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Abstract: A deeper understanding of the physical nature of cycle-to-cycle variations (CCV) in
internal combustion engines (ICE) as well as reliable simulation strategies to predict these CCV
are indispensable for the development of modern highly efficient combustion engines. Since the
combustion process in ICE strongly depends on the turbulent flow field in the cylinder and, for
spark-ignited engines, especially around the spark plug, the prediction of CCV using computational
fluid dynamics (CFD) is limited to the modeling of turbulent flows. One possible way to determine
CCV is by applying large eddy simulation (LES), whose potential in this field has already been shown
despite its drawback of requiring considerable computational time and resources. This paper presents
a novel strategy based on unsteady Reynolds-averaged Navier–Stokes (uRANS) CFD in combination
with variational autoencoders (VAEs). A VAE is trained with flow field data from presimulated cycles
at a specific crank angle. Then, the VAE can be used to generate artificial flow fields that serve to
initialize new CFD simulations of the combustion process. With this novel approach, a high number
of individual cycles can be simulated in a fraction of the time that LES needs for the same amount of
cycles. Since the VAE is trained on data from presimulated cycles, the physical information of the
cycles is transferred to the generated artificial cycles.

Keywords: internal combustion engine; combustion; CFD; RANS simulation; cycle-to-cycle varations;
variational autoencoder

1. Introduction

Research and development in the field of internal combustion engines (ICE) seems
to be outdated given the recent announcements by OEMs that they will stop selling cars
with ICE and the EU’s ambitious Green Deal and Fit for 55. Nevertheless, ICE technology is
not restricted to passenger cars, and there are many more areas of application including
the transportation of goods [1], shipping [2], and energy production in remote areas [3]
in which ICE will likely continue to play an important role. Furthermore, e-fuels as well
as carbon-free fuels such as ammonia or hydrogen will permit the continued use of ICE
applications while keeping greenhouse gas emissions on a level comparable to other energy
conversion technologies.

One common focus of current and future engine research is the investigation of cycle-
to-cycle variations (CCV). The goal of engine manufacturers is to develop highly efficient,
low-emission engines, especially for spark-ignited (SI) engines, and the way to achieve this
is by using lean burn combustion concepts or exhaust gas recirculation. These technologies
significantly promote combustion instabilities as discussed in the reviews of Young [4],
Ozdor et al. [5], and Maurya [6]. To a certain extent, the causes of CCV in SI engines
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are well known. Ranging from physiochemical (e.g., flow field, turbulence, composition),
to operational sources (e.g., load, engine speed) to geometric sources (e.g., compression
ratio, spark plug properties) [4–9], the variety of influencing factors that promote cyclic
fluctuations in ICE indicates great challenges in their prediction to develop efficient control
strategies for reducing CCV.

Since CCV corresponds to fluctuations in the engine behavior over a certain number
of cycles at constant operating conditions, questions may arise as to how to specify CCV
and which engine process property is used for quantification. A common approach is to
determine the coefficient of variation (CoV) of directly measured quantities: peak firing
pressure, location of peak firing pressure, or derived quantities such as the indicated mean
effective pressure (IMEP). Recent approaches focus on the early phase of the combustion
process and refer to the CoV calculation on combustion progress variables such as the mass
fraction burned point at 2 % or 10 % (MFB2 or MFB10, respectively). If these conditions are
used to quantify CCV with experimental data, the increased impact of measurement errors
has to be considered compared to the direct usage of the measured cylinder pressure due
to the influence of other quantities on their calculation [10–12].

An important tool for investigating the sources of CCV in ICE is simulation via com-
putational fluid dynamics (CFD). Simulation makes it possible to examine in detail the
turbulent flow and the combustion process (to a certain extent), which otherwise would be
nearly impossible or would require enormous effort to obtain from a real engine. Large
eddy simulation (LES) has recently become widespread for investigating CCV in ICE [13]
and has also found its way from academic to industrial settings. Since computational
power has increased significantly in the last few decades, LES has already found its way
into industry and everyday CFD. Since LES uses a filtering approach rather than averaging
the governing equations upon which unsteady Reynolds-averaged Navier–Stokes (uRANS)
is based, it has its advantages in the calculation of fluctuating phenomena such as CCV.
Various studies have been conducted that focus on the CCV sources investigated with LES
to obtain a sufficiently high resolution of the turbulent structures in the flow field and
analyze the influence on flame kernel development and flame propagation [14–21]. To
overcome the issue of the significantly high computational cost of conducting consecutive
simulation of engine cycles with LES, novel approaches based on perturbing simulation
parameters (e.g., initial conditions) permit the execution of cycle simulations in parallel.
Studies that apply perturbations to the turbulence intensity or the flow field [22,23] in the
combustion chamber have successfully demonstrated the applicability of this methodol-
ogy. Although these methods show a significant reduction in the computational time for
CCV via LES, the parallel execution of the single-cycle simulations requires enormous
computational power and, if commercial software is used, a sufficient number of licenses.
Furthermore, perturbing the flow field or the turbulence intensity randomly does not
initially imply that these fields are physically meaningful. Nevertheless, due to the small
amplitude of the induced perturbations, this issue may be ignored. In addition to the LES
method, Scarcelli et al. [24] concluded that uRANS turbulence modeling in combination
with sufficient fine mesh resolution can be used of CCV in SI engines since most of the
underlying effects for CCV can be captured by this method.

The idea behind the present paper is based on the previously mentioned approach of
running multiple cycle simulations in parallel instead of consecutively in order to obtain
cyclic fluctuations of an ICE via CFD. The difference and thus the novelty of the proposed
method are its application of a variational autoencoder (VAE) to generate flow fields and
turbulence intensity rather than randomly perturbing them. Thanks to the work of Kingma
and Welling [25], VAE has received significant attention in the data science community. As a
part of the deep learning-based generative model family, VAEs have proven that they can
be applied to generate new artificial images from a branch of trained images and have also
been successfully used for data augmentation and source classification in various scientific
fields [26,27]. Similar to a classic autoencoder, VAE consists of an encoder, a decoder,
and a latent space. The dimensionality of the initial data fed to the encoder, which is
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commonly represented by a neural network, is reduced followed by the reverse process
in the decoder. Since the structures of the data in the latent space are uninterpretable, the
use of a classical autoencoder for data augmentation is not feasible. Here, the difference
between an autoencoder and a VAE comes into play. VAEs use regularization to enable a
regular latent space which leads to inferences between decoded points in the latent space
and points in their vicinity. As a result, artificial data can be generated by sending new
data points from the latent space through the encoder. The present approach uses this
feature by feeding flow and turbulent kinetic energy (TKE) fields of an engine cylinder into
a VAE in order to learn flow features and represent the cylinder flow in low-dimensional
space. By changing the latent space values in meaningful ranges and propagating the data
through the trained decoder, artificial flow and TKE fields are generated, which serve as
initial states for turbulent combustion simulation. Thus, multicycle simulations can be
performed without the need to run the low-pressure part of the engine cycle, significantly
reducing the computational time. Furthermore, the method also enables the simulation of
concurrent cycles in parallel, which was previously mentioned as the significant advantage
of the perturbation methods.

The method of generating artificial flow fields by VAE to simulate cyclic variations is
demonstrated using a large gas engine. The flow and TKE fields are determined by uRANS
simulation and extracted at certain timing of the engine cycle [28]. Furthermore, the pre-
processing of the data is described so it may be used in the proposed VAE architecture.
A particular emphasis is laid on the validation of the VAE to rule out any misinterpretation
of the ability of the proposed method to model cyclic variations. The final model result
supports the hypothesis that the VAE approach can be used to generate artificial flow
and turbulent kinetic energy fields, which serve as the basis for cycle-to-cycle simulations
of ICE. Although the present investigations are based on uRANS turbulence modeling,
the methodology is also applicable to LES. In addition to the velocity and TKE fields, other
values—for example, residual gas distribution or air–fuel ratio—can be used to extend the
approach to further factors that influence cyclic variations.

2. Materials and Methods
2.1. Engine Setup

The basis for the present study is a large gas engine platform with a bore and stroke of
135 mm and 175 mm, respectively, and a displacement of roughly 2.4 dm3. The engine is
operated with a premixed gas–air mixture at lean conditions. Full load operating conditions
at 1500 min−1 are considered in the investigations described below.

2.2. CFD Simulation Setup

The commercial CFD solver CONVERGE, version 3.0, is used for the simulation.
The domain is discretized with a cut-cell Cartesian grid with 2 mm cells in the ports and
1 mm cells in the cylinder during gas exchange and combustion. Wall refinement is applied
to better capture near wall effects. Adaptive mesh refinement in the cylinder better captures
gradients of velocity and temperature. Turbulence is modeled using the k-ε RNG turbulence
model. The time step is adaptively changed to achieve a Courant number of 2–4 during gas
exchange and compression. During combustion, the time step remains constant at 10−6 s,
and a reduced NUI Galway reaction mechanism for natural gas is used [29].

2.3. Multicycle Simulations

To produce the flow fields that act as the source for training the VAE, CFD simulations
of eleven consecutive engine cycles are performed using the uRANS method according to
approaches from past studies that are found in the literature [24,30,31]. By ignoring the
first cycle to avoid initialization effects, ten cycles remain from which the flow field in each
coordinate direction as well as the TKE field at 5 CAD before spark timing are used for
the VAE training process. Since Gößnitzer and Givler [28] provide a detailed description
of the method for how to extract the flow field and recombine the snapshots, only a brief
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explanation is given at this point. The extraction of the desired fields is restricted to a
cylindrical domain in the vicinity of the spark plug so that the data used to train the VAE
remain within reasonable limits. Although the flow field in this region usually has a major
impact on cyclic variations, the VAE can also be trained by fields from throughout the
entire cylinder.

For the VAE to be able to process the data, the number of data points per field has to
be constant for all variables and cyclic fields. This is not guaranteed due to the use of AMR.
Thus, each velocity and TKE snapshot is mapped on a common grid, yielding a uniform
number of values for each field. To ignore the influence of pressure, temperature, and gas
composition, the corresponding fields from the first cycle are taken and combined with
the snapshot velocity and TKE fields of the other nine cycles. The resulting combined
snapshots are rerun, and the simulated cylinder pressure as well as the rate of heat release
are used in the evaluation of the proposed approach. Figure 1 visualizes how the evaluation
data are generated.

11 2 3 4 5 6 7 8 9 10
snapshots /

cycles

all other quantities velocity / TKE field

simulation time

new simulation

combined snapshot

Figure 1. Generation of the evaluation data. Here, the velocity and TKE field is extracted from the
fifth cycle and combined with all other quantities of the first cycle. Then, the simulation starts at the
time that the fifth snapshot was taken.

2.4. Variational Autoencoder

A variational autoencoder is a type of deep generative model that has received con-
siderable attention in recent years due to its ability to produce high-quality synthetic
data samples for various domains. An autoencoder is typically split into two connected
segments, namely the encoder and the decoder. The effective purpose of the encoder is
dimensionality reduction of the input data, which creates a downscaled representation
in a latent space of a predefined size. Then, the decoder upsamples this compressed
representation back to the original input size [32]. The training process is governed by
backpropagation of the reconstruction loss, which is calculated as a customizable metric
between the original input data and the decoder output, e.g., mean squared error (MSE).

While simpler autoencoder architectures, which take this latent space as unaltered
input for the decoder portion of the model, have been used effectively for image denois-
ing [33], anomaly detection [34], dimensionality reduction [35], or feature extraction [36],
they lack the capacity to generate synthetic data resembling their inputs. Hence, the concept
of VAE introduces an additional concept to the latent space [37]. Instead of directly propa-
gating the low-dimensional representation to the decoder, it is used to define a Gaussian
distribution. This is typically done by receiving two outputs per latent space parameter
that describe the mean and standard deviations of the distribution. Samples taken from
these distributions, i.e., the actual latent space, are then used as inputs for the decoder.

Instead of reducing input dimensionality to distinct vectors for every sample propa-
gated through the encoder, the model learns a distribution for the latent variable, which is
parametrized differently for every input image. As an additional boundary condition of
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the model, the distributions defined via the latent space are constrained to be as close to
a standard Gaussian (zero mean and unit variance) as possible. This is implemented via
a second term that complements the reconstruction loss for a VAE, the Kullback–Leibler
divergence, which results in a regularization of the latent space:

LossVAE = Lossreconstruction + β · KL[N (µx, Σx),N (0, 1)] (1)

with µx and Σx representing the encoded mean and covariance matrices, respectively, in a
given training example x, and β acting as a parameter boosting latent space disentan-
glement, which is discussed below. This effectively makes it possible to generate new
synthetic data resembling the training data by sampling new inputs for the decoder from
the distributions defined via the learned examples. Without this form of regularization [37],
parameters within the latent space can be encoded too far apart from each other, thereby
losing the factor of continuity necessary for generating realistic synthetic data. Hence, there
is an elevated risk that conventional autoencoders will generate meaningless data when
the decoder inputs are randomly sampled within the unregularized latent space.

The parameter β in the equation represents a manually chosen factor for the Kullback–
Leibler divergence term. While the parameter was initially introduced as a value greater
than 1 to enhance disentanglement of the latent variables, this can negatively influence
the model’s reconstruction quality [38]. However, it has been shown that β values below 1
can also provide the desired disentanglement with no negative effects on the reconstruc-
tion [39]. In conclusion, setting the β parameter to 1 will make the model equivalent to a
standard VAE.

While VAE architecture (treated in Section 2.4.2) in terms of the width and depth has a
considerable impact on various factors including general model performance as well as
computational complexity and cost, determination of the latent space size is essential to
tuning the efficiency of a model. It has been shown that in the design of autoencoders that
exclusively use linear operations, the parameters within the latent space will approximately
reflect the modes obtained from principal component analysis (PCA) [40]. Furthermore,
PCA is an efficient tool for determining the least amount of information required for
maximum explanatory power in work with high-dimensional datasets [41]. For this reason,
even though a VAE is generally able to reproduce images more effectively [42], the choice
of the number of latent space dimensions in this study was guided by a PCA of each
component within the flow field data. The capacity of VAEs to be used as efficient generative
models has been previously investigated using similarly complex data [43].

2.4.1. Principal Component Analysis and Latent Space Definition

PCA is a widespread method for efficient dimensionality reduction of large datasets
under the condition that the statistical information or variability of the initial data is
preserved as much as possible. In practice, this is achieved via linear functions of the
original data variables, which produce new parameters that maximize variance while
being uncorrelated with each other [44]. Hence, the process itself can be described as an
eigenvalue problem [45]. These parameters are referred to as principal components (PC).

Due to the underlying composition of the input data in this study, the number of flow
fields (10) is much lower than the recorded variables for each recorded quantity (278,060).
While this does not interfere with the ability to apply PCA, the number of usable PCs is
inherently constrained by the lower of the two values, as it determines the data matrix rank
and therefore the number of nonzero eigenvalues. While several specialized forms exist,
the PCA in this study was conducted with a singular value decomposition (SVD) of the
centered data as described in [46].

The relative explanatory power of each PC is expressed by its explained variance ratio
(EVR), which gives the percentage of statistical information it describes. Per definition,
this must add up to 1 if the maximum possible number of PCs is computed. To find the
minimum amount necessary for a meaningful, lower-dimensional representation of the
original data, PCs are first ordered in descending order starting at the highest EVR.
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Table 1 depicts these EVRs for the specified number of PCs extracted from the flow
field data, with each row representing the sum of the respective component EVR and all
values before it, i.e., the third row shows the added EVRs of PCs 1, 2, and 3. In this step,
the original flow field data were separated into four matrices for each of the columns in the
original data with distinct PCAs being conducted for each quantity.

Table 1. Cumulative sum of explained variance ratios, calculated for the specified amount of principal
components extracted via distinct PCAs of the original data’s quantities.

# of PCs u v w TKE Mean

1 0.503 0.350 0.357 0.404 0.404
2 0.689 0.625 0.573 0.568 0.614
3 0.806 0.778 0.702 0.702 0.747
4 0.870 0.851 0.803 0.821 0.836
5 0.918 0.907 0.869 0.889 0.895
6 0.951 0.941 0.920 0.934 0.937
7 0.971 0.969 0.963 0.972 0.969
8 0.987 0.989 0.986 0.987 0.987
9 0.999 0.999 0.999 0.999 0.999

10 1.000 1.000 1.000 1.000 1.000

As indicated in the table, the EVR of quantities u and v rises slightly faster as the
number of PCs increases than with either w or TKE. However, the range of EVRs with seven
PCs is already below 1% with a minimum value of 0.963. For the purposes of this study, it
was decided that a mean EVR of 0.987 with eight components is sufficient. Accordingly,
the dimension of the latent space was also set to eight.

2.4.2. Architecture

Given the high-dimensional nature of the input data with 278,060 variables in each
of the four columns for every sample flow field, it was decided to use a convolutional
neural network (CNN) architecture for the VAE. CNNs are deep learning models that are
made up of multiple convolutional layers, which are followed by at least one linear layer.
The former type of layer employs so-called “filters” or “kernels”, which are custom-sized
vectors that are trained to extract features from their inputs via eponymous convolution
operations. Each layer may consist of any desired number of kernels, each of which
generates a distinct output from the same input. Due to this independence, all operations
within one convolutional layer can be computed in parallel. Furthermore, the number
of trainable parameters is significantly lower than in conventional linear neural network
layers. These two aspects provide CNNs with remarkably better computational efficiency
while adding the ability to extract multiple features within one single layer, which can
also store contextual information within the input. All of these factors contribute to the
popularity of CNNs whenever work is done with high-dimensional inputs or data with
underlying patterns, for example in image classification [47], sentence modeling [48], or
time series anomaly detection [49,50]. Using appropriate parametrization of convolutional
layers also allows for efficient dimensionality reduction of input data while simultaneously
collecting meaningful features, which is essential for this study.

While the two-dimensional layout of the input data allows the use of 2D kernels as they
are employed in image classification, this is not necessary, as the columns are independent
from each other. Therefore, the VAE in this study employs 1D kernels with each column
representing an individual channel of the input signal. The number of convolutional layers
in the encoder was set to three, each of which reduced the input dimension by a factor of
two while increasing the amount of kernels per layer before further propagating to two
linear layers. This results in a rather high number of trainable parameters, in turn elevating
the risk of overfitting, which in generative neural networks describes an instance where
the model’s learning process progresses past a tipping point, leading it to specialize on its
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inputs. Thus, the ability to produce new data becomes increasingly more limited to samples
closely resembling the training data. However, since the underlying problem of this study
specifically demands for generated data similar to the model inputs, this elevated risk of
overfitting is negligible. Following the encoder part of the VAE, the resulting parameters
are used to define distributions of the latent space from which the decoder inputs are
sampled. The decoder itself essentially represents a mirrored version of the encoder with
the exception of only a single linear layer being used before three transposed convolutional
layers. Bias terms were used for all linear and convolutional layers within the model.
The padding parameter for all convolutional and transposed convolutional layers was set
to “same”.

Figure 2 illustrates the VAE architecture.

Input data
Conv 1
k = 3
s = 2 

Conv 2
k = 3
s = 2 

Conv 3
k = 3
s = 2 

Size: 278,060 x 4 139,030 x 16 69,515 x 64 34,758 x 100

Linear 1
d = 0.5 

50 x 1

Linear
2A

 

Linear
2B

 

Linear 3 Gaussian 
Sampling

8 x 2

8 x 16,951,500 x 1

ConvT 3 
k = 3 
s = 1 

ConvT 2 
k = 3
s = 2 

ConvT 1 
k = 3
s = 2 

Output data

139,030 x 100278,060 x 16278,060 x 4278,060 x 4

Recon  
Loss 

KL
div 

+

Figure 2. VAE architecture. The format given for the data dimensions is N × C with N representing
the number of variables and C representing the number of channels. k is the kernel size of the filters
in the corresponding layer and s is the stride parameter, which defines the step size of the convolution
operations within the respective layer.

2.4.3. Data Preparation, Hyperparameters, and Training

As with other deep learning methods, the learning efficiency of a VAE is governed
by a set of hyperparameters and model buildup decisions, which will be discussed in
this section.

To begin with, the input data need to be preprocessed for optimum compatibility with
the neural network. Figure 3 illustrates the underlying distribution of each quantity in
the input data. As can be observed, u, v, and w are centered around zero, while TKE by
definition can only take positive values. To enhance the processability of input values with
respect to the reconstruction problem, it was decided to scale all flow fields in a feature
range from −1 to 1.

In connection with this scaling, the tanh was chosen as the nonlinear activation func-
tion for all convolutional and linear layers within the network, since it processes layer
outputs in the same range.

The reconstruction loss was implemented as a mean square error (MSE) loss with
ADAM—a stochastic gradient descent method—as the learning algorithm, as it has been
proven to be efficient with high-dimensional data [51]. After initial tests, the learning rate
was set to 0.0001 with an exponential decay rate of 0.5 and a batch size of three.
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Figure 3. Distribution of variables in each input data column.

The dropout value for the first linear layer of the encoder was set to 0.5. As mentioned
above, the β parameter for latent variable disentanglement was set to 0.2 in order to
preserve a high reconstruction accuracy. The model was trained for 500 epochs to ensure
the loss would converge. Figure 4 shows the VAE training process using ten velocity and
TKE fields of the multicycle simulations.

11 2 3 4 5 6 7 8 9 10snapshots /
cycles

velocity / TKE fields

simulation time

VAE

Figure 4. Training of the VAE with velocity and TKE fields in the specified domain of the ten cycles
of the multicycle simulation.

2.5. Artificial Flow Field Generation

After the training process, the VAE can be used to generate new velocity and TKE
fields in the considered domain around the spark plug. Only the decoder part of the VAE is
required. To create new data in terms of velocity and TKE fields, the encoder requires input
values in the dimension of the latent space, which is eight in the present case. The input
values are generated with the Latin hypercube sampling (LHS) technique. The VAE training
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process yields a dimension-reduced transformation of the flow fields in the form of latent
space dimension times the number of training flow field values. These values are used
to set the boundaries for the LHS process. Therefore, the generated generated artificial
fields are forced to lie between the extreme cycles of the training set, and the methodology
does not produce physically meaningless cycles. Nevertheless, it is evident that cyclic
fluctuations that exceed those in the training set cannot be modeled.

To generate the initial state for the combustion process simulation with the artificial
velocity and TKE fields, a methodology similar to the one described earlier for combining
snapshots is applied. All quantities of the first cycle are combined with the velocity and
TKE field in the cylindrical domain around the spark plug generated by the VAE. Figure 5
illustrates the artificial flow field generation.

11 2 3 4 5 6 7 8 9 10snapshots /
cycles

simulation time

trained VAE

LHS sample

all other quantities

velocity / TKE field
new simulation

combined snapshot

Figure 5. Generation of artificial velocity and TKE field using the trained VAE. The corresponding
initial field is created by the new fields and the residual fields of cycle one.

3. Results

To maintain confidentiality, the reported data in terms of in-cylinder variables is
normalized. The in-cylinder peak pressures are normalized to the minimum and maximum
peak pressures. In other words, peak pressures of 100% and 0% correspond to the highest
and lowest peak pressure, respectively, and the reported absolute crank angle degrees
are normalized with respect to the ignition timing; i.e., all reported absolute crank angle
degrees in this paper are relative to the ignition.

3.1. Model Validation

As described in the methodology section, the present approach is based on combustion
process simulation with flow field initial states generated by a VAE. The artificial velocity
and TKE fields are produced by LHS values, which are processed by the decoder part of
the trained VAE. A validation procedure according to Figure 6 is applied to exclude the
possibility of the generation of flow fields that differ from the training set fields from data
processing with a poorly trained VAE. Therefore, an arbitrary flow field of the test set is
used (cycle 3 in the present case) and processed by the entire VAE, covering the encoder
and decoder parts. If the VAE is trained well on the flow fields of the test set, the VAE
output corresponds to the given input. In the technique that combines flow fields with
quantities of other cycle snapshots described above, the original velocity and TKE fields as
well as the VAE output fields are combined with the residual quantities of cycle 1. Finally,
both newly generated initial states are used to rerun the ICE combustion process CFD
simulation, and the results for cylinder pressure and rate of heat release are compared.
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11 2 3 4 5 6 7 8 9 10
snapshots /
cycles

simulation time

trained VAE

velocity /
TKE field

combined snapshot

snapshot
combined

all other quantities

new
simulation

velocity / TKE field

new
simulation

∆

Figure 6. Procedure to validate the ability of the VAE to generate meaningful artificial velocity and
TKE fields.

Figure 7 shows the results of the combustion process CFD simulation. As the results
indicate, the initial fields reconstructed by the trained VAE yield a congruent in-cylinder
pressure trace and an almost congruent rate of heat release. Based on these results, it is
concluded that the VAE is trained well on the given flow fields contained in the train-
ing dataset.
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Figure 7. In-cylinder combustion process results started with the original and the VAE reconstructed
velocity and TKE fields.

A further step in the validation process is the investigation of the value distribution of
the desired field quantity. Since the information from qualitative analysis of the deviation
between the original field and the VAE reconstructed by 3D visualization is only of limited
value, an illustration in terms of histograms of the individual field variables is used. As
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the results in Figure 8 show, the distribution of the original and VAE reconstructed values
exhibit very good agreement. The root mean squared error between the original and VAE
reconstructed data of the entire variable set is 1.01, which emphasizes the assumption of a
well-trained VAE.
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Figure 8. Histogram of the velocity components u, v, w, and TKE of the original and VAE recon-
structed fields.

3.2. Artificial Cyclic Variations

The trained VAE is used to generate 20 artificial initial velocity as well as TKE fields
with LHS. Through the application of the field combination methodology described above,
the artificial fields are combined with the residual quantities of cycle 1 to yield 20 initial
states and thus 20 combustion process CFD simulations. To provide detailed insight into
the VAE data generation, the following analysis focuses on one specific VAE generated
flow field and cycle 3 of the multicycle set used in the validation step. Figure 9 shows
the in-cylinder pressure trace and the rate of heat release of the original multicycle set
(cycle 3 is highlighted) as well as one artificial cycle based on the VAE generated flow
fields. The results indicate the deviation between cycle 3 and the artificial generated
cycle, which proves the ability of the VAE to generate velocity and TKE fields that further
lead to physically meaningful cycles. A quantitative analysis of the results yields a peak
cylinder pressure (pmax) of 68.6% for cycle 3 and 42.6% for the artificial cycle while 50%
fuel mass fraction burned (MFB50 %) values are 33.5 CAD for cycle 3 and 33.8 CAD for the
artificial cycle.
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Figure 9. In-cylinder combustion process results of the common multicycle simulations and one
artificial generated initialization set.

The histogram illustration (Figure 10) is also employed to point out the difference
between the velocity and TKE fields of cycle 3 of the original data set and the artificial data
generated by the VAE. Although the main characteristic of the distribution was maintained
by the VAE, which is required to obtain physically meaningful flow fields, slight differences
can be identified. Examples can be seen in the u field at the vicinity of 20 m/s or TKE in
the vicinity of 15 m2/s2.
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Figure 10. Histogram of the velocity components u, v, w, and TKE of cycle 3 from the original
multicycle dataset and the VAE generated fields.
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In order to prove the physical correctness and the conservation of the flow characteris-
tics of the original data from the VAE, Figure 11 shows the velocity magnitude and TKE in
a cut through the middle plane of the considered domain. It can be clearly seen that the
flow fields are similar but have slight deviations in some regions. Hence, the VAE is able to
generate velocity and TKE fields that are completely new but very similar to the original
fields obtained from multicycle CFD simulation.

15

30

0.1

20

47

0

15

30

0.1

(a) Velocity magnitude

20

47

0

(b) TKE

Figure 11. Velocity magnitude and TKE in a cut plane through the spark plug from the original
multicycle dataset and the VAE generated fields.

Figure 12 shows the final results of the multicycle simulations using the original flow
field data and the artificial flow field data generated by the VAE. The results indicate
that the artificial velocity and TKE fields obtained by the VAE yield meaningful results
that fall within the range of the original cycle data used for the VAE training. However,
the cyclic variation range of the 20 artificial cycles is not as pronounced as that of the
original cycles. The peak pressure pmax ranges from 38.4% to 74.8% and MFB50 % ranges
from 33.1 to 34.1 CAD. In terms of CoV, the original data set has a 1.69% peak pressure
and 1.29% MFB50 %, and the artificial cycles have 0.65% peak pressure and 0.71% MFB50 %.
From the CoV difference between the original and artificial cycles, it can be concluded
that the VAE tends to generalize in the training process, and thus, extreme values are less
conserved. This observed compression of the VAE’s generative degrees of freedom can
be counteracted by measures such as early stopping, amplification of the discussed latent
space disentanglement, or dedicated curation of the training data to contain a close to
uniform distribution of more and less extreme samples. However, all of these strategies
have to be carefully balanced to not interfere with the overall quality of reconstructed flow
fields and thus require a large number of experiments. Nevertheless, the results prove the
potential of the present approach.
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Figure 12. In-cylinder combustion process results of the common multicycle simulation and 20
artificially generated initialization sets.

4. Summary and Conclusions

This paper has presented a novel method for generating artificial flow fields that
can be used to initialize ICE combustion process CFD simulation. The method uses a
VAE to generate flow field data, specifically velocity and TKE. To train the VAE, flow
fields are extracted from multicycle CFD simulations at a specific crank angle. The data
for this study were generated by RANS CFD simulations, but the methodology is also
applicable to LES-generated flow field data. To validate the training quality of the VAE on
the original velocity and TKE fields, the reconstruction of one of the original cycle flow
fields has been investigated and shown to be valid. The trained VAE has been used to
generate 20 artificial velocity and TKE fields, which act as initial states for the same number
of CFD simulations of the ICE combustion process. Cyclic fluctuations in terms of peak
firing pressure and MFB50 % and have been evaluated, which yield 1.69% and 1.29% for the
original multicycle data as well as 0.65% and 0.71% for the VAE-based cycles, respectively.
These results indicate a trend for the VAE to generalize the training data, yielding the
disappearance of extreme values. Further investigations are necessary to overcome this
issue and obtain further agreement between the multicycle data used for training and the
generated artificially data. However, the comparison between velocity and TKE fields
from the original simulation and the VAE-generated flow fields that apply histograms and
flow field illustrations show how the VAE maintains the underlying in-cylinder physics.
In comparison to state-of-the art methods that generate initial flow fields for multicycle
simulation using random perturbation, the proposed method is able to maintain flow field
properties to a great extent.
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