI : ∃Ztar ∈ T ext
Σ and Zsrc ∈ IM2Lx(Ztar)

with Πt[Zsrc] = Isrc and Πt[Ztar] = Itar}
(7.24)

and the Mx2L interaction list by

IMx2L(Itar) := {Isrc ∈ TI : ∃Ztar ∈ T ext
Σ and Zsrc ∈ IMx2L(Ztar)

with Πt[Zsrc] = Isrc and Πt[Ztar] = Itar}.
(7.25)

To obtain a temporal version of the time-adaptive FMM in Algorithm 7.5 we need to
de�ne corresponding operations in the temporal tree TI . While the operations of the
standard FMM in De�nition 7.7 can be reused, we need to introduce additional ones
for the new operations in the time-adaptive FMM like the M2Lx and Mx2L operations
and related sets of spatial moments and local contributions for clusters I ∈ TI . This is
done in De�nition 7.7 and Algorithm 7.7. Note that in the routines of Algorithm 7.7

160 7 A time-adaptive version of the space-time FMM

we execute operations in a level-wise manner in the underlying extended space-time
cluster tree T ext

Σ to ensure a correct execution in the case that the set Zext
assoc(I) of a

cluster I ∈ TI contains entire subtrees of T ext
Σ .

Definition 7.7. For a temporally indivisible time cluster I we de�ne the set of spa-
tial moments of its associated space-time clusters by

µ(x)(I) := {µ(x)(Z) : Z ∈ Zext
assoc(I)} (7.26)

and similarly the set of spatial local contributions by

λ(x)(I) := {λ(x)(Z) : Z ∈ Zext
assoc(I)}. (7.27)

Furthermore, we de�ne the following FMM operations for clusters in TI in addition
to the operations in De�nition 6.2:

� Extended S2M operations for temporally indivisible clusters I: Execute the re-
quired S2Mx, Mx2Mx and Mx2M operations for the clusters in Zext

assoc(I) in a
level-wise manner as outlined in Algorithm 7.7.

� M2Lx operations for I with IM2Lx(I) 6= ∅: For each Ztar ∈ Zext
assoc(I) and each

Zsrc ∈ IM2Lx(Ztar) compute λ(x)(Ztar, Zsrc) by the M2Lx operation in (7.11) and
add the result to the corresponding spatial local contributions in λ(x)(I).

� Mx2L operations for I with IMx2L(I) 6= ∅: For each Ztar ∈ Zext
assoc(I) and each

Zsrc ∈ IMx2L(Ztar) compute λ(Ztar, Zsrc) by the Mx2L operation in (7.14) and
add the result to the corresponding local contributions in λ(I).

� Extended L2T operations for temporally indivisible clusters I: Execute the re-
quired L2Lx, Lx2Lx and Lx2T operations for the clusters in Zext

assoc(I) in a level-
wise manner as outlined in Algorithm 7.7.

With the newly de�ned FMM operations for clusters in TI we can introduce a tem-
poral version of the time-adaptive FMM in Algorithm 7.5 similar to Algorithm 6.1.
Instead of explicitly describing this temporal version we continue with the description
of the corresponding task based algorithm. The concept of this algorithm is the same
as the one in Section 6.2: We group FMM operations of time clusters in TI into FMM
tasks and execute them based on individual dependencies using a task scheduler and
a second level of OpenMP tasks for a better load distribution. For this purpose we
de�ne two new tasks for clusters in TI in addition to the M-list, M2L-list, L-list and
N-list tasks from Section 6.2:

� The M2Lx-list task for I ∈ TI . This task includes the M2Lx operations between
the clusters I and Isrc ∈ IM2Lx(I) and in addition the extended L2T operations
for I. It can be executed once the sets of moments µ(Isrc) of the clusters
Isrc ∈ IM2Lx(I) are fully available.

7.4 Parallelization of the time-adaptive FMM 161

Algorithm 7.7 Extended S2M and L2T operations in TI .
1: function ExtendedS2MOperations(I)
2: Let `min

x :=min{`x(Z) : Z∈Zext
assoc(I)} and `max

x :=max{`x(Z) : Z∈Zext
assoc(I)}.

3: for all leaves Z ∈ Zext
assoc(I)

4: S2Mx: Compute µ(x)(Z) in µ(x)(I) by (7.13).

5: for `x = `max
x , . . ., `min

x − 1
6: for all Z ∈ Zext

assoc(I) with spatial level `x
7: Mx2Mx: Compute µ(x)(par(Z), Z) by (7.15).
8: Add µ(x)(par(Z), Z) to µ(x)(par(Z)) in µ(x)(I).

9: for all Z ∈ Zext
assoc(I) with spatial level `min

x

10: Mx2M: Compute µ(Z) in µ(I) by (7.16).

11: function ExtendedL2TOperations(I)
12: Let `min

x :=min{`x(Z) : Z∈Zext
assoc(I)} and `max

x :=max{`x(Z) : Z∈Zext
assoc(I)}.

13: for all Z ∈ Zext
assoc(I) with spatial level `min

x

14: L2Lx: Add the result λ(x),trf(Z) from (7.17) to λ(x)(Z) in λ(x)(I).

15: for `x = `min
x + 1, . . ., `max

x

16: for all Z ∈ Zext
assoc(I) with spatial level `x

17: Lx2Lx: Compute λ(x)(Z, par(Z)) by (7.19).
18: Add λ(x)(Z, par(Z)) to λ(x)(Z) in λ(x)(I).

19: for all leaves Z in T ext
Σ

20: Lx2T: Evaluate λ(x)(Z) in λ(x)(I) by (7.12). Add the result to f |Ẑ .

� The Mx2L-list task for I ∈ TI . This task includes the Mx2L operations be-
tween the clusters I and Isrc ∈ IMx2L(I) and in addition the (extended) L2T
operations for I, if the list of associated clusters Zext

assoc(I) contains leaf clusters.
It can be executed once the sets of spatial moments µ(x)(Isrc) of the clusters
Isrc ∈ IMx2L(I) are fully available.

In the Mx2L-list task of a cluster I we execute extended L2T operations only if I is
temporally indivisible. Otherwise, the standard L2T operations from De�nition 6.2
are used. Also in the M2L-list tasks and L-list tasks of temporally indivisible clusters
we need to replace the standard L2T operations with the extended L2T operations
in Algorithm 7.7 and the standard S2M operations in the M-list tasks of temporally
indivisible clusters with the extended S2M operations. Note that the (extended) L2T
operations are now included in up to four di�erent FMM tasks of a cluster I, namely
the M2L-list, L-List, Mx2L-list, and M2Lx-list task of I, but may be executed only
once. By specifying that the (extended) L2T operations are only executed in the
last scheduled task we can execute these tasks in any order once their individual
dependencies are satis�ed, and still ensure that the corresponding (spatial) local
contributions are fully computed before their evaluation.

162 7 A time-adaptive version of the space-time FMM

In the parallel task based version of the time-adaptive FMM we need to execute
M2Lx-list tasks for all temporally indivisible clusters I with non-empty M2Lx in-
teraction lists IM2Lx(I) and Mx2L-list tasks for all clusters I with non-empty Mx2L
interaction lists IMx2L(I). To keep track of all these tasks we collect the correspond-
ing clusters in the M2Lx-list and the Mx2L-list, respectively. The additional M-list,
M2L-list, L-list and N-list can be constructed as described in Section 6.2 with two
small modi�cations:

� In the recursive construction of the M-list, a cluster I should be added to this
list not only if I is in the M2L interaction list IM2L(Itar) of another cluster Itar

or if par(I) is in the M-list, but also if there exists a cluster Itar such that
I ∈ IMx2L(Itar) or I ∈ IM2Lx(Itar).

� In the recursive construction of the L-list, a cluster I should be added to this
list not only if IM2L(par(I)) is non-empty or par(I) is in the L-list, but also
if IMx2L(par(I)) is non-empty.

A sketch of the parallel task based version of the time-adaptive FMM is given in
Algorithm 7.8. The main di�erence in comparison to the parallel version of the

Algorithm 7.8 Sketch of a parallel, task based version of the time-adaptive FMM.

1: Initialize f = 0.
2: for all I ∈ TI
3: Initialize µ(I), µ(x)(I), λ(I) and λ(x)(I) by zeros as necessary.

4: Fill the M_list, M2L_list, L_list, Mx2L_list, M2Lx_list and N_list.
5: #pragma omp parallel

6: #pragma omp single

7: while the FMM task lists are not empty
8: [I, list] = FindNextReadyFMMTask(

M_list, L_list, M2L_list, Mx2L_list, M2Lx_list)
9: if list ∈ {M_list, L_list, M2L_list}

10: Proceed as in lines 9�20 of Algorithm 6.2.
11: else if list == Mx2L_list

12: Remove I from the Mx2L_list.
13: #pragma omp task // + depend clause.
14: Mx2LListTask(I)

15: else if list == M2Lx_list

16: Remove I from the M2Lx_list.
17: #pragma omp task

18: M2LxListTask(I)

19: else // Schedule one of the remaining N_list tasks.
20: Proceed as in lines 22�26 of Algorithm 6.2.

7.4 Parallelization of the time-adaptive FMM 163

standard space-time FMM in Algorithm 6.2 is that the new Mx2L-list and M2Lx-lists
need to be taken into account in the task scheduling procedure. Ready M-list, L-list,
and M2L-list tasks are handled by creating corresponding OpenMP tasks in the same
way as in Algorithm 6.2. The concrete tasks have to be slightly modi�ed though,
as we will discuss later. Also for ready M2Lx-list and Mx2L-list tasks we create
corresponding OpenMP tasks in lines 11�18, while N-list tasks are only scheduled
for execution if there are not any ready FMM tasks in the other �ve lists. Note that
since the L-list, M2L-list and Mx2L-list tasks of a cluster I modify the same set of
local contributions λ(I) we use OpenMP depend clauses as discussed in Remark 6.4
to ensure that they are not executed contemporaneously.

The Mx2L-list task for a cluster I ∈ TI is speci�ed in Algorithm 7.9. In this task
we execute the Mx2L operations of all space-time clusters associated with I in par-
allel using the OpenMP taskloop construct, see lines 2�5. This is similar to the
execution of the M2L operations in the M2L-list task in Algorithm 6.4. The subse-
quent (extended) L2T operations in the Mx2L-list task are only executed if all other
tasks for the cluster I from the M2L-list, L-list, and M2Lx-list have been executed
already. We check this in lines 7 and 22, respectively, where we distinguish between
temporally indivisible clusters and others.

For the parallelization of the extended L2T operations of a temporally indivisible
cluster I in lines 8�20 of Algorithm 7.9 we make use of the OpenMP taskloop con-
struct. First, the L2Lx and Lx2Lx operations are executed in parallel in a level-wise
manner. As we already mentioned in Section 6.2 the taskloop construct introduces
an implicit barrier that ensures that the spatial local contributions are computed in
the correct level-wise order. The subsequent Lx2T operations are also parallelized by
a taskloop. When adding the local vectors obtained by these Lx2T operations to
the result vector f , atomic operations are used to prevent race conditions between
threads. If I is not temporally indivisible, the standard L2T operations are similarly
parallelized in lines 22�25.

Algorithm 7.9 also includes a sketch of the M2Lx-list task of a cluster I. In this
task we execute the M2Lx operations of all space-time clusters associated with I in
parallel using the OpenMP taskloop construct; see lines 27�31. The subsequent
extended L2T operations are handled exactly in the same way as in the Mx2L-list
task.

Note that the M-list, L-list and M2L-list tasks have to be slightly adapted for the
time-adaptive FMM. In the M2L-list and L-list tasks, the (extended) L2T operations
have to be handled as in the Mx2L-list task in lines 7�25 of Algorithm 7.9. Also the
M-list tasks need to be adapted to distinguish between temporally indivisible clusters
and others. If a cluster I is not temporally indivisible, the standard S2M operations
can be executed in parallel as in Algorithm 6.3. For temporally indivisible clusters, on
the other hand, the extended S2M operations in Algorithm 7.7 need to be executed.

164 7 A time-adaptive version of the space-time FMM

Algorithm 7.9 Mx2L-list and M2Lx-list tasks in Algorithm 7.8.

1: function Mx2LListTask(I)
// Execution of the Mx2L operations for I:

2: #pragma omp taskloop

3: for all Ztar ∈ Zext
assoc(I)

4: for all Zsrc ∈ IMx2L(Ztar)
5: Mx2L: Compute λ(Ztar, Zsrc) by (7.14) and add it to λ(Ztar) in λ(I).

6: if I is temporally indivisible
7: if λ(I) is complete and potential M2Lx operations have been executed

// Extended L2T operations are executed only after potential
// L-list, M2L-list or M2Lx-list tasks.

8: Initialize `min
x and `max

x as in line 12 of Algorithm 7.7.
9: #pragma omp taskloop

10: for all Z ∈ Zext
assoc(I) with spatial level `min

x

11: L2Lx: Add the result λ(x),trf(Z) from (7.17) to λ(x)(Z) in λ(x)(I).

12: for `x = `min
x + 1, . . ., `max

x

13: #pragma omp taskloop

14: for all Z ∈ Zext
assoc(I) with spatial level `x

15: Lx2Lx: Compute λ(x)(Z, par(Z)) by (7.19).
16: Add λ(x)(Z, par(Z)) to λ(x)(Z) in λ(x)(I).

17: #pragma omp taskloop

18: for all leaves Z ∈ Zext
assoc(I)

19: Lx2T: Evaluate λ(x)(Z) in λ(x)(I) by (7.12).
20: Add the result to f |Ẑ atomically.

21: else if Zassoc(I) contains leaves in T ext
Σ

22: if λ(I) is complete // Only after potential M2L- and L-list operations.
// Execution of the L2T operations for I:

23: #pragma omp taskloop

24: for all leaves Z ∈ Zext
assoc(I)

25: L2T: Evaluate λ(Z) in λ(I) by (5.40).
Add the result to f |Ẑ atomically.

26: function M2LxListTask(I)
// Execution of the M2Lx operations for I:

27: #pragma omp taskloop

28: for all Ztar ∈ Zext
assoc(I)

29: for all Zsrc ∈ IM2Lx(Ztar)
30: M2Lx: Compute λ(x)(Ztar, Zsrc) by (7.11).
31: Add λ(x)(Ztar, Zsrc) to λ

(x)(Ztar) in λ
(x)(I).

32: Handle extended L2T operations as in lines 7�20 of the Mx2L-list task.

7.4 Parallelization of the time-adaptive FMM 165

These extended S2M operations can be parallelized similarly to the extended L2T
operations in Algorithm 7.9.

Remark 7.8 (Priorities of Mx2L-and M2Lx tasks). In Section 6.2.1 we have dis-
cussed that the load balance of the parallel, task based version of the space-time FMM
can be improved by assigning priorities to the corresponding FMM tasks to in�uence
the order in which they are executed. Based on the dependencies of the individual
FMM tasks we have motivated that M-list tasks have the highest priority, followed by
L-list tasks and M2L-list tasks, and that N-list tasks have the lowest priorities. For
the prioritization of tasks in the parallel version of the time-adaptive FMM discussed
in this section, we need to assign priorities to the new Mx2L-list and M2Lx-list tasks
as well. Mx2L-list tasks are similar to M2L-list tasks. In fact, both modify the set
of local contributions of a cluster and can be executed as soon as certain (spatial)
moments are available. Therefore, we assign the same priority to Mx2L-list tasks
as to M2L-list tasks, and prioritize Mx2L-list tasks for clusters on lower levels over
Mx2L-list tasks for clusters on higher levels in the time tree. M2Lx-list tasks, on the
other hand, are only used to update spatial local contributions of a cluster which are
not required for the execution of any other tasks. Therefore, they have a similarly
low priority as N-list tasks.

Remark 7.9 (Distributed memory parallelization). The task based version of the
time-adaptive FMM presented in this section can be extended as in Section 6.3 to
allow for a parallel execution on distributed memory systems. In that section we
distributed the clusters in the time tree TI and the corresponding FMM tasks among
all the available processes and handled the necessary inter-process communication in
the execution of the FMM on the level of the time tree. The same can be done in the
case of the time-adaptive FMM with the following modi�cations:

� The locally essential time trees and locally essential space-time trees of a pro-
cess p introduced in De�nitions 6.7 and 6.8 need to be extended such that the
clusters contained in the Mx2L and M2Lx interaction lists of clusters assigned
to p are contained in its locally essential trees.

� The inter-process communication has to be extended. Each process has to send
the moments of clusters assigned to it also to those processes which need them
for the execution of M2Lx operations. Likewise, a process has to send spatial
moments of clusters assigned to it to those processes which need them for the
execution of Mx2L operations.

� Instead of the process assignment strategy in Section 6.4 a more elaborated
strategy is necessary to obtain a good load balance in the case of space-time
meshes with adaptively re�ned temporal partitions.

166 7 A time-adaptive version of the space-time FMM

7.5 Numerical experiments

The time-adaptive FMM algorithm presented and analyzed in the previous sections
has been implemented in the publicly available C++ library besthea [49] using the
parallelization approach in Section 7.4. In this section we consider numerical experi-
ments for space-time tensor product meshes with non-uniform time steps to show the
bene�ts of the new time-adaptive FMM over the standard space-time FMM consid-
ered in Chapters 5 and 6. The results here correspond to those published in [78].

The following parameters are chosen for the standard and time-adaptive FMM in
this section: When constructing a space-time cluster tree TΣ by Algorithm 5.1 or an
extended tree T ext

Σ by Algorithm 7.1 we choose nmax = 800 and cst = 4.5. For the
construction of the operation lists in Algorithms 5.2 and 7.2, respectively, we choose
the truncation parameter ntr = 2 and the parameters η1 = η2 = 1 for the admissibility
criteria (5.12) and (7.5). Finally, we choose the expansion degrees mt = 4 and
mx = 12, and the parameter ρt = 3 for the numerical quadrature in (7.10), i.e. a
four-point rule, which proves to be su�ciently accurate in our examples.

First experiment: Exponential decay in time. In the �rst experiment we use
the direct boundary integral approach from Section 3.2 to solve an initial Dirichlet
boundary value problem (1.1)�(1.3) for the heat equation. We consider the space-
time cylinder Q = Ω × (0, T) with the spatial domain Ω = (−0.5, 0.5)3, the time
horizon T = 0.25, the heat capacity constant α = 1, the Dirichlet datum g = 0, and
the initial datum u0 chosen such that the exact solution is given by

u(x, t) = exp(−3π2t)
3∏

j=1

sin(π(xj + 0.5)), for all (x, t) ∈ Q. (7.28)

Our goal is to compare the standard space-time FMM and the new time-adaptive
FMM for the application of Vh when solving the linear system (3.24) to obtain an ap-
proximation qh of the Neumann datum q = γint

1,Σu. To set up this system, a discretiza-
tion Σh of the lateral surface Σ of Q is needed and in addition a discretization Ωh of
the domain Ω due to the inhomogeneous initial condition. We use an admissible vol-
ume mesh Ωh consisting of 196 608 similarly sized tetrahedra and a space-time tensor
product mesh Σh = Γh⊗Iht , where Γh is the conforming surface mesh corresponding
to Ωh and contains 12 288 uniform triangles. To account for the exponential decay in
time of the solution u in (7.28) we choose the non-uniform partition Iht illustrated in
Figure 7.2 which consists of 20 intervals whose sizes increase as time advances. We
constructed this partition Iht by using an adaptive re�nement algorithm that was
tailored to reduce the L2 projection error of the temporal part qt(t) = exp(−3π2t) of
the exact solution (7.28) for piecewise constant basis functions. The resulting space-
time tensor product mesh Σh = Γh ⊗ Iht consists of 245 760 space-time boundary
elements.

7.5 Numerical experiments 167

1 3 5 7 9 12 14 16 18 20

2−9

2−8

2−7

2−6

2−5

2−4

Interval index

In
te
rv
a
l
le
n
g
th

Figure 7.2: The time mesh Iht consisting of 20 time steps in the time interval (0, 0.25)
adapted to qt(t) = exp(−3π2t). For each interval its length is depicted.

For the computation of the right-hand side of the linear system (3.24) we assemble the
initial operator matrix M0

h as outlined in Section 3.3. The system is solved by using
the GMRES method with a diagonal preconditioner and a desired relative accuracy
of 10−8. The computations were carried out on the local workstation Babbage at
the Institute of Applied Mathematics at TU Graz; see Appendix A for the hardware
details. The results are presented in Table 7.2.

Standard FMM Time-adaptive FMM

Storage near�eld Vh [GiB] 39.9 32.0
Setup time Vh [s] 307.3 217.6
GMRES it. time [s] 1.36 1.42
No. GMRES iterations 49 49
Total time [s] 374.0 286.9
Rel. L2 error BEM 0.0530951 0.0530951

Table 7.2: Results of the �rst experiment of Section 7.5 where the linear system (3.24)
is solved for a space-time tensor product mesh consisting of the non-uniform par-
tition of the time interval (0, 0.25) depicted in Figure 7.2 and a uniform spatial
mesh on the surface of the cube Ω = (−0, 5.0.5)3 consisting of 12 288 triangles.
The listed total times include the setup times for Vh and the times for the solution
of the considered linear system, but not the required times for the construction
of the right-hand side of the system, which takes about 250 seconds when using a
suitable fast method for the application of M0

h.

168 7 A time-adaptive version of the space-time FMM

Let us �rst compare the storage requirements of the standard and time-adaptive
FMM. In the second line of Table 7.2 we list the memory required to store the
inadmissible near�eld blocks of Vh in these two fast methods. Here we see that the
memory demand is reduced by roughly 20 percent for the time-adaptive FMM. Note
that only 21.6 MiB are needed in this particular example to store all the moments
and local contributions in the case of the standard FMM and only 22.1 MiB in the
case of the time-adaptive FMM with the additional spatial local contributions, so the
memory required to store the inadmissible blocks is by far the dominating part.

In lines 3�6 of Table 7.2 we compare the execution times when assembling and solving
the system (3.24) using the standard and time-adaptive FMM. In both cases, the
GMRES method requires 49 iterations to achieve a relative accuracy of 10−8. The
time for a single GMRES iteration, which is dominated by the time needed for the
application of Vh, is slightly lower for the standard FMM in this example. This is
not completely unexpected, since the application of inadmissible dense matrix blocks
is simple and e�cient if they are already computed. The newly introduced Mx2L
and M2Lx operations are more e�cient than the related near�eld operations for
source and target clusters containing many space-time boundary elements but can
be less e�cient for clusters containing few elements, as we discussed in Section 7.3.
The corresponding gains and losses seem to balance out in this example. However,
the assembly of the inadmissible blocks requires considerably more time than the
GMRES solver and is signi�cantly faster in the time-adaptive version, due to the
reduced number of near�eld entries which have to be computed. Therefore, the new
time-adaptive FMM outperforms the standard version in this example.

To compare the accuracy of the standard and time-adaptive FMM we consider the
relative L2 approximation errors ‖q − qh‖L2(Σ)/‖q‖L2(Σ) between the known Neumann
datum q and the approximate solutions qh obtained by solving (3.24) in the last line
of Table 7.2. These values do not di�er in the speci�ed six signi�cant digits. Fur-
thermore, they are close to the relative L2 best approximation error of the Neumann
datum which is 0.0467157. Therefore, we conclude that the new time-adaptive FMM
operations are su�ciently accurate and that the time-adaptive FMM is the better
option in this particular example.

Second experiment: Rapidly changing boundary data. In the second experi-
ment we consider a boundary value problem where the boundary data change rapidly
over time. For this purpose we consider the function

wt(t) =
t

4
+
(
t− 1

6

)1/4

1(1/6,∞)(t), t ∈ (0, T), (7.29)

where T = 0.25. The function wt is depicted in Figure 7.3a. It is non-smooth at time
t = 1/6 when the part (t− 1/6)1/4 is �turned on� by the indicator function 1(1/6,∞).

7.5 Numerical experiments 169

0 0.08 0.16̇ 0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

t

w
t
(t

)

a) wt from (7.29).

1 4 7 10 13 16 19 22 25 28 31 34 37

2−13
2−12
2−11
2−10
2−9
2−8
2−7
2−6
2−5

Interval index

In
te
rv
a
l
le
n
g
th

b) Interval lengths of the adaptive mesh Iht for wt in (7.29).

Figure 7.3: Visualization of the rapidly changing function wt in (7.29) in the time
interval (0, 0.25) and a suitable mesh Iht on this interval that resolves the non-
smooth behavior of wt at time t = 1/6 well.

We set

w(x, t)=wt(t)wx(x), for all (x, t) ∈ Γ×(0, T), wx(x)=
n(x) · (2,−3, 1)>

10
, (7.30)

where Γ is the surface of the crankshaft domain Ω from Section 6.5.2 depicted in
Figure 6.6, and n is the outer unit normal vector on Γ. Applying the single layer
potential operator Ṽ from (3.2) to w yields a solution of the heat equation (1.1)
in the space-time cylinder Q = Ω × (0, T) with homogeneous initial conditions and
Dirichlet trace g := V w. Therefore, we can regard w as the density that is obtained
when solving the initial Dirichlet boundary value problem (1.1)�(1.3) for the heat
equation with initial datum u0 = 0 and Dirichlet datum g using the �rst indirect
boundary integral approach described in Section 3.3. In the following, we discretize
this boundary integral equation and solve the corresponding linear system

Vhw = g. (7.31)

For the discretization we use the space-time tensor product mesh Σh = Γh ⊗ Iht
where Γh is a surface mesh of the crankshaft geometry consisting of Ex = 10 722
triangles and Iht is the non-uniform partition of the time interval (0, T) depicted in
Figure 7.3b consisting of Et = 37 subintervals. As in the previous experiment, we
constructed this partition Iht by using an adaptive re�nement algorithm to reduce
the L2 projection error of wt for piecewise constant basis functions. Note that Iht
is highly adaptive and that the intervals with the smallest lengths are those close to
the time t = 1/6.

Since an analytic form of the Dirichlet datum g is not known, we compute the right-
hand side g of (7.31) as follows: We uniformly re�ne the mesh Σh once with respect

170 7 A time-adaptive version of the space-time FMM

to space and twice with respect to time to obtain the mesh

Σ̂h = {σ̂kt,kx = γ̂kx × (t̂kt−1, t̂kt) : kt ∈ {1, . . . , 4Et}, kx ∈ {1, . . . , 4Ex}}.

By applying the single layer matrix V̂h for this mesh Σ̂h to the coe�cients ŵ of the
L2 projection ŵh ∈ S0×0

hx,ht
(Σ̂h) of w we obtain the coe�cients ĝ = V̂hŵ which we

restrict to the mesh Σh by setting

gjt,jx =
∑

(kt,kx)∈child(jt,jx)

ĝkt,kx , child(jt, jx) := {(kt, kx) : σ̂kt,kx ⊂ σjt,jx}

for all index pairs (jt, jx) corresponding to space-time elements σjt,jx ∈ Σh to get the
vector g.

We solve the linear system (7.31) by using the GMRES method with a diagonal
preconditioner and a desired relative accuracy of 10−8, and compare the resulting
runtimes, storage requirements, and approximation errors when using the standard
FMM and the time-adaptive FMM for the application of Vh. The computations were
carried out using a single node of the VSC-4 cluster: a standard node for the time-
adaptive FMM and a fat node for the standard FMM due to the higher memory
demand; see Appendix A for the hardware details. The results are presented in
Table 7.3.

Standard FMM Time-adaptive FMM

Storage near�eld Vh [GiB] 93.2 66.6
Setup time Vh [s] 495.3 302.3
GMRES it. time [s] 1.27 1.16
No. GMRES iterations 98 98
Total time [s] 619.4 415.6
Rel. L2 error BEM 0.013129 0.013129

Table 7.3: Results of the solution of the linear system (7.31) for a space-time tensor
product mesh consisting of the non-uniform partition of the time interval (0, 0.25)
depicted in Figure 7.3b and a mesh on the surface of the crankshaft geometry Ω
depicted in Figure 6.6 with 10 722 triangles.

The di�erence in performance between the standard and the time-adaptive FMM is
slightly more pronounced in this experiment than in the previous one. The memory
required to store the inadmissible blocks of Vh is reduced by almost 29 percent.
Note that the moments and local contributions require only 28.8 MiB of storage
in the standard FMM and the additional spatial moments and local contributions
in the case of the time-adaptive FMM require only 2.4 MiB. Due to the smaller

7.5 Numerical experiments 171

number of inadmissible blocks, the assembly time is signi�cantly lower for the time-
adaptive FMM. In contrast to the previous experiment, also the application times
and the related GMRES iteration times are lower when the time-adaptive FMM is
used instead of the standard FMM. Since 98 GMRES iterations were needed to solve
the system in both cases, we end up with the total times in the sixth row of Table 7.3
for the assembly of Vh and the solution of the system (7.31). As in the previous
experiment we see that the time-adaptive FMM outperforms the standard FMM,
while the approximation quality does not su�er when introducing the new FMM
operations.

Finally, we want to compare the results in Table 7.3 with results obtained by solving
the same boundary integral equation on a suitable temporally uniform mesh. For
this purpose we consider the space-time mesh Σh,u = Γh⊗Iht,u, where Γh is the same
crankshaft surface mesh as above and Iht,u is the uniform time mesh on (0, T) con-
sisting of 512 uniform time steps with length 2−11. Note that Σh,u contains 5 489 664
space-time boundary elements while the time-adaptive mesh Σh above contains only
396 714 space-time elements. The large number of uniform time steps in Ih,u is re-
quired to resolve the rapid change of wt around the point t = 1/6 reasonably well.
The mesh Iht,u is slightly coarser than the adaptive mesh Iht in Figure 7.3b around
t = 1/6 but considerably �ner otherwise. The L2 approximation errors obtained by
projecting the function wt to the spaces of piecewise constant functions for these two
temporal meshes are similar, but the error is slightly larger around time t = 1/6 for
the uniform mesh.

When we discretize the boundary integral equation V w = g using the uniform space-
time mesh Σh,u we obtain the system

Vh,uwu = gu, (7.32)

where we compute the right-hand side gu similarly as the right-hand side g of (7.31)
above. We solve this system by using the GMRES method with a diagonal precon-
ditioner and the standard FMM for the application of Vh,u. Note that using the
time-adaptive FMM would not bring any bene�ts here due to the temporal unifor-
mity of the mesh Σh,u. For the computations we used 16 standard nodes of the VSC-4
cluster due to the large size of the problem. The results are given in Table 7.4.

Let us compare the results in Table 7.4 with the results in Table 7.3 when the time-
adaptive FMM is used for the approximation of the matrix Vh. Even though we use 16
nodes for the computations on the temporally uniform mesh, more memory per node
is needed to store the inadmissible blocks of Vh,u than for storing all the inadmissible
blocks of the matrix Vh for the temporally adaptive mesh on a single node. However,
this comparison is slightly unfair, since we do not exploit the temporal uniformity of
the mesh Vh,u in our implementation and, therefore, we store identical blocks of Vh,u
multiple times. For the same reason, a direct comparison of the setup times is not very

172 7 A time-adaptive version of the space-time FMM

meaningful. On the other hand, a comparison of the application times or GMRES
iteration times is reasonable since the uniformity of the mesh cannot be exploited in a
similar way in the application of the matrices. In the case of the temporally uniform
mesh, we use the sixteenfold hardware power for the computations, but nonetheless,
the time for a single GMRES iteration is about twice as long as for the computations
on the temporally adaptive mesh. Due to this fact and the larger number of required
GMRES iterations, the solution of the system (7.32) for the temporally uniform
mesh takes about 350 seconds instead of 113 seconds for the temporally adaptive
mesh despite the additional parallelization. At the same time, the approximation
quality of the resulting BEM solutions is comparable. This shows that the temporally
adaptive mesh is far better suited for the solution of the considered boundary integral
equation with rapidly changing boundary data.

Standard FMM (16 nodes)

Storage near�eld Vh,u (average per node) [GiB] 79.90
Setup time Vh,u [s] 406.12
GMRES it. time [s] 2.29
No. GMRES iterations 153
Total time [s] 756.40
Rel. L2 error BEM 0.011851

Table 7.4: Results of the solution of the system (7.32) for the mesh Σh,u consisting of
512 uniform time steps in the interval (0, 0.25) and 10 722 triangles on the surface
of the crankshaft domain Ω.

In summary, we have seen that the new time-adaptive FMM provides a better matrix
compression for temporally non-uniform meshes than the standard space-time FMM,
which helps to reduce the storage requirements and runtimes when solving related
boundary integral equations. The only di�erence between the two methods is the
treatment of temporally one-sided admissible blocks, which are fully assembled in the
case of the standard FMM and approximated in the case of the time-adaptive FMM.
Hence, the time-adaptive FMM can be seen as a valuable extension of the standard
FMM. Since the storage requirements � or, equivalently, the number of inadmissible
blocks corresponding to pairs of clusters that are not temporally separated � can
still be quite large in the case of the time-adaptive FMM, we present a method for
the additional compression of this temporal near�eld in the next chapter.

8 An ACA based nearfield compression scheme

At the end of Chapter 5 we have seen that the space-time FMM can signi�cantly
reduce the runtime complexity of the application of BEM matrices like the single
layer operator matrix Vh: For a space-time tensor product mesh with Et similarly
sized time steps and Ex similarly sized spatial elements and lowest order test and
trial spaces the costs are reduced from O((EtEx)2) to O(EtExm

2
tm

4
x), where mt

and mx are the expansion degrees of the FMM operations. A requirement for this
reduction is that the spatial and temporal mesh widths hx and ht satisfy the re-
lation ht ∼ h2

x. If hx is too small in relation to ht the e�ciency of the space-time
FMM su�ers and costs of order O(EtE

2
x) are to be expected in the worst case. This

is because the approximations of the heat kernel in (5.1) and (7.1), on which the
e�cient approximation of blocks of Vh is based, rely on a separation in time of the
clusters corresponding to the blocks. If the number of time steps of the considered
mesh is too small, there exist large blocks of Vh whose clusters are not separated in
time. These large temporal near�eld blocks are not approximated in the standard
space-time FMM and are responsible for its bad performance.

The suboptimal performance of the space-time FMM for meshes with too �ne spatial
mesh resolutions has already been discussed in [52] for the related pFMM. To over-
come this issue an additional fast method for the application of the temporal near�eld
has been described in that work. In that fast method, the integrals of the entries of
inadmissible blocks of Vh � or other BEM matrices � are transformed and subdi-
vided in time in a sophisticated way to obtain two parts: A part of singular integrals,
which are su�ciently localized in space to allow for an e�cient direct evaluation,
and another part of regular integrals, which are e�ciently treated by combining nu-
merical quadrature in time with fast Gauÿ transforms in space based on truncated
Chebyshev expansions as in the pFMM. In the numerical examples in [52, Section 5]
it was shown that the linear complexity of the pFMM can be reestablished up to a
logarithmic factor for meshes with �ne spatial mesh resolutions by using the proposed
additional fast method for the application of the temporal near�eld.

In this chapter we present an alternative method for the compression of the temporal
near�eld in the space-time FMM. Our approach is based on the partially pivoted
adaptive cross approximation (ACA) which is a method that allows one to compute
a low-rank approximation of a given matrix in a pure algebraic way using only few
of the original matrix entries and is described, for example, in [10, 13]. The partially
pivoted ACA can be used instead of kernel approximations in BEM to approximate

173

174 8 An ACA based near�eld compression scheme

suitable admissible blocks of the corresponding system matrices with an overall quasi-
linear complexity in the number of rows and columns of the considered matrix. This
is described in more detail, for example, in [62, Chapter 3] or [11]. In the context
of the heat equation, a fast method alternative to the pFMM and the related space-
time FMM in this thesis was developed in [74] where admissible blocks of a BEM
matrix like Vh corresponding to temporally separated clusters are approximated us-
ing a kernel expansion in time and the ACA in space. Our approach in this chapter
is di�erent: Starting from the space-time FMM in Chapter 7 we determine suitable
inadmissible blocks of Vh which can be approximated by the ACA � if necessary by
additional block re�nements. The partially pivoted ACA is then directly applied to
these blocks. The ranks of the resulting low-rank matrices can be further reduced by
using an additional truncated singular value decomposition. This kind of recompres-
sion is well known from the literature � see e.g. [12, Section 2.2] � but we propose
a new criterion to determine the related recompression ranks. The resulting near�eld
compression scheme is similarly e�cient but easier to implement than the near�eld
compression scheme in [52] since it requires only an implementation of the rather sim-
ple partially pivoted ACA algorithm � and algorithms to compute a singular value
decomposition of a matrix available in standard math libraries like LAPACK [6] �
while the method in [52] introduces additional re�nements of time steps and new
integrals to evaluate in a spatial multi-level setting. Furthermore, the method in [52]
relies on the uniform prismatic structure of the elements of the considered space-time
mesh, while the black-box nature of the ACA might allow us to use our new near�eld
compression scheme also for more general space-time meshes.

The rest of this chapter is structured as follows. In Section 8.1 we give a basic
description of the partially pivoted ACA before motivating in Section 8.2 why it can
be used to approximate certain originally inadmissible blocks of the matrix Vh. By
identifying and approximating these blocks in the context of the space-time FMM
from Chapter 7, we obtain the new near�eld compression scheme mentioned in the
previous paragraph, which is described in Section 8.3. In Section 8.4 we describe
the additional recompression strategy and in Section 8.5 we analyze its e�ect on
the approximation quality of Vh. The chapter is concluded by Section 8.6 where
we present various numerical experiments revealing the positive e�ects of the new
near�eld compression scheme with and without the additional recompression.

8.1 The adaptive cross approximation

The space-time FMM from Chapter 5 and its extension from Chapter 7 rely on the
fact that suitable blocks of BEM matrices like Vh can be approximated and applied in
an e�cient way by suitable FMM operations. These approximations of matrix blocks
can be understood as approximations by low-rank matrices. In linear algebra, the

8.1 The adaptive cross approximation 175

rank of a matrix A ∈ Rm×n is de�ned as the dimension of the image space of A and
is bounded by min{m,n}. A is called a low-rank matrix, if its rank k is signi�cantly
smaller than min{m,n}. It is well known, that such a low-rank matrix A admits a
representation

A = UW> =
k∑

i=1

uiw
>
i , (8.1)

where U ∈ Rm×k and W ∈ Rn×k are suitable matrices, and {ui}ki=1 and {wi}ki=1 are
their columns; see [11, Theorem 1.2]. The low-rank approximations of matrix blocks
in Chapters 5 and 7 have been constructed by replacing the heat kernel in the integrals
de�ning the matrix entries by the separable approximations (5.9), (7.1) and (7.3) of
the heat kernel. An alternative method that yields such low-rank approximations is
the adaptive cross approximation.

The adaptive cross approximation (ACA) has been introduced in [10, 13]. It allows
one to construct a low-rank approximation of a given matrix in a purely algebraic way
by using only the original matrix entries. For certain matrices � like suitable blocks
of BEM matrices generated by asymptotically smooth kernels � this is even possible
without assembling the full matrix in advance. Instead, relevant matrix entries can
be computed on demand during the approximation. The resulting method is denoted
as partially pivoted ACA and is sketched in Algorithm 8.1. This version is based on
the one in [11, Section 3.4.1, Algorithm 3.1].

In the ACA in Algorithm 8.1 a matrix A ∈ Rm×n is approximated by generating a se-
quence of low-rank matrices {Sk}k of the form Sk = UkW

>
k . In the �rst step, a suitable

index pair (i1, j1) is chosen and the vectors w1 ∈ Rn and u1 ∈ Rm are constructed as
w1 = A[i1, j1]−1A[i1, :] and u1 = A[:, j1], i.e. w1 is the i

th
1 row of A scaled by A[i1, j1]−1

and u1 is the jth
1 column of A. This yields the �rst approximation S1 = u1w

>
1 of A.

The residuum R1 = A−S1 is a matrix whose i
th
1 row and jth

1 column vanish. The ap-
proximations {Sk}k are then constructed iteratively: Once Sk is computed, a suitable
index pair (ik+1, jk+1) is determined and new vectors wk+1 ∈ Rn and uk+1 ∈ Rm are
created by setting wk+1 = Rk[ik+1, jk+1]−1Rk[ik+1, :] and uk+1 = Rk[:, jk+1], where
Rk = A − Sk; see lines 5�7 and 11 in Algorithm 8.1 for wk+1 and lines 12�14
for uk+1. This yields the next approximation Sk+1 =

∑k+1
`=1 u`w

>
` and the residuum

Rk+1 = A−Sk+1 which contains zeros in all rows i ∈ {i`}k+1
`=1 and columns j ∈ {j`}k+1

`=1 .
Note that once Sk is computed only the ithk+1 row and jth

k+1 column of A are needed
to compute the required entries of Rk+1 and the update Sk+1. The pairs of rows and
columns that are constructed in each step can be seen as crosses, which explains the
name of the method.

The choice of the indices ik+1 and jk+1 for the construction of the matrix Sk+1

from Sk in the ACA is crucial for the e�ciency and correctness of the method.
From the construction described in the last paragraph it is clear that the index ik+1

176 8 An ACA based near�eld compression scheme

should be chosen from the set {1, . . . ,m} \ {i1, . . . , ik} and the index jk+1 from the
set {1, . . . n} \ {j1, . . . , jk}. Once ik+1 is chosen and the unscaled ithk+1 row w̃k+1

of the residual matrix Rk has been computed, the index jk+1 is chosen such that
|(w̃k+1)jk+1

| = maxj{|(w̃k+1)j|}; see line 10 in Algorithm 8.1. This choice is moti-
vated in [11, Lemma 3.34]. Note that it is possible that w̃k+1 = 0. This is not
bad, since it means that an additional row of the matrix Rk is zero and, therefore,
an additional row of A is already approximated well. However, it also means that
we need to choose a di�erent row index ik+1 to determine the vector wk+1 for the
matrix Sk+1. We keep track of all previously selected row indices in the set R in line 8
of Algorithm 8.1. A new index ik+1 is then chosen in line 20 such that |(uk)ik+1

| is
maximal among all values |(uk)i| with i /∈ R; similarly as in [62].

Algorithm 8.1 Partially pivoted adaptive cross approximation (ACA) of A ∈ Rm×n.

Require: Let a parameter εACA for the stopping criterion (8.3) be given.
Let a bound kmax for the maximal rank of the approximation be given.

1: Initialize k = 0 and the row index set R = ∅.
2: Initialize the row index ik+1 = 1.
3: Initialize the squared Frobenius norm n2

frob of the approximation by n2
frob = 0.

4: do

5: Set wk+1 = A[ik+1, :]
>.

6: for all ` = 1, . . . , k
7: Update wk+1 ← wk+1 − (u`)ik+1

w`.

8: Update R ← R∪ {ik+1}.
9: if wk+1 does not vanish:

10: Set jk+1 = argmaxj=1,...,n{|(wk+1)j|}.
11: Update wk+1 ← (wk+1)−1

jk+1
wk+1.

12: Set uk+1 = A[:, jk+1].
13: for ` = 1, . . . , k
14: Update uk+1 ← uk+1 − (w`)jk+1

u`.

// Update the squared Frobenius norm n2
frob of the approximation.

15: for ` = 1, . . . , k
16: Update n2

frob ← n2
frob + 2(u` · uk+1)(w` ·wk+1).

17: Update n2
frob ← n2

frob + |uk+1|2|wk+1|2.
18: Update k ← k + 1.

19: if R 6= {1, . . . ,m}
20: Set ik+1 = argmaxi∈{1,...,m}\R{|(uk)i|}.
21: while (8.3) is violated and k < min{kmax, n} and R 6= {1, . . . ,m}.
22: return Sk = UkW

>
k . // Uk = [u1, . . . ,uk], Wk = [w1, . . . ,wk].

8.1 The adaptive cross approximation 177

The approximation can be stopped for a certain rank k∗ if the corresponding residuum
is small enough. To determine this one could, for example, compute the Frobenius
norm ‖Rk∗‖F = (

∑m
i=1

∑n
j=1 Rk∗ [i, j]

2)1/2 of Rk∗ and demand that

‖Rk∗‖F ≤ ε̃ACA ‖A‖F (8.2)

for a su�ciently small constant ε̃ACA > 0. Since the full matrix A needs to be
computed to check (8.2), we stop the approximation instead if

|uk∗ |2|wk∗ |2 ≤ εACA‖Sk∗‖2
F (8.3)

for another small constant εACA > 0. Under certain assumptions on the matrix A and
the construction of the approximations {Sk}k, the stopping criterion (8.3) implies the
estimate (8.2); see [11, Sections 3.4.1 and 3.4.2]. We will further comment on this
in Remark 8.2. Note that the norm ‖Sk+1‖2

F can be computed from ‖Sk‖2
F in each

iteration step using the formula

‖Sk+1‖2
F = ‖Uk+1W

>
k+1‖2

F =
k+1∑

i=0

k+1∑

j=0

(ui · uj)(wi ·wj)

= ‖Sk‖2
F + 2

k∑

i=0

(ui · uk+1)(wi ·wk+1) + |uk+1|2|wk+1|2,

which can be found in [11, cf. p. 11, Equation (1.4)]. We compute the norm of Sk+1

in this way in lines 15�17 of Algorithm 8.1, where it is denoted as nfrob.

Even if the stopping criterion (8.3) is not satis�ed, there are two additional cases in
which the computation of the low-rank approximation of A is stopped:

(i) The rank k has reached a certain threshold kmax or is equal to the number of
columns n of A.

(ii) All rows of A have been considered, i.e. R = {1, . . . ,m}.
If k = n orR = {1, . . . ,m}, UkW>k corresponds to the full matrix A which means that
the low-rank approximation has failed. By introducing a reasonable threshold kmax

one can also stop the approximation earlier when it is foreseeable that the ACA will
not yield an e�cient approximation of A. In all these cases the full matrix A should
be used instead of the low-rank approximation Sk returned in Algorithm 8.1, which
we denote as ACA low-rank matrix in the following.

The runtime complexity of the ACA in Algorithm 8.1 is O((#R)2(m + n)). This
is stated in [11, Section 3.4.1] and can also be seen by counting the number of
�oating point operations in the algorithm. During the computation O(#R(m+ n))
entries of A are accessed. If these entries are computed on demand and the compu-
tation is expensive, the complexity of the ACA scales instead like O(#R(m+ n));

178 8 An ACA based near�eld compression scheme

see [11, Remark 3.31]. For a block A of a BEM matrix this is typically the case
since for each entry a boundary integral needs to be evaluated. For the resulting
approximation (m+ n)k entries of the matrices Uk and Wk need to be stored, which
is more e�cient than storing the original mn entries of A if the rank k satis�es
k < min{m,n}/2.
Remark 8.1. It is well known that the choice of the row indices {ik}k in line 20 of
Algorithm 8.1 combined with the stopping criterion (8.3) might cause the ACA to
fail for certain matrices A. In fact, some parts of the matrix A might not be ap-
proximated at all by the resulting approximation Sk in certain pathological situations;
see [11, Section 3.4.3] where a block of a double layer operator matrix is considered
as an example. Di�erent row selection strategies that allow one to overcome this
de�ciency are discussed in [11, Section 3.4.3] and [40, Section 3.2]. For the sake of
simplicity we do not discuss them here, and apply the ACA only to suitable blocks of
the single layer operator matrix Vh in the following sections.

Remark 8.2. If the residual matrices {Rk}k considered in the ACA satisfy an esti-
mate of the form ‖Rk+1‖F ≤ η‖Rk‖F for some value η < 1 and if the stopping crite-
rion (8.3) is satis�ed for a rank k∗ and εACA = (1−η)ε̃ACA/(1+ ε̃ACA), one can show
that the estimate (8.2) is satis�ed, i.e. Sk∗ approximates A well; see [11, p. 141f.].
Let A be the Galerkin matrix for an integral operator K, i.e.

A[i, j] = 〈ϕi,Kψj〉Γ,

Kψj(x) =

∫

Γ

K(x,y)ψj(y)dsy,
(8.4)

for some functions {ϕi}mi=1 with supports in a box Xtar and {ψj}nj=1 with supports
in Xsrc. Let {Rk}k be the residual matrices obtained in the adaptive cross approxima-
tion of such a matrix A. An upper bound for |Rk[i, j]| is derived in [11, Theorem 3.37]
under suitable assumptions on the row indices {ik}k chosen in the ACA. An essential
part of this bound is the best approximation error

max
j=1,...,n

inf
p∈span Ξ

‖Kψj − p‖∞,Xtar (8.5)

where Ξ is an arbitrary set of functions {ξ`}k′`=1 with ξ1 = 1, and k′ is the number
of vanishing rows of Rk. If one can show that this best approximation error (8.5)
converges exponentially to zero, an estimate of the form ‖Rk+1‖F ≤ η‖Rk‖F is satis-
�ed. For kernel functions (x,y) 7→ K(x,y) which are asymptotically smooth � see
De�nition 5.2 � and boxes Xsrc and Xtar which satisfy an admissibility criterion like

ηx dist(Xtar, Xsrc) ≥ max{diam(Xtar), diam(Xsrc)} (8.6)

for a suitable constant ηx > 0, such an exponential decay of the best approximation
error can be proven using polynomial interpolation. This is shown in [11, Section 3.3]
and [14, Section 4.4].

8.2 The applicability of the ACA for the single layer operator matrix 179

8.2 The applicability of the ACA for the single layer operator

matrix

In this section we motivate why the ACA from Section 8.1 can be used to e�ciently
compress certain blocks Vh|Ẑtar×Ẑsrc

of the single layer operator matrix Vh. We are
particularly interested in those blocks which are inadmissible, and thus not approx-
imated in the FMM in Chapters 5 and 7. For our motivation we consider a special
setting: We assume that Zsrc and Ztar are temporally indivisible clusters, i.e. their
temporal components Isrc and Itar contain only a single time interval of the parti-
tion Iht of the space-time tensor product mesh Σh; see De�nition 7.5. This situation
is particularly relevant for inadmissible blocks of Vh and the meshes Σh mentioned
in the introduction of this chapter for which the spatial mesh width hx is consider-
ably �ner than the temporal mesh width ht in the sense that the relation ht ∼ h2

x

is violated. We show that for such temporally indivisible clusters Zsrc and Ztar the
block Vh|Ẑtar×Ẑsrc

can be interpreted as a matrix generated by a purely spatial kernel
function. By showing that this kernel function is asymptotically smooth we will con-
clude that the ACA can be used to compute low-rank approximations of such blocks
if the spatial components of Ztar and Zsrc are suitably separated.

Let Vh|Ẑtar×Ẑsrc
be a block of the single layer operator matrix Vh corresponding to

two clusters Ztar and Zsrc. Its entries are given in (3.25), i.e. there holds

Vh|Ẑtar×Ẑsrc
[(kt − 1)Ex + kx, (jt − 1)Ex + jx]

=

∫ tkt

tkt−1

∫

γkx

∫ tjt

tjt−1

∫

γjx

Gα(x− y, t− τ) dsy dτ dsx dt

for all (kt, kx) ∈ Ẑtar and all (jt, jx) ∈ Ẑsrc. As in previous sections, we use global in-
dices to access the entries of the block here to simplify the description. In Section 3.3
we discussed that the integrals in (3.25) are evaluated in practice by an analytic
integration in the two time-variables combined with quadrature routines in space.
This is described in more detail in [81]. Here we present the resulting formulae after
the analytic integration in time. We de�ne the time-integrated kernel

Fα,kt,jt(r) :=

∫ tkt

tkt−1

∫ tjt

tjt−1

Gα(r, t− τ) dτ dt (8.7)

for r ∈ R3 and distinguish three cases. If kt < jt, Fα,kt,jt(r) = 0 for all r ∈ R3 due
to the causality of the heat kernel Gα. If kt > jt there holds

Fα,kt,jt(r) =Gdτdt
α (r, tkt − tjt)−Gdτdt

α (r, tkt − tjt−1)

−Gdτdt
α (r, tkt−1 − tjt) +Gdτdt

α (r, tkt−1 − tjt−1)
(8.8)

180 8 An ACA based near�eld compression scheme

for all r ∈ R3, where Gdτdt
α is de�ned by

Gdτdt
α (r, δ) =

1

4π

[(|r|
2α2

+
δ

α|r|

)
erf

(|r|
2
√
αδ

)
+

√
δ√
πα3

exp

(
− |r|

2

4αδ

)]
, (8.9)

Gdτdt
α (r, 0) = lim

δ→0
Gdτdt
α (r, δ) =

|r|
8πα2

(8.10)

for all r ∈ R3 \ {0} with the error function

erf(x) :=
2√
π

∫ x

0

exp(−y2) dy. (8.11)

If instead kt = jt, we have

Fα,kt,kt(r) = ht,ktG
dτ
α (r, 0)−Gdτdt

α (r, ht,kt) +Gdτdt
α (r, 0) (8.12)

for all r ∈ R3 with ht,kt = tkt − tkt−1 as de�ned in (2.13) and Gdτ
α (r, 0) given by

Gdτ
α (r, 0) =

1

4πα|r| . (8.13)

Note that

Fα,kt,kt(r) ∼ ht,kt
4πα|r| as r → 0, (8.14)

while Fα,kt,jt(r) stays bounded as r → 0 if jt < kt. This follows, since G
dτdt
α (r, 0)→ 0

as r → 0 and since

lim
r→0

Gdτdt
α (r, δ) =

√
δ

2
√
π3α3

for all δ > 0; see [81, Section 4].

By using the function Fα,kt,jt we can rewrite the entries of the block Vh|Ẑtar×Ẑsrc
as

Vh|Ẑtar×Ẑsrc
[(kt−1)Ex+kx, (jt−1)Ex+ jx] =

∫

γkx

∫

γjx

Fα,kt,jt(x−y) dsy dsx (8.15)

for all (kt, kx) ∈ Ẑtar and (jt, jx) ∈ Ẑsrc. If we assume that Zsrc and Ztar are two
temporally indivisible clusters, there exists only one time-index kt in Ẑtar and one
time-index jt in Ẑsrc, and thus the block in (8.15) is generated by a single kernel
function Fα,kt,jt . In this representation, the block Vh|Ẑtar×Ẑsrc

has exactly the same
form as a block of a single layer operator matrix of an elliptic PDE like the Laplace
equation when a Galerkin method with piecewise constant basis functions in space
is used for the discretization; cf. Equation (8.4) in Remark 8.2 and [11, Section 3.1].
Due to (8.14), the time-integrated kernel function (x,y) 7→ Fα,kt,kt(x − y) is even
asymptotically equivalent to a scaled version of the fundamental solution of the

8.2 The applicability of the ACA for the single layer operator matrix 181

Laplace equation (x,y) 7→ (4π|x− y|)−1 as x − y → 0. The ACA presented in
Section 8.1 is known to be well suited for the approximation of blocks of the single
layer operator matrix of the Laplace equation corresponding to clusters that satisfy
an admissibility criterion like (8.6); see for example the numerical experiments in
[62, Section 4.2]. This follows, in particular, from the results which we have men-
tioned in Remark 8.2. Those results are valid for more general matrices generated by
asymptotically smooth functions. By showing that the time-integrated kernel func-
tions Fα,kt,jt in (8.7) are asymptotically smooth, we motivate that the ACA can also
be used to approximate suitable near�eld blocks of Vh which are inadmissible in the
context of the FMM in Chapter 7. Note that the asymptotic smoothness of the time
integrals of the heat kernel in 2+1D was shown in [60, Corollary 7.2.2].

To show that the kernel functions (x,y) 7→ Fα,kt,jt(x−y) are asymptotically smooth
for all kt, jt ∈ {1, . . . , Et} with jt ≤ kt, we use a few basic results about asymptotically
smooth functions which we list in the following propositions.

Proposition 8.3 ([35, Section E.1]). Let d ∈ N. The functions (x,y) 7→ |x−y|−1

and (x,y) 7→ |x− y| are asymptotically smooth on Rd × Rd.

Proposition 8.4 ([35, Theorem E.8]). Let rA > 0 and A := (−rA, rA) ⊂ R. Let
f : A \ {0} → R be asymptotically smooth in the sense that there exists an s ∈ R and
suitable constants C, ρ and γ such that

∣∣∣ dν

drν
f(r)

∣∣∣ ≤ has(ν)|r|−ν−s with has(ν) := Cν!νργν (8.16)

for all r ∈ A \ {0} and ν ∈ N. Let d ∈ N and X, Y ⊂ Rd be such that |x− y| ≤ rA
for all x ∈ X and y ∈ Y . Then the function F : X × Y → R de�ned by
F (x,y) := f(|x− y|) for all x ∈ X and y ∈ Y is asymptotically smooth.

Proposition 8.5 ([35, Remark E.11 and Theorem E.12]). Let d ∈ N and X ⊂ Rd

and Y ⊂ Rd be two non-empty, bounded, open sets. Let f : X × Y → R and
g : X × Y → R be two asymptotically smooth functions. Then the sum f + g and the
product fg of f and g are asymptotically smooth on X × Y .

In the next proposition we show that the two functions (x,y) 7→ exp(−|x−y|2/(4αδ))
and (x,y) 7→ erf(|x− y|(2

√
αδ)), which are parts of the function Gdτdt

α in (8.9), are
asymptotically smooth.

Proposition 8.6. Let X, Y ⊂ R3 be two non-empty, bounded, open sets. Then

(x,y) 7→ F1(x,y) = exp

(
− |x− y|

2

4αδ

)
for (x,y) ∈ X × Y, (8.17)

(x,y) 7→ F2(x,y) = erf

(|x− y|
2
√
αδ

)
for (x,y) ∈ X × Y, (8.18)

are asymptotically smooth for all δ > 0 and α > 0.

182 8 An ACA based near�eld compression scheme

Proof. For the functions f1 : R→ R and f2 : R→ R de�ned by

f1(r) = exp

(
− r2

4αδ

)
, f2(r) = erf

(
r

2
√
αδ

)

there holds F1(x,y) = f1(|x− y|) and F2(x,y) = f2(|x− y|). According to Propo-
sition 8.4 it is therefore su�cient to show that f1 and f2 are asymptotically smooth
on R in the sense of (8.16) to conclude that F1 and F2 are asymptotically smooth
on X × Y .

Let us �rst consider f1 and estimate |(d/dr)νf1(r)| for all R \ {0} and ν ∈ N. Since

(d/dr)νf1(r) = (−1)ν(d/dr)νf1(−r)

holds for all ν ∈ N0 and r ∈ R we can focus on the case r > 0. The function
z 7→ f1(z) is holomorphic on C. Therefore, we can use Cauchy's integral formula to
get

dν

dzν
f1(r) =

ν!

2πi

∫

∂B(r,R)

f1(ζ)

(ζ − r)ν+1
dζ

for all r ∈ R>0 and R ∈ R>0, where B(r, R) ⊂ C is the ball with center r and
radius R. We can estimate |f1(ζ)| ≤ 1 if <(−ζ2/(4αδ)) ≤ 0, i.e. <(ζ2) ≥ 0. If we
write ζ in polar coordinates ζ = %eiϕ with % ∈ R≥0 and ϕ ∈ (−π, π], we see that this
is the case if and only if |ϕ| ≤ π/4. In particular, it is satis�ed for all ζ ∈ ∂B(r, R)
with R ≤ r/

√
2, because for such values R the ball B(r, R) is fully contained in the

set {z = %eiϕ ∈ C : |ϕ| ≤ π/4}. Hence, for R ≤ r/
√

2 we can estimate

∣∣∣∣
dν

dzν
f1(r)

∣∣∣∣ ≤
ν!

2π

∫

∂B(r,R)

|f1(ζ)|
|ζ − r|ν+1

dζ ≤ ν!

2π

∫

∂B(r,R)

1

Rν+1
dζ =

ν!

Rν
.

Since R 7→ R−ν is monotonically decreasing, we can minimize this bound by choosing
R = r/

√
2. In this way, we obtain the estimate

∣∣∣∣
dν

dzν
f1(r)

∣∣∣∣ ≤ ν! 2ν/2r−ν

for all ν ∈ N, which shows that f1 is asymptotically smooth.

To show that f2 is asymptotically smooth too, we proceed in the same manner. The
function f2 satis�es (d/dr)νf2(r) = (−1)ν+1(d/dr)νf2(−r) for all ν ∈ N0 and r ∈ R,
so we can focus on the case r > 0 again. Since z 7→ f2(z) is holomorphic on C, we
can estimate ∣∣∣∣

dν

dzν
f2(r)

∣∣∣∣ ≤
ν!

2π

∫

∂B(r,R)

|f2(ζ)|
|ζ − r|ν+1

dζ (8.19)

8.2 The applicability of the ACA for the single layer operator matrix 183

for all r ∈ R>0 and R ∈ R>0. We can rewrite f2(ζ) as

f2(ζ) = erf

(
ζ

2
√
αδ

)
=

2√
π

∫ ζ

2
√
αδ

0

exp(−y2) dy

=
ζ√
παδ

∫ 1

0

exp

(
− ζ2

4αδ
τ 2

)
dτ =

ζ√
παδ

∫ 1

0

f1(ζτ) dτ,

where we used the de�nition of the error function in (8.11), which is also valid for
complex arguments, and the substitution y = τζ/(2

√
αδ). From this representation

it follows that

|f2(ζ)| ≤ |ζ|√
παδ

∫ 1

0

|f1(ζτ)| dτ ≤ r +R√
παδ

(8.20)

for all ζ ∈ ∂B(r, R) with R ≤ r/
√

2, where we used that |ζ| ≤ r+R and |f1(ζτ)| ≤ 1
for all these values of ζ and all τ ∈ [0, 1]. By using the estimate (8.20) in (8.19) it
follows that ∣∣∣∣

dν

dzν
f2(r)

∣∣∣∣ ≤ ν!
r +R

Rν
√
παδ

.

The function R 7→ (r + R)R−ν is monotonically decreasing for all r > 0 and ν ∈ N,
so we can minimize the bound in the last estimate by setting R = r/

√
2 and obtain

the estimate ∣∣∣∣
dν

dzν
f2(r)

∣∣∣∣ ≤ ν!

(
1 +

1√
2

)
1√
απδ

2ν/2r−ν+1,

which proves that f2 is asymptotically smooth.

The asymptotical smoothness of the functions F1 and F2 in Proposition 8.6 implies
that we can approximate them well on pairs of boxes Xtar and Xsrc in R3 that satisfy
an admissibility criterion like (8.6), which ensures a separation in space. For F1

we had already shown a stronger result in Section 5.1.2. In fact, the heat kernel
(x,y) 7→ Gα(x−y, t− τ) for a �xed time di�erence δ = t− τ is just a scaled version
of the function F1, and in Theorem 5.7 we had shown that it can be approximated
well by a truncated Chebyshev expansion. For this purpose, a separation of the
boxes Xtar and Xsrc in space is not necessary. Only the sizes of the boxes have to
be chosen suitably with respect to δ = t − τ as stated in (5.19). Proposition 8.6
is helpful nonetheless since we can use it together with the results in the previous
propositions to show that the more complicated time-integrated kernel functions
in (8.7) are asymptotically smooth.

Theorem 8.7. Let kt ∈ {1, . . . , Et} and jt ∈ {1, . . . , kt − 1}. Let X, Y ⊂ R3 be
two non-empty, bounded, open sets. Then the functions (x,y) 7→ Fα,kt,jt(x− y) and
(x,y) 7→ Fα,kt,kt(x−y) with Fα,kt,jt de�ned in (8.8) and Fα,kt,kt de�ned in (8.12) are
asymptotically smooth on X × Y .

184 8 An ACA based near�eld compression scheme

Proof. Let us �rst consider the function (x,y) 7→ Fα,kt,jt(x− y) in (8.8) for jt < kt.
Due to Proposition 8.5 we can conclude that it is asymptotically smooth on X × Y
if we can show that the function (x,y) 7→ Gdτdt

α (x − y, δ) is asymptotically smooth
on X × Y for all δ ≥ 0. For δ = 0 this is clear due to Proposition 8.3 since

Gdτdt
α (x− y, 0) =

|x− y|
8πα2

;

see (8.10). For δ > 0 we have

Gdτdt
α (x− y, δ) =

|x− y|
8πα2

F2(x,y) +
δ

4πα|x− y|F2(x,y) +

√
δ√
πα3

F1(x,y)

with the asymptotically smooth functions F1 and F2 from Proposition 8.6. According
to Proposition 8.3, the function (x,y) 7→ |x−y|−1 is asymptotically smooth onX×Y
too. In particular, the function (x,y) 7→ Gdτdt

α (x−y, δ) is the sum of three products
of asymptotically smooth functions on X × Y , and thus it is itself asymptotically
smooth on X×Y because of Proposition 8.5. Therefore, we have proven the assertion
for Fα,kt,jt with jt < kt. For the function (x,y) 7→ Fα,kt,kt(x − y) it follows in the
same way using the decomposition

Fα,kt,kt(x− y) =
ht,kt

4πα|x− y| −G
dτdt
α (x− y, ht,kt) +Gdτdt

α (x− y, 0).

To summarize, we have shown that for two temporally indivisible space-time clus-
ters Ztar and Zsrc the entries of the block Vh|Ẑtar×Ẑsrc

are of the form (8.4), and, more
importantly, that the corresponding kernel function Fα,kt,jt , which is determined by

the time-index kt in the index set Ẑtar and jt in Ẑsrc, is asymptotically smooth for all
cases jt ≤ kt. According to Remark 8.2 we can therefore assume that the ACA can be
used to e�ciently approximate such a block Vh|Ẑtar×Ẑsrc

if the spatial components Xtar

and Xsrc of Ztar and Zsrc satisfy an admissibility criterion like (8.6).

8.3 The ACA near�eld compression in the space-time FMM

The ACA from Section 8.1 can be used to compress certain inadmissible blocks of
the single layer operator matrix Vh in the space-time FMM from Chapter 7 to obtain
a more e�cient fast method for the application of Vh. In this section we describe
the necessary changes in the setup and application of the FMM for this additional
near�eld compression.

Let T ext
Σ be an extended space-time box cluster tree T ext

Σ as constructed in Algo-
rithm 7.1 and let the operation lists for clusters in T ext

Σ be constructed by Algo-
rithm 7.2. We want to determine originally inadmissible blocks Vh|Ẑtar×Ẑsrc

of Vh

8.3 The ACA near�eld compression in the space-time FMM 185

with Zsrc ∈ N (Ztar) for which a compression by means of the ACA is applicable.
According to the �ndings in Section 8.2 this is the case for temporally indivisible
clusters Ztar and Zsrc, whose spatial components satisfy an admissibility criterion
like (8.6). In our application we use a di�erent admissibility criterion. We require
that Ztar and Zsrc have the same spatial level `x, which we de�ned at the end of Sec-
tion 7.2.1. Then their spatial components Xtar and Xsrc are contained in a regular
grid G`x and we can use the grid distance introduced in (5.30) in Section 5.2.2 to
de�ne the spatial separation criterion

griddist(Xtar, Xsrc) > 1. (8.21)

Note that there exists a constant ηx such that (8.6) is satis�ed for all pairs of
boxes Xtar and Xsrc in the grid G`x that satisfy (8.21), even if the boxes are ad-
ditionally padded as described at the end of Section 7.2.1.

An illustration of the criterion (8.21) is given in Figure 8.1, where we consider a �xed
spatial target box Xtar and mark all the source boxes for which (8.21) is satis�ed.
Recall that when we construct the operation lists in Algorithm 7.1 we neglect inter-
actions between clusters Zsrc and Ztar if Xsrc is not contained in the interaction area
IA(Xtar) of Xtar de�ned in (5.31), i.e. if griddist(Xtar, Xsrc) > ntr. This is indicated
by the hatched boxes in Figure 8.1 for which (8.21) is satis�ed, but which are not
contained in the interaction area of Xtar in this particular example, so they can be
ignored.

Xtar

Figure 8.1: Illustration of the spatial separation criterion (8.21) for spatial boxes
in 2D. For the �xed target box Xtar and any of the source boxes �lled with green
color (8.21) is satis�ed. For the source boxes hatched in green (8.21) is also
satis�ed, but they are not contained in the interaction area IA(Xtar) ofXtar de�ned
in (5.31) if ntr = 2 is chosen as truncation parameter.

186 8 An ACA based near�eld compression scheme

Remark 8.8. Numerical experiments indicate that also for originally inadmissible
blocks corresponding to clusters Ztar and Zsrc which are not temporally indivisible
we can apply the ACA to determine a potential low-rank approximation, as long as
the spatial components of these clusters satisfy (8.21). Therefore, we do not require
that the clusters are temporally indivisible when we determine the blocks which are
admissible for a compression by the ACA in the following.

In Algorithm 8.2 we present the procedure to determine the ACA admissible near�eld
blocks of Vh, i.e. all previously inadmissible blocks of Vh that can be compressed
by the ACA. To keep track of these blocks we introduce the new ACA interaction
lists IACA for clusters in T ext

Σ which we �ll during this procedure. We assume that the
near�eld lists of clusters in T ext

Σ have already been constructed using Algorithm 7.2.
Then we consider all pairs of clusters Ztar and Zsrc with Zsrc ∈ N (Ztar) to iden-
tify related ACA admissible near�eld blocks of Vh. First, we check if the spatial
levels of the clusters agree; see line 3. If this is the case, we remove Zsrc from the
near�eld N (Ztar) and call the routine DetermineACAInteractionLists for this
pair of clusters.

Algorithm 8.2 Construction of ACA interaction lists

Require: Let the operation lists of clusters in T ext
Σ be constructed by Algorithm 7.2.

1: for all Ztar ∈ T ext
Σ

2: for all Zsrc ∈ N (Ztar)
3: if `x(Zsrc) == `x(Ztar):
4: Remove Zsrc from N (Ztar).
5: Call DetermineACAInteractionLists(Zsrc, Ztar).

6: function DetermineACAInteractionLists(Zsrc, Ztar)
7: if Xsrc and Xsrc satisfy (8.21):
8: Add Zsrc to IACA(Ztar).
9: else

10: if Zsrc and Ztar are not leaves in T ext
Σ :

11: for all (Zsrc,c, Ztar,c) with Zsrc,c ∈ child(Zsrc), Ztar,c ∈ child(Ztar)
12: Call DetermineACAInteractionLists(Zsrc,c, Ztar,c).

13: else

14: Add Zsrc to N (Ztar).

In the routine DetermineACAInteractionLists we check if the spatial sepa-
ration criterion (8.21) is satis�ed for the spatial components Xtar and Xsrc of Ztar

and Zsrc. If this is true, the corresponding block can be approximated by the ACA,
so we add Zsrc to the ACA interaction list IACA(Ztar); see line 8. Otherwise we want
to further subdivide the block Vh|Ẑtar×Ẑsrc

. If Ztar and Zsrc are not leaves in T ext
Σ , we

8.3 The ACA near�eld compression in the space-time FMM 187

do this in the usual way by recursively calling the routine DetermineACAInter-
actionLists for all pairs of children of Ztar and Zsrc; see lines 11�12. If either Ztar

or Zsrc is a leaf, we stop the subdivision. In this case, the block is inadmissible, so
we add Zsrc to the near�eld N (Ztar); see line 14. In this way, we partition the set
of all originally inadmissible blocks of Vh that we have determined in Algorithm 7.2
into a set of ACA admissible near�eld blocks and a remaining set of blocks for which
an approximation is not feasible according to our criteria.

Remark 8.9. The spatial separation criterion (8.21) can only be used for boxes Xtar

and Xsrc corresponding to clusters Ztar and Zsrc whose spatial levels coincide. This is
an implicit requirement in the routine DetermineACAInteractionLists in Algo-
rithm 8.2. For a pair of clusters Ztar and Zsrc with Zsrc ∈ N (Ztar) we check it explic-
itly in line 3 before calling the routine the �rst time. In line 12 we call it recursively
without checking the spatial levels of the involved child clusters. In fact, this is not
necessary: For the clusters for which we call DetermineACAInteractionLists
the �rst time there holds Zsrc ∈ N (Ztar), so we know that either Ztar or Zsrc is a
leaf in T ext

Σ , or both are temporally indivisible according to the construction of the
operation lists in Algorithm 7.2. Only if both clusters are temporally indivisible, they
can have children in T ext

Σ . These children are obtained from Ztar and Zsrc by purely
spatial re�nements, so their spatial levels coincide if the spatial levels of Ztar and Zsrc

are equal. Hence, whenever we reach line 12 in Algorithm 8.2 the considered child
clusters have the same spatial level.

Remark 8.10. By constructing the ACA interaction lists according to Algorithm 8.2
we compress only blocks Vh|Ẑtar×Ẑsrc

by the ACA for which the spatial levels `x(Ztar)
and `x(Zsrc) of the clusters Ztar and Zsrc coincide. We decided on this restriction since
it helps to simplify the description and convey the main ideas. However, the ACA
can also be applied to blocks Vh|Ẑtar×Ẑsrc

where `x(Ztar) 6= `x(Zsrc), as long as the
clusters are su�ciently separated in space. The criterion

η̃x dist(X1, X2) ≥ min{diam(X1), diam(X2)} (8.22)

with a constant η̃x > 0 is suitable to determine such clusters; cf. [11, Equation
(3.35)]. We can use this criterion and one-sided subdivisions of blocks in the con-
struction of the ACA interaction lists to determine additional blocks that can be ap-
proximated by the ACA. E.g., if (8.22) is not satis�ed for the spatial components Xtar

and Xsrc of a pair of clusters Ztar and Zsrc and if only Ztar is a leaf, we can consider all
blocks Vh|Ẑtar×Ẑc

with Zc ∈ childZsrc and compress them by the ACA if Xtar and Xc

satisfy (8.22). This approach is related to the temporally one-sided FMM operations
which we introduced in Chapter 7. In the numerical experiments in Section 8.6 we
will use this enhancement since it helps to further reduce the storage requirements of
the method. Note that the criterion (8.22) can again be replaced by a grid criterion
like (8.21), if Xtar and Xsrc are contained in two regular grids, where one is obtained
from the other by uniform re�nements.

188 8 An ACA based near�eld compression scheme

To set up the new fast method we assemble and store the blocks Vh|Ẑtar×Ẑsrc
of Vh

for all clusters Ztar and Zsrc with Zsrc contained in the updated near�eld list N (Ztar)
as we did in previous chapters. During this assembly phase, we also approximate
each ACA admissible near�eld block Vh|Ẑtar×Ẑsrc

with Zsrc ∈ IACA(Ztar) by using the
partially pivoted ACA in Algorithm 8.1 and obtain an ACA low-rank matrix

Sk,Ztar×Zsrc = Uk,Ztar×ZsrcW
>
k,Ztar×Zsrc

.

If the ACA algorithm terminated because the stopping criterion (8.3) was satis�ed
for a small rank k, the matrix Sk,Ztar×Zsrc is an e�cient low-rank approximation of
the block Vh|Ẑtar×Ẑsrc

. In this case we store the matrices Uk,Ztar×Zsrc and Wk,Ztar×Zsrc

and use them when applying the block. If the ACA algorithm terminated because of
any of the other conditions in Algorithm 8.1 the low-rank compression failed and we
assemble and store the full block instead.

The new fast method is presented in Algorithm 8.3. It is an enhancement of the
time-adaptive FMM in Algorithm 7.5, which uses the ACA low-rank approximations
Sk,Ztar×Zsrc of successfully approximated blocks Vh|Ẑtar×Ẑsrc

with Zsrc ∈ IACA(Ztar)
for a more e�cient near�eld evaluation. In particular, only the near�eld evaluation
di�ers from the time-adaptive FMM in Algorithm 7.5.

Algorithm 8.3 The space-time FMM for Vh with an ACA near�eld compression.

Require: Let all the requirements in Algorithm 7.5 be met.
Let the ACA interaction lists be constructed by Algorithm 8.2.
Let blocks Vh|Ẑtar×Ẑsrc

with Zsrc ∈ IACA(Ztar) be approximated by Algorithm 8.1.
1: Execute lines 1�31 of Algorithm 7.5.
// Near�eld evaluation

2: for all Ztar ∈ T ext
Σ

3: for all Zsrc ∈ IACA(Ztar)
4: if Vh|Ẑtar×Ẑsrc

was successfully compressed by the ACA:
// Compressed near�eld operation:

5: Compute w = W>k,Ztar×Zsrc
q|Ẑsrc

.
6: Add the product Uk,Ztar×Zsrcw to f |Ẑtar

.
7: else

8: Near�eld operation: Add the product Vh|Ẑtar×Ẑsrc
q|Ẑsrc

to f |Ẑtar
.

9: for all Zsrc ∈ N (Ztar)
10: Near�eld operation: Add the product Vh|Ẑtar×Ẑsrc

q|Ẑsrc
to f |Ẑtar

.

When applying a block of the matrix Vh in the near�eld evaluation phase in Algo-
rithm 8.3 we have to distinguish between compressed and uncompressed blocks. To
identify the blocks of Vh compressed by the ACA we consider the ACA interaction
lists IACA of clusters in T ext

Σ ; see line 3. If the compression of a block Vh|Ẑtar×Ẑsrc

8.4 A recompression strategy to improve the near�eld compression 189

by the ACA was successful, we apply the ACA low-rank matrix Sk,Ztar×Zsrc to the
corresponding part of the source vector q in lines 4�6, where we use the low-rank
representation of Sk,Ztar×Zsrc and compute the product in two steps for the sake of
e�ciency. If the compression was not successful, the full block Vh|Ẑtar×Ẑsrc

has been
assembled instead and is applied to the corresponding part of the source vector in
line 8. All other uncompressed blocks of Vh correspond to pairs of clusters (Zsrc, Ztar)
with Zsrc ∈ N (Ztar) and are applied in lines 9�10.

The additional near�eld compression in the fast method in Algorithm 8.3 allows us
to overcome the storage and runtime complexity O(EtE

2
x) of the fast methods in Al-

gorithms 5.3 and 7.5 for meshes where the spatial mesh width hx and the temporal
mesh width ht satisfy h

2
x � ht. In fact, we can interpret the near�eld compression as

an approximation of each originally inadmissible near�eld block Vh|Ẑtar×Ẑsrc
of Vh in

the original FMM by a hierarchical matrix (H-matrix) using the ACA as described
in [11]. If such a block has O(E2

x) entries, the complexity to compute this H-matrix
approximation is O(Ex log(Ex)| log(εACA)|6), where εACA is the accuracy in the stop-
ping criterion (8.3), and the complexity to store and apply the approximated block is
reduced from O(E2

x) to O(Ex log(Ex)| log(εACA)|3); see [11, Section 3.4.4]. In partic-
ular, if there are O(Et) originally inadmissible blocks in the FMM in Algorithm 5.3
with O(E2

x) entries, the complexity to store and apply all these blocks is reduced
from O(EtE

2
x) to O(EtEx log(Ex)| log(εACA)|3).

Remark 8.11. The described near�eld compression agrees well with our paralleliza-
tion strategy in Chapter 6. In fact, each process assembles and applies a local part of
all inadmissible blocks in our parallel FMM individually. To incorporate the near�eld
compression, each process can use a local variant of Algorithm 8.2 to determine all
ACA admissible near�eld blocks among its share of inadmissible blocks, approximate
them, and apply the compressed blocks in the parallel application of Vh together with
related inadmissible blocks whenever a corresponding near�eld operation is executed.

8.4 A recompression strategy to improve the near�eld

compression

While the ACA in Algorithm 8.1 typically yields an adequate low-rank approxima-
tion Sk when it is applied to a suitable matrix A ∈ Rm×n, the rank k of this approxi-
mation does not need to be optimal in general. A recompression of the matrix Sk by
means of a truncated singular value decomposition can be used to reduce the rank
of Sk in a post processing step; see e.g. [12, Section 2.2]. In this section we describe
such a recompression in the context of the fast method from Section 8.3. The novelty

190 8 An ACA based near�eld compression scheme

of our approach is the criterion that we use to choose the recompression ranks, which
is based on a comparison of an approximated block with a suitable diagonal block of
the matrix Vh.

To compute a singular value decomposition (SVD) of a low-rank matrix Sk = UW>

with U ∈ Rm×k and W ∈ Rn×k we proceed as described in [12, Section 2.2]. First,
we compute the QR decompositions U = QURU and W = QWRW, where QU ∈ Rm×k

and QW ∈ Rn×k are orthogonal matrices and RU,RW ∈ Rk×k are upper triangular
matrices. Secondly, we compute a singular value decomposition of RUR

>
W, which

has the form ÛΣ̂Ŵ>, where Û and Ŵ are orthogonal matrices and Σ̂ is a diagonal
matrix containing the singular values of RUR

>
W. The singular values σj = Σ̂[j, j]

with j ∈ {1, . . . , k} are non-negative real numbers and are typically arranged in de-
scending order, i.e. σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0, which we assume here. From this singular
value decomposition of RUR

>
W we get a singular value decomposition Sk = ŨΣ̂W̃> with

the orthogonal matrices Ũ = QU Û ∈ Rm×k and W̃ = QWŴ ∈ Rn×k.

We obtain an approximation of the matrix Sk with rank r < k from the singular
value decomposition Sk = ŨΣ̂W̃> by setting all entries Σ̂[j, j] with j > r to zero.

This truncation yields the approximation S̃r = ŨrW̃
>
r of Sk with Ũr ∈ Rm×r and

W̃r ∈ Rn×r, where the columns of Ũr correspond to the �rst r columns of Ũ and
the jth column of W̃r corresponds to the jth column of W̃ scaled by the singular
value σj. One can show that

‖Sk − ŨrW̃
>
r ‖2 = σr+1; (8.23)

see [14, Lemma 5.19]. Here, ‖ · ‖2 denotes the spectral norm of a matrix de�ned by

‖A‖2 = max
x∈Rm\{0}

|Ax|
|x| (8.24)

and |v| is the Euclidean norm of the vector v as in the rest of this work.

We want to use the described recompression to reduce the ranks of the ACA low-
rank matrices Sk,Ztar×Zsrc in the context of the fast method from Section 8.3. While
this kind of recompression is not new, we propose a new criterion to choose the
ranks of the recompressed matrices. For a given ACA low-rank matrix Sk,Ztar×Zsrc we
choose the recompression rank r as the smallest value such that the (r+1)th singular
value σr+1 of Sk,Ztar×Zsrc satis�es

σr+1 < εrec‖Vh|Ẑtar×Ẑtar
‖2 (8.25)

for a su�ciently small constant εrec > 0 and obtain the approximation

S̃r,Ztar×Zsrc = Ũr,Ztar×ZsrcW̃
>
r,Ztar×Zsrc

.

8.4 A recompression strategy to improve the near�eld compression 191

Choosing the recompression rank r by (8.25) means that we use ‖Vh|Ẑtar×Ẑtar
‖2 as a

reference value to determine the accuracy of the recompression instead of the largest
singular value of Sk,Ztar×Zsrc , which is often used for this purpose. Our choice is
motivated by the fact that the blocks on the diagonal of Vh are the most relevant
ones in the sense that they contain the entries with the largest absolute values among
all the entries of Vh. This follows from the de�nition of the entries of Vh in (3.25)
and the decay of the heat kernel Gα in (3.4) in space and time. In Section 8.5 we
will show that this kind of recompression is su�ciently accurate.

The spectral norm of the diagonal block Vh|Ẑtar×Ẑtar
in (8.25) corresponds to its largest

singular value, which is the square root of the largest eigenvalue λ1 of the product
(Vh|Ẑtar×Ẑtar

)>Vh|Ẑtar×Ẑtar
. We can approximate λ1 by applying the power iteration

to this matrix, which is described, for example, in [20, Section 4.1]. Independently

of the considered stopping criterion, this method yields an approximation λ̃1 of λ1

which is less than or equal to ‖Vh|Ẑtar×Ẑtar
‖2

2, so (8.25) is satis�ed if we ensure that

the �rst truncated singular value σr+1 satis�es σr+1 < εrec(λ̃1)1/2. Note that a less
accurate approximation of the spectral norm leads to a more restrictive truncation
criterion. By bounding the number of iterations of the power iteration in practice for
all blocks by a suitable constant npow we might therefore increase the recompression
ranks of some blocks but do not reduce the accuracy of the recompression.

If a cluster Ztar has children in T ext
Σ , the block Vh|Ẑtar×Ẑtar

is not assembled in the
fast method in Section 8.3, because Ztar is not contained in N (Ztar) due to the
subdivision of blocks in Algorithm 8.2. This means that we cannot estimate the norm
‖Vh|Ẑtar×Ẑtar

‖2 as described above. Therefore, we do not use the criterion (8.25) for
the choice of the recompression rank r for such clusters, but require instead that

σr+1<εrec max{‖Vh|Ẑd×Ẑd
‖2 : Zd is a leaf in T ext

Σ and a descendant of Ztar}. (8.26)

Note that if (8.26) is satis�ed, (8.25) follows since for every descendant Zd of Ztar

the block Vh|Ẑd×Ẑd
is a subblock of Vh|Ẑtar×Ẑtar

and, therefore,

‖Vh|Ẑd×Ẑd
‖2 ≤ ‖Vh|Ẑtar×Ẑtar

‖2.

Remark 8.12. The criteria (8.25) and (8.26) might even be satis�ed for the re-
compression rank r = 0 if the spectral norm of the ACA low-rank matrix Sk,Ztar×Zsrc

approximating a block Vh|Ẑtar×Ẑsrc
satis�es

‖Sk,Ztar×Zsrc‖2 ≤ εrec‖Vh|Ẑtar×Ẑtar
‖2. (8.27)

In this case we discard the matrix Sk,Ztar×Zsrc.

To incorporate the recompression of the ACA low-rank matrices in the fast method in
Section 8.3 we need to modify the way in which we assemble the blocks of Vh. Since

192 8 An ACA based near�eld compression scheme

we may need the spectral norms of some diagonal blocks Vh|Ẑtar×Ẑtar
for the recom-

pression described above, we �rst assemble all blocks Vh|Ẑtar×Ẑsrc
with Zsrc ∈ N (Ztar).

The spectral norms of blocks Vh|Ẑtar×Ẑtar
are then determined for all leaves Ztar ∈ T ext

Σ

by using the power iteration as described above and stored to access them later. Once
this is done, we can consider the ACA admissible near�eld blocks Vh|Ẑtar×Ẑsrc

of Vh.
For each of these blocks we use the ACA in Algorithm 8.1 to construct an ACA
low-rank matrix Sk,Ztar×Zsrc . If the approximation is successful, we recompress the re-
sulting low-rank matrix by a truncated SVD as described above where we determine
the recompression rank r by using either the criterion (8.25) if Ztar is a leaf in T ext

Σ

or (8.26) otherwise. If the compression by the standard ACA is not successful, we
assemble and store the full block Vh|Ẑtar×Ẑsrc

instead.

In the fast method in Algorithm 8.3 only minor changes are necessary to take the
additional recompression of ACA low-rank matrices into account. In fact, we only
need to replace each ACA low-rank matrix Sk,Ztar×Zsrc by the corresponding recom-

pressed matrix S̃r,Ztar×Zsrc in the application. The resulting method is presented in
Algorithm 8.4.

Algorithm 8.4 The fast method in Algorithm 8.3 with the additional recompression.

Require: Let all the requirements in Algorithm 7.5 be met.
Let the ACA interaction lists be constructed by Algorithm 8.2.
Let blocks Vh|Ẑtar×Ẑsrc

with Zsrc ∈ IACA(Ztar) be compressed by Algorithm 8.1
and recompressed by a truncated SVD choosing the rank by (8.25) or (8.26).

1: Execute lines 1�31 of Algorithm 7.5.
// Near�eld evaluation

2: for all Ztar ∈ T ext
Σ

3: for all Zsrc ∈ IACA(Ztar)
4: if Vh|Ẑtar×Ẑsrc

was successfully compressed by the ACA with recompression:
5: if the recompression rank r is greater than zero:

// Compressed near�eld operation:

6: Compute w = W̃>r,Ztar×Zsrc
q|Ẑsrc

.

7: Add the product Ũr,Ztar×Zsrcw to f |Ẑtar
.

8: else

9: Near�eld operation: Add the product Vh|Ẑtar×Ẑsrc
q|Ẑsrc

to f |Ẑtar
.

10: for all Zsrc ∈ N (Ztar)
11: Near�eld operation: Add the product Vh|Ẑtar×Ẑsrc

q|Ẑsrc
to f |Ẑtar

.

Let us discuss the computational e�ort of the additional recompression. As de-
scribed above we �rst estimate the spectral norms of the blocks Vh|Ẑtar×Ẑtar

for all

leaves Ztar ∈ TΣ. The number of space-time elements assigned to a leaf Ztar, i.e. #Ẑtar,

8.4 A recompression strategy to improve the near�eld compression 193

is bounded by a constant nmax due to the construction of the extended space-time
box cluster tree T ext

Σ in Algorithm 7.1. Thus, approximating the spectral norm of
the corresponding diagonal block Vh|Ẑtar×Ẑtar

by applying npow iterations of the power
iteration to (Vh|Ẑtar×Ẑtar

)>Vh|Ẑtar×Ẑtar
requires O(n2

maxnpow) operations. If we assume
that T ext

Σ has O(ExEt) leaves, the spectral norms of all corresponding diagonal blocks
of Vh can therefore be approximated in O(EtExn

2
maxnpow) operations, i.e. with linear

complexity. Note that, in general, the e�ective costs for the assembly of the related
blocks will dominate the costs of the applied power iterations if npow is reasonably
bounded.

Once the spectral norm estimates are available, the ACA low-rank blocks are as-
sembled and recompressed. Computing the singular value decomposition for the
recompression of a single low-rank matrix Sk,Ztar×Zsrc with rank k as described at

the beginning of this section requires O((#Ẑtar + #Ẑsrc + k)k2) operations; see for
example [12, Section 2.2]. Recall that the computation of Sk,Ztar×Zsrc with the ACA

requires O((#R)2(#Ẑtar + #Ẑsrc)) operations, where #R ≥ k is the number of con-
sidered rows in Algorithm 8.1, and that we bound the rank k of each block by a
parameter kmax. Therefore, the costs of the additional singular value decomposition
and its truncation scale like the costs of computing the initial low-rank approxima-
tion. This shows that the additional recompression strategy does not reduce the
e�ciency of the fast method in Section 8.3. While we cannot show that it improves
the storage and runtime complexity of that algorithm asymptotically, we will see its
positive e�ects in the numerical experiments in Section 8.6.

Remark 8.13 (A heuristic extension of the recompression strategy). The idea of our
recompression strategy is to consider all ACA admissible near�eld blocks Vh|Ẑtar×Ẑsrc

of Vh, apply the ACA in Algorithm 8.1 to compress them, and recompress them if
Algorithm 8.1 terminated because the stopping criterion (8.3) was satis�ed, i.e. the
approximation was successful. The blocks for which the approximation by the ACA
stopped before (8.3) was satis�ed because the rank of the approximation reached the
bound kmax are not recompressed but fully assembled. In fact, if the stopping crite-
rion (8.3) is not satis�ed, one cannot expect that the low-rank approximation com-
puted by the ACA is su�ciently accurate in general. However, if we could show that
an estimate like

‖Vh|Ẑtar×Ẑsrc
− Sk,Ztar×Zsrc‖2 ≤ εrec‖Vh|Ẑtar×Ẑtar

‖2 (8.28)

holds for a low-rank approximation Sk,Ztar×Zsrc of a block Vh|Ẑtar×Ẑsrc
for which (8.3)

was not satis�ed, we could recompress it like the successfully approximated blocks
using the appropriate criterion (8.25) or (8.26) to determine the recompression rank r

and get an approximation S̃r,Ztar×Zsrc that is accurate in the sense that

‖Vh|Ẑtar×Ẑsrc
− S̃r,Ztar×Zsrc‖2

≤ ‖Vh|Ẑtar×Ẑsrc
− Sk,Ztar×Zsrc‖2 + ‖Sk,Ztar×Zsrc − S̃r,Ztar×Zsrc‖2 ≤ 2εrec‖Vh|Ẑtar×Ẑtar

‖2.

194 8 An ACA based near�eld compression scheme

Note that the spectral norm of the diagonal block Vh|Ẑtar×Ẑtar
is used as a reference

value on the right-hand side of (8.28). Hence, it is a rather weak requirement that
might also be satis�ed if the estimate

‖Vh|Ẑtar×Ẑsrc
− Sk,Ztar×Zsrc‖F ≤ ε̃ACA‖Vh|Ẑtar×Ẑsrc

‖F
related to the stopping criterion (8.3) of the ACA is not satis�ed. In Section 8.6.2
we consider numerical experiments where the ACA fails for certain blocks. There we
motivate why the estimate (8.28) might hold for these blocks and the related low-rank
approximations, and investigate the e�ect of their recompression on the e�ciency
and accuracy of the fast method.

Remark 8.14. If one wants to apply the ACA near�eld compression with the ad-
ditional recompression to the double layer operator matrix Kh, the recompression
criteria (8.25) and (8.26) need to be adapted because diagonal blocks of Kh can be
zero. In fact, if all the elements of the spatial part Γh of Σh which are contained in
the spatial part Xtar of Ztar lie in a plane, the integral kernel α ∂nyGα of Kh in (5.33)
vanishes on Γh ∩ Xtar and the diagonal block Kh|Ẑtar×Žtar

is zero. However, not all
diagonal blocks of Kh are zero at once, and the gradient of the heat kernel decays in
space and time similarly as the heat kernel itself. Thus, the criterion

σr+1 ≤ εrec max{‖Kh|Ẑtar×Žtar
‖2 : Ztar is a leaf in T ext

Σ }

should be a suitable substitute for the recompression criteria (8.25) and (8.26) when
considering Kh. The same is true for the adjoint double layer operator matrix K>x

h

and the matrix Dh of the hypersingular operator.

8.5 Analysis of the recompression error

In this section we analyze the e�ect of the additional recompression of ACA low-rank
matrices in the fast method in Algorithm 8.4 on the approximation of the matrix Vh.
The results which we present can be used to conclude that when solving a BEM
system like (3.24) and using this fast method with suitably chosen parameters for
the application of Vh in an iterative solver, the approximation quality of the obtained
solution is not reduced.

To be able to analyze the approximation error we de�ne the matrices corresponding
to the fast methods in Algorithm 8.3 and Algorithm 8.4.

Definition 8.15. Let Vh ∈ REtEx×EtEx be the single layer operator matrix de�ned
in (3.25). We de�ne ṼFMM,NC

h ∈ REtEx×EtEx as the matrix corresponding to the fast

method for the application of Vh in Algorithm 8.3 and ṼFMM,rNC
h ∈ REtEx×EtEx as the

matrix corresponding to the fast method in Algorithm 8.4.

8.5 Analysis of the recompression error 195

To simplify the discussion, we assume that the parameters in Algorithm 8.3 and in
all the corresponding preparatory routines are chosen such that

‖Vh − ṼFMM,NC
h ‖2 ≤ ε̃, (8.29)

i.e. the spectral norm error between Vh and its approximation in the fast method in
Algorithm 8.3 that includes the ACA near�eld compression but not the additional
recompression is bounded by a su�ciently small constant ε̃ > 0. Such an estimate
can be shown by deriving an estimate like (8.29) for each block of the partition
of Vh induced by the operation lists constructed in Algorithms 7.2 and 8.2, and com-
bining the blockwise results to obtain the global estimate (8.29); see for example
[14, Section 4.6]. The approximation of an admissible block Vh|Ẑtar×Ẑsrc

with Zsrc

contained in one of the interaction lists IM2L, IM2Lx, or IMx2L of Ztar is obtained
by replacing the heat kernel in the integrals (3.25) de�ning the entries of Vh by the
respective kernel expansions (5.9), (7.1) or (7.3) as we have seen in Sections 5.2.3
and 7.2.3. By using the results about the approximation errors of these kernel ex-
pansions in Theorems 5.9 and 7.2, one can estimate the approximation errors of the
related blocks; see [14, Lemma 4.44]. The blockwise error estimates for the approxi-
mation of the ACA admissible near�eld blocks Vh|Ẑtar×Ẑsrc

with Zsrc ∈ IACA(Ztar) are
obtained from the error analysis in [11, Section 3.4].

In Theorem 8.16 we estimate the approximation error related to the recompression
of all the ACA low-rank blocks of ṼFMM,NC

h , which is ‖ṼFMM,NC
h − ṼFMM,rNC

h ‖2.

Theorem 8.16. Let ṼFMM,NC
h and ṼFMM,rNC

h be the matrices related to the fast meth-
ods in Algorithms 8.3 and 8.4 as introduced in De�nition 8.15 and let

Ṽdiff
h := ṼFMM,NC

h − ṼFMM,rNC
h .

Let εrec > 0 be the constant in the criteria (8.25) and (8.26) that are used to determine

the recompression ranks of all the ACA low-rank blocks of ṼFMM,NC
h . Then there

exists a constant cdiff depending on the underlying space-time box cluster tree T ext
Σ

(see Remark 8.17) such that

‖Ṽdiff
h ‖2 ≤ cdiff εrec ‖Vh‖2. (8.30)

Proof. The matrix ṼFMM,rNC
h is obtained from ṼFMM,NC

h by recompressing all the low-

rank blocks of ṼFMM,NC
h that are obtained by successful applications of the partially

pivoted ACA in Algorithm 8.1 to ACA admissible near�eld blocks Vh|Ẑtar×Ẑsrc
of Vh

corresponding to clusters Ztar and Zsrc with Zsrc ∈ IACA(Ztar). In particular, there
holds

‖Ṽdiff
h |Ẑtar×Ẑsrc

‖2 ≤ εrec‖Vh|Ẑtar×Ẑtar
‖2 (8.31)

196 8 An ACA based near�eld compression scheme

for all these blocks due to the recompression criteria (8.25) and (8.26), and the entries

of all the other blocks of Ṽdiff
h are zero. Let

Atar := {Z ∈ T ext
Σ : IACA(Z) 6= ∅} (8.32)

and q ∈ REtEx with |q| = 1. To simplify the discussion, let us �rst assume that the
index sets of clusters in Atar are pairwise disjoint, i.e. Ẑ1 ∩ Ẑ2 = ∅ for all Z1 and Z2

in Atar with Z1 6= Z2. Then there holds

∣∣∣Ṽdiff
h q

∣∣∣
2

=
∑

Ztar∈Atar

∣∣∣(Ṽdiff
h q)|Ẑtar

∣∣∣
2

=
∑

Ztar∈Atar

∣∣∣∣
∑

Zsrc∈IACA(Ztar)

Ṽdiff
h |Ẑtar×Ẑsrc

q|Ẑsrc

∣∣∣∣
2

. (8.33)

By using the triangle inequality, the consistency of the matrix norm ‖·‖2 with respect
to the Euclidean vector norm | · |, and (8.31) we further get

∣∣∣Ṽdiff
h q

∣∣∣
2

≤
∑

Ztar∈Atar

(∑

Zsrc∈IACA(Ztar)

∣∣∣Ṽdiff
h |Ẑtar×Ẑsrc

q|Ẑsrc

∣∣∣
)2

≤
∑

Ztar∈Atar

(∑

Zsrc∈IACA(Ztar)

∥∥∥Ṽdiff
h |Ẑtar×Ẑsrc

∥∥∥
2

∣∣q|Ẑsrc

∣∣
)2

≤
∑

Ztar∈Atar

(∑

Zsrc∈IACA(Ztar)

εrec

∥∥∥Vh|Ẑtar×Ẑtar

∥∥∥
2

∣∣q|Ẑsrc

∣∣
)2

.

Let nACA
src be a bound for the number of source clusters in the ACA interaction list

IACA(Z) of all clusters Z ∈ Atar. We can continue the estimation of |Ṽdiff
h q|2 by using

the estimate ‖Vh|Ẑtar×Ẑtar
‖2 ≤ ‖Vh‖2 for all Ztar ∈ Atar and the Cauchy�Schwarz

inequality to obtain

∣∣∣Ṽdiff
h q

∣∣∣
2

≤ ε2
rec

∥∥Vh
∥∥2

2

∑

Ztar∈Atar

(∑

Zsrc∈IACA(Ztar)

∣∣q|Ẑsrc

∣∣
)2

≤ ε2
rec

∥∥Vh
∥∥2

2

∑

Ztar∈Atar

nACA
src

∑

Zsrc∈IACA(Ztar)

∣∣q|Ẑsrc

∣∣2. (8.34)

To further simplify this expression, we reorder the double sum in the last line. For
this reason we de�ne the set

Asrc := {Z ∈ T ext
Σ : ∃Ztar ∈ T ext

Σ such that Z ∈ IACA(Ztar)} (8.35)

and get
∑

Ztar∈Atar

∑

Zsrc∈IACA(Ztar)

∣∣q|Ẑsrc

∣∣2 =
∑

Zsrc∈Asrc

∑

Ztar:Zsrc∈IACA(Ztar)

∣∣q|Ẑsrc

∣∣2

≤
∑

Zsrc∈Asrc

∣∣q|Ẑsrc

∣∣2nACA
tar ,

8.5 Analysis of the recompression error 197

where nACA
tar is a bound for the number of target clusters Ztar in whose ACA interaction

list IACA(Ztar) a source cluster Zsrc is contained. If we assume that also the index
sets of clusters in Asrc are pairwise disjoint there holds

∑

Zsrc∈Asrc

∣∣q|Ẑsrc

∣∣2nACA
tar ≤ nACA

tar |q|2 = nACA
tar (8.36)

and together with (8.34) we obtain

∣∣∣Ṽdiff
h q

∣∣∣ ≤ (nACA
src nACA

tar)1/2 εrec

∥∥Vh
∥∥

2
,

which is the estimate that we wanted to show.

We have to show a similar estimate in the case that the index sets of clusters in Atar

and Asrc are not pairwise disjoint, which is possible due to the re�nement of blocks in
the construction of the ACA interaction lists in Algorithm 8.2. Let us �rst consider
the sum in (8.36), i.e. ∑

Zsrc∈Asrc

∣∣q|Ẑsrc

∣∣2.

For each element index pair (jt, jx) and each level ` there exists at most one cluster Z
at level ` of T ext

Σ such that (jt, jx) ∈ Ẑ. Therefore, the number of clusters in Asrc

which contain a �xed index pair (jt, jx) is bounded by a constant cjt,jx and the
maximum

cmax = max{cjt,jx : jt ∈ {1, . . . , Et}, jx ∈ {1, . . . , Ex}}
is bounded by depth(T ext

Σ). As a consequence, we get

∑

Zsrc∈Asrc

∣∣q|Ẑsrc

∣∣2 ≤ cmax

Et∑

jt=1

Ex∑

jx=1

q2
jt,jx = |q|2cmax = cmax,

since we chose q such that |q| = 1. In a similar way, we get the estimate

∣∣∣Ṽdiff
h q

∣∣∣
2

≤ cmax

∑

Ztar∈Atar

∣∣∣∣
∑

Zsrc∈IACA(Ztar)

Ṽdiff
h |Ẑtar×Ẑsrc

q|Ẑsrc

∣∣∣∣
2

instead of the equality in (8.33). The remaining steps of the �rst part of the proof
can be repeated without further modi�cations to obtain

∣∣∣Ṽdiff
h q

∣∣∣ ≤ cmax(nACA
src nACA

tar)1/2 εrec

∥∥Vh
∥∥

2
, (8.37)

which is (8.30) with cdiff = cmax(nACA
src nACA

tar)1/2.

198 8 An ACA based near�eld compression scheme

Remark 8.17. The constants nACA
src and nACA

tar in the estimate (8.37) are sometimes
denoted as sparsity constants. Under suitable assumptions on the mesh one can
show that these constants are bounded; cf. for example [11, Example 1.36]. The
remaining constant cmax in (8.37) is bounded by the maximal number of re�nements
of an originally inadmissible block of Vh in the recursive construction of the ACA
interaction lists in Algorithm 8.2 and scales like O(log(Ex)) for globally quasi-uniform
meshes with Ex spatial elements.

The right-hand side of the estimate (8.30) in Theorem 8.16 includes the spectral
norm ‖Vh‖2 of the non-approximated single layer operator matrix Vh. We estimate
this spectral norm next to get a better understanding of the approximation error
in (8.30).

Proposition 8.18. Let Σh = Γh ⊗ Iht be a space-time tensor product mesh for a
lateral space-time boundary Σ as in Section 2.4 and hx and ht be the global spatial
and temporal mesh sizes of Σh as de�ned in (2.12) and (2.14), respectively. Let
V : H−1/2,−1/4(Σ)→ H1/2,1/4(Σ) be the single layer operator de�ned in (3.8) and let
the constant cV2 be a bound for its operator norm. Let Vh ∈ REtEx×EtEx be the BEM
matrix of V for the space of piecewise constant test and trial functions S0⊗0

hx,ht
(Σh) as

in Section 3.3. Then
‖Vh‖2 ≤ cV2 hth

2
x. (8.38)

Proof. Let q and w be two vectors in REtEx \{0} and qh and wh be the corresponding
functions in the space S0⊗0

hx,ht
(Σh) of piecewise constant functions on Σh as in (2.17).

To estimate the spectral norm of Vh we consider the inner product q · Vhw and use
the identity

q · Vhw = 〈qh, V wh〉Σ,
where V is the single layer operator in (3.8). Due to the continuity of the duality
product 〈·, ·〉Σ onH−1/2,−1/4(Σ)×H1/2,1/4(Σ) and the boundedness of V as an operator
from H−1/2,−1/4(Σ) to H1/2,1/4(Σ) there holds

〈qh, V wh〉Σ ≤ ‖qh‖H−1/2,−1/4(Σ)‖V wh‖H1/2,1/4(Σ)

≤ cV2 ‖qh‖H−1/2,−1/4(Σ)‖wh‖H−1/2,−1/4(Σ).
(8.39)

The functions wh and qh are contained in L2(Σ), so we can estimate their norms in
H−1/2,−1/4(Σ) by their norms in L2(Σ). In this way, we obtain

‖qh‖2
H−1/2,−1/4(Σ) ≤ ‖qh‖2

L2(Σ) =
Et∑

jt=1

Ex∑

jx=1

∫ tjt

tjt−1

∫

γjx

q2
jt,jx dsx dt

≤ hth
2
x

Et∑

jt=1

Ex∑

jx=1

q2
jt,jx = hth

2
x|q|2

8.5 Analysis of the recompression error 199

and an analogous estimate for ‖wh‖H−1/2,−1/4(Σ). By using these estimates and the
one in (8.39) it follows that

q · Vhw = 〈qh, V wh〉Σ ≤ cV2 hth
2
x|q||w|

for all q,w ∈ REtEx \ {0}. We can reorder the terms in this inequality and insert
q = Vhw to get

|Vhw|
|w| ≤ cV2 hth

2
x

for all w ∈ REtEx \ {0} which yields the desired estimate (8.38) for ‖Vh‖2.

From Theorem 8.16 and Proposition 8.18 it follows that

‖ṼFMM,NC
h − ṼFMM,rNC

h ‖2 ≤ εrec cdiff c
V
2 hth

2
x,

i.e. the error related to the additional recompression of blocks approximated by the
ACA can be controlled by choosing a su�ciently small constant εrec for the recom-
pression criteria (8.25) and (8.26). Together with (8.29) we obtain the estimate

‖Vh − ṼFMM,rNC
h ‖2 ≤ ‖Vh − ṼFMM,NC

h ‖2 + ‖ṼFMM,NC
h − ṼFMM,rNC

h ‖2

≤ ε̃+ εrec cdiff c
V
2 hth

2
x =: εFMM,rNC hth

2
x.

(8.40)

Let us assume that the constant εFMM,rNC in (8.40) is su�ciently small and that the
mesh Σh is part of a sequence of meshes that are globally quasi-uniform in space
and globally quasi-uniform in time. Then we want to show that a system like (3.24)

is still uniquely solvable if we replace Vh by ṼFMM,rNC
h , and that the approximation

error of the solution of this perturbed system is still quasi-optimal in the energy norm
‖·‖H−1/2,−1/4(Σ) like the solution of the non-perturbed system. Such a result is proven,
for example, in [11, Section 3.3.4.1] in a general setting, but also in [53, Section 4]
in the context of the parabolic FMM for the heat equation. In the latter work
the authors derive their results by comparing the bilinear forms related to the non-
approximated BEMmatrices with the bilinear forms obtained by approximating these
matrices with the parabolic FMM. In our setting, the corresponding bilinear forms
a(·, ·) and ãFMM,rNC

h (·, ·) on S0⊗0
hx,ht

(Σh)× S0⊗0
hx,ht

(Σh) are de�ned by

a(qh, wh) := w>Vhq, ãFMM,rNC
h (qh, wh) := w>ṼFMM,rNC

h q

where q and w are the coe�cient vectors of the functions qh and wh in S0⊗0
hx,ht

(Σh).
Since we assumed that Σh is globally quasi-uniform in space and time, there exists a
constant cuni such that

|q|2 ≤ cuni h
−1
t h−2

x ‖qh‖2
L2(Σ).

200 8 An ACA based near�eld compression scheme

By using this estimate and the one in (8.40) we get

|a(qh, wh)− ãFMM,rNC
h (qh, wh)| = |w>(Vh − ṼFMM,rNC

h)q| ≤ ‖Vh − ṼFMM,rNC
h ‖2|q||w|

≤ c2
uni εFMM,rNC‖qh‖L2(Σ)‖wh‖L2(Σ).

In [53, Sections 4.1 and 4.2] an estimate of the same form is used as a starting point
to show the existence, uniqueness, and quasi-optimality in the energy norm of solu-
tions of perturbed BEM systems using, in particular, the �rst Strang lemma. One
can follow the same lines to conclude that these results also hold in our setting for
su�ciently small values of εFMM,rNC. To be more precise, for the quasi-optimality of
the lowest order approximation error in the energy norm ‖ · ‖H−1/2,−1/4(Σ) we need to
ensure that

εFMM,rNC = O
(

(h2
x + ht)

(
max

{
hx√
ht
,

√
ht
hx

})−1/2)
;

cf. [53, Equation (4.4)].

8.6 Numerical experiments

In this section we present several numerical experiments to show the bene�ts of
the proposed ACA based near�eld compression in the FMM. The experiments are
subdivided into two sections. In Section 8.6.1 we consider numerical experiments
for sequences of nested space-time tensor product meshes with a �xed number Et of
uniform time steps and a varying number Ex of spatial elements. Here we will see
that the storage requirements and runtimes of the original FMM scale like O(EtE

2
x)

and are signi�cantly reduced by the fast methods in Algorithms 8.3 and 8.4. In
Section 8.6.2 we revisit numerical experiments from Sections 6.5 and 7.5 to show
that the additional near�eld compression reduces the e�ective storage requirements
and runtimes also for more general examples.

If not stated otherwise, we choose the parameters nmax = 800 and cst = 4.1 in all
experiments when constructing an extended space-time box cluster tree T ext

Σ for a
mesh Σh by Algorithm 7.1 and the parameters ntr = 2, η1 = η2 = 1, mt = 4 and
mx = 12 for the setup and application of the FMM operations from Chapters 5
and 7. For the near�eld compression by the ACA we set kmax = 150 to bound
the approximation ranks of the approximated blocks and use εACA = 10−5 for the
stopping criterion (8.3). When using the additional recompression from Section 8.4
we use εrec = 10−5 for the recompression criteria (8.25) and (8.26) and npow = 20
iterations of the power iteration to estimate the spectral norms of the diagonal blocks
appearing in these criteria. The basic implementation of the ACA which we use
is taken from [18]. All occurring systems of linear equations are solved using the
GMRES method with a relative accuracy of 10−8.

8.6 Numerical experiments 201

8.6.1 Experiments for spatially re�ned meshes

As we mentioned in the introduction of Chapter 8, the standard FMM in Algo-
rithm 5.3 and its extension to non-uniform temporal meshes in Algorithm 7.5 may
not e�ciently compress BEM matrices for space-time tensor product meshes whose
spatial and temporal mesh widths hx and ht are such that h2

x � ht. In this sec-
tion we present numerical experiments which show that our near�eld compression
scheme based on the ACA in Section 8.1 allows one to overcome this de�ciency like
the near�eld compression scheme proposed in [52] does.

Remark 8.19. The number of time steps of the meshes in the following two nu-
merical experiments is rather low. Hence, for each ACA admissible near�eld block
Vh|Ẑtar×Ẑsrc

of Vh the clusters Zsrc and Ztar are temporally indivisible and the appli-
cation of the ACA for the near�eld compression is justi�ed according to Section 8.2.

First experiment: A sequence of meshes re�ned uniformly in space. In the
�rst experiment we consider a partition Iht of the time interval (0, 0.25) consisting
of Et = 16 uniform time steps and a triangular mesh Γh of the surface of the cube
(0.5, 0.5)3 with Ex = 768 congruent triangles. The spatial mesh is uniformly re�ned
several times, while the time steps are not modi�ed. In this way, we get a sequence
of space-time tensor product meshes on which we solve the linear system (3.24) for
the same initial Dirichlet boundary value problem with zero initial datum as in Sec-
tion 6.5.1 using the GMRES method. For the application of the matrix Vh we use
the fast methods in Algorithms 8.3 and 8.4 that include the near�eld compression by
the ACA and in the case of the latter also the recompression from Section 8.4. To
simplify the discussion we identify these methods with the related matrices ṼFMM,NC

h

and ṼFMM,rNC
h as introduced in De�nition 8.15, and the standard FMM in Algo-

rithm 5.3 with the matrix ṼFMM
h when referring to them. For the computation of

the right-hand side in (3.24) the matrix Kh is applied by using a variant of the stan-
dard FMM in Algorithm 5.3, where we apply the near�eld blocks directly after their
assembly and discard them afterwards to reduce the memory demand. The compu-
tations were executed on the local workstation Babbage using all 32 available CPU
cores; see Appendix A for more hardware details. The obtained results are presented
in Tables 8.1 and 8.3 and discussed in detail in the following paragraphs. Since we are
interested only in the e�ect of the near�eld compression introduced in this chapter,
we do not report on the application times of the FMM approximation of Kh.

We start by comparing the storage requirements when using the di�erent methods
to approximate the matrix Vh. The numbers in lines 4�6 of Table 8.1 correspond to
the memory required to store all the inadmissible blocks and all the ACA admissible
near�eld blocks computed during the setup phase of the fast methods. Note that the
numbers for ṼFMM

h were determined without assembling the actual blocks due to their

202 8 An ACA based near�eld compression scheme

large sizes. In fact, we can see that these storage requirements scale quadratically
with the number of spatial elements Ex. This is due to the small number of time
steps of the considered meshes. In fact, already for the mesh with 12 288 space-time
elements all leaves of the corresponding space-time box cluster tree TΣ are temporally
indivisible, i.e. they contain only a single time-step of the temporal partition Iht .
By re�ning the space-time mesh only with respect to space, the numbers of space-
time elements in these clusters increase and so do the corresponding blocks of the
matrix Vh. While we can subdivide these clusters when constructing the extended
space-time box cluster tree T ext

Σ by Algorithm 7.1, we do not get any new admissible
pairs of clusters satisfying a temporal admissibility criterion like (5.12) or (7.5) in
this way, so neither in the standard FMM of Section 5.2.4 nor in its extension to
temporally adaptive meshes in Section 7.2.4 we can subdivide and approximate the
increasing inadmissible blocks. Therefore, we observe the quadratic increase in the
storage requirements of ṼFMM

h .

No. space-time elements EtEx 12 288 49 152 196 608 786 432 3 145 728
No. spatial elements Ex 768 3072 12288 49 152 196 608
No. time elements Et 16 16 16 16 16

Storage ṼFMM
h [GiB] 0.14 2.18 34.88 558.0 8928

Storage ṼFMM,NC
h [GiB] 0.14 2.18 10.65 58.47 304.5

Storage ṼFMM,rNC
h [GiB] 0.14 2.18 6.29 35.46 191.7

Table 8.1: Results of the �rst experiment of Section 8.6.1 where the linear sys-
tem (3.24) is solved for a sequence of space-time meshes of the time inter-
val (0, 0.25) and the surface of the cube (−0.5, 0.5)3. The storage requirements of

the FMM in Algorithm 5.3 (ṼFMM
h) are compared with the storage requirements

of the fast methods in Algorithm 8.3 (ṼFMM,NC
h) and Algorithm 8.4 (ṼFMM,rNC

h).

The storage requirements of ṼFMM,NC
h and ṼFMM,rNC

h do not di�er from those of ṼFMM
h

for the �rst two considered meshes. This has to do with our choice of the parameter
nmax in the construction of the underlying extended space-time box cluster trees and
its resulting structure: The maximal spatial level of the tree is zero for the �rst mesh
and one for the second mesh. Therefore, a separation in space as we require it for the
approximation of blocks by the ACA in (8.21) is not possible for clusters in these trees.
Only for the considered meshes with more than 3 072 spatial elements the maximal
spatial level of clusters in the tree is larger than one and the near�eld compression
starts to show its e�ects. In fact, we see that the storage requirements of ṼFMM,NC

h

and ṼFMM,rNC
h are signi�cantly reduced in the fourth column of Table 8.1 and all

following columns. In Figure 8.2 we plot the di�erent storage requirements per space-
time element, i.e. the total storage requirements divided by ExEt, on a logarithmic

8.6 Numerical experiments 203

scale together with two reference curves. Here we can see that the elementwise
storage requirements of ṼFMM

h scale like O(ExEt) which means that its total storage
requirements scale quadratically as we have already observed before. By comparing
the curves of ṼFMM,NC

h and ṼFMM,rNC
h with the O(log3(ExEt)) reference curve we

conclude that the total storage requirements of ṼFMM,NC
h and ṼFMM,rNC

h scale like
O(ExEt log3(ExEt)) for the considered meshes.

104 105 106

101

102

103

ExEt

S
to
ra
ge

p
er

sp
ac
e-
ti
m
e
el
em

en
t
[K

iB
]

ṼFMM
h

ṼFMM,NC
h

ṼFMM,rNC
h

O(ExEt)

O(log3(ExEt))

Figure 8.2: Plot of the storage requirements per space-time element of ṼFMM
h , ṼFMM,NC

h

and ṼFMM,rNC
h for the results in Table 8.1 together with related reference curves.

When comparing the storage requirements of ṼFMM,NC
h and ṼFMM,rNC

h in the fourth,
�fth, and sixth columns of Table 8.1 we see that the additional recompression in the
setup of ṼFMM,rNC

h reduces the e�ective storage requirements by roughly 40 percent

compared to ṼFMM,NC
h . To get a better understanding of this recompression, we

consider the matrix Vh for the mesh with 786 432 space-time elements and take a
closer look at how the ACA admissible near�eld blocks of Vh are approximated in
the setup of ṼFMM,NC

h and ṼFMM,rNC
h .

In Table 8.2 we see that the 243 536 ACA admissible near�eld blocks require a total
of 526.6 GiB when they are stored without any approximation, so only 31.4 GiB of
the 558 GiB of blocks which are stored in the case of the standard FMM are not
approximated in the near�eld compression. In the case of ṼFMM,NC

h , i.e. the near�eld
compression with the ACA but without any recompression, all blocks are successfully
approximated and the storage requirements are reduced from 526.6 GiB to 27.04 GiB.

204 8 An ACA based near�eld compression scheme

By the additional recompression in the setup of ṼFMM,rNC
h these storage requirements

are further reduced to 4.04 GiB. In Table 8.2 we see that 40 160 blocks with a total
memory demand of 230.4 GiB before the approximation can be discarded during the
recompression because their recompression rank r equals zero; see Remark 8.12. The
other 203 376 blocks require only 4.04 GiB of storage instead of 296.1 GiB after their
approximation and the additional recompression.

Storage [GiB] Storage [GiB]
No. blocks before approx. after approx.

ṼFMM,NC
h ACA admissible 243 536 526.6 27.04

Compressed 243 536 526.6 27.04

ṼFMM,rNC
h ACA admissible 243 536 526.6 4.04

Compressed 203 376 296.1 4.04
Discarded 40 160 230.4 0

Table 8.2: Details about the near�eld compression of Vh for the mesh with 786 432
space-time elements in the experiment in Table 8.1. By ACA admissible we denote
all the ACA admissible blocks Vh|Ẑtar×Ẑsrc

of Vh. Compressed blocks are those
that are successfully approximated by the ACA with a rank greater than zero and
discarded blocks are those whose recompression rank r equals zero.

In Table 8.3 we present additional details of the conducted computations. Lines 4
and 5 contain the times required for the setup of ṼFMM,NC

h and ṼFMM,rNC
h , i.e. for

the assembly of the inadmissible blocks and the approximation of the ACA admis-
sible near�eld blocks. The times for the smallest mesh are suboptimal due to the
small number of clusters in the corresponding space-time cluster tree and the way
in which we parallelize the assembly (see Section 6.2) which is not optimal for such
small meshes if many CPU cores are used. The assembly times for the larger meshes
scale similarly with respect to the number of space-time elements as the storage
requirements of ṼFMM,NC

h in Table 8.1. This is to be expected since the computa-
tional e�ort of assembling inadmissible blocks and ACA admissible near�eld blocks
is proportional to the number of computed matrix entries in general. In the case
of ṼFMM,rNC

h the ACA admissible near�eld blocks are approximated by �rst using the

partially pivoted ACA as for ṼFMM,NC
h and recompressing them afterwards. There-

fore, the setup times of ṼFMM,rNC
h cannot behave as well as the corresponding storage

requirements and will be larger than the setup times of ṼFMM,NC
h in general. However,

the results in Table 8.3 indicate that the costs of the additional recompression are
rather low. In fact, we see that the setup times of ṼFMM,NC

h and ṼFMM,rNC
h are almost

identical for the mesh with 196 608 space-time elements, which is the �rst mesh for
which the near�eld compression is in e�ect. For the two larger meshes the times for

8.6 Numerical experiments 205

the setup of ṼFMM,rNC
h are only slightly larger than the corresponding setup times

of ṼFMM,NC
h . This validates our analysis of the costs of the recompression at the end

of Section 8.4.

In lines 6�8 of Table 8.3 we present the required numbers of iterations and times
per single iteration when solving the linear system (3.24) with the GMRES method
and using Algorithms 8.3 and 8.4 for the application of Vh. For the �rst three
meshes a large part of the computation time corresponds to FMM operations for
admissible blocks. The number of these FMM operations does not vary for the
considered sequence of meshes and the costs of the M2M, M2L and L2L operations
stay constant when we re�ne the meshes in space. This explains why the GMRES
iteration times, which are dominated by the application times of Vh, scale better
than the assembly times and storage requirements for the �rst three meshes. Only
for the last two meshes the application of the inadmissible blocks and ACA admissible
near�eld blocks becomes dominant in the fast methods and we observe a quasi-linear
increase in the iteration times. For these larger meshes the di�erences between the
iteration times of ṼFMM,NC

h and ṼFMM,rNC
h , which are caused by the better compression

rates of the latter, are also more pronounced. Therefore, and due to the mild increase
in the number of GMRES iterations, the total times required for the setup and
solution are lower for ṼFMM,rNC

h than for ṼFMM,NC
h ; see lines 9 and 10 of Table 8.3.

No. space-time elements EtEx 12 288 49 152 196 608 786 432 3 145 728
No. spatial elements Ex 768 3072 12288 49 152 196 608
No. time elements Et 16 16 16 16 16

Setup time ṼFMM,NC
h [s] 2.02 16.85 79.56 413.9 2311

Setup time ṼFMM,rNC
h [s] 1.97 16.90 79.28 416.7 2327

GMRES it. time ṼFMM,NC
h [s] 0.08 0.12 0.25 1.01 4.93

GMRES it. time ṼFMM,rNC
h [s] 0.078 0.12 0.19 0.78 3.38

No. GMRES iterations (both) 26 33 42 52 68

Total time ṼFMM,NC
h [s] 4.1 20.7 89.9 466 2706

Total time ṼFMM,rNC
h [s] 4.0 20.9 87.4 457 2601

Rel. L2 error BEM (both) 0.146 0.082 0.061 0.055 0.054
Rel. L2 projection error 0.120 0.075 0.059 0.054 0.053

Table 8.3: Execution times and approximation errors for the computations in the �rst
numerical experiment of Section 8.6.1. The listed total times include the setup
times for Vh and the times for the solution of the considered linear system, but
not the required times for the construction of the right-hand side of the system.

206 8 An ACA based near�eld compression scheme

Finally, we consider the relative approximation errors ‖q− qh‖L2(Σ)/‖q‖L2(Σ) between
the known Neumann datum q and the approximate solutions qh of the systems (3.24)
for the di�erent meshes in line 11 of Table 8.3. The di�erences between these er-
rors when solving (3.24) and approximating Vh by ṼFMM,NC

h or ṼFMM,rNC
h are very

small, and, in particular, not observable when considering only the �rst three deci-
mal places. E.g., for the mesh with 786 432 space-time elements the approximation
error for the solution obtained when using ṼFMM,NC

h is 0.0549592, and 0.0549597

when using ṼFMM,rNC
h . This shows that the additional recompression of the low-rank

matrices is su�ciently accurate. In line 12 of Table 8.3 we present the relative ap-
proximation errors obtained by projecting q to the ansatz space S0⊗0

hx,ht
(Σh) for each

of the meshes as reference values. The BEM approximation errors are close to these
best approximation errors � in particular for the larger meshes � which demon-
strates the correctness of our implementation and the proposed methods. However,
we also see that the approximation errors do not really decrease anymore after a few
purely spatial mesh re�nements, which is due to the too large time step size.

In conclusion, our �rst experiment shows that the fast methods in Algorithms 8.3
and 8.4 with the additional near�eld compression are capable of reducing the pro-
hibitively large storage and runtime complexity O(EtE

2
x) of the space-time FMM in

Section 5.2.4 for meshes with a �ne spatial resolution. The additional recompres-
sion proves to be e�cient in terms of the required computation time as well as the
achieved storage reduction. Furthermore, our experiment indicates that both meth-
ods provide an approximation of the application of Vh that is su�ciently accurate for
solving linear systems in BEM and not compromising the quasi-best approximation
property of the related solutions. The academic nature of the experiment should be
noted, though. The sequence of spatially re�ned meshes was only considered to show
the bene�ts of the near�eld compression, but it is suboptimal for the solution of the
considered initial boundary value problem, as the development of the approximation
errors in Table 8.3 indicates. However, in real-life applications where a �ne spatial
resolution is necessary to resolve complicated geometries and a relatively coarse tem-
poral resolution is su�cient, our fast methods should perform similarly well. Another
use case is considered in the next experiment.

Second experiment: Meshes re�ned adaptively in space. In the second ex-
periment we consider an initial Dirichlet boundary value problem for the prismatic
L-shaped domain

Ω = (−0.5, 0)× (−0.5, 0.5)× (0, 0.5) ∪ (0, 0.5)× (0, 0.5)× (0, 0.5)

and the time interval (0, T) with T = 0.25 which we want to solve by using the direct
boundary integral approach from Section 3.2. The initial and boundary data are
chosen such that the exact solution of the homogeneous heat equation is

u(r, ϕ, z, t) = J2/3(r) sin(2ϕ/3) exp(−2t/3), (8.41)

8.6 Numerical experiments 207

where J2/3 is the Bessel function of the �rst kind of order 2/3 and (r, ϕ, z) are cylinder
coordinates in R3. We constructed this solution by using the method of separation
of variables similarly as in [34, Proposition 4.4.2.2], where the well-known singular
solutions of the Laplace equation for polygonal domains are derived. As stated in
[3, p.360, Equation 9.1.7]

J2/3(r) ∼ 1

Γ(5/3)

(
r

2

)2/3

for 0 < r �
√

5/3.

Hence, the function u has a singularity along the edge {(0, 0, z) ∈ R3 : z ∈ (0, 0.5)}
for all times t ∈ (0, T) and, in particular, the Neumann datum which we want to
determine is non-smooth. When such a non-smooth function is approximated on a
sequence of uniformly re�ned meshes a reduced order of convergence of the approxi-
mation errors is to be expected. To obtain better convergence rates one can consider
adaptively re�ned meshes instead, which is done in an adaptive BEM; see e.g. [31]
for such a method in the context of the heat equation in two spatial dimensions.

Figure 8.3: An adaptively re�ned surface mesh of the L-shaped domain Ω.

In our experiment we do not apply an adaptive BEM in the strict sense, but consider
a sequence {Γh,j}j of adaptively re�ned spatial meshes; see e.g. Figure 8.3. These
meshes were constructed using an adaptive BEM in [38, Section 6] to resolve the
singularity of the Neumann datum of the solution v(r, ϕ, z) = r2/3 sin(2ϕ/3) of the
Laplace equation on the L-shaped domain Ω, which has the same singular behavior
along the edge {(0, 0, z) ∈ R3 : z ∈ (0, 0.5)} as our considered solution u of the
heat equation. By combining these spatial meshes with a partition Iht of the time
interval (0, T) consisting of 16 uniform time steps, we obtain a sequence of space-time

208 8 An ACA based near�eld compression scheme

tensor product meshes for which we solve the linear system (3.24) for the considered
initial Dirichlet boundary value problem by using the GMRES method with a diag-
onal preconditioner. The computations were executed on the workstation Babbage
using all 32 available CPU cores. The results are given in Table 8.4.

Remark 8.20. Since the initial datum u(r, ϕ, z, 0) = J2/3(r) sin(2ϕ/3) of the initial
Dirichlet boundary value problem which we consider is non-zero, we need a mesh Ωh

of the domain Ω to discretize the initial datum and to construct the initial operator
matrix M0

h de�ned in (3.28). We use a su�ciently �ne globally quasi-uniform volume
mesh Ωh consisting of 118 784 tetrahedra for all examples. Note that this mesh and the
adaptively re�ned surface meshes {Γh,n}n are not conforming, i.e. the intersection of a
tetrahedron TΩ,k ∈ Ωh and a triangle γj in any of the meshes {Γh,n}n is not necessarily
a vertex, edge, or triangle of the same surface mesh. Our results indicate that by
using these combinations of meshes and evaluating the entries of M0

h as outlined in
Section 3.3 we are able to compute the right-hand side of the system (3.24) accurately
enough to not a�ect the approximation error of the BEM solution in a negative way.
Since we are primarily interested in the e�ect of the near�eld compression of the fast
methods in Algorithms 8.3 and 8.4 for Vh, we do not discuss the application times
of M0

h or the double layer operator matrix Kh in the following.

In Table 8.4 we see that the storage requirements of ṼFMM,NC
h and ṼFMM,rNC

h are sig-

ni�cantly lower than the storage requirements of ṼFMM
h for the considered spatially

adaptive meshes, at least once a certain mesh size is reached. When comparing the
storage requirements in Table 8.4 with the storage requirements from the �rst exper-
iment in Table 8.1 we see that for a comparable amount of space-time elements they
are quite similar. The same holds for the assembly and iteration times in Tables 8.3
and 8.4. The required numbers of GMRES iterations are slightly higher for the adap-
tive meshes in the second experiment, but due to the diagonal preconditioning, they
are still reasonable. By comparing the L2 approximation errors of the obtained BEM
solutions with the L2 projection errors of the actual Neumann datum in Table 8.4 we
furthermore see that our matrix approximations are su�ciently accurate to preserve
the quasi-optimality of the BEM solutions also in the second experiment. Note that
here the approximation errors are reduced without any observable stagnation when
increasing the number of adaptive space elements, although we keep the number of
time steps �xed as in the �rst experiment. In fact, increasing the number of time
steps does not bring any noteworthy bene�t, which we checked by computing the
related projection errors. This means that the spatial approximation quality is the
limiting factor in this experiment, which is not surprising due to the singular be-
havior of the approximated Neumann datum in space. In conclusion, the results in
Table 8.4 reveal that our new near�eld compression scheme allows one to recover the
quasi-linear storage and runtime complexity of the FMM for the application of Vh
also in the case of space-time meshes which are adaptively re�ned in space.

8.6 Numerical experiments 209

No. space-time elements EtEx 13 696 54 592 210 816 791 040
No. spatial elements Ex 856 3 412 13 176 49 440
No.time elements Et 16 16 16 16

Storage ṼFMM
h [GiB] 0.17 2.69 40.1 564.6

Storage ṼFMM,NC
h [GiB] 0.17 2.41 15.2 57.3

Storage ṼFMM,rNC
h [GiB] 0.17 2.30 13.2 42.0

Setup time ṼFMM,NC
h [s] 2.16 18.82 109.18 411.62

Setup time ṼFMM,rNC
h [s] 2.42 19.54 110.14 412.24

GMRES it. time ṼFMM,NC
h [s] 0.058 0.10 0.31 0.95

GMRES it. time ṼFMM,rNC
h [s] 0.062 0.10 0.30 0.78

No. GMRES iterations (both) 58 78 98 117

Total time ṼFMM,NC
h [s] 5.51 26.7 139.3 523

Total time ṼFMM,rNC
h [s] 6.03 27.2 139.6 504

Rel. L2 error BEM (both) 0.162 0.125 0.098 0.078
Rel. L2 projection error 0.151 0.120 0.094 0.075

Table 8.4: Results of the second experiment of Section 8.6.1 where the linear sys-
tem (3.24) is solved for a sequence of spatially adaptive meshes for the time in-

terval (0, 0.25) and the surface of the L-shaped domain Ω. The matrix ṼFMM
h

represents the original FMM in Algorithm 5.3, ṼFMM,NC
h the fast method in Algo-

rithm 8.3 and ṼFMM,rNC
h the one in Algorithm 8.4. The listed total times include

the setup times for Vh and the times for the solution of the considered linear sys-
tem, but not the required times for the construction of the right-hand side of the
system.

8.6.2 Revisiting numerical experiments from previous chapters

In this section we revisit various numerical experiments from Chapters 6 and 7 and
solve the related boundary integral equations by using the fast methods in Algo-
rithms 8.3 and 8.4 for the approximation of Vh to study the e�ects of the additional
near�eld compression in more general situations. In contrast to the experiments from
the previous section, the clusters corresponding to ACA admissible near�eld blocks
can contain more than one time step in the following experiments. While we have not
explicitly shown that the partially pivoted ACA in Algorithm 8.1 is suitable for the
approximation of such blocks, the results which we are going to present indicate that
this is the case. In the following experiments we will also use the heuristic extension
of the recompression strategy in Remark 8.13 and motivate why it is applicable.

210 8 An ACA based near�eld compression scheme

First experiment: The cube example from Section 6.5.2. In the �rst ex-
periment we consider the space-time tensor product mesh Σh from the distributed
memory scalability test in Section 6.5.2 which consists of a surface mesh of the cube
(−0.5, 0.5)3 with 12 288 triangles and a partition of the time interval (0, 0.25) into
1 024 uniform time steps. We solve the same boundary integral equation as in that
section, or rather the corresponding discrete linear system (3.24) using the GMRES
method. For the application of Vh we use the parallel FMM in Algorithm 6.5 and
distributed parallel versions of the fast methods in Algorithm 8.3 and Algorithm 8.4.
As in Section 8.6.1 we identify the three fast methods in the following discussion with
the matrices ṼFMM

h , ṼFMM,NC
h and ṼFMM,rNC

h , respectively. To run the experiment we
used 16 nodes of the VSC-4 cluster; see Appendix A for the hardware details.

By choosing the FMM parameters as discussed in the introduction of Section 8.6
we obtain a space-time cluster tree TΣ for the space-time tensor product mesh Σh

whose leaf clusters have the same level and contain four time steps. The ACA
admissible near�eld blocks of Vh determined in Algorithm 8.2 correspond to pairs of
such clusters. To start, we investigate how well the near�eld compression of ṼFMM,NC

h

works in this setting. In Table 8.5 we present the number of ACA admissible near�eld
blocks of Vh and an overview of the successfully and unsuccessfully approximated
parts of these blocks for ṼFMM,NC

h .

Storage [GiB] Storage [GiB]
No. blocks before approx. after approx.

ACA admissible 3 139 584 577.9 217.8
Compressed 2 476 656 488.0 127.9
Uncompressed 662 928 89.9 89.9

Table 8.5: Details about the near�eld compression of Vh for the �rst experiment in
Section 8.6.2 when using the fast method in Algorithm 8.3 (ṼFMM,NC

h). By ACA
admissible we denote all ACA admissible near�eld blocks Vh|Ẑtar×Ẑsrc

of Vh. Com-
pressed blocks are those that are successfully approximated by the ACA with a
rank greater than zero and uncompressed blocks are those which were not e�-
ciently compressed and are thus fully assembled in the setup of ṼFMM,NC

h .

In Table 8.5 we see that the compression achieved by the ACA is rather bad in
this example. For roughly 21 percent of all the ACA admissible near�eld blocks the
approximation even failed. This rather large amount is the reason why we use the
heuristic extension of the recompression from Remark 8.13 when setting up ṼFMM,rNC

h .
To motivate why this extension is applicable, we examine for which blocks the ACA
fails. For this purpose we subdivide the ACA admissible near�eld blocks into equiv-
alence classes based on the relative position of the corresponding space-time clusters

8.6 Numerical experiments 211

Ztar = Xtar × Itar and Zsrc = Xsrc × Isrc. Since all leaf clusters in the space-time
cluster tree TΣ have the same level, the number of di�erent relative con�gurations of
such pairs of clusters is bounded by 250:

� 2 di�erent con�gurations in time: ACA admissible near�eld blocks are inad-
missible in the standard FMM in Chapter 5. Thus, Isrc is either equal to Itar

or it is the causally relevant neighboring cluster of Itar.

� At most 125 di�erent con�gurations in space: If the grid distance of Xtar and
Xsrc de�ned in (5.30) is greater than the chosen truncation parameter ntr = 2
the interaction between Ztar and Zsrc is neglected in the FMM (recall the de�-
nition of the interaction areas in (5.31)).

For each con�guration we count how many of the corresponding ACA admissible
near�eld blocks of Vh have been approximated successfully and how many have not.
The result is illustrated in Figure 8.4. Here we see that the successful approxi-
mation of a block Vh|Ẑtar×Ẑsrc

by the ACA depends on the relative position of the
corresponding clusters. The partially pivoted ACA fails more frequently to provide
an e�cient low-rank approximation if the temporal components of the clusters Ztar

and Zsrc coincide and if their spatial components are farther separated. The heat
kernel (x, t), (y, τ) 7→ Gα(x− y, t− τ) in (3.4) attains small values for such pairs of
clusters due to its exponential decay in space, which is more pronounced for small
di�erences in time. Hence, the entries of the corresponding block Vh|Ẑtar×Ẑsrc

are
particularly small compared to the entries of the related diagonal block Vh|Ẑtar×Ẑtar

.
This means that already a small relative accuracy of the ACA low-rank approxi-
mation Sk,Ztar×Zsrc of Vh|Ẑtar×Ẑsrc

is su�cient to ensure that the estimate (8.28) in
Remark 8.13 is satis�ed, which serves as a motivation to use the heuristic extension
of the recompression strategy for ṼFMM,rNC

h in the following.

Storage [GiB] Storage [GiB]
No. blocks before approx. after approx.

ACA admissible 3 139 584 577.9 13.7
Compressed 1 728 864 358.5 13.7
Discarded 1 410 720 219.4 0

Table 8.6: Details about the near�eld compression of Vh for the �rst experiment
in Section 8.6.2 when using the fast method in Algorithm 8.4 with the heuristic
extension of the recompression in Remark 8.13 (ṼFMM,rNC

h). By ACA admissible
we denote all the ACA admissible blocks Vh|Ẑtar×Ẑsrc

of Vh. Compressed blocks are
those that are successfully approximated by the ACA with a rank greater than
zero and discarded blocks are those whose recompression rank r equals zero.

212 8 An ACA based near�eld compression scheme

a
)
B
lo
ck
s
co
rresp

o
n
d
in
g
to

clu
sters

w
ith

d
i�
eren

t
tem

p
o
ra
l
co
m
p
o
n
en
ts

I
src

a
n
d
I

ta
r .

b
)
B
lo
ck
s
co
rresp

o
n
d
in
g
to

clu
sters

w
ith

th
e
sa
m
e
tem

p
o
ra
l
co
m
p
o
n
en
t
I

src
=

I
ta

r .

F
igu

re
8.4:

V
isu

alization
of

th
e
b
lo
ck
s
of

Ṽ
F

M
M
,N

C
h

ap
p
rox

im
ated

b
y
th
e
A
C
A
in

th
e
�
rst

ex
p
erim

en
t
of

S
ection

8.6.2.
B
ased

on
th
e
relative

p
osition

of
th
eir

asso
ciated

clu
sters

Z
ta

r
=
X

ta
r ×

I
ta

r
an
d
Z

src
=
X

src ×
I

src ,
th
e
b
lo
ck
s

are
grou

p
ed

in
to

eq
u
ivalen

ce
classes

w
h
ich

are
rep

resen
ted

b
y
th
e
sm

all
sq
u
ares.

T
h
e
p
osition

(x
,y
,z)

of
a
sq
u
are

rep
resen

ts
th
e
relative

p
osition

of
X

src
w
ith

resp
ect

to
X

ta
r
(0,0,0)

for
all

b
lo
ck
s
in

its
class,

an
d
th
e
n
u
m
b
er

in
sid

e
a

sq
u
are

rep
resen

ts
th
e
n
u
m
b
er
of
corresp

on
d
in
g
b
lo
ck
s.
T
h
e
colors

in
d
icate

h
ow

m
an
y
of
th
em

h
ave

b
een

ap
p
rox

im
ated

su
ccessfu

lly
(w
h
ite)

or
u
n
su
ccessfu

lly
(d
ark

gray
)
b
y
th
e
A
C
A
.
If
a
sq
u
are

is
sp
lit

in
to

tw
o
d
i�
eren

tly
colored

p
arts,

th
e
ratio

of
th
eir

sizes
corresp

on
d
s
to

th
e
su
ccess

rate
of

th
e
ap
p
rox

im
ation

for
th
e
related

eq
u
ivalen

ce
class.

L
igh

t
gray

sq
u
ares

w
ith

ou
t
an
y
n
u
m
b
er

corresp
on
d
to

clu
sters

th
at

are
n
ot

sep
arated

in
sp
ace

an
d
th
u
s
n
ot

ap
p
rox

im
ated

.

8.6 Numerical experiments 213

In Table 8.6 we see the e�ect of the additional recompression in the near�eld compres-
sion of ṼFMM,rNC

h . The memory required to store all the ACA admissible near�eld
blocks is reduced to 13.7 GiB, which is signi�cantly less than the 577.9 GiB re-
quired to store the non-approximated blocks in the case of the standard FMM or
the 217.8 GiB required to store the ACA admissible near�eld blocks in the case of
ṼFMM,NC
h . About 38 percent of the ACA admissible near�eld blocks are even discarded

during the recompression because the determined recompression rank is zero.

ṼFMM
h ṼFMM,NC

h ṼFMM,rNC
h

Storage requirement [GiB] 890.8 530.7 326.6
Setup time [s] 299.8 212.3 195.2
GMRES iteration time [s] 6.14 5.80 5.50
No. GMRES iterations 59 59 59
Setup and solution time [s] 661.9 554.4 519.7
rel. L2 approximation error 0.0297163 0.0297163 0.0297164

Table 8.7: Storage requirements, execution times and approximation errors for the
computations in the �rst numerical experiment of Section 8.6.2 where the linear
system (3.24) is solved for a space-time tensor product mesh with 1 024 time steps
in the interval (0, 0.25) and 12 288 triangles on the surface of the cube (−0.5, 0.5)3.

The matrix Vh is approximated by the FMM in Algorithm 6.5 (ṼFMM
h), the fast

method in Algorithm 8.3 (ṼFMM,NC
h) and the fast method in Algorithm 8.4 with

the heuristic extension of the recompression in Remark 8.13 (ṼFMM,rNC
h).

In Table 8.7 we compare the storage requirements, the setup and solution times, and
the achieved accuracy when solving the system (3.24) for the considered boundary

integral equation and approximating Vh by ṼFMM
h , ṼFMM,NC

h and ṼFMM,rNC
h . Note that

storing all non-zero entries of Vh without any compression would require 590 400 GiB
of memory for this particular example. With the approximation of Vh by ṼFMM

h in the
standard FMM we can already reduce this exorbitant amount to 890.8 GiB of storage
for the inadmissible blocks of ṼFMM

h . The new fast methods yield further reductions.
Indeed, the memory required to store the inadmissible blocks and ACA admissible
near�eld blocks of ṼFMM,NC

h and, in particular, ṼFMM,rNC
h is signi�cantly less than the

memory required for ṼFMM
h , which the results in Tables 8.5 and 8.6 already suggested.

As a consequence, the setup times of ṼFMM,NC
h and ṼFMM,rNC

h are considerably lower

than the setup time of ṼFMM
h . At �rst glance, it is surprising that the setup time

of ṼFMM,rNC
h is about eight percent lower than the setup time of ṼFMM,NC

h despite
the additional recompression. The reason is that all the ACA admissible near�eld
blocks for which the approximation by the ACA failed are recompressed in the case
of ṼFMM,rNC

h due to our heuristic recompression scheme, while they are fully assembled

214 8 An ACA based near�eld compression scheme

in the case of ṼFMM,NC
h . Note that in our code we recompute all the entries of such

blocks and do not reuse the entries which we already determined in the ACA, so a
slight reduction of the setup times of ṼFMM,NC

h would still be possible.

The times required for a single GMRES iteration of ṼFMM
h , ṼFMM,NC

h and ṼFMM,rNC
h

listed in Table 8.7 do not di�er as much as the corresponding setup times. This is
because the FMM operations of admissible blocks require the most time in the ap-
plication of the three fast methods and are the same for all three of them. The total
time required for the setup and solution of the linear system (3.24) is nonetheless

about 16 percent lower for ṼFMM,NC
h and about 21 percent lower for ṼFMM,rNC

h than

the corresponding time for ṼFMM
h . At the same time, the accuracy of the matrix

approximation does not su�er for the new fast methods, as the relative L2 approx-
imation errors ‖q − qh‖L2(Σ)/‖q‖L2(Σ) in the last line of Table 8.7 indicate. When

using ṼFMM
h and ṼFMM,NC

h for the approximation of Vh these approximation errors do

not di�er in the speci�ed six signi�cant digits, and when using ṼFMM,rNC
h only the

last of these digits is di�erent. This validates our assumptions on the applicability of
the heuristic extension of the recompression strategy for the considered example.

Second experiment: The crankshaft example from Section 6.5.2. To investi-
gate the e�ect of the near�eld compression in the case of a more realistic example, we
revisit the second numerical example from Section 6.5.2, where we solved the linear
system (3.24) on a space-time tensor product mesh with 1 024 uniform time steps
in the time interval (0, 0.25) and 42 888 triangles on the surface of the crankshaft
depicted in Figure 6.6. We apply a parallel version of the fast method in Algo-
rithm 8.4 to approximate the matrix Vh in (3.24). As in the previous experiments

of this chapter we denote the resulting approximation by ṼFMM,rNC
h . To allow for an

easier comparison of the new results with the results in Section 6.5.2 we choose the
same FMM parameters as in that section and in addition the new parameters for the
near�eld compression of ṼFMM,rNC

h as stated in the introduction of Section 8.6. The
system (3.24) is solved using the GMRES method with a diagonal preconditioner.
For the computations we used 64 nodes of the VSC-4 cluster. The resulting setup
time for ṼFMM,rNC

h , solution time, and required memory to store the inadmissible

blocks and compressed ACA admissible near�eld blocks of ṼFMM,rNC
h are presented

in Table 8.8.

In the standard FMM in Section 6.5.2, 12 369 GiB of memory were required to store
the inadmissible blocks of Vh which is why even 128 nodes of VSC-4 do not provide
enough RAM to store these blocks. In contrast, only 2 711 GiB are required in the
case of ṼFMM,rNC

h , which allowed us to use 64 nodes of VSC-4. The computation times
in Table 8.8 and Table 6.3 are not really comparable due to the di�erent hardware
speci�cations and the diagonal preconditioner used in this section, which reduces
the number of required iterations from 399 to 112 to achieve a relative accuracy

8.6 Numerical experiments 215

below 10−6 in the GMRES. Nevertheless, we note that the setup of ṼFMM,rNC
h and

the solution of the system (3.24) using this approximation of Vh requires only about
�fteen minutes. The relative L2 approximation error of the resulting approximate
solution qh is roughly 0.01237, while the L2 best approximation error is 0.00837.
Hence, we conclude that also in the second experiment the near�eld compression
with the heuristic extension of the recompression proves to be su�ciently accurate
and signi�cantly more e�cient than the standard FMM.

No. nodes storage [GiB] assembly time ṼFMM,rNC
h [s] solution time [s]

64 2711 415.3 490.4

Table 8.8: Storage requirements and execution times for the computations in the
second numerical experiment of Section 8.6.2 where the linear system (3.24) is
solved for a space-time tensor product mesh with 1 024 time steps in the time
interval (0, 0.25) and 42 888 triangles on the surface of a crankshaft using the
fast method in Algorithm 8.4 with the heuristic extension of the recompression in
Remark 8.13 (ṼFMM,rNC

h) to approximate Vh.

Third and fourth experiment: The experiments from Section 7.5. In the last
two experiments of this section we revisit the numerical experiments from Section 7.5
to study the e�ects of our near�eld compression in the case of temporally non-uniform
meshes. To allow for a simple comparison we use the same FMM parameters as in
that section and the additional parameters for the ACA near�eld compression listed
at the beginning of Section 8.6 when solving the related boundary integral equations.
Furthermore, we used the same hardware to run the computations, i.e. the local
workstation Babbage for the �rst experiment and a single node of the VSC-4 cluster
for the second experiment. The results are presented in Tables 8.9 and 8.10, where
we compare the time-adaptive FMM (ṼFMM,ta

h) with the fast method in Algorithm 8.4

(ṼFMM,rNC
h), which di�er only in the treatment of the temporal near�eld.

In both tables we clearly see the bene�ts of the additional near�eld compression. The
storage requirements for the inadmissible blocks are drastically reduced. In relation,
the reduction of the setup times is slightly less pronounced, since we approximate
ACA admissible blocks �rst by the partially pivoted ACA before recompressing them.
Nonetheless, the reduction is still signi�cant. The GMRES iteration times are also
reduced by a considerable amount in both experiments, which shows that a large part
of the original application times is related to the application of inadmissible near�eld
blocks. While the storage requirements and runtimes are reduced, the approximation
quality of the obtained BEM solutions is almost identical for the two fast methods
in both experiments. This clearly demonstrates the usefulness of our new near�eld
compression scheme.

216 8 An ACA based near�eld compression scheme

ṼFMM,ta
h ṼFMM,rNC

h

Storage near�eld Vh [GiB] 32.0 8.1
Setup time Vh [s] 217.6 108.0
GMRES it. time [s] 1.42 1.09
No. GMRES iterations 49 49
Total time [s] 286.9 161.4
Rel. L2 error BEM 0.0530951 0.0530957

Table 8.9: Results obtained by revisiting the �rst experiment from Section 7.5 (expo-

nential decay in time). The results labeled by ṼFMM,ta
h are the same as in Table 7.2

when the time-adaptive FMM is used for the approximation of Vh. The results
labeled by ṼFMM,rNC

h are obtained by using the fast method in Algorithm 8.4 with
the heuristic extension of the recompression in Remark 8.13.

ṼFMM,ta
h ṼFMM,rNC

h

Storage near�eld [GiB] 66.6 28.3
Setup time [s] 302.3 170.4
GMRES it. time [s] 1.16 0.77
No. GMRES iterations 98 98
Total time [s] 415.6 246.3
Rel. L2 error BEM 0.013129 0.013130

Table 8.10: Results obtained by revisiting the second experiment from Section 7.5
(rapidly changing boundary data). The results labeled by ṼFMM,ta

h are the same
as in Table 7.3 when the time-adaptive FMM is used for the approximation of
Vh. The results labeled by ṼFMM,rNC

h are obtained by using the fast method in
Algorithm 8.4 with the heuristic extension of the recompression in Remark 8.13.

Let us summarize our �ndings in the four experiments in this section. We have seen
that the new fast methods with the additional near�eld compression can also be used
in more general settings, where clusters corresponding to ACA admissible near�eld
blocks contain more than a single time step. In the �rst experiment we observed
that the approximation of the ACA admissible near�eld blocks was not optimal for
the fast method in Algorithm 8.3 and failed for a relatively large part of the blocks.
Nonetheless, the obtained matrix approximation proved to be more e�cient and at
the same time similarly accurate as the approximation obtained by the standard
FMM in Algorithm 6.5. By identifying the blocks for which the ACA failed, we
motivated that the heuristic extension of the recompression scheme in Remark 8.13

8.6 Numerical experiments 217

is applicable for the fast method in Algorithm 8.4. This recompression proved to be
more e�cient in the �rst experiment while being still similarly accurate. This impres-
sion was solidi�ed in the other three numerical experiments, where we applied the
fast method with the heuristic recompression for space-time tensor product meshes
with more complicated spatial geometries and non-uniform temporal partitions. To-
gether with the results from Section 8.6.1 the results in this section show that the
additional near�eld compression proposed in this chapter is a useful addition to the
standard space-time FMM in Chapter 5 and its extension to non-uniform temporal
meshes in Chapter 7.

9 Conclusions and Outlook

In this work space-time boundary element methods for the solution of initial bound-
ary value problems of the transient heat equation in three spatial dimensions have
been considered. The main results are a new, rigorous proof of the integration by
parts formula for the hypersingular boundary integral operator and several signi�-
cant enhancements of an alternative version of the parabolic fast multipole method,
namely an e�cient parallelization in space and time, an extension for temporally
adaptive meshes, and a novel compression strategy for the temporal near�eld.

After presenting some preliminary results in the �rst chapters, we provided a general
version of the integration by parts formula for the hypersingular boundary integral
operator of the heat equation in Chapter 4 together with a rigorous proof. We showed
that the formula which is commonly used in the literature includes an integral term
that is not well-de�ned because the related kernel function is not Lebesgue integrable.
In the general formula provided in Chapter 4 this integral term is replaced by a bilin-
ear form b(·, ·), which is well-de�ned for general functions in the considered Sobolev
space H1/2,1/4(Σ), but di�cult to evaluate due to its de�nition as a continuous ex-
tension. We derived a suitable formula for the evaluation of this bilinear form for
certain types of functions including the typical tensor product discretization spaces.
In this way, we justi�ed the results found in the literature.

When it comes to fast methods for the application of BEM matrices for the heat
equation we achieved several signi�cant improvements. Our starting point was the
pFMM in [52, 67, 68] which we covered in a slightly modi�ed form in Chapter 5. While
we considered the same expansion of the heat kernel and a similar clustering strategy
to derive the FMM operations, we did not exploit the lower triangular block structure
of the matrices to solve the related systems of linear equations in a forward-sweeping
manner. Instead, we reorganized the operations to obtain a more common FMM that
realizes the full matrix-vector multiplication at once. This allowed us to parallelize
the method in Chapter 6 not only with respect to space but also with respect to
time. For the parallelization we used a task based execution scheme where the
temporal structure of the FMM is exploited to distribute the workload and to handle
the communication between the involved processes e�ciently. We implemented the
parallel FMM in C++ using MPI and OpenMP. The parallel e�ciency of our method
and implementation was demonstrated in several numerical experiments where we
used up to 256 nodes of the Salomon cluster in Ostrava (CZ) and showed close to
optimal scalability. A re�nement of the parallelization approach to incorporate an

219

220 9 Conclusions and Outlook

additional decomposition and distribution in space to further improve the scalability
is left for future considerations.

In Chapter 7 we extended the FMM to improve its performance when dealing with
space-time tensor product meshes that are adaptive in time. For this purpose we
considered temporally one-sided expansions of the heat kernel and analyzed the cor-
responding approximation errors. Based on these expansions we introduced new
FMM operations to compress previously inadmissible blocks of the considered BEM
matrices. The resulting time-adaptive FMM was parallelized similarly as the stan-
dard FMM and implemented in C++. In our numerical experiments we showed that
it outperforms the standard FMM for space-time tensor product meshes that are
adaptive in time.

To further improve the performance of the FMM we presented a novel method for
the compression of the temporal near�eld in Chapter 8. Our method is based on an
additional subdivision of inadmissible blocks of the BEM matrices in the FMM and
subsequent low-rank approximations obtained by using the partially pivoted ACA.
In the description we focused on the single layer operator matrix Vh. By showing
that certain blocks of this matrix are generated by an asymptotically smooth spatial
kernel function we motivated that the ACA can be applied for their approximation.
We suggested using a truncated SVD with a novel truncation criterion to recompress
the low-rank matrices obtained by the ACA and analyzed the related approximation
errors. In various numerical experiments we showed that the resulting near�eld
compression scheme can signi�cantly improve the compression achieved by the FMM
not only for space-time meshes with a �ne spatial resolution but also for more general
meshes. We are con�dent that the presented near�eld compression method can also
be used for other BEM matrices than Vh if a more sophisticated row selection strategy
is used in the ACA as discussed in Remark 8.1.

The improvements of the FMM achieved in this work are an important step towards
the development of e�cient adaptive space-time boundary element methods for the
heat equation. First results regarding a related adaptive BEM can be found in [31].
In that work, a posteriori error estimates are introduced which drive the non-local
mesh re�nement of the proposed adaptive algorithm. The adaptive algorithm and the
considered numerical examples cover only the spatially two-dimensional case. When
transferring the ideas to the spatially three-dimensional case, a fast method is needed
for the solution of the related systems because the problem size is prohibitively lim-
ited otherwise. The numerical experiments in this thesis suggest that our enhanced
FMM provides a good matrix compression also for temporally or spatially adap-
tive meshes and, therefore, it is suitable for use in an adaptive BEM. Depending on
the structure of the adaptive meshes, further modi�cations of the method might be
necessary, though. In fact, the new temporally one-sided FMM operations in the
time-adaptive FMM exploit the tensor-product structure of the considered meshes

221

and need to be modi�ed for more general meshes, in particular tetrahedral meshes
or other non-prismatic meshes. The black box nature of the ACA might allow us to
use our near�eld compression scheme also for this kind of meshes, but further work
is necessary to justify the application in such situations. However, before tetrahedral
meshes can be considered in an adaptive BEM, suitable quadrature routines need to
be developed to e�ciently evaluate the occurring singular integrals for matrix entries
corresponding to neighboring elements. This is a challenging task in itself.

There are a variety of other interesting topics which one could consider in future
works. For example, we have not presented an FMM for the initial potential operator
matrices M0

h and M1
h in this work, because they di�er considerably from the other

BEM matrices due to the integrals over the domain Ω appearing in their de�nition.
Nonetheless, the same concepts used to derive the FMM in this work can be used
to derive an FMM for these operators if an additional cluster tree for the volume
mesh Ωh is constructed. In fact, we even used such a fast method in the numerical
experiments in Chapters 7 and 8. However, a new parallelization strategy needs to be
developed for these fast methods, because the parallelization strategy in Chapter 6
cannot be directly applied due to the structural di�erences between the methods.
The development and analysis of new preconditioning strategies for the solution of
the linear systems in the space-time BEM and the consideration of higher order
polynomial discretization spaces are also interesting research topics that are left for
future considerations.

A Hardware and compiler specifications

The following hardware and compilers were used to run the numerical experiments
in this thesis.

Babbage is a local workstation at the Institute of Applied Mathematics at TU Graz,
Austria. It is equipped with two 16-core Intel Xeon Gold 5218 processors and 384
GiB of RAM. For the compilation on Babbage we used the Intel compiler v2021.2.0.

Salomon was a supercomputer at IT4Innovations National Supercomputing Center
in Ostrava, Czech Republic. It consisted of 1009 compute nodes equipped with two
12-core Intel Xeon E5-2680v3 processors and 128 GiB of RAM that were intercon-
nected by In�niBand FDR networks. It was operated until the end of 2021. For the
compilation on Salomon we used the Intel compiler v19.1.1.

VSC-4 is a supercomputer at the Vienna Scienti�c Cluster in Vienna, Austria. It
consists of 790 compute nodes equipped with two 24-core Intel Skylake Platinum
8174 processors that are interconnected with 100 Gbit/s OmniPath networks. 700
of the nodes at VSC-4 are standard nodes with 96 GiB of RAM, 78 are fat nodes
with 384 GiB of RAM, and 12 are very fat nodes with 768 GiB of RAM. For the
compilation on VSC-4 we used the Intel compiler v19.1.3.304.

223

References

[1] M. Abduljabbar, M. Al Farhan, N. Al-Harthi, R. Chen, R. Yokota,
H. Bagci, and D. Keyes, Extreme scale FMM-accelerated boundary inte-
gral equation solver for wave scattering, SIAM J. Sci. Comput. 41, 3 (2019),
pp. C245�C268, https://doi.org/10.1137/18M1173599.

[2] M. Abduljabbar, G. S. Markomanolis, H. Ibeid, R. Yokota, and
D. Keyes, Communication reducing algorithms for distributed hierarchical N-
body problems with boundary distributions, in High Performance Computing.
ISC High Performance 2017, J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes,
eds., Vol. 10266, Lecture Notes in Computer Science, Cham, 2017, Springer,
pp. 79�96, https://doi.org/10.1007/978-3-319-58667-0_5.

[3] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, Dover, New York, 9th Dover
printing ed., 1964.

[4] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and
T. Takahashi, Task-based FMM for multicore architectures, SIAM J. Sci. Com-
put. 36, 1 (2014), pp. C66�C93, https://doi.org/10.1137/130915662.

[5] E. Agullo, B. Bramas, O. Coulaud, M. Khannouz, and L. Stanisic,
Task-based fast multipole method for clusters of multicore processors, research
report, RR8970, hal-01387482v4, Inria Bordeaux Sud-Ouest, 2017, https://
hal.archives-ouvertes.fr/hal-01387482.

[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,

and D. Sorensen, LAPACK Users' Guide, SIAM, Philadelphia, 3rd ed., 1999,
https://doi.org/10.1137/1.9780898719604.

[7] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-
valued Laplace Transforms and Cauchy Problems, No. 96 in Monographs in
Mathematics, Birkhäuser, Basel, 2nd ed., 2011, https://doi.org/10.1007/
978-3-0348-0087-7.

[8] D. N. Arnold and P. J. Noon, Coercivity of the single layer heat potential,
J. Comput. Math. 7, 2 (1989), pp. 100�104.

225

https://doi.org/10.1137/18M1173599
https://doi.org/10.1007/978-3-319-58667-0_5
https://doi.org/10.1137/130915662
https://hal.archives-ouvertes.fr/hal-01387482
https://hal.archives-ouvertes.fr/hal-01387482
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1007/978-3-0348-0087-7
https://doi.org/10.1007/978-3-0348-0087-7

226 References

[9] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, StarPU:
A uni�ed platform for task scheduling on heterogeneous multicore architectures,
Concurrency Computat.: Pract. Exper. 23 (2011), pp. 187�198, https://doi.
org/10.1002/cpe.1631.

[10] M. Bebendorf, Approximation of boundary element matrices, Numer. Math.
86, 4 (2000), pp. 565�589, https://doi.org/10.1007/PL00005410.

[11] M. Bebendorf, Hierarchical Matrices, No. 63 in Lecture Notes in Compu-
tational Science and Engineering, Springer, Berlin, Heidelberg, 2008, https:
//doi.org/10.1007/978-3-540-77147-0.

[12] M. Bebendorf and S. Kunis, Recompression techniques for adaptive cross
approximation, Journal of Integral Equations and Applications 21, 3 (2009),
pp. 331 � 357, https://doi.org/10.1216/JIE-2009-21-3-331.

[13] M. Bebendorf and S. Rjasanow, Adaptive low-rank approximation of collo-
cation matrices, Computing 70, 1 (2003), pp. 1�24, https://doi.org/10.1007/
s00607-002-1469-6.

[14] S. Börm, E�cient Numerical Methods for Non-local Operators, No. 14 in Tracts
in Mathematics, European Mathematical Society, Zürich, 2010, https://doi.
org/10.4171/091.

[15] S. Börm and J. Bendoraityte, Distributed H2-matrices for non-local opera-
tors, Comput. Visual. Sci. 11 (2008), pp. 237�249, https://doi.org/10.1007/
s00791-008-0095-z.

[16] C. Bourgeois and S. Nicaise, Biorthogonal wavelet approximation meth-
ods for the heat equation, in Problems and Methods in Mathematical Physics.
Operator Theory: Advances and Applications, J. Elschner, I. Gohberg, and
B. Silbermann, eds., Vol. 121, Basel, 2001, Birkhäuser, https://doi.org/10.
1007/978-3-0348-8276-7_6.

[17] C. Bourgeois and R. Schneider, Biorthogonal wavelets for the direct inte-
gral formulation of the heat equation. Preprint, SFB393/00-14, 2000.

[18] J. Breuer, Schnelle Randelementmethoden zur Simulation von elektrischen
Wirbelstromfeldern sowie ihrer Wärmeproduktion und Kühlung, PhD thesis, Uni-
versität Stuttgart, 2005, https://doi.org/10.18419/opus-4746.

[19] R. M. Brown, The method of layer potentials for the heat equation in Lipschitz
cylinders, Amer. J. Math. 111, 2 (1989), pp. 339�379, https://doi.org/10.
2307/2374513.

[20] S. Börm and C. Mehl, Numerical Methods for Eigenvalue Problems, De
Gruyter, Berlin, Boston, 2012, https://doi.org/10.1515/9783110250374.

https://doi.org/10.1002/cpe.1631
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1007/PL00005410
https://doi.org/10.1007/978-3-540-77147-0
https://doi.org/10.1007/978-3-540-77147-0
https://doi.org/10.1216/JIE-2009-21-3-331
https://doi.org/10.1007/s00607-002-1469-6
https://doi.org/10.1007/s00607-002-1469-6
https://doi.org/10.4171/091
https://doi.org/10.4171/091
https://doi.org/10.1007/s00791-008-0095-z
https://doi.org/10.1007/s00791-008-0095-z
https://doi.org/10.1007/978-3-0348-8276-7_6
https://doi.org/10.1007/978-3-0348-8276-7_6
https://doi.org/10.18419/opus-4746
https://doi.org/10.2307/2374513
https://doi.org/10.2307/2374513
https://doi.org/10.1515/9783110250374

References 227

[21] J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole
algorithm for particle simulations, SIAM J. Sci. Stat. Comput. 9, 4 (1988),
pp. 669�686, https://doi.org/10.1137/0909044.

[22] H. Cheng, L. Greengard, and V. Rokhlin, A fast adaptive multipole
algorithm in three dimensions, J. Comput. Phys. 155, 2 (1999), pp. 468�498,
https://doi.org/10.1006/jcph.1999.6355.

[23] A. Chernov and A. Reinarz, Sparse grid approximation spaces for space-
time boundary integral formulations of the heat equation, Comput. Math. Appl.
78, 11 (2019), pp. 3605�3619, https://doi.org/10.1016/j.camwa.2019.06.
036.

[24] M. Costabel, Boundary integral operators for the heat equation, Integral Equa-
tions and Operator Theory 13, 4 (1990), pp. 498�552, https://doi.org/10.
1007/BF01210400.

[25] F. Cruz, M. Knepley, and L. Barba, PetFMM�A dynamically load-
balancing parallel fast multipole library, Int. J. Numer. Methods. Eng. 85, 4
(2011), pp. 403�428, https://doi.org/10.1002/nme.2972.

[26] J. Diestel and J. J. Uhl, Vector Measures, No. 15 in Mathematical Surveys
and Monographs, American Mathematical Society, Providence, 1977.

[27] S. Dohr, Distributed and Preconditioned Space-Time Boundary Element Meth-
ods for the Heat Equation, PhD thesis, Graz University of Technology, 2019,
https://tinyurl.com/dohrphdthesis.

[28] S. Dohr, K. Niino, and O. Steinbach, Space-time boundary element meth-
ods for the heat equation, in Space-time methods � applications to partial di�er-
ential equations, U. Langer and O. Steinbach, eds., No. 25 in Radon Series on
Computational and Applied Mathematics, De Gruyter, Berlin, 2019, pp. 1�60,
https://doi.org/10.1515/9783110548488.

[29] S. Dohr, J. Zapletal, G. Of, M. Merta, and M. Krav£enko, A parallel
space-time boundary element method for the heat equation, Comput. Math. Appl.
78, 9 (2019), pp. 2852�2866, https://doi.org/10.1016/j.camwa.2018.12.

031.

[30] L. C. Evans, Partial Di�erential Equations, Oxford University Press, Oxford,
2nd ed., 1998.

[31] G. Gantner and R. van Venetië, Adaptive space-time BEM for the heat
equation, Comput. Math. Appl. 107 (2022), pp. 117�131, https://doi.org/10.
1016/j.camwa.2021.12.022.

https://doi.org/10.1137/0909044
https://doi.org/10.1006/jcph.1999.6355
https://doi.org/10.1016/j.camwa.2019.06.036
https://doi.org/10.1016/j.camwa.2019.06.036
https://doi.org/10.1007/BF01210400
https://doi.org/10.1007/BF01210400
https://doi.org/10.1002/nme.2972
https://tinyurl.com/dohrphdthesis
https://doi.org/10.1515/9783110548488
https://doi.org/10.1016/j.camwa.2018.12.031
https://doi.org/10.1016/j.camwa.2018.12.031
https://doi.org/10.1016/j.camwa.2021.12.022
https://doi.org/10.1016/j.camwa.2021.12.022

228 References

[32] L. Greengard and P. Lin, Spectral approximation of the free-space heat ker-
nel, Appl. Comput. Harmon. Anal. 9, 1 (2000), pp. 83�97, https://doi.org/
10.1006/acha.2000.0310.

[33] L. Greengard and J. Strain, A fast algorithm for the evaluation of heat
potentials, Comm. Pure Appl. Math. 43, 8 (1990), pp. 949�963, https://doi.
org/10.1002/cpa.3160430802.

[34] P. Grisvard, Elliptic Problems in Nonsmooth Domains, No. 69 in Classics in
Applied Mathematics, Society for Industrial and Applied Mathematics, Philadel-
phia, 2011.

[35] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Vol. 49,
Springer Series in Computational Mathematics, Springer, Heidelberg, 2015,
https://doi.org/10.1007/978-3-662-47324-5.

[36] H. D. Han, The boundary integro-di�erential equations of three-dimensional
Neumann problem in linear elasticity, Numer. Math. 68, 2 (1994), pp. 269�281,
https://doi.org/10.1007/s002110050061.

[37] H. Harbrecht and J. Tausch, A fast sparse grid based space-time boundary
element method for the nonstationary heat equation, Numer. Math. 140, 1 (2018),
pp. 239�264, https://doi.org/10.1007/s00211-018-0963-5.

[38] M. Karkulik, G. Of, and D. Praetorius, Convergence of adaptive 3D
BEM for weakly singular integral equations based on isotropic mesh-re�nement,
Numer. Methods Partial Di�er. Equ. 29, 6 (2013), pp. 2081�2106, https://
doi.org/10.1002/num.21792.

[39] G. Kratochwill, Analyse und Vergleich verschiedener Varianten der schnel-
len Gauÿ�Transformation, Master's thesis, Technische Universität Graz, Graz,
2018, https://permalink.obvsg.at/tug/AC15175955.

[40] M. Krav£enko, M. Merta, and J. Zapletal, Distributed fast boundary ele-
ment methods for Helmholtz problems, Appl. Math. Comput. 362 (2019), 124503,
https://doi.org/10.1016/j.amc.2019.06.017.

[41] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V.

Burchuladze, Three-Dimensional Problems of the Mathematical Theory of
Elasticity and Thermoelasticity, No. 25 in North-Holland Series in applied Math-
ematics and Mechanics, North-Holland, Amsterdam, 1979.

[42] S. Larsson and C. Schwab, Compressive space-time Galerkin discretiza-
tions of parabolic partial di�erential equations. arxiv:1501.04514, 2015, https:
//arxiv.org/abs/1501.04514.

https://doi.org/10.1006/acha.2000.0310
https://doi.org/10.1006/acha.2000.0310
https://doi.org/10.1002/cpa.3160430802
https://doi.org/10.1002/cpa.3160430802
https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1007/s002110050061
https://doi.org/10.1007/s00211-018-0963-5
https://doi.org/10.1002/num.21792
https://doi.org/10.1002/num.21792
https://permalink.obvsg.at/tug/AC15175955
https://doi.org/10.1016/j.amc.2019.06.017
https://arxiv.org/abs/1501.04514
https://arxiv.org/abs/1501.04514

References 229

[43] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen,
R. Sampath, A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and

G. Biros, A massively parallel adaptive fast-multipole method on heteroge-
neous architectures, in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC '09, New York, 2009, Associa-
tion for Computing Machinery, pp. 1�12, https://doi.org/10.1145/1654059.
1654118.

[44] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems
and Applications, Vol. I, No. 181 in Grundl. Math. Wissen., Springer, Berlin-
Heidelberg-New York, 1972, https://doi.org/10.1007/978-3-642-65161-8.

[45] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems
and Applications, Vol. II, No. 182 in Grundl. Math. Wissen., Springer, Berlin-
Heidelberg-New York, 1972, https://doi.org/10.1007/978-3-642-65393-3.

[46] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chap-
man and Hall/CRC, New York, 1st ed., 2002, https://doi.org/10.1201/

9781420036114.

[47] A. Maue, Zur Formulierung eines allgemeinen Beugungsproblems durch eine
Integralgleichung, Z. Phys. 126 (1949), pp. 601�618.

[48] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cam-
bridge University Press, Cambridge, 2000.

[49] M. Merta, G. Of, R. Watschinger, and J. Zapletal, besthea. https:

//github.com/zap150/besthea, 2020.

[50] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard; Version 3.1, 2015, https://www.mpi-forum.org/docs/mpi-3.1/

mpi31-report.pdf. [Online; accessed May 12 2022].

[51] M. Meÿner, A Fast Multipole Galerkin Boundary Element Method for the
Transient Heat Equation, Vol. 23, Monographic Series TU Graz: Computation
in Engineering and Science, Verlag der Technischen Universität Graz, Graz,
2014, https://doi.org/10.3217/978-3-85125-350-4.

[52] M. Messner, M. Schanz, and J. Tausch, A fast Galerkin method for
parabolic space-time boundary integral equations, J. Comput. Phys. 258 (2014),
pp. 15�30, https://doi.org/10.5555/2799696.2799938.

[53] M. Messner, M. Schanz, and J. Tausch, An e�cient Galerkin boundary
element method for the transient heat equation, SIAM J. Sci. Comput. 37, 3
(2015), pp. A1554�A1576, https://doi.org/10.1137/151004422.

https://doi.org/10.1145/1654059.1654118
https://doi.org/10.1145/1654059.1654118
https://doi.org/10.1007/978-3-642-65161-8
https://doi.org/10.1007/978-3-642-65393-3
https://doi.org/10.1201/9781420036114
https://doi.org/10.1201/9781420036114
https://github.com/zap150/besthea
https://github.com/zap150/besthea
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.3217/978-3-85125-350-4
https://doi.org/10.5555/2799696.2799938
https://doi.org/10.1137/151004422

230 References

[54] K. Nabors, F. T. Korsmeyer, F. T. Leighton, and J. White, Precon-
ditioned, adaptive, multipole-accelerated iterative methods for three-dimensional
�rst-kind integral equations of potential theory, SIAM J. Sci. Comput. 15, 3
(1994), pp. 713�735, https://doi.org/10.1137/0915046.

[55] J.-C. Nédélec, Integral equations with non integrable kernels, Integral Equa-
tions and Operator Theory 5 (1982), pp. 562�572, https://doi.org/10.1007/
BF01694054.

[56] J.-C. Nédélec, Acoustic and electromagnetic equations, Vol. 144, Applied
Mathematical Sciences, Springer, New York, 2001, https://doi.org/10.1007/
978-1-4757-4393-7.

[57] P. J. Noon, The Single Layer Heat Potential and Galerkin Boundary Element
Methods for the Heal Equation, PhD thesis, University of Maryland, 1988.

[58] OpenMP Architecture Review Board, OpenMP Application Program-
ming Interface 5.0 Speci�cation, 2018, https://www.openmp.org/wp-content/
uploads/OpenMP-API-Specification-5.0.pdf. [Online; accessed May 12
2022].

[59] W. Pogorzelski, Integral Equations and Their Applications, Vol. I, No. 88 in
International Series of Monographs in Pure and Applied Mathematics, Pergamon
Press, Oxford, 1966.

[60] A. Reinarz, Sparse Space-time Boundary Element Methods for the Heat Equa-
tion, PhD thesis, University of Reading, 2015, https://centaur.reading.ac.
uk/49315.

[61] T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra
and Number Theory, Wiley, New York, 2nd ed., 1990.

[62] S. Rjasanow and O. Steinbach, The Fast Solution of Boundary Inte-
gral Equations, Mathematical and Analytical Techniques with Applications to
Engineering, Springer, New York, 1st ed., 2007, https://doi.org/10.1007/
0-387-34042-4.

[63] S. A. Sauter and C. Schwab, Boundary Element Methods, Vol. 39, Springer
Series in Computational Mathematics, Springer, Berlin, Heidelberg, 2010,
https://doi.org/10.1007/978-3-540-68093-2.

[64] F.-J. Sayas, T. S. Brown, and M. E. Hassell, Variational Techniques for
Elliptic Partial Di�erential Equations, Taylor & Francis Group, Boca Raton,
2019, https://doi.org/10.1201/9780429507069.

https://doi.org/10.1137/0915046
https://doi.org/10.1007/BF01694054
https://doi.org/10.1007/BF01694054
https://doi.org/10.1007/978-1-4757-4393-7
https://doi.org/10.1007/978-1-4757-4393-7
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://centaur.reading.ac.uk/49315
https://centaur.reading.ac.uk/49315
https://doi.org/10.1007/0-387-34042-4
https://doi.org/10.1007/0-387-34042-4
https://doi.org/10.1007/978-3-540-68093-2
https://doi.org/10.1201/9780429507069

References 231

[65] J. Schuchart, K. Tsugane, J. Gracia, and M. Sato, The impact
of taskyield on the design of tasks communicating through MPI, in Evolving
OpenMP for Evolving Architectures. IWOMP 2018, B. R. de Supinski, P. Valero-
Lara, X. Martorell, S. Mateo Bellido, and J. Labarta, eds., Vol. 11128, Lec-
ture Notes in Computer Science, Cham, 2018, Springer, pp. 3�17, https:

//doi.org/10.1007/978-3-319-98521-3_1.

[66] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value
Problems. Finite and Boundary Elements, Springer, New York, 2008, https:
//doi.org/10.1007/978-0-387-68805-3.

[67] J. Tausch, A fast method for solving the heat equation by layer potentials, J.
Comput. Phys. 224, 2 (2007), pp. 956�969, https://doi.org/10.1016/j.jcp.
2006.11.001.

[68] J. Tausch, Fast Nyström methods for parabolic boundary integral equations, in
Fast Boundary Element Methods in Engineering and Industrial Applications,
U. Langer, M. Schanz, O. Steinbach, and W. Wendland, eds., No. 63 in Lecture
Notes in Applied and Computational Mechanics, Springer, Berlin, Heidelberg,
2012, pp. 185�219, https://doi.org/10.1007/978-3-642-25670-7_6.

[69] J. Tausch and A. Weckiewicz, Multidimensional fast Gauss transforms
by Chebyshev expansions, SIAM J. Sci. Comput. 31, 5 (2009), pp. 3547�3565,
https://doi.org/10.1137/080732729.

[70] S. Thomas, A. Matthew, and B. Maciej, High Performance Computing.
Modern Systems and Practices, Morgan Kaufmann, Cambridge, 2018, https:
//doi.org/10.1016/C2013-0-09704-6.

[71] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic
Press, New York, 3rd ed., 1970.

[72] G. C. Verchota, Layer potentials and boundary value problems for Laplace's
equation on Lipschitz domains, PhD thesis, University of Minnesota, 1982,
https://www.proquest.com/docview/303065322.

[73] G. C. Verchota, Layer potentials and regularity for the Dirichlet problem for
Laplace's equation in Lipschitz domains, J. Funct. Anal. 59, 3 (1984), pp. 572�
611, https://doi.org/10.1016/0022-1236(84)90066-1.

[74] S. Wang, The Boundary Element Method for Parabolic Equation and Its Im-
plementation in BEM++, PhD thesis, Southern Methodist University, 2020,
https://scholar.smu.edu/hum_sci_mathematics_etds/7.

https://doi.org/10.1007/978-3-319-98521-3_1
https://doi.org/10.1007/978-3-319-98521-3_1
https://doi.org/10.1007/978-0-387-68805-3
https://doi.org/10.1007/978-0-387-68805-3
https://doi.org/10.1016/j.jcp.2006.11.001
https://doi.org/10.1016/j.jcp.2006.11.001
https://doi.org/10.1007/978-3-642-25670-7_6
https://doi.org/10.1137/080732729
https://doi.org/10.1016/C2013-0-09704-6
https://doi.org/10.1016/C2013-0-09704-6
https://www.proquest.com/docview/303065322
https://doi.org/10.1016/0022-1236(84)90066-1
https://scholar.smu.edu/hum_sci_mathematics_etds/7

232 References

[75] M. S. Warren and J. K. Salmon, Astrophysical N-body simulations us-
ing hierarchical tree data structures, in Proceedings of the 1992 ACM/IEEE
Conference on Supercomputing, Washington, DC, 1992, IEEE, pp. 570�576,
https://doi.org/10.1109/SUPERC.1992.236647.

[76] R. Watschinger, M. Merta, G. Of, and J. Zapletal, A parallel fast
multipole method for a space-time boundary element method for the heat equa-
tion, SIAM J. Sci. Comput. 44, 4 (2022), pp. C320�C345, https://doi.org/
10.1137/21M1430157.

[77] R. Watschinger and G. Of, An integration by parts formula for the bilinear
form of the hypersingular boundary integral operator for the transient heat equa-
tion in three spatial dimensions, J. Integral Equ. Appl. 34, 1 (2022), pp. 103�133,
https://doi.org/10.1216/jie.2022.34.103.

[78] R. Watschinger and G. Of, A time-adaptive space-time FMM for the heat
equation, Comput. Methods Appl. Math (2022), https://doi.org/https://
doi.org/10.1515/cmam-2022-0117.

[79] R. Yokota and L. A. Barba, A tuned and scalable fast multipole method as
a preeminent algorithm for exascale systems, J. High Perform. Comput. Appl.
26, 4 (2012), pp. 337�346, https://doi.org/10.1177/1094342011429952.

[80] M. Zank, Inf-Sup Stable Space-Time Methods for Time-Dependent Partial Dif-
ferential Equations, Vol. 36, Monographic Series TU Graz: Computation in
Engineering and Science, Verlag der Technischen Universität Graz, Graz, 2019,
https://doi.org/10.3217/978-3-85125-721-2.

[81] J. Zapletal, R. Watschinger, G. Of, and M. Merta, Semi-analytic in-
tegration for a parallel space-time boundary element method modeling the heat
equation, Comput. Math. Appl. 103 (2021), pp. 156�170, https://doi.org/10.
1016/j.camwa.2021.10.025.

https://doi.org/10.1109/SUPERC.1992.236647
https://doi.org/10.1137/21M1430157
https://doi.org/10.1137/21M1430157
https://doi.org/10.1216/jie.2022.34.103
https://doi.org/https://doi.org/10.1515/cmam-2022-0117
https://doi.org/https://doi.org/10.1515/cmam-2022-0117
https://doi.org/10.1177/1094342011429952
https://doi.org/10.3217/978-3-85125-721-2
https://doi.org/10.1016/j.camwa.2021.10.025
https://doi.org/10.1016/j.camwa.2021.10.025

Monographic Series TU Graz
Computation in Engineering and Science

Vol. 1 Steffen Alvermann

 Effective Viscoelastic Behavior
of Cellular Auxetic Materials
2008
ISBN 978-3-902465-92-4

Vol. 2 Sendy Fransiscus Tantono

 The Mechanical Behaviour of a Soilbag
under Vertical Compression
2008
ISBN 978-3-902465-97-9

Vol. 3 Thomas Rüberg

 Non-conforming FEM/BEM Coupling in Time Domain
2008
ISBN 978-3-902465-98-6

Vol. 4 Dimitrios E. Kiousis

 Biomechanical and Computational Modeling of
Atherosclerotic Arteries
2008
ISBN 978-3-85125-023-7

Vol. 5 Lars Kielhorn

 A Time-Domain Symmetric Galerkin BEM
for Viscoelastodynamics
2009
ISBN 978-3-85125-042-8

Vol. 6 Gerhard Unger

 Analysis of Boundary Element Methods
for Laplacian Eigenvalue Problems
2009
ISBN 978-3-85125-081-7

Monographic Series TU Graz
Computation in Engineering and Science

Vol. 7 Gerhard Sommer

 Mechanical Properties of Healthy and Diseased
Human Arteries
2010
ISBN 978-3-85125-111-1

Vol. 8 Mathias Nenning
 Infinite Elements for

Elasto- and Poroelastodynamics
2010
ISBN 978-3-85125-130-2

Vol. 9 Thanh Xuan Phan

 Boundary Element Methods for
Boundary Control Problems
2011
ISBN 978-3-85125-149-4

Vol. 10 Loris Nagler
 Simulation of Sound Transmission through

Poroelastic Plate-like Structures
2011
ISBN 978-3-85125-153-1

Vol. 11 Markus Windisch

 Boundary Element Tearing and Interconnecting
Methods for Acoustic and Electromagnetic
Scattering
2011
ISBN 978-3-85125-152-4

Monographic Series TU Graz
Computation in Engineering and Science

Vol. 12 Christian Walchshofer

 Analysis of the Dynamics at the Base of a Lifted
Strongly Buoyant Jet Flame Using Direct Numerical
Simulation
2011
ISBN 978-3-85125-185-2

Vol. 13 Matthias Messner

 Fast Boundary Element Methods in Acoustics
2012
ISBN 978-3-85125-202-6

Vol. 14 Peter Urthaler

 Analysis of Boundary Element Methods for Wave
Propagation in Porous Media
2012
ISBN 978-3-85125-216-3

Vol. 15 Peng Li

 Boundary Element Method for Wave Propagation in
Partially Saturated Poroelastic Continua
2012
ISBN 978-3-85125-236-1

Vol. 16 Andreas Jörg Schriefl

 Quantification of Collagen Fiber Morphologies in
Human Arterial Walls
2013
ISBN 978-3-85125-238-5

Vol. 17 Thomas S. E. Eriksson

 Cardiovascular Mechanics
2013
ISBN 978-3-85125-277-4

Monographic Series TU Graz
Computation in Engineering and Science

Vol. 18 Jianhua Tong

 Biomechanics of Abdominal Aortic Aneurysms
2013
ISBN 978-3-85125-279-8

Vol. 19 Jonathan Rohleder

 Titchmarsh–Weyl Theory and Inverse Problems
for Elliptic Differential Operators
2013
ISBN 978-3-85125-283-5

Vol. 20 Martin Neumüller

 Space-Time Methods
2013
ISBN 978-3-85125-290-3

Vol. 21 Michael J. Unterberger

 Microstructurally-Motivated Constitutive Modeling of
Cross-Linked Filamentous Actin Networks
2013
ISBN 978-3-85125-303-0

Vol. 22 Vladimir Lotoreichik

 Singular Values and Trace Formulae for Resolvent
Power Differences of Self-Adjoint Elliptic Operators
2013
ISBN 978-3-85125-304-7

Vol. 23 Michael Meßner

 A Fast Multipole Galerkin Boundary Element Method
for the Transient Heat Equation
2014
ISBN 978-3-85125-350-4

Monographic Series TU Graz
Computation in Engineering and Science

Vol. 24 Lorenz Johannes John

 Optimal Boundary Control in Energy Spaces
2014
ISBN 978-3-85125-373-3

Vol. 25 Hannah Weisbecker

 Softening and Damage Behavior of Human Arteries
2014
ISBN 978-3-85125-370-2

Vol. 26 Bernhard Kager

 Efficient Convolution Quadrature based Boundary
Element Formulation for Time-Domain
Elastodynamics
2015
ISBN 978-3-85125-382-5

Vol. 27 Christoph M. Augustin

 Classical and All-floating FETI Methods with
Applications to Biomechanical Models
2015
ISBN 978-3-85125-418-1

Vol. 28 Elias Karabelas

 Space-Time Discontinuous Galerkin Methods for
Cardiac Electromechanics
2016
ISBN 978-3-85125-461-7

Vol. 29 Thomas Traub

 A Kernel Interpolation Based Fast Multipole Method
for Elastodynamic Problems
2016
ISBN 978-3-85125-465-5

Monographic Series TU Graz
Computation in Engineering and Science

Vol. 30 Matthias Gsell
 Mortar Domain Decomposition Methods for

Quasilinear Problems and Applications
2017
ISBN 978-3-85125-522-5

Vol. 31 Christian Kühn

 Schrödinger operators and singular infinite
rank perturbations
2017
ISBN 978-3-85125-551-5

Vol. 32 Michael H. Gfrerer

 Vibro-Acoustic Simulation of Poroelastic Shell
Structures
2018
ISBN 978-3-85125-573-7

Vol. 33 Markus Holzmann

 Spectral Analysis of Transmission and Boundary
Value Problems for Dirac Operators
2018
ISBN 978-3-85125-642-0

Vol. 34 Osman Gültekin

 Computational Inelasticity of Fibrous Biological
Tissues with a Focus on Viscoelasticity, Damage
and Rupture
2019
ISBN 978-3-85125-655-0

Monographic Series TU Graz
Computation in Engineering and Science

Vol. 35 Justyna Anna Niestrawska

 Experimental and Computational Analyses of
Pathological Soft Tissues – Towards a Better
Understanding of the Pathogenesis of AAA
2019
ISBN 978-3-85125-678-9

Vol. 36 Marco Zank

 Inf-Sup Stable Space-Time Methods for Time-
Dependent Partial Differential Equations
2020
ISBN 978-3-85125-721-2

Vol. 37 Christoph Irrenfried

 Convective turbulent near wall heat transfer
at high Prandtl numbers
2020
ISBN 978-3-85125-724-3

Vol. 38 Christopher Albert

 Hamiltonian Theory of Resonant Transport Regimes
in Tokamaks with Perturbed Axisymmetry
2020
ISBN 978-3-85125-746-5

Vol. 39 Daniel Christopher Haspinger

 Material Modeling and Simulation of Phenomena at
the Nano, Micro and Macro Levels in Fibrous Soft
Tissues of the Cardiovascular System
2021
ISBN 978-3-85125-802-8

Monographic Series TU Graz
Computation in Engineering and Science

Vol. 40 Markus Alfons Geith

 Percutaneous Coronary Intervention
2021
ISBN 978-3-85125-801-1

Vol. 41 Dominik Pölz

 Space-Time Boundary Elements for
Retarded Potential Integral Equations
2021
ISBN 978-3-85125-811-0

Vol. 42 Douglas Ramalho Queiroz Pacheco

 Stable and stabilised finite element methods
for incompressible flows of generalised
Newtonian fluids
2021
ISBN 978-3-85125-856-1

Vol. 43 Peter Schlosser

 Superoscillations and their Schrödinger
time evolution
2022
ISBN 978-3-85125-930-8

Vol. 44 Raphael Watschinger

 Fast space-time boundary element methods
for the heat equation
2023
ISBN 978-3-85125-949-0

	Title
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Basic function spaces
	2.2 Lipschitz domains and their smooth approximation
	2.3 Anisotropic Sobolev spaces and trace operators
	2.4 Piecewise polynomial approximation spaces

	3 Boundary integral equations and boundary element methods
	3.1 The boundary integral operators
	3.2 Solving initial BVPs by boundary integral equations
	3.3 Boundary element methods

	4 An integration by parts formula for the hypersingular operator
	4.1 Auxiliary definitions and results
	4.1.1 Selected results from distribution theory
	4.1.2 The surface curl in an anisotropic Sobolev space
	4.1.3 The heat equation – selected results

	4.2 A general integration by parts formula for the hypersingular operator
	4.2.1 A proof of the general integration by parts formula
	4.2.2 An integral representation of the bilinear form b
	4.2.3 Evaluating the BEM matrix of the hypersingular operator

	5 A space-time FMM for the heat equation
	5.1 A separable approximation of the heat kernel
	5.1.1 Analysis of the interpolation error in time
	5.1.2 Analysis of the approximation error in space
	5.1.3 The space-time approximation error

	5.2 Description of the space-time FMM
	5.2.1 A 4D space-time box cluster tree
	5.2.2 Matrix partitioning using operation lists
	5.2.3 Approximation of admissible matrix blocks
	5.2.4 Nested FMM operations and the space-time FMM

	6 A task based parallelization of the space-time FMM
	6.1 A temporal version of the space-time FMM
	6.2 A task based shared memory parallelization
	6.2.1 Additional aspects for a better parallel performance

	6.3 A task based distributed memory parallelization
	6.3.1 Assumptions about the data distribution
	6.3.2 Distributed FMM task lists and inter-process communication
	6.3.3 The distributed algorithm

	6.4 A data and workload distribution strategy
	6.5 Numerical experiments
	6.5.1 Numerical experiments in shared memory
	6.5.2 Numerical experiments in distributed memory

	7 A time-adaptive version of the space-time FMM
	7.1 Temporally one-sided approximations of the heat kernel
	7.1.1 Analysis of the approximation error

	7.2 Description of the time-adaptive FMM
	7.2.1 Extended space-time box cluster trees
	7.2.2 Operation lists for the time-adaptive FMM
	7.2.3 Block approximation and new FMM operations
	7.2.4 The time-adaptive space-time FMM

	7.3 Complexity analysis for newly approximated blocks
	7.4 Parallelization of the time-adaptive FMM
	7.5 Numerical experiments

	8 An ACA based nearfield compression scheme
	8.1 The adaptive cross approximation
	8.2 The applicability of the ACA for the single layer operator matrix
	8.3 The ACA nearfield compression in the space-time FMM
	8.4 A recompression strategy to improve the nearfield compression
	8.5 Analysis of the recompression error
	Numerical experiments
	Experiments for spatially refined meshes
	Revisiting numerical experiments from previous chapters

	9 Conclusions and Outlook
	A Hardware and compiler specifications
	References
	Leere Seite

