
Citation: Kreindl, D.; Bauernfeind, T.;

Weiss, B.; Stockreiter, C.; Yenumula,

S.K.; Narayanan, B.; Kaltenbacher, M.

Fundamental Investigation of Wave

Propagation inside IC-Striplines

upon Excitation with Hertzian Dipole

Moments. Electronics 2022, 11, 2488.

https://doi.org/10.3390/

electronics11162488

Academic Editor: Farhad Rachidi

Received: 21 June 2022

Accepted: 7 August 2022

Published: 10 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Fundamental Investigation of Wave Propagation inside
IC-Striplines upon Excitation with Hertzian Dipole Moments
Dominik Kreindl 1,2,*, Thomas Bauernfeind 2 , Bernhard Weiss 1, Christian Stockreiter 1,
Suresh Kumar Yenumula 1, Bhuvnesh Narayanan 1 and Manfred Kaltenbacher 2

1 ams OSRAM Group, 8141 Premstaetten, Austria
2 Institute of Fundamentals and Theory in Electrical Engineering, Graz University of Technology,

8010 Graz, Austria
* Correspondence: dominik.kreindl@ams-osram.com

Abstract: To characterize the electromagnetic compatibility (EMC) of integrated circuits (ICs), es-
pecially the radiated emissions in the near field, transversal electromagnetic cell (TEM cell) or
IC-stripline measurements (IEC 61967) are utilized. Due to the ongoing miniaturization and the
increasing operating frequencies, accurate EMC characterization of ICs is becoming more important
to achieve first-time-right designs. In order to avoid expensive redesigns, the prediction of these
measurements in terms of a simulation workflow would be of high interest. Because of the high
computational burden needed to conduct 3D full-wave finite element (FEM) simulations of both the
device under test (DUT) and the measurement system, an equivalent representation of the DUT by
means of analytical incident fields, such as Hertzian dipole moments, can be considered. In order
to develop an order-reduced model of this kind, it is essential to have a solid understanding of the
coupling and wave propagation effects inside the measurement systems. In the present paper, a
fundamental investigation of the coupling paths between an IC-stripline and electric or magnetic
dipole moments is presented and the results are compared to the existing analytical models. The
results show that these analytical models, originally developed for TEM cells, are only partially
valid for IC-striplines. It has also been shown that even for simple test structures, such as loop and
monopole antennas, the representation in terms of one single dipole moment is insufficient.

Keywords: TEM cell; IC-stripline; near field characterization; electromagnetic compatibility; dipole
moment method; finite element method

1. Introduction

In the past few years, the demand for integrating high-power laser modules into mo-
bile or wearable electronic devices has increased strongly. Many integrated optical sensor
modules of such devices use vertical cavity surface-emitting lasers (VCSELs). VCSELs are
widely used as an infrared (IR) light source for applications such as time of flight (TOF)
cameras or structured light systems, e.g., face recognition, automotive in-carbine sensing or
light detection and ranging (LIDAR) [1–4]. Nevertheless, the operation of VCSELs demands
fast pulsed currents of high amperage and fast rise times. Therefore, the integration of
this technology into densely packed electronic systems bears the risk of electromagnetic
interference (EMI) between the VCSEL driver circuit and other integrated systems. Possible
victims of the interference are 5G antennas, wireless communication or sensor systems. Due
to the high integration density and the increased operating frequencies, the EMC character-
ization in terms of measurement is becoming nearly impossible, especially when resolving
different coupling paths. For this reason, an attempt is made to develop numerical field
simulation methodologies to describe the electromagnetic behavior of ICs and packages
before fabrication.

For the measurement of IC radiated emission (RE), transversal electromagnetic waveg-
uides, such as TEM cells (IEC 61967-2) and IC-striplines (IEC 61967-8), are utilized [5,6].
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In order to avoid redesigns, a simulation workflow for the prediction of the outcome of
these measurements would be of high interest. However, a 3D full-wave FEM simulation
of both the described measurement system and the DUT is very resource-consuming in
terms of computational power. For this reason, an equivalent analytical representation of
the DUT can be considered. The high currents of the above described VCSEL driver circuits
are conducted to the diode via bond wires. These wires can be considered as a half-current
loop over a ground plane and by thinking of the image theory [7], we can obtain a full
current loop. Assuming that these current loops are the main RE sources, a reduced model,
consisting of an array of electric and magnetic dipoles to represent a VCSEL system, is
considered. A summarized literature study on these dipole moment methods can be found
in [8]. An accurate order reduced model of this kind would decrease the computational
burden and simulation time to predict the described measurements significantly. The usage
of purely analytical formulas for the output voltages of the measurement systems would
even decrease it by magnitudes.

It turns out that analytic descriptions of this kind have already been developed for
TEM cell measurements. There, the purpose was to find an equivalent representation
of the DUT to enable far-field (FF) open area test site (OATS) simulations of the DUT.
Measurement methodologies to extract an array of equivalent dipole moments have been
developed for two-port TEM cells by Sreenivasiah et al. [9–11] and Koepke et al. [12] and
also for GTEM cells by Wilson [13]. All these models have in common that they are based
on the field theory of guided waves [14,15], which will be described in more detail in
Section 2. For instance, it is well known from the theories that for rectangular waveguides,
the orientation and position of the moments strongly influence the voltage generation on
the output of the test system. For example, horizontal current loops inside an IC cannot be
characterized correctly by those measurement methods if the IC is mounted onto an EMC
test PCB. This has been previously identified as a weakness [16].

These formulas are valid as long as the dipole sources are placed in the center of the
upper or lower chamber of the TEM cell and only the dominant TEM mode exists. In this
paper, an evaluation of this analytic model and the influence of the positioning of current
sources inside IC-striplines are conducted by the means of full-wave FEM simulations
and measurements.

The rest of this paper is organized as follows: Section 2 introduces the analytic dipole
theory, the IC-stripline method, and the used test PCBs. Section 3 shows the measurement
and simulation results and finally, in Section 4, the conclusion of this work is presented.

2. Measurement Methods, Theory and Test Structures
2.1. IC-Stripline Method

For EMC characterization of electronic equipment, TEM cells have been commonly
used for quite a while [17]. To be able to not only characterize system level equipment, such
as a notebook, but also just a single IC, smaller TEM cells with a cutout for standardized
EMC test PCBs are utilized both for immunity and emission tests (IEC 61967 and IEC
62132). Since the immunity test with this kind of cells requires expensive amplifiers to
generate the required electric field strength (E-field) inside the cell, the IC-stripline method
was introduced [18], which is now also used for emission tests [6]. Figure 1 shows the
cross-sections of both measurement systems. The physical background of both systems
is similar. The DUT, connected to the EMC test board, generates an electromagnetic field,
which propagates along the septum in form of a TEM wave towards the coax connectors
on both sides. At the junction, the mode converts into a coaxial mode and travels further
towards the 50 Ω termination resistance of either a termination resistor or a measurement
device, such as a vector network analyzer (VNA) or an EMI receiver.
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Figure 1. Cross-sections: (a) TEM cell; (b) IC-stripline.

2.2. Hertzian Dipole Theory

A Hertzian electric dipole can be thought of as an infinitesimal small straight wire
antenna, with l << λ, ∀ λ, where l is the length of the dipole and λ is the wavelength.
Additionally, the diameter of this wire is considered infinitesimal small as well (a << λ, ∀ λ).
The antenna is excited with a uniform current distribution of constant current amplitude I0
along the length of the antenna. This gives an electric dipole moment I0l of the dimension
Am along the wire length.

For a magnetic Hertzian dipole on the other hand, a straight wire is not considered,
but a closed circular wire loop with constant current amplitude I0. In this case, a magnetic
dipole moment,

Iml = jSωµ0 I0, (1)

of the dimension Vm is evoked perpendicular to the loop area [19]. In this expression,
j is the imaginary unit, S is the loop area, ω is the angular frequency and µ0 is the
vacuum permeability.

The emitted spherical field components of these radiators in free space, when posi-
tioned in the coordinate center aligned with the z-axis, can be found via the magnetic vector
potential A and the electric vector potential F (see [19] as an example).

An electric dipole can be demonstrated by the following equations:

Eφ = Hr = Hθ = 0
Er = Z0

I0lcosθ
2πr2

(
1 + 1

jkr

)
e−jkr

Eθ = jZ0
kI0lsinθ

4πr

(
1 + 1

jkr −
1

k2r2

)
e−jkr

Hφ = j kI0lsinθ
4πr

(
1 + 1

jkr

)
e−jkr

(2)

A magnetic dipole can be demonstrated by the following equations:

Er = Eθ = Hφ = 0
Eφ = −j kIm lsinθ

4πr

(
1 + 1

jkr

)
e−jkr

Hr =
Im lcosθ
2πZ0r2

(
1 + 1

jkr

)
e−jkr

Hθ = j kIm lsinθ
4πZ0r

(
1 + 1

jkr −
1

k2r2

)
e−jkr

(3)

In these expressions, Z0 is the characteristic impedance of free space, r is the distance
of the investigated sphere from the source and k is the phase constant.

It can be observed from (1) that the strength of the magnetic dipole moment is fre-
quency dependent when excited with constant wire current amplitude I0, while the electric
dipole moment is not. This has great influence on the behavior of infinitesimal dipole mo-
ments inside a TEM cell. The analytical description of these behaviors is as follows [9–11].
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By considering a rectangular waveguide with perfect electric side walls with the 0th
order TEM mode propagating inside in positive and negative axial direction (x-direction),
the field components are given by

E(±) =

(
a
b

)
E0

(±)

H(±) =

(
a
b

)
H0

(±).
(4)

In (4), a and b are the amplitudes of the propagating mode in positive and negative
x-direction and E0 and H0 are the field components of this mode, described by

E0
(±) =

(
ze0z + ye0y

)
e∓jk0x

H0
(±) = ±

(
zh0z + yh0y

)
e∓jk0x.

(5)

In (5), z and y are unity vectors, e0z, e0y, h0z, h0y are the transverse field components
given for a certain geometry of a wave guide when excited with 1 W and k0 is the phase
constant of the TEM mode. To describe the relation between the amplitudes of the prop-
agating mode and an exciting current source inside the wave guide, Lorentz reciprocity
theorem can be used [14,15], shown by the following equation:(

a
b

)
= −1

2

∫
Ω

(
J·E0

(∓)
)

dΩ. (6)

By thinking of an infinitesimal short current source, (6) can be rewritten as(
a
b

)
= −1

2
me·E0

(∓) (7)

and me = JΩ represents an electric dipole moment. By considering an infinitesimal thin
filament current, the strength of the dipole moment can be rewritten as I0l from (2).

If the current source, however, forms a closed loop and if one replaces J with I0, (6) can
be written as(

a
b

)
= −1

2
I0

∮
∂S

E0
(∓)·dl = −1

2
I0

∫
S

curlE0
(∓)·ndS =

1
2
(jωµ0)H0

(∓)·mm (8)

using Stoke’s theorem, Faraday’s law of induction and by introducing the magnetic dipole
moment mm = I0Sn. This also gives the relation to Iml in (1) and (3), which is as follows:
Im l
ωµ = |mm| = I0S. By expressing the magnetic field via

H0
(±) = ±x× E0

(±)

Z0
(9)

and using superposition of an electric and magnetic dipole source by deploying (5) to (7)
and (8), one can obtain the following equation:(

a
b

)
= −1

2
(me·e0 ± jk0mm·(x× e0)) (10)

with
e0 =

(
ze0z + ye0y

)
. (11)

This implies that, when positioned in the center of the waveguide y-wise (y = 0→ e0y = 0),
only the z-component of an electric dipole and the y-component of a magnetic dipole will
contribute to the amplitudes of a and b. When it is not centered y-wise, e0y is not zero;
therefore, the y-component of an electric dipole and the z-component of a magnetic dipole
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will also contribute to the amplitudes. However, dipole components aligned with the
propagation direction (x-direction) will never have any influence on a and b according to
this analytic model. The presented model is restricted by the assumption that only the
zeroth order mode is able to propagate inside the waveguide, and therefore is not valid
for higher frequencies that allow higher order modes. Typically, the frequency range for
which TEM cells and IC-striplines are suited, according to the manufacturer, comply with
this limit. The frequency range for the IC-stripline used in this work is 150 kHz to 3 GHz.

Due to the similar underlying operating principle of TEM cells and IC-striplines, the
use of this model could be interesting for IC-striplines as well. Nevertheless, because of
the non-rectangular cross section and the smaller dimensions of IC-striplines, this analytic
model cannot be used without further investigation. Therefore, the behavior of dipoles for
IC-striplines shall be investigated in terms of numerical simulations and measurements.

2.3. Test PCBs

To evaluate the analytical behavior of the dipole moments by measurement, an ap-
proach was made to build electrically small geometries onto two-layer test PCBs that
behave as similar as possible to the theoretical moments, according to [20]. The PCB blanks
can be observed in Figure 2. They feature just one central signal via with a signal pad on
the top and bottom layer, respectively. The rest of the PCB top and bottom area consists of
a ground plane, largely protected by solder resist, which is not taken into consideration
for this investigation. On the top layer, a SMA connector is soldered to the signal pad
and ground accordingly. The small test geometries are placed on the bottom layer. To
represent an electric dipole, a small piece of wire is soldered onto the bottom layer signal
pad vertically. To represent a magnetic dipole and also the bond wires of VCSEL drivers as
described in Section 1, a bond wire is bonded in a loop from the bottom layer signal pad
to the bottom layer ground plane, as shown in Figure 3. In both cases it is assumed that
through the effects of the image theory due to the large ground area, the behavior of the
small geometries will represent the dipoles accordingly. The PCBs are further referred to as
E-PCB for the electric dipole and H-PCB for the magnetic dipole.

To confirm the dipole-like behavior of the test PCBs, a H-field scan of both PCBs was
carried out and compared to the analytically calculated values using (2) and (3). The x- and
y-component of the field were measured individually with the aid of a near field probe.
The schematic test setup can be observed in Figure 4 and the results can be observed in
Figures 5–8. The intention of this experiment was to prove the dipole-like field distribution
of the test PCBs. Therefore, the comparison between measurement and analytical solution is
only performed qualitatively and provided without a magnitude scale. The used frequency
for this experiment was 1 GHz. The measured area was bounded by the innermost row
via stitching of the PCB, as can be observed from Figure 3a. The field distribution that was
measured and analytically computed shows good qualitative agreement, and therefore
confirms the usability of the test PCBs for these investigations. Nevertheless, there are
noticeable deviations between the plots, which may be explained as follows:

• Offset of the minimum field strength from the center in Figure 6. The field distribution
in Figure 5 assumes a perfectly positioned dipole (centered in x- and y-direction and
aligned with the z-axis). The soldered-on wire piece of the E-PCB is not orientated
perfectly perpendicular to the x-y-plane, and therefore produces a field distribution of
similar shape as an electric dipole but shifted in the x and y direction.

• Non-touching low-magnitude arcs in Figure 8a. In contrast to Figure 7a, the areas of
low magnitude are not touching at y = 0 but form two non-touching arcs in Figure 8a.
This can be explained by the bond wire not being perfectly aligned to the edges of the
PCB, while the probe tip was aligned with the PCB during the measurement. Because
of this rotation angle between the wire and the measurement coil, the minimum of the
measured field is not located directly above the wire.

• Differences in general between Figures 5 and 6 or Figures 7 and 8, respectively. It
should be noted that the two test PCBs do not behave in a similar way to perfect
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Hertzian dipole sources due to their non-infinitesimal small size. Consequently, there
will be additional effects, evoked by the PCB.
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2.4. Simulation Models

To conduct 3D FEM investigations on the behavior of dipole moments inside an
IC-stripline, a simulation model of the investigated IC-stripline was implemented. To
validate the model, simulation models of the test PCBs were also made and the conducted
S-parameter simulations were compared to VNA-measurements of the setup (Figures 9–11).
The investigated frequency range was 150 kHz to 3 GHz, in agreement with [6].
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3. Results
3.1. Comparison of Test PCB Measurements and Full Wave Simulation

Figures 12 and 13 show the comparison of the measured coupling factor S12 (see
Figure 9) with the simulated values. For the H-PCB, two measurements were carried
out, one with the bond wire being parallel to the orientation of the septum and one
with the bond wire being perpendicular to the septum. They are referred to as the 0◦

and 90◦ case. The simulation results were compared with the measurement results of
two different IC-striplines of the same construction type to compare them with regard to
manufacturing imperfections.
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Figure 12. Measurement results of the VNA measurements of the E-PCB mounted in the IC-stripline
for two different IC-striplines of the same type compared to the simulation results of the E-PCB.

To match the measurement, the realistic structure of the bond wire had to be modeled
in a very accurate way. The real bond wire was not aligned perfectly to the PCB edges, but
rotated by 4◦. This rotation angle must also be introduced in the simulation models.

The results show very good agreement, and therefore confirm the usability of the
simulation models as a fundament for further investigations. The deviation between the
measurements and simulation is within 3 dB, which can be considered a good result if the
noticeable deviation between the two IC-striplines is taken into account.
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Figure 13. Measurement results of the VNA measurements of the H-PCB mounted in the IC-stripline
for two different IC-striplines of the same type compared to the simulation results of the H-PCB in 0◦

and 90◦ rotation case.

3.2. Dipole Moments inside IC-Stripline

Before the simulation can be carried out, one has to think about the magnitude of
the inserted dipole waves to be able to compare the results with the test PCBs. For this
purpose, a dipole extraction method as proposed in [21] could be used. For that, the VNA
measurement, as shown in Figure 9, could be extended by a third port connected to the
2nd connector of the IC-stripline, instead of the 50 Ω termination resistor. In this way, the
phase difference between the two measured IC-stripline port voltages is not lost; therefore,
this measurement methodology can replace a hybrid junction because the measurement of
both ports is synchronized [21].

In the first step, however, the test PCBs are compared to a single dipole moment. For
this, the current amplitude I0 in (2) and (3) of the dipole moments is searched for. For
the E-PCB, it is difficult to find the correct equivalent dipole intensity due to the triangle
shaped current distribution on the wire piece [19]. Therefore, the results of the dipole
moment experiment can only be compared to the E-PCB measurement and simulation
qualitatively. For the H-PCB, on the other hand, the current flow in the bond wire can be
extracted through simulations, and then a moment according to (1) can be introduced.

The chosen position for the dipole moments is along the z-axis in the center of the
test PCB for the electric dipole and perpendicular to the bond wire area plane in the center
between the two points, where the wire is bonded to the copper for the magnetic dipole.
One must note that this position is not in the center of the H-PCB, and therefore not in the
center of the IC-stripline. Figure 14 shows the positions of the dipole moment on the test
PCBs. Figures 15 and 16 show the results of this experiment for an electric dipole moment
in z direction and a magnetic one in x- and y-direction.

Because a comparison to the analytical model is aspired, the bond wire in the H-PCB
simulation is now idealized and parallel to the PCB edges (not rotated by 4◦). Therefore,
the curve for the 90◦ case is different in Figures 13 and 16. For the 0◦ case, this has no
noticeable impact.

One must note that a direct S-parameter simulation cannot be conducted in this
experiment, since the excitation is not carried out via a wave-port. Instead, the voltage or
power at the stripline ports has to be computed in terms of a post-processing routine. The
methodology to compare the S-parameter curves of the test PCBs and the measured port
voltages of the dipole moment is the following:



Electronics 2022, 11, 2488 11 of 16

1. Set the dipole strength according to the geometry of the test PCB and the simulated
current amplitude I0, when exiting the port with 0 dBm;

2. Compute the root mean square value of the output port voltage and convert the result
to dBV;

3. Calculate the power of the output port with

dBm = dBV − 10log10(50Ω) + 30. (12)
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Figure 14. Simulation model of the test geometries on the test PCBs with the presumed dipole
moment position and direction represented by the black vectors: (a) E-PCB and the electric dipole
moment; (b) H-PCB and magnetic dipole moment.
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Figure 15. Behavior of an electric dipole moment when positioned inside an IC-stripline perpendicu-
lar to the stripline lid and the septum plane.

This value can then be compared to S-parameters.
It can be observed in Figure 15 that for the electric dipole, the coupling factor is

approximately constant over a wide frequency range. This matches very well with the
analytical model described by (10). The curve is only provided for frequencies above
10 MHz because at lower frequencies, simulation errors occurred that could not be resolved
up to now. Since the fundamental operating frequencies of VCSEL pulse currents are
typically above this value, the results are considered sufficient for this work. It can be further
observed that the curve shape does not match the E-PCB simulations or measurements at



Electronics 2022, 11, 2488 12 of 16

all when comparing Figures 12 and 15. The reason for this is that with voltage excitation, as
used in the measurements and the E-PCB simulations, it is not possible to provide a constant
dipole current amplitude I0. Because this current is strongly frequency dependent, it is
not possible to generate a constant electric dipole moment over the investigated frequency
range with this test structure.

For the H-PCB, on the other hand, the curve shapes of the H-PCB and the dipole
moment are very similar, as shown in Figure 16. This becomes even clearer when looking at
on a double logarithmic scale (Figure 17). The change in steepness for the 90◦ case is clearly
observable for both curves. While the magnitude of the curve for the magnetic dipole fits
the curve for the H-PCB in the 0◦ case rather well with the estimated excitation intensity
for I0, in the 90◦ case, the H-PCB coupling factor is significantly underestimated by the
dipole moment.
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Figure 16. Behavior of a magnetic dipole moment with presumed constant amplitude I0 inside an
IC-stripline compared to the H-PCB simulations.
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Figure 17. Behavior of a magnetic dipole moment inside an IC-stripline compared to the H-PCB with
a double logarithmic scale.

Looking at (1), the analytical model predicts a coupling factor, which increases linearly
with the frequency for the 0◦ degree case and with no coupling at all for the 90◦ case. The
results for the 0◦ case fulfill the analytical prediction quite well. For the 90◦ case, however,



Electronics 2022, 11, 2488 13 of 16

contrary to the analytic model, there is a noticeable coupling factor. Although in the range
of under −80 dB over the whole frequency range, at higher frequencies, the magnitude is
in a range that could be measured by standard EMC laboratory equipment.

In the next step, the sensitivity of the coupling factor with regard to the position of the
magnetic dipole inside the IC-stripline is investigated. When shifting the dipole moment
parallel along the y-axis in the 90◦ case, the analytic model predicts that there should not be
any influence on the coupling factor. The model predicts no coupling at all at any position
along the y-axis according to (10). The FEM results for this experiment in the 90◦ case can
be observed in Figures 18 and 19.
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Figure 18. Influence of a position shift of the magnetic dipole away from the center in y-direction
inside an IC-stripline for the 90◦ case.
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Figure 19. Influence of a position shift of the magnetic dipole away from the center in y-direction
inside an IC-stripline different frequencies in the 90◦ case.

It can be observed that only a slight shift outside the center has a large influence.
The explanation for this behavior is found when looking at the field distribution inside
the IC-stripline. For the 0◦ degree case, the propagating TEM mode can be observed in
Figure 20 and the Poynting vector distribution can be observed in Figure 21. The Poynting
vector distribution of the 90◦ case can be observed in Figure 22. It is observed that in the
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0◦ case, the Poynting vector (and therefore the power flow) points towards the connectors,
while in the 90◦ case, no power flow towards the connectors exists. When shifting the
moment away from the center in 90◦ case, the curls of the Poynting vector field are also
not centered; therefore, a component pointing towards the connectors exists (Figure 22b).
This effect is also observable in Figure 23. In the 0◦ case (Figure 23a), the current density is
visible on the surface of the inner conductor of the coax connector, whilst in the 90◦ case, it
is not.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 17 
 

 

  
(a) (b) 

Figure 20. Field distribution on the vertical sectional plane in Figure 10b when excited with a mag-
netic dipole moment according to the 0° case: (a) E-field distribution; (b) H-field distribution. 

 
Figure 21. Poynting vector distribution on the horizontal sectional plane in Figure 10b when excited 
with a magnetic dipole moment according to the 0° case; red: magnetic dipole moment; blue: Poyn-
ting vector. 

  
(a) (b) 

Figure 22. Poynting vector distribution on the horizontal sectional plane in Figure 10b when excited 
with a magnetic dipole moment according to the 90° case; red: magnetic dipole moment; blue: Poyn-
ting vector: (a) no offset of the moment with respect to the strip line center; (b) 5 mm offset of the 
moment with respect to the strip line center. 

Figure 20. Field distribution on the vertical sectional plane in Figure 10b when excited with a
magnetic dipole moment according to the 0◦ case: (a) E-field distribution; (b) H-field distribution.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 17 
 

 

  
(a) (b) 

Figure 20. Field distribution on the vertical sectional plane in Figure 10b when excited with a mag-
netic dipole moment according to the 0° case: (a) E-field distribution; (b) H-field distribution. 

 
Figure 21. Poynting vector distribution on the horizontal sectional plane in Figure 10b when excited 
with a magnetic dipole moment according to the 0° case; red: magnetic dipole moment; blue: Poyn-
ting vector. 

  
(a) (b) 

Figure 22. Poynting vector distribution on the horizontal sectional plane in Figure 10b when excited 
with a magnetic dipole moment according to the 90° case; red: magnetic dipole moment; blue: Poyn-
ting vector: (a) no offset of the moment with respect to the strip line center; (b) 5 mm offset of the 
moment with respect to the strip line center. 

Figure 21. Poynting vector distribution on the horizontal sectional plane in Figure 10b when excited
with a magnetic dipole moment according to the 0◦ case; red: magnetic dipole moment; blue:
Poynting vector.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 17 
 

 

  
(a) (b) 

Figure 20. Field distribution on the vertical sectional plane in Figure 10b when excited with a mag-
netic dipole moment according to the 0° case: (a) E-field distribution; (b) H-field distribution. 

 
Figure 21. Poynting vector distribution on the horizontal sectional plane in Figure 10b when excited 
with a magnetic dipole moment according to the 0° case; red: magnetic dipole moment; blue: Poyn-
ting vector. 

  
(a) (b) 

Figure 22. Poynting vector distribution on the horizontal sectional plane in Figure 10b when excited 
with a magnetic dipole moment according to the 90° case; red: magnetic dipole moment; blue: Poyn-
ting vector: (a) no offset of the moment with respect to the strip line center; (b) 5 mm offset of the 
moment with respect to the strip line center. 

Figure 22. Poynting vector distribution on the horizontal sectional plane in Figure 10b when excited
with a magnetic dipole moment according to the 90◦ case; red: magnetic dipole moment; blue:
Poynting vector: (a) no offset of the moment with respect to the strip line center; (b) 5 mm offset of
the moment with respect to the strip line center.



Electronics 2022, 11, 2488 15 of 16Electronics 2022, 11, x FOR PEER REVIEW 16 of 17 
 

 

  
(a) (b) 

Figure 23. Surface current density on the septum and the inner coaxial cable conductors of an IC-
stripline when excited with a magnetic dipole moment: (a) in the 0° case; (b) in the 90° case. 

A position shift in x- and z-direction was also carried out but since the influence on 
the coupling factors is less significant, these cases are not further investigated. 

4. Discussion and Conclusions 
This paper attempts to compare the behavior of dipole moments inside IC-striplines 

with test geometries and analytic formulas originally developed for TEM cells. It has been 
shown that for an electric dipole, it is not possible to build a test structure that delivers a 
constant electric dipole moment over the investigated frequency range, due to the non-
uniform current density. For the test structure that represents a magnetic dipole moment, 
it was possible to replicate the curve shapes of the test structure with just one dipole mo-
ment. It was also possible to show that the coupling factor of a single bond wire is heavily 
dependent on its orientation in relation to the septum, as suggested by the analytical mod-
els. However, the results further show that even for a very simplistic test structure, one 
single dipole moment alone is not sufficient to match the curves either qualitatively or 
quantitatively. Therefore, for the prediction of radiated emission measurements of bond 
wires that conduct high currents, more sophisticated equivalent DUT representation mod-
els have to be developed. It has been further shown that other than in the analytic model, 
the position of a magnetic dipole moment has strong influence on the coupling factor 
when placed parallel to the direction of wave propagation. This behavior is assumed to 
be caused by the non-rectangular cross-section of the waveguide and needs to be further 
investigated in future work. 

Author Contributions: Methodology, D.K.; software, D.K., S.K.Y. and B.N.; investigation, D.K.; 
writing—original draft preparation, D.K.; writing—review & editing, T.B., B.W. and M.K.; supervi-
sion, T.B., B.W., C.S. and M.K.; funding acquisition, T.B., C.S. and M.K. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: Supported by the TU Graz Open Access Publishing Fund. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Zhou, D.; Seurin, J.-F.; Xu, G.; Zhao, P.; Xu, B.; Chen, T.; Van Leeuwen, R.; Matheussen, J.; Wang, Q.; Ghosh, C. Progress on High-

Power High-Brightness VCSELs and Applications; Lei, C., Choquette, K.D., Eds.; SPIE: San Francisco, CA, USA, 2015; p. 93810B. 
2. Seurin, J.-F.; Zhou, D.; Xu, G.; Miglo, A.; Li, D.; Chen, T.; Guo, B.; Ghosh, C. High-Efficiency VCSEL Arrays for Illumination and 

Sensing in Consumer Applications; Choquette, K.D., Guenter, J.K., Eds.; SPIE: San Francisco, CA, USA, 2016; p. 97660D. 
3. Warren, M.E.; Block, M.K.; Dacha, P.; Carsonn, R.F.; Podva, D.; Helms, C.J.; Maynard, J. Low-Divergence High-Power VCSEL 

Arrays for Lidar Application. In Vertical-Cavity Surface-Emitting Lasers XXII; Choquette, K.D., Lei, C., Eds.; SPIE: San Francisco, 
CA, USA, 2018; p. 14. 
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A position shift in x- and z-direction was also carried out but since the influence on
the coupling factors is less significant, these cases are not further investigated.

4. Discussion and Conclusions

This paper attempts to compare the behavior of dipole moments inside IC-striplines
with test geometries and analytic formulas originally developed for TEM cells. It has been
shown that for an electric dipole, it is not possible to build a test structure that delivers
a constant electric dipole moment over the investigated frequency range, due to the non-
uniform current density. For the test structure that represents a magnetic dipole moment,
it was possible to replicate the curve shapes of the test structure with just one dipole
moment. It was also possible to show that the coupling factor of a single bond wire is
heavily dependent on its orientation in relation to the septum, as suggested by the analytical
models. However, the results further show that even for a very simplistic test structure,
one single dipole moment alone is not sufficient to match the curves either qualitatively or
quantitatively. Therefore, for the prediction of radiated emission measurements of bond
wires that conduct high currents, more sophisticated equivalent DUT representation models
have to be developed. It has been further shown that other than in the analytic model, the
position of a magnetic dipole moment has strong influence on the coupling factor when
placed parallel to the direction of wave propagation. This behavior is assumed to be caused
by the non-rectangular cross-section of the waveguide and needs to be further investigated
in future work.
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