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Abstract

An accurate and stable global geodetic reference frame, such as the International
Terrestrial Reference Frame (ITRF), is fundamental for quantifying geophysical changes
in the Earth system. Global navigation satellite systems (GNSS) are one of the four
space-geodetic techniques contributing to the construction of the ITRF. In support of
the upcoming ITRF2020 release, the International GNSS Service (IGS) conducted its
third reprocessing campaign (repro3), covering the years 1994 to 2020. Graz University
of Technology (TUG) participated for the first time as an analysis center in such a
reprocessing.

This thesis thoroughly describes the methodologies behind TUG’s repro3 contribution.
The reprocessing included the three satellite constellations GPS, GLONASS, and Galileo
as well as a total of 1182 ground stations. In the latter third of the time series, more than
800 stations were processed per day, resulting in equation systems with hundreds of
millions of observations and millions of parameters. The thesis delineates how the raw
observation approach was implemented to facilitate a GNSS processing of this scale. This
includes methods and strategies developed to handle the extraordinary computational
challenges of this reprocessing. All applied parametrizations, models, and corrections
are elaborated in detail. For example, generalized methods for the parametrization of
code and phase biases in a multi-signal environment are presented.

The evaluation of the resulting GNSS products showed that they are of very high quality.
TUG’s repro3 contribution gained the highest weight on average in the IGS reference
frame combination. The consistency of the obtained satellite orbits is also very high,
which was confirmed by preliminary orbit combination results. This means that the
methods delineated in this thesis lead to GNSS products that are very competitive with
those of other IGS analysis centers. Therefore, the targets of reaching this quality level
and providing a valuable contribution to ITRF2020 were successfully achieved.
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Introduction 1
The Earth is an incredibly complex geophysical system that constantly changes. For
example, Earth’s surface deforms due to plate tectonics, seismicity, the global water cycle,
melting of the polar ice caps and glaciers, and other geophysical effects. An accurate,
long-term stable global terrestrial reference frame is fundamental for quantifying these
changes occurring in the Earth system (Altamimi et al., 2016). This was recognized by
the United Nations General Assembly with the adoption of the first resolution on a global
geodetic reference frame (United Nations General Assembly, 2015). The International
Terrestrial Reference Frame (ITRF) fills this role since its first realization in 1992. This
reference frame has been updated and improved over time. The latest realization
(ITRF2014) has been in use for several years and a new version, called ITRF2020, is
being prepared for release in 2022.

Four space-geodetic techniques contribute to the construction of the ITRF. These tech-
niques comprise Doppler orbitography and radiopositioning integrated by satellite
(DORIS), global navigation satellite systems (GNSS), satellite laser ranging (SLR), and
very long baseline interferometry (VLBI). Each technique is represented by an Inter-
national Association of Geodesy (IAG) service, which coordinates the respective ITRF
contribution. The International GNSS Service (IGS; Johnston et al., 2017) conducted its
third reprocessing campaign (repro3) in support of ITRF2020. The aim of this repro-
cessing was to generate a consistent time series of GNSS products ranging from 1994 to
2020. Eleven analysis centers contributed solutions to repro3, one of which was Graz
University of Technology (TUG).

This thesis focuses on the methodologies behind the TUG repro3 contribution. They
differ in several aspects from well-established methods used by other analysis centers.
This is mainly because the raw observation approach (see Chapter 5) was used to process
this contribution. The direct usage of uncombined and undifferenced observations offers
several benefits but also poses additional challenges, specifically in the parametrization
of the ionospheric influence and signal biases. In addition, this was the first time the
raw observation approach was utilized in a processing of this scale, which meant special
strategies had to be developed to overcome the extraordinary computational challenge.
Ultimately, the aim of this thesis is to provide a thorough description of all methods and
techniques applied in this reprocessing.
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The motivation to participate in the IGS reprocessing campaign was to evaluate if
these methods lead to competitive GNSS products. Therefore, the target was to reach
the quality level of the other International GNSS Service (IGS) analysis centers. An
additional objective was to generate a set of products that is as complete as possible.
This means it should encompass as many of the proposed GNSS ground stations as
feasible while covering multiple satellite constellations and a wide range of signal types.
Achieving these targets and objectives ensures that the obtained solution provides a
valuable contribution to the ITRF2020.

1.1 Outline

This thesis is structured as follows. After this brief introduction, Chapter 2 summarizes
those aspects of GNSS that are most important for the understanding of subsequent
chapters of this thesis. This includes an overview of the satellite constellations, signals
and measurements, as well as the IGS. Chapter 3 presents the various reference frames
utilized throughout the processing. They comprise global frames as well as reference
frames local to a station, satellite, or antenna. The basic principles of parameter
estimation are detailed in Chapter 4. This covers methods for the efficient setup and
solution of the normal equation system, the application of constraints to resolve rank
deficiencies, as well as variance component estimation to determine a proper relative
weighting of the observations.

Chapter 5 then describes the raw observation approach in detail. Starting from the
observation equations, a set of intermediate parameters are derived for each group of
observations. This facilitates the preelimination of the ionospheric influence, which is
delineated as well. Next, this chapter presents a way to structure the normal equation
matrix that enables an efficient storage in memory. This is followed by a procedure
to effectively obtain the residuals in order to determine new weights via variance
component estimation. Finally, strategies for solving large systems including hundreds
of millions of observations and millions of parameters are presented.

Chapter 6 provides insights into parametrizations, models, and corrections for the various
components of the observation equations. It covers satellite attitude, satellite orbits,
clock errors, ionosphere, troposphere, code and phase biases, phase ambiguities, Earth
rotation, station positions, antennas, and other effects and corrections. Each section
presents state-of-the-art models, if available, and/or ways to parameterize unknown
effects. The raw observation approach leads to specific challenges in terms of handling
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the unknown code and phase biases as well as ambiguities. Sections 6.5 and 6.6 detail
approaches to obtain appropriate parametrizations that overcome these challenges.

Chapter 7 describes the methods applied during observation preprocessing. This step
aims at detecting faulty or poor-quality observations that are subsequently removed or
weighted down before the actual processing begins. Here, generalized methods for cycle
slip and outlier detection in a multi-signal environment are presented.

Chapter 8 focuses on the reprocessing itself. The processing setup is delineated, including
all the used models, settings, data, and metadata. This is followed by a description of
the resulting GNSS products. The most important products are then evaluated internally
and externally. This evaluation covers station positions, Earth rotation and reference
frame parameters, satellite orbits, and signal biases. Finally, Chapter 9 concludes the
thesis and provides an outlook on potential future research topics.

1.1 Outline 3





Global navigation satellite
systems

2
This chapter briefly summarizes some aspects of GNSS that are important for subsequent
chapters of this thesis. First, Section 2.1 gives an overview of the three satellite con-
stellations considered in the analyses, mainly focusing on their different characteristics
and satellite types. Furthermore, the notations for referencing specific satellites and
signals (see Section 2.2) are presented. Finally, Section 2.3 briefly introduces the IGS
and lists the analysis centers that contributed to the reprocessing campaign covered in
this thesis.

2.1 Satellite constellations

There are four GNSS constellations and several regional systems providing positioning,
navigation, and timing services. The four global satellite constellations are the US
Global Positioning System (GPS), the Russian Globalnaya Navigatsionnaya Sputnikovaya
Sistema (GLONASS), the European system Galileo, and the Chinese BeiDou Navigation
Satellite System (BDS). GPS, GLONASS, and Galileo were part of the reprocessing
campaign and thus are the main focus of this thesis. Their system characteristics are
summarized in Table 2.1. While the methods detailed in later chapters generally also
apply to BDS and regional systems, such as the Japanese Quasi-Zenith Satellite System
(QZSS), those constellations are not discussed further here.

2.1.1 Satellite types

Each GNSS constellation consists of different satellite types. This is mostly due to
technological advances and spacecraft manufacturer changes over time. Figure 2.1
provides an overview of the operational periods for the various satellite types. The main
differentiating characteristics of these satellite types include spacecraft geometry, mass,
surface material properties, antenna properties, attitude behavior, transmitted signals,
and transmit power. Figure 2.2 displays different GPS and Galileo satellite types. It is
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Table 2.1: System parameters for GPS, GLONASS, and Galileo (Hofmann-Wellenhof et al., 2008;
Romero, 2020)

Characteristic GPS GLONASS Galileo
Nominal satellites 24 24 27
Orbital planes 6 3 3
Orbit inclination 55° 64.8° 56°
Semimajor axis 26 560 km 25 508 km 29 601 km
Plane separation 60° 120° 120°
Revolution peroid ~11 h 58 min ~11 h 16 min ~14 h 5 min
Ground track repeat ~1 day ~8 days ~10 days
Signal separation CDMA FDMA CDMA
Frequencies [MHz] L1: 1575.420 G1: 1602.000 E1: 1575.420

L2: 1227.600 G2: 1246.000 E5a: 1176.450
L5: 1176.450 G3: 1202.025 E5b: 1207.140

E6: 1278.750

clearly visible that their shapes vary significantly. This has implications for some of the
models and parametrizations covered in Chapter 6. Illustrations of GLONASS satellites
can be found, for example, in Revnivykh et al. (2017).

GPS satellite types, often also called blocks, include GPS-I, GPS-II, GPS-IIA, GPS-IIR-A,
GPS-IIR-B, GPS-IIR-M, GPS-IIF, and GPS-IIIA. GPS-IIR-A and GPS-IIR-B satellites only
differ in their antennas and are often referred to as just GPS-IIR if this differentiation is
not relevant. More information about the GPS satellite types can be found, for example,
in Hegarty (2017).

The GLONASS satellite types are called GLO, GLO-M, GLO-M+, GLO-K1A, and GLO-K1B.
Here, GLO refers to the satellite type that formed the operational constellation from
1994 until the introduction of the later types. Before that, there were a few other satellite
variations, which are not relevant for this thesis. Again, GLO-M and GLO-M+ as well
as GLO-K1A and GLO-K1B are often just referred to as GLO-M and GLO-K, respectively.
Revnivykh et al. (2017) provides further information on the GLONASS satellite types
and their differences.

The Galileo constellation consists of two main satellite types. These are the four in-
orbit validation (IOV) satellites, which are denoted as GAL-1 in this thesis, and the full
operational capability (FOC) satellites, here called GAL-2. The two test satellites GAL-0A
and GAL-0B have not been considered in the reprocessing contribution and are thus not
discussed further. More details about the Galileo satellite types and their characteristics
are given, for instance, in Falcone et al. (2017).

6 Chapter 2 Global navigation satellite systems
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Figure 2.1: Number of operational GNSS satellites over time: (a) per constellation, (b) per type
within GPS, (c) per type within GLONASS, (d) per type within Galileo
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(a) GPS-II/GPS-IIA

(b) GPS-IIR (c) GPS-IIR-M

(d) GPS-IIF (e) GPS-IIIA

(f) GAL-1 (© ESA) (g) GAL-2 (© ESA–Pierre Carril)

Figure 2.2: Artist’s renditions of GPS and Galileo satellite types (courtesy of United States
Government and ESA)
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2.1.2 Satellite identifiers

Several identifiers can be used to refer to a specific satellite, two of which are primarily
used within the IGS. The space vehicle number (SVN) is a unique identifier for a specific
satellite that does not change over time. Within the IGS, SVNs are represented by a
four-character code starting with a letter that represents the system (G for GPS, R for
GLONASS, and E for Galileo) followed by a three-digit number. For example, G075
refers to the first GPS-IIIA satellite launched on 23 December 2018.

The satellite number, on the other hand, is a unique identifier within the active satellites
of a constellation at a specific point in time. The Receiver Independent Exchange (RINEX)
convention (Romero, 2020) defines this three-character code as a system identifier (same
as for SVN) followed by a two-digit number that contains either the pseudorandom
noise (PRN) code (GPS, Galileo) or the orbit slot number (GLONASS). For instance,
the satellite G075 currently transmits the PRN code 18 and thus can be referred to as
G18. In the past, G18 has referred to satellites G018 (1990–2000), G054 (2001–2018),
and G034 (2018–2020). From a processing perspective, it is often easier to identify the
observed satellites by satellite number (e.g., R01–R24 for the nominal 24 GLONASS
satellites) instead of SVN. For this reason, the satellite number is primarily used to refer
to satellites throughout this thesis.

2.2 Signals and measurements

GNSS processing in a modern multi-constellation environment involves a diverse set of
signals and measurements. Meurer and Antreich (2017) describes the basic principles
of signals and modulations used in satellite navigation. Won and Pany (2017) details
how these signals are processed at the receiver side in order to obtain code and phase
measurements. More information about the architecture of GNSS receivers and antennas
can be found in Eissfeller and Won (2017) and Maqsood et al. (2017), respectively.

This thesis uses the signal type notation from the RINEX 3 convention (Romero, 2020).
A signal type [τνa] consists of the measurement type τ (C for code and L for phase), the
frequency ν, and the signal attribute a. In case any part of this notation is omitted (e.g.,
[τν]) or replaced by a specific identifier (e.g., [L]), it implies that the omitted parts are
not relevant.

Table 2.1 lists the frequencies on which satellites of the three constellations transmit
their signals. Since RINEX only uses a single digit to encode the frequency, a direct
mapping of the commonly used frequency band names to the RINEX notation is not
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Table 2.2: Transmitted phase and code signals per satellite type in RINEX 3 notation, omitting
military and other restricted signals (Falcone et al., 2017; Hegarty, 2017; Mon-
tenbruck et al., 2017; Revnivykh et al., 2017; Romero, 2020)

Satellite type Phase signals Code signals
GPS-I L1, L2 C1C, C1W, C2W
GPS-II L1, L2 C1C, C1W, C2W
GPS-IIA L1, L2 C1C, C1W, C2W
GPS-IIR L1, L2 C1C, C1W, C2W
GPS-IIR-M L1, L2 C1C, C1W, C2W, C2S, C2L
GPS-IIF L1, L2, L5 C1C, C1W, C2W, C2S, C2L, C5I, C5Q
GPS-IIIA L1, L2, L5 C1C, C1W, C1S, C1L, C2W, C2S, C2L, C5I, C5Q
GLO L1, L2 C1C, C1P, C2P
GLO-M L1, L2 C1C, C1P, C2C, C2P
GLO-M+ L1, L2, L3 C1C, C1P, C2C, C2P, C3I, C3Q
GLO-K L1, L2, L3 C1C, C1P, C2C, C2P, C3I, C3Q
GAL-1 L1, L5, L6, L7 C1B, C1C, C5I, C5Q, C6B, C6C, C7I, C7Q
GAL-2 L1, L5, L6, L7 C1B, C1C, C5I, C5Q, C6B, C6C, C7I, C7Q

always possible. For example, the Galileo bands are encoded as νE1 = 1, νE5a = 5,
νE5b = 7, and νE6 = 6 in the RINEX notation. The adjoining bands E5a and E5b can also
be measured as one wider band called E5 (νE5 = 8 in RINEX).

GLONASS applies frequency division multiple access (FDMA) on its frequencies G1 and
G2 (Revnivykh et al., 2017). This means that satellites transmit on slightly different
frequencies, which can be utilized to uniquely identify them. The frequency offsets
are ∆νG1(k) = 9

16kMHz and ∆νG2(k) = 7
16kMHz, where k is a so-called frequency

number. GLONASS originally utilized 25 frequency channels (k ∈ [0, 24]), one for each
of the nominally 24 satellites and one for testing. This was later reduced to 14 channels
(k ∈ [−7, 6]), one for each set of two antipodal satellites in the same orbital plane and
two for testing purposes. Such a setup is sufficient because no receiver can observe
two antipodal satellites at the same time. GLONASS plans to transition to code division
multiple access (CDMA) using three frequencies that are going to be transmitted in
addition to the two legacy FDMA frequencies (Romero, 2020). More recent GLONASS
satellites already transmit signals on one of these new frequencies (see Table 2.2).

The signal attribute a differentiates between the various signals that are encoded onto
the same frequency. Table 2.2 provides an overview of the signals transmitted by the
different satellite types, excluding military and other restricted signals. In case of GPS,
C1C is the so-called C/A code transmitted on frequency L1. C1W and C2W, on the
other hand, are the encrypted P code signals on L1 and L2. The attribute W is used
here instead of P since P refers to unencrypted P code measurements in the RINEX
notation. In practice, commercial receivers measure the encrypted code (W) and not
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Table 2.3: Analysis centers contributing to repro3

Abbrev. Name Main location
COD Center for Orbit Determination in Europe Bern, Switzerland
EMR Natural Resources Canada Ottawa, Canada
ESA European Space Agency Darmstadt, Germany
GFZ GeoForschungsZentrum Potsdam, Germany
GRG Groupe de Recherche de Géodésie Spatiale Toulouse, France
JPL Jet Propulsion Laboratory Pasadena, USA
MIT Massachusetts Institute of Technology Cambridge, USA
NGS National Geodetic Survey Silver Springs, USA
TUG Graz University of Technology Graz, Austria
ULR Université de La Rochelle La Rochelle, France
WHU Wuhan University Wuhan, China

the unencrypted code (P). Some receivers measure linear combinations of transmitted
signals. A different attribute (e.g., X) is assigned to such measurements in the RINEX 3
convention (Romero, 2020).

2.3 International GNSS Service

Under the banner of the IGS, research institutions, universities, and agencies from around
the world openly provide high-quality GNSS data and products to users (Johnston et al.,
2017). GNSS observations are collected from a global network of ground stations, some
of which have been continuously operating since the early 1990s. Products usually
comprise satellite orbits and clocks, receiver positions and clocks, and Earth rotation
parameters, but can also include troposphere parameters, ionosphere maps, signal biases,
and satellite attitude. Analysis centers generate these products on an operational basis
and in the form of occasional reprocessing campaigns. These usually cover the full time
period since the launch of the IGS in 1994. The analysis centers contributing to the third
reprocessing campaign (repro3) are listed in Table 2.3.

In addition, the IGS provides combinations of individual analysis center products (Weiss
et al., 2017). Combined products include satellite orbits and clocks, receiver positions
and clocks, Earth rotation parameters, and in the case of repro3 also signal biases. These
combined products are generally more robust and often more precise than individual
solutions. Furthermore, they are usually more complete since they join the different sets
of satellites and stations processed by the individual analysis centers.
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Reference frames 3
GNSS processing involves several different reference frames (e.g., Krakiwsky and Wells,
1971; Hofmann-Wellenhof et al., 2008; Misra and Enge, 2011; Jekeli and Montenbruck,
2017). Satellite orbits are commonly expressed in a celestial reference frame (CRF),
while station positions are valid in a terrestrial reference frame (TRF). Antenna offsets
are usually provided in a satellite body reference frame (SRF) at the satellite and a local
topocentric reference frame (LRF) at the station. Offsets and variations within these
antennas are then defined in an antenna reference frame (ARF). In addition, comparing
station positions in a LRF and satellite orbits in a local orbit reference frame (ORF) often
helps with the interpretation of results.

Sections 3.1 to 3.6 of this chapter detail how the above-mentioned reference frames are
defined in this thesis. In addition, Figure 3.1 illustrates how these frames are connected
to each other. Here, it separates between pure rotations (R) and transformations
(T), which usually involve the flip of an axis direction. The latter is necessary when
transitioning from a right-handed to a left-handed frame or vice versa.

Finally, Section 3.7 describes the 7-parameter Helmert transformation. It can be used to
transform coordinates from one reference frame to another. In the context of this thesis,
Helmert transformation parameters are estimated to align different realizations of the
TRF. This is important when comparing different solutions and when a solution has to
be aligned to a specific TRF realization.

ARF SRF CRF TRF LRF

ORF

ARF
RT TR

R

R

R… (Pure) rotation
T… Transformation

Left-handed frame

Right-handed frame

Satellite 

antenna 

reference

frame

Satellite 

body 

reference

frame

Celestial 

reference 

frame

Terrestrial 

reference 

frame

Local 

topocentric 

reference 

frame

Receiver 

antenna 

reference

frame

Local orbit reference frame

Figure 3.1: Overview of reference frames relevant for GNSS processing
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3.1 Celestial reference frame

The celestial reference frame (CRF) refers to an Earth-centered quasi-inertial reference
frame. It is defined as a right-handed frame with the following characteristics.

Origin Located in Earth’s center of mass.

ex axis Points towards the vernal equinox.

ey axis Completes the right-handed frame (ey = ez × ex).

ez axis Points towards the celestial north pole.

The International Earth Rotation and Reference Systems Service (IERS) maintains
the International Celestial Reference Frame (ICRF), which is the realization of the
International Celestial Reference System (ICRS). More information about the ICRS and
ICRF, such as the exact definition of the vernal equinox and celestial north pole, can be
found in the IERS conventions (Petit and Luzum, 2010). The rotation between CRF and
TRF is detailed in Section 6.8.

3.2 Terrestrial reference frame

The terrestrial reference frame (TRF) is both Earth-centered and Earth-fixed, meaning it
rotates with Earth. This right-handed frame is defined as follows.

Origin Located in Earth’s center of mass.

ex axis Points towards the mean Greenwich meridian.

ey axis Completes the right-handed frame (ey = ez × ex).

ez axis Points towards the terrestrial north pole.

The ITRF realizes the International Terrestrial Reference System (ITRS) and is maintained
by the IERS. The IERS conventions (Petit and Luzum, 2010) provide a more detailed
description of the ITRS and ITRF, including the definition of the mean Greenwich
meridian and the terrestrial north pole. More information about the rotation between
TRF and CRF can be found in Section 6.8.
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3.3 Local topocentric reference frame

A local topocentric reference frame (LRF) is commonly used to describe coordinate
differences relative to a point on Earth’s surface. In this thesis, the LRF is defined as a
left-handed frame with the following characteristics (e.g., Krakiwsky and Wells, 1971).

Origin Typically located at some point on Earth’s surface (e.g., at a station).

en axis Points towards the local geographic north direction in the tangent plane.

ee axis Points towards the local geographic east direction in the tangent plane.

eu axis Points towards the local ellipsoidal zenith (i.e., up) direction.

This frame is helpful in interpreting station coordinate behavior. For example, certain
geophysical models mainly affect the up component and seasonal signals are clearly
visible in the corresponding time series. Station operators also provide receiver antenna
eccentricities (see Section 6.10.1) in this frame. Another application of this frame is to
describe the azimuth and elevation angle of incoming GNSS signals. Here, the azimuth
angle is counted clockwise from en to ee. Azimuth and elevation angles are, for example,
required to model tropospheric slant delays (see Section 6.7).

The LRF axes

en = eu × ee (3.1)

ee =
[ 0

0
1

]
× eu (3.2)

eu =


cosϕ cosλ
cosϕ sinλ

sinϕ

 (3.3)

can be determined based on the ellipsoidal latitude ϕ and longitude λ of a point rTRF
Origin

that describes the origin of the LRF in a global frame (i.e, the TRF), Consequently, the
transformation matrix from the left-handed LRF to the right-handed TRF is

TTRF
LRF =

[
en ee eu

]
. (3.4)

3.4 Satellite body reference frame

The satellite body reference frame (SRF) is fixed to the mechanical structure of a satellite.
The origin and axis directions for the various GNSS satellite types depend on the satellite
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manufacturer. Therefore, the IGS adopted a common SRF for all satellites (Montenbruck
et al., 2015a). It is defined as follows.

Origin Located in the satellite’s center of mass.

ex axis Points towards the permanently sunlit panel of the satellite bus (i.e., roughly
towards the Sun).

ey axis Points along the solar panel rotation axis in the direction defined by ey = ez×ex.

ez axis Points along the antenna boresight direction (i.e., towards Earth).

The rotation matrix from this right-handed frame to the CRF is

RCRF
SRF =

[
ex ey ez

]
. (3.5)

It describes the satellite’s attitude or orientation in space. Section 6.1 details the various
attitude modes that are utilized by GNSS satellites. Most of them follow a nominal yaw-
steering behavior outside of so-called eclipse seasons, which is when a satellite enters
Earth’s shadow once per revolution. In this nominal case, the axes from Equations (6.1)
to (6.3) can be substituted into (3.5).

3.5 Antenna reference frame

The antenna reference frame (ARF) is fixed to the physical structure of a GNSS antenna.
This frame is used to define the electronic center of the antenna as well as direction-
dependent variations. For a receiver antenna, it has the following characteristics.

Origin Located at the antenna reference point (e.g., at the bottom of the antenna).

ex axis Points towards a vendor-defined reference marker in the plane normal to the
antenna boresight direction.

ey axis Completes the left-handed frame (ey = ex × ez).

ez axis Points along the antenna boresight direction.

The azimuth angle is counted clockwise from the ex to the ey axis. Within this thesis,
the same frame definition is also used for satellite antennas. The reason for this is that it
allows for the generalization of all GNSS antennas.

Assuming that a receiver antenna is leveled horizontally, the rotation matrix from the
left-handed LRF to the left-handed ARF is simply

RARF
LRF = Rz(α) . (3.6)
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Here, the matrix Rz is the basic rotation around the z axis and α is the angle of
misalignment from geographic north, counted clockwise from north to east. IGS stations
are instructed to orient their antennas towards geographic north (IGS Infrastructure
Committee, 2015). However, not all antennas of the more than 1200 stations considered
in the reprocessing campaign have always been aligned in that way. A misalignment
from geographic north is usually reported by station operators in the station log file.
Section 6.10.3 provides more details on this topic.

For a satellite antenna, the transformation from the right-handed SRF to the left-handed
ARF is

TARF
SRF =


1 0 0
0 −1 0
0 0 1

Rz(90°) . (3.7)

This transformation aligns the satellite ARF in such a way that the azimuth angle
matches the definition of the antenna center variation patterns provided by the IGS via
the Antenna Exchange (ANTEX) file format (Rothacher and Schmid, 2010).

3.6 Local orbit reference frame

A local orbit reference frame (ORF) moves with the satellite and is used to describe
effects related to the satellite orbit. This right-handed frame has the following definition
(e.g., Krakiwsky and Wells, 1971).

Origin Usually located in the satellite’s center of mass.

ea axis Points in the along-track direction (i.e., close to the satellite’s velocity vector).

ec axis Points in the cross-track direction.

er axis Points in the radial direction (i.e., away from Earth).

This frame is particularly useful when comparing satellite orbits since several force
models mainly affect the orbit’s radial component. The rotation matrix from the ORF to
the CRF is

RCRF
ORF =

[
ea ec er

]
(3.8)
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based on the unit vectors

ea = ec × er (3.9)

ec = er × ṙsCRF

‖er × ṙsCRF‖
(3.10)

er = rsCRF∥∥rsCRF

∥∥ (3.11)

with rsCRF and ṙsCRF being the satellite’s position and velocity in the CRF, respectively.
Sometimes er is defined in the opposite (i.e., nadir) direction, resulting in ec being
flipped as well.

3.7 Helmert transformation

A 7-parameter Helmert transformation (e.g., Jekeli and Montenbruck, 2017)
x

y

z


B

=


Tx

Ty

Tz

+ (1 + S)


0 Rz −Ry
−Rz 0 Rx

Ry −Rx 0



x

y

z


A

(3.12)

describes how coordinates can be transformed from reference frame A to B. The
seven parameters comprise translation (Tx, Ty, Tz), rotation (Rx, Ry, Rz), and scale
(S). Equation (3.12) assumes that the rotation angles are small and thus small-angle
approximations can be applied. The functional relationship in (3.12) can be used to set
up an equation system



...
xB,i − xA,i
yB,i − yA,i
zB,i − zA,i

...


=



...
...

...
...

...
...

...
1 0 0 0 zA,i −yA,i xA,i

0 1 0 −zA,i 0 xA,i yA,i

0 0 1 yA,i −xA,i 0 zA,i
...

...
...

...
...

...
...





Tx

Ty

Tz

Rx

Ry

Rz

S


. (3.13)

Here, xB,i, yB,i, and zB,i are the coordinates for point i in frame B while xA,i, yA,i, and
zA,i are those in frame A. Solving the equation system in (3.13) via least-squares adjust-
ment results in estimates for the transformation parameters. At least three 3-dimensional
coordinate sets are required to estimate all seven Helmert parameters.
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There are two applications for a Helmert transformation within this thesis. Firstly, it
forms the basis for no-net constraints on station coordinates (see Section 6.9.1). These
are used to align the solution to a reference frame (e.g., the ITRF) and to resolve certain
rank deficiencies in the normal equation system. Secondly, Helmert parameters are
estimated in the comparison of coordinates that potentially realize different reference
frames. Examples for this are when solutions from different analysis centers or time
periods are compared.
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Parameter estimation 4
Parameter estimation is the process of determining unknown parameters x from ob-
servations l based on a functional model, also called observation equations, of the
form

l = f(x) + e . (4.1)

The system of equations in (4.1) is usually overdetermined, which means there are more
observations than parameters. Combined with inevitable measurement errors in l and
incomplete models in f , this leads to inconsistencies, which are represented by the
observation residuals e.

For the type of GNSS processing discussed in this thesis, the observation vector l
generally contains code and phase measurements from a network of ground-based
GNSS receivers to one or more satellite constellations. The function f then describes
the relation between these measurements and a set of geometric and geophysical
parameters, for example receiver positions or tropospheric delay parameters, based on
a number of parametrizations, models, and corrections. A detailed description of the
observation equations for code and phase measurements is given in Chapter 5, while the
parametrizations, models, and corrections are the focus of Chapter 6.

Parameter estimation has been extensively described in the literature, for example in
Koch (1999). Following Mayer-Gürr (2006), this chapter provides a summary of the
main concepts of parameter estimation applied in this thesis. It starts with how to solve
the system of equations in (4.1) based on a least-squares adjustment. This is followed
by methods to improve the efficiency of setting up and solving the system of equations.
These methods include the elimination of a part of the parameters in case they are not of
interest, as well as how to avoid computationally expensive matrix inversions. Another
topic is the addition of constraints in case the system of equations is not solvable due to
a rank deficiency. Finally, it is shown how to determine individual weights for different
observation groups using variance component estimation.
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4.1 Nonlinear least-squares adjustment

In case of GNSS processing, the functional model in Equation (4.1) generally is nonlinear
and has to be linearized by expanding it into a Taylor series

l = f(x0) + ∂f

∂x

∣∣∣∣
x0

(x− x0) + · · ·+ e (4.2)

and truncating after the linear term. Moving the constant term to the left-hand side of
the equation results in the linearized Gauss-Markov model

l− f(x0) = A(x− x0) + e , (4.3)

where the design matrix

A = ∂f

∂x

∣∣∣∣
x0

(4.4)

is the Jacobian of f with respect to the parameters x at the initial values x0. Introducing
the shorthands ∆l = l− f(x0) for reduced observations and ∆x = x− x0 for parameter
corrections, (4.3) can also be written as

∆l = A∆x + e . (4.5)

The observations in l can have different measurement accuracies and are possibly
correlated. This information can be represented by the covariance matrix of observations
Σl. Inverting this matrix results in the weight matrix

P = s2Σl
−1 , (4.6)

where s2 is an a priori unitless variance factor, for example s2 = 1. Even though σ2 is
more commonly used to denote the variance factor in the literature, s2 is used throughout
this thesis to prevent confusion with the standard deviation σ of a measurement in later
chapters. Minimizing the weighted sum of squared residuals

‖e‖2 = eTPe = (∆l−A∆x)T P (∆l−A∆x)→ min (4.7)

leads to the so-called normal equations

ATPA∆x = ATP∆l , (4.8)
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which can also be written as

N∆x = n . (4.9)

Here, N = ATPA is the normal equation matrix and n = ATP∆l is called right-hand
side. Solving the system of equations results in the estimated parameter corrections

∆x̂ = (ATPA)−1ATP∆l = N−1n (4.10)

and, in combination with the initial values x0, the estimated parameters

x̂ = x0 + ∆x̂ . (4.11)

In many cases, solving a nonlinear least-squares adjustment requires iteration, which
means the estimated parameters x̂ are introduced back into (4.3) as initial values x0 and
the system of equations is solved repeatedly until convergence is reached. The estimated
variance factor

ŝ2 = êTPê
n−m

(4.12)

can then be computed based on the estimated residuals

ê = ∆l−A∆x̂ (4.13)

and the number of observations n and parameters m. Finally, the covariance matrix of
estimated parameters follows as

Σx̂ = ŝ2(ATPA)−1 = ŝ2N−1 . (4.14)

4.2 Efficient setup and solution of the normal
equations

Processing large systems with hundreds of GNSS receivers and multiple satellite con-
stellations can lead to hundreds of millions of observations and millions of parameters
for a single day. For example, the normal equation matrix N associated with a vector x
containing 1 million parameters would require 8 terabytes of memory in case it were
fully set up and populated. This becomes even more of a problem since N−1 appears
in Equation (4.10) and matrix inversions are computationally expensive operations.
Therefore, solving such a system directly as shown in (4.10) is unfeasible even for most
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modern high-performance computing clusters, which means it is necessary to apply
methods that reduce the problem to a more feasible size.

4.2.1 Homogenization

The first step is to homogenize the system of equations based on the weight matrix P.
As shown in Equation (4.6), P can be determined by inverting the covariance matrix of
observations Σl. Since this matrix has dimensions n× n, with n being the number of
observations, this can be a costly operation. In GNSS processing, the observations in l
are generally assumed to be uncorrelated, which means Σl is a diagonal matrix. Several
studies (e.g., El-Rabbany, 1994; Schön and Brunner, 2008; Amiri-Simkooei et al., 2016;
Kermarrec, 2018) have shown that this assumption may be too simplistic, and a proper
consideration of observation correlations can benefit the solution, making this one aspect
of possible future improvements. Nevertheless, assuming Σl is a diagonal matrix, the
diagonal elements of the weight matrix P are simply

pii = 1
σ2
l,ii

, (4.15)

with σ2
l,ii being the diagonal elements of Σl and i := {1, 2, . . . , n}. The weights can then

be directly applied to the design matrix elements

ãij = √piiaij = aij
σl,ii

, (4.16)

where j := {1, 2, . . . ,m} and m is the number of unknown parameters, and to the
observations

l̃i = √piili = li
σl,ii

. (4.17)

The normal equations from (4.8) thus become

ÃT Ã∆x = ÃT ∆̃l (4.18)

and the solution from (4.10) turns into

∆x̂ = (ÃT Ã)−1ÃT ∆̃l = (ATPA)−1ATP∆l = N−1n . (4.19)

As shown in (4.19), the homogenized solution is equivalent to the original one, except the
need to explicitly set up P. All subsequent sections of this thesis assume a homogenized
system of equations, but omit the tilde notation for the sake of readability.
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4.2.2 Parameter elimination

In some cases, not all parameters in x are of interest, but they have to be considered in
the functional model to get a proper result. In the context of this thesis, an example are
the millions of ionospheric slant total electron content (STEC) parameters that have to
be set up per day, even though their values are not necessarily needed in further analyses.
Since the computational effort of solving the system of equations scales cubically with
the number of parameters, it is preferable to reduce this number by only keeping the
parameters of interest while eliminating all others.

The linearized Gauss-Markov model in Equation (4.3) can be split into

l− f(x0,y0) = A(x− x0) + B(y− y0) + e (4.20)

or, introducing the shorthand ∆y = y− y0,

∆l = A∆x + B∆y + e =
[
A B

] [∆x
∆y

]
+ e , (4.21)

with x being the parameters of interest and y the ones to be eliminated. x0 and y0 are
the respective initial values and A and B the respective design matrices.

Parameters can be eliminated either on the observation equation level or on the normal
equation level. The former has the advantage of smaller dimensions in the resulting
normal equations, thus requiring less mathematical operations and memory. This can
become very important in case the number of parameters to be eliminated is large,
possibly even preventing the setup of the full normal equations. The latter is useful if the
number of parameters in y is small enough so that setting up the full normal equations is
feasible. In this case, multiple normal equations can be accumulated (see Section 4.2.3)
before eliminating the parameters only once, which reduces the computational effort.
In the context of this thesis, both approaches are used to eliminate different sets of
parameters, thus utilizing the advantages of both methods.

4.2.2.1 Parameter elimination on the observation equation level

The parameters ∆y in (4.21) can be eliminated by projecting the equation to a space
orthogonal to the column space of B

Π⊥B∆l = Π⊥BA∆x + Π⊥BB︸ ︷︷ ︸
0

∆y + Π⊥Be (4.22)
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using the orthogonal projector

Π⊥B = I−B(BTB)−1BT . (4.23)

The normal equations of a homogenized system of equations (see Section 4.2.1) then
become

ATΠ⊥TB Π⊥BA∆x = ATΠ⊥TB Π⊥B∆l , (4.24)

which, utilizing that orthogonal projectors are symmetric and idempotent (Koch, 1999),
simplifies to

ATΠ⊥BA∆x = ATΠ⊥B∆l . (4.25)

Since (4.23) contains an inversion, a more efficient way to determine Π⊥B is by means
of a QR decomposition (e.g., Golub and Van Loan, 2013)

B = QR =
[
Q1 Q2

] [R1

0

]
, (4.26)

where Q is an orthogonal matrix and R is a regular upper triangular matrix. Q1
contains the base vectors of the column space of B and Q2 contains the base vectors of
its orthogonal complement. By substituting (4.26) into (4.23), it can be shown that the
orthogonal projector reduces to

Π⊥B = Q2QT
2 . (4.27)

Substituting (4.27) into (4.25) then leads to

ATQ2QT
2 A∆x = ATQ2QT

2 ∆l (4.28)

and, introducing the transformations

Ā = QT
2 A and ∆̄l = QT

2 ∆l , (4.29)

to normal equations in the same form as in (4.19)

ĀT Ā∆x = ĀT ∆̄l . (4.30)

This means the parameters ∆y can be efficiently eliminated from (4.21) on the level
of observation equations by QR-decomposing B according to (4.26) and transforming
the design matrix and observations using (4.29). After this step, the reduced system of
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equations can then be solved in the same way as any linearized Gauss-Markov model
via (4.19). Eliminating parameters on the observation equation level is a key factor in
enabling the raw observation approach (see Chapter 5) to scale to large systems with
millions of parameters.

4.2.2.2 Parameter elimination on the normal equation level

The normal equation system following from (4.21) is[
ATA ATB
BTA BTB

] [
∆x
∆y

]
=
[
AT∆l
BT∆l

]
(4.31)

or [
Nxx Nxy

NT
xy Nyy

] [
∆x
∆y

]
=
[
nx

ny

]
. (4.32)

If Nyy is invertible, the second equation in (4.32) can be solved for ∆y, resulting in

∆y = N−1
yy

(
ny −NT

xy∆x
)
. (4.33)

Substituting (4.33) into the first equation in (4.32) leads to

Nxx∆x + Nxy
[
N−1

yy

(
ny −NT

xy∆x
)]

= nx

Nxx∆x + NxyN−1
yyny −NxyN−1

yyNT
xy∆x = nx ,

(4.34)

which can be rearranged to(
Nxx −NxyN−1

yyNT
xy

)
∆x = nx −NxyN−1

yyny . (4.35)

By introducing the reduced normal equation matrix

N̄ = Nxx −NxyN−1
yyNT

xy (4.36)

and the reduced right-hand side

n̄ = nx −NxyN−1
yyny , (4.37)

the resulting normal equations N̄∆x = n̄ are of the same form as (4.9) and can be
solved accordingly. In case the eliminated parameters are of interest after solving the
reduced normal equations, ∆ŷ can be reconstructed based on ∆x̂ using (4.33).
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4.2.3 Accumulation of the normal equations

Due to the large number of observations involved in GNSS processing, it is usually not
possible to set up the full design matrix A. Fortunately, it is not necessary to do so, since
A and the observation vector l can be split into multiple parts

A =


A1

A2
...

Ak

 and ∆l =


∆l1
∆l2

...
∆lk

 . (4.38)

The full normal equations can then be set up by accumulating the individual normal
equation matrices

N =
k∑
i=1

Ni =
k∑
i=1

AT
i Ai (4.39)

and right-hand sides

n =
k∑
i=1

ni =
k∑
i=1

AT
i ∆li . (4.40)

Accumulating the normal equations in this way has two major advantages. First, it can
significantly reduce the required memory for setting up the normal equations, since
each normal equation matrix Ni and its respective design matrix Ai can be freed from
memory after the addition to N and n. Second, the setup of the individual parts can
be parallelized by distributing them among multiple processes, both within a multicore
system and over several systems in a computer cluster. This parallelization can massively
improve the performance of setting up the normal equations, as the only required
communication between processes is the initial distribution of the parts and the final
accumulation of all Ni and ni. Distributed setup and accumulation of normal equations
is heavily utilized in the context of this thesis and is one of the key aspects that enable
large-scale GNSS processing involving hundreds of millions of observations.

4.2.4 Solution of the normal equations

The solution of the normal equations

∆x̂ = N−1n (4.41)
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contains the inverse of the normal equation matrix, which is a costly operation, especially
if the dimensions of N are large, as is often the case in GNSS processing. If N is positive
definite, the inversion can be circumvented by using the Cholesky decomposition (e.g.,
Koch, 1999)

N = WTW , (4.42)

where W is a regular upper triangular matrix called Cholesky factor. This decomposition
can be done in-place to save memory. Substituting (4.42) into (4.41) yields

∆x̂ =
(
WTW

)−1
n = W−1W−Tn = W−1

(
W−Tn

)
, (4.43)

which shows that the system of equations can be solved by two subsequent matrix-vector
multiplications. This has the advantage that the inverse of W does not have to be
computed explicitly, as the matrix-vector multiplications can be solved by forward and
backward substitution (e.g., Golub and Van Loan, 2013). By introducing the intermediate
vector y = W−Tn, the equation system

WTy = n (4.44)

can be solved directly for y. Since WT is a lower triangular matrix, the first row of this
equation system is W1,1 y1 = n1, which directly gives y1. Substituting y1 into the second
row solves that equation and the process can be continued until the last row is solved.
The remaining equation ∆x̂ = W−1y can be solved in the same way by rearranging it
to

W∆x̂ = y . (4.45)

With W being an upper triangular matrix, the equations are solved from bottom to top
row in this case, which finally gives ∆x̂.

4.3 Constraints

Constraints are a way to introduce additional information into a system of equations. The
additional information can serve two different purposes. First, some parametrizations
or combinations of certain parametrizations can result in there being more than one
valid solution for the system of equations. This happens if the design matrix An×m is
rank-deficient with rank A = r < m, which means there is a linear dependency between
some of its columns. In this case, dimC(A) = r and dimN(A) = m− r, where C(A)
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and N(A) are the column space and nullspace of A, respectively. The resulting normal
equation matrix N, also with dimC(N) = r and dimN(N) = m − r, then becomes
only positive semidefinite instead of positive definite and thus cannot be inverted (e.g.,
Koch, 1999). These rank deficiencies can be resolved by constraining the least-squares
adjustment and thus removing the nullspace.

The nullspace N(N) can be determined by means of an eigenvalue decomposition (e.g.,
Golub and Van Loan, 2013)

N = QΛQT , (4.46)

where Q is the matrix of eigenvectors and Λ is a diagonal matrix containing the
respective eigenvalues λi. The eigenvectors associated with the m− r eigenvalues λi = 0
span the nullspace N(N). Each eigenvector of a zero eigenvalue contains information
about the linear combination of parameters that causes the respective rank deficiency.

Based on this information, appropriate pseudoobservation equations

b = B∆x (4.47)

can be designed to resolve the rank deficiencies. Here, b is a vector of pseudoobserva-
tions, also called bias vector, and B is the design matrix of constraints that relates the
pseudoobservations to the parameter corrections ∆x. The constraint equations in (4.47)
are assumed to be linear in the context of this thesis. The covariance matrix of pseu-
doobservations Σb contains information about the strength or strictness of the applied
constraints. Σb usually is a diagonal matrix, which means the constraint equations can
be homogenized following the procedure shown in Section 4.2.1 to achieve a proper
weighting. The normal equation matrix of constraints M = BTB and its respective
right-hand side m = BTb can then be added to the full normal equation system

(N + M)∆x = n + m . (4.48)

M and m can also be accumulated from multiple parts as shown in Section 4.2.3. If
the constraints were designed appropriately, the constrained normal equation matrix
Ñ = N + M has full rank, meaning its nullspace vanishes and it becomes invertible.
The constrained normal equation system in (4.48) can then be solved following Sec-
tion 4.2.4.

One example for the usage of constraints to resolve a rank deficiency is the combined
estimation of transmitter and receiver clock errors. The rank deficiency is caused by the
observations between transmitters and receivers being only relative and not absolute.
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Therefore, all clocks could be shifted by the same arbitrary value without influencing the
relative observations. This can be solved by applying a constraint equation over multiple
clock parameters, for example stating that their mean value must be zero. Another
option would be to constrain a single clock to its a priori value, or to remove the related
parameter altogether, thus introducing that clock as an absolute reference.

The second purpose of constraints is to limit the estimable range of values for certain
parameters. For instance, so-called pseudostochastic pulse parameters are often used in
satellite orbit determination to cope with force model insufficiencies (see Section 6.2).
These parameters, which represent instantaneous velocity changes, are constrained
towards zero in order to prevent them from becoming too large and possibly absorbing
unrelated effects. Constraints of this kind can be applied in the same way as the first kind
by setting up pseudoobservation equations and adding the resulting normal equations to
the full system.

The strength or strictness of a constraint depends on its objective. An example for
the application of loose constraints are certain tropospheric correction parameters (see
Section 6.7) that can be set up as time-variable functions over a day, for instance
as splines. The knots of these splines are evenly distributed over the day, and their
values can be loosely constrained towards zero, meaning the standard deviation σi of
its associated pseudoobservation bi is much larger than the expected parameter value.
If there are no observations at a station for the first hours of the day, the constraint
resolves the rank deficiency caused by the spline knots located within that time period.
This makes the system solvable even in the absence of observations for these parameters,
although their estimated values might not be meaningful. If there are observations,
however, the large standard deviation and thus small weight of the constraint hardly
influences the estimated values of the parameters.

Tight constraints, on the other hand, force the affected parameters to a specified value.
For instance, the absolute value of the Universal Time 1 (UT1), which is one of the
Earth orientation parameters, cannot be estimated by GNSS directly. Nevertheless, it
can be added to the normal equations in preparation for their combination with those of
other space-geodetic techniques that can estimate UT1, for example VLBI. Therefore,
UT1 is usually tightly constrained to its a priori value and hence does not affect other
parameters.
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4.4 Variance component estimation

Proper weighting of the different observation types involved in GNSS processing is
important to obtain the best estimate of the unknown parameters. The measurement
accuracy of the various code and phase observations is influenced by many factors, for
example the antenna and receiver model or the observation incident angle. For this
reason, measurement accuracies are only known approximately, making the a priori
observation weighting suboptimal. Variance component estimation (VCE), as described
in Koch and Kusche (2002), is a data-driven approach to determine proper weights of
different observation groups during processing.

Section 4.2.3 outlines how the normal equation matrix N and its right-hand side n can
be accumulated from multiple parts. These parts can be weighted relatively to each
other by introducing a corresponding variance factor ŝ2

i , which gives

N =
k∑
i=1

1
ŝ2
i

Ni (4.49)

and

n =
k∑
i=1

1
ŝ2
i

ni . (4.50)

The variance factors

ŝ2
i = êTi êi

ri
(4.51)

are based on the squared sum of estimated residuals êi associated with their respective
observation group and its partial redundancy

ri = ni −
1
s2
i

trace
(
NiN−1

)
, (4.52)

where ni is the number of observations in the group. Equation (4.51) assumes a
homogenized system of equations as detailed in Section 4.2.1.

VCE is an iterative process. This becomes clear from (4.51), where determining the
variance factors requires estimated residuals êi and the partial redundancy ri, which
requires the variance factor itself. Starting from some initial variance factors, for example
s2
i = 1, the normal equations are accumulated according to (4.49) and (4.50). Then the

normal equation system is solved, which allows the computation of the residuals êi and,
consequently, the determination of the newly-estimated variance factors ŝ2

i . In the next
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iteration, these are then introduced into the accumulation of the normal equations and
the process is repeated until convergence is reached.

The direct computation of the trace in Equation (4.52) should be avoided, as it is a very
costly operation. It involves the inverse of the full normal equation matrix, which is
never explicitly determined when solving the system of equations (see Section 4.2.4). As
an alternative, the trace can be determined using a stochastic trace estimator (Koch and
Kusche, 2002). If Q is a symmetric m ×m matrix and z is a m × 1 vector containing
m realizations of a discrete random variable Z, for which E(Z) = 0 and D(Z) = 1 and
which takes with 50% probability each the values 1 and -1, then

trace Q = E
(
zTQz

)
. (4.53)

The trace in (4.52) can be rearranged to

trace
(
NiN−1

)
= trace

(
AT
i AiW−1W−T

)
= trace

(
W−TAT

i AiW−1
)

(4.54)

utilizing the Cholesky decomposition from (4.42) and the cyclic property of the trace
operator. Based on (4.53), the trace can then be expressed as

trace
(
W−TAT

i AiW−1
)

= E
(
zTW−TAT

i AiW−1z
)

= E
[(

AiW−1z
)T (

AiW−1z
)]

= E
(
uTi ui

) (4.55)

with ui = AiW−1z. Finally, substituting (4.55) into (4.52) leads to

ri = ni −
E
(
uTi ui

)
s2
i

. (4.56)

Multiple independent realizations of the vector z can lead to different trace estimates.
Therefore, it might be necessary to compute the mean over multiple trace estimates to
get a more stable result.
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GNSS processing with the raw
observation approach

5

Attribution The concepts and algorithms presented in this chapter were largely devel-
oped and implemented by the author’s supervisor, Torsten Mayer-Gürr. The author of this
thesis was involved in discussions on these concepts and in testing their implementation
at several stages. While some aspects of this chapter have been published in a very
general sense, for example in Strasser et al. (2019), Strasser and Mayer-Gürr (2020),
and Mayer-Gürr et al. (2021), the mathematical and computational details have not
been fully published so far. Therefore, this chapter is intended to provide these details
to give a complete description of the processing approach used in the context of this
thesis.

The raw observation approach naturally relates measurements from a GNSS receiver
to space-geodetic parameters based on functional models. These functional models are
the basic observation equations for code and phase measurements, which are described
in any GNSS textbook (e.g., Hofmann-Wellenhof et al., 2008; Misra and Enge, 2011;
Hauschild, 2017a). The observation equations have to include all effects that influence
the measurements, either in the form of corrections based on a priori models or as
unknown parameters. Since many effects cannot be modeled adequately, the large
number of parameters that have to be set up in GNSS processing can hinder the ability
to solve the system of equations efficiently.

This is one of the reasons why, historically, other approaches have been developed and
are still most prevalent in GNSS processing today, for example among the IGS analysis
centers (Weiss et al., 2017). These approaches aim at combining observations in ways
that remove certain parameters from the observation equations, thus enabling the system
of equations to be solved more efficiently. The most widely used linear combination
is the ionosphere-free combination (e.g., Hauschild, 2017b), which removes the first-
order ionospheric influence and, therefore, allows the omission of a large number
of parameters related to this effect. Another common approach is to utilize double
differences (e.g., Hauschild, 2017b), which are a combination of observations from
two receivers to the same two satellites, because they remove clock and signal bias
parameters from the observation equations. Clock parameters usually constitute the
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largest number of parameters next to the ionospheric influence, so their removal further
reduces the computational effort of solving the system of equations.

Nevertheless, the raw observation approach has become more and more popular in
recent years. One reason is that the vast computational resources available today make
its application more feasible than in the past. Another reason is the increased number
of available signals transmitted by modern GNSS satellite constellations. The nature
of this approach suits the inclusion of various different signals on multiple frequencies,
as each observation has its own observation equation and is not obfuscated by linear
combinations. The raw observation approach was first demonstrated in Schönemann
et al. (2011) in the context of single-station precise point positioning (PPP) and later
detailed in Schönemann (2014) for standalone and network applications. Zehentner and
Mayer-Gürr (2014, 2016) and Zehentner (2016) applied the approach to kinematic orbit
determination of low Earth orbit (LEO) satellites. Strasser et al. (2019) showed that
processing GNSS constellations and ground station networks with the raw observation
approach produces results of at least equivalent quality to well-established approaches
used by IGS analysis centers for this purpose. Many more studies have utilized this
approach for different applications in recent years, for example P. Li et al. (2018), Cao
et al. (2019), Reckeweg (2020), and Zeng et al. (2021).

This chapter details the raw observation approach as applied by TUG. The following
sections describe how observation equations are defined and set up, how weights are
applied to them, and how the ionospheric influence can be effectively preeliminated.
Furthermore, a normal equation matrix structure aiming at high sparsity, which is
a prerequisite for processing large equation systems, is introduced and visualized.
Additional sections focus on the reconstruction of the ionospheric parameters and
the computation of residuals and redundancies, which are utilized to determine new
weights for the observations. Finally, strategies that enable an efficient solution of large
systems with hundreds of stations are presented, followed by a brief introduction of the
processing software used in the context of this thesis.

5.1 Observation equations

The code and phase observation equations can be found in various forms in the literature.
Depending on the focus of the publication, different attributions and dependencies of the
involved components are either included or omitted. Components in this context refer
to effects or values that have to be modeled, corrected, or estimated, for instance the
tropospheric influence or signal biases. The approach taken in this thesis is to highlight
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the components involved in the observation equations by representing them as general
functions that are specified further in Chapter 6. The notation �[τνa]sr(. . .) used in
Equation (5.1) describes the attribution of a scalar value or function � to a signal type τ
(i.e., C or L), frequency ν, signal attribute a (e.g., C, W, Q, X), observed satellite s, and
observing receiver r. More information on the RINEX 3 signal notation [τνa] is given
in Section 2.2. All of these attributions are optional, meaning � may, for example, be
attributed only to a satellite (�s) or receiver (�r), but it may also be attributed to the
combination of both (�s

r). Dependencies of the various components, for example on the
epoch t or signal path psr, are listed in parentheses.

The observation equation for code or phase measurements is thus defined as

obs[τνa]sr(t) = range(rs, rr) + clocks(t) + clockr(t) + tropo(t,psr)

+ iono([τν], t,psr) + bias[τνa]s + bias[τνa]r + λ[Lν]N [Lν]sr
+ ant[τνa]s(psr) + ant[τνa]r(psr) + other(. . .) + ε[τνa]sr(t) ,

(5.1)

where

obs[τνa]sr(t) is a measurement of signal [τνa] from receiver r to satellite s at epoch t,

range(rs, rr) is a function representing the geometric range between satellite position
rs at transmission time and receiver position rr at reception time,

clocks(t) is a function for the satellite clock error at epoch t,

clockr(t) is a function describing the receiver clock error at epoch t,

tropo(t,psr) is a function for the tropospheric influence at epoch t along the path psr,

iono([τν], t,psr) is a function representing the ionospheric influence at epoch t based on
the signal [τν] and its path psr,

bias[τνa]s is the satellite signal bias for signal [τνa],

bias[τνa]r is the receiver signal bias for signal [τνa],

λ[Lν] is the wavelength of signal [Lν],

N [Lν]sr is the phase ambiguity of signal [Lν] between receiver r and satellite s,

ant[τνa]s(psr) is a function describing the satellite antenna correction for signal [τνa]
in the direction of its exiting path psr,

ant[τνa]r(psr) is a function for the receiver antenna correction for signal [τνa] in the
direction of its incoming path psr,

other(. . .) is a function representing other corrections (see Section 6.11), and

ε[τνa]sr(t) are measurement errors of signal [τνa] between receiver r and satellite
s at epoch t.
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All components in (5.1) are in units of length (i.e., meters) except for the phase ambiguity
N [Lν]sr, which is in cycles. N [Lν]sr is only defined for phase observations, thus N [Lν]sr = 0
if τ = C. The continuous function psr describes the curved path in R3 along which the
signal travels from the satellite antenna at transmission time to the receiver antenna
at reception time. Consequently, the positions rs and rr refer to the antenna reference
points of the respective antennas. The relationship between rs and the satellite’s center
of mass and between rr and the station marker point is detailed in Section 6.10.

Equation (5.1) relies on some assumptions. First, it assumes that the clock errors,
troposphere, and ionosphere do not change significantly within a small margin (e.g.,
0.1 s) around an epoch. For example, this allows the setup of a single clock parameter
per satellite at each epoch, which is the same for all receivers observing that satellite at
the respective epoch, even though the individual observations refer to slightly different
points in time. Second, it assumes that signal biases are constant over the processing
period, for instance one day, which is generally the case (Håkansson et al., 2017). In
special cases, such as the L5 phase bias of GPS IIF satellites (Montenbruck et al., 2012),
biases can also be time-variable and have to be treated accordingly (see Section 6.6.1.4).
Another assumption is that the phase ambiguity N [Lν]sr is constant as long as a track is
observed continuously and no cycle slip (see Section 7.1) occurs.

The function for the geometric range in (5.1) is

range(rs, rr) = ρsr = ‖rs(ts)− rr(tr)‖ , (5.2)

where tr(t) = t− clockr(t)
c is the reception time (i.e., the receiver clock reading corrected

for the clock error) and ts(t,psr) = tr(t)−∆ttransit(psr) is the transmission time, which
accounts for the transit time ∆ttransit along the signal path psr. Equation (5.2) requires
that rs and rr are in the same reference frame. Since satellite positions usually refer to
the CRF and station positions refer to the TRF, this implies a frame transition for either
rs or rr. This transition between CRF and TRF is described by the Earth orientation,
which is detailed in Section 6.8.

5.2 Ionospheric influence

Section 4.2.3 shows how the full normal equation system can be accumulated from
multiple parts. This means that the observation equations and design matrix can be set up
in parts using small sets of observations, which has several benefits. For instance, it can
significantly reduce the amount of required memory and it enables parallelization. The
biggest benefit, however, is that it enables an efficient preelimination of the ionospheric
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influence, which massively reduces the number of parameters in the system of equations.
The prerequisite for this preelimination of the ionospheric influence is to set up the
observation equations

∆lsr(t) = As
r(t)∆x + Bs

r(t)ysr(t) + esr(t) (5.3)

for a group of observations between one receiver r and one satellite s at one epoch t. In
the following equations, the subscript notation �g = �s

r(t) is introduced to represent
such a group of observations g in order to increase readability. Equation (5.3) thus
becomes

∆lg = Ag∆x + Bgyg + eg . (5.4)

As detailed in Chapter 4, ∆lg is the vector of reduced observations in the group. For
example, ∆lg might contain three code (C1C, C1W, C2W) and two phase (L1W, L2W)
observations from a receiver to a GPS satellite or four code and phase observations
each (τ1C, τ5Q, τ7Q, τ8Q) from a receiver to a Galileo satellite. yg is the vector of
parameters representing the ionospheric influence on the observations in the group and
∆x is the vector of corrections for all other parameters. The design matrices Ag and Bg

relate the few observations in ∆lg to ∆x, which can comprise millions of parameters,
and yg, respectively. Finally, eg are the observation residuals.

For each observation group the ionospheric influence represented by yg can be param-
eterized as a single STEC parameter. This is valid since all signals in the group travel
along the same path through the ionosphere (Fritsche et al., 2005), except for some
minor frequency-dependent deviations that can be corrected (see Section 6.4 for more
details). The design matrix

Bg = ∂fg
∂STEC

∣∣∣∣∣
yg,0

(5.5)

has dimensions ng × 1, with ng being the number of observations in the group. The
partial derivatives depend on the signal type and frequency of the observation and
include first, second, and third order ionospheric corrections as well as a bending effect
for phase observations (Hoque and Jakowski, 2008). These corrections and their partial
derivatives with respect to the STEC parameter are detailed in Section 6.4.

The ionospheric influence could now be eliminated on the observation equation level
as described in Section 4.2.2. However, this would involve a transformation of the
design matrix Ag as stated in Equation (4.29). Since Ag can potentially contain millions
of columns, such a transformation would be a costly operation. In order to avoid
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this, a set of intermediate parameters are introduced and the preelimination of the
ionospheric influence is instead applied to the observation equations with respect to
these parameters.

5.3 Intermediate parameters

Splitting the design matrix Ag into two parts by introducing intermediate parameters zg
and applying the chain rule gives

Ag = ∂fg
∂x

∣∣∣∣
x0

= ∂fg
∂zg

∣∣∣∣
zg,0

∂zg
∂x

∣∣∣∣
x0

= CgDg . (5.6)

The intermediate parameters zg comprise the position and clock error for the satellite
and receiver (rs, rr, δs, δr), a slant delay parameter sg covering effects that are the same
for all signals in the group (e.g., the tropospheric influence), as well as satellite and
receiver signal biases (bs, br). The associated design matrix

Cg =
[
∂fg
∂rs︸︷︷︸
ng×3

∣∣∣ ∂fg
∂δs︸︷︷︸
ng×1

∣∣∣ ∂fg
∂rr︸︷︷︸
ng×3

∣∣∣ ∂fg
∂δr︸︷︷︸
ng×1

∣∣∣ ∂fg
∂sg︸︷︷︸
ng×1

∣∣∣ ∂fg
∂bs︸︷︷︸
ng×bs

∣∣∣ ∂fg
∂br︸︷︷︸
ng×br

]∣∣∣∣∣
zg,0

(5.7)

contains the partial derivatives of the observation equations with respect to these
intermediate parameters. Here, ng is the number of observations in the group and
bs and br are the number of involved satellite and receiver signal bias parameters,
respectively. The dimensions of Ag are ng ×m, those of Cg are ng ×mg, and Dg has
dimensions mg ×m, with m being the number of overall parameters and mg the number
of intermediate parameters for the group.

5.3.1 Partial derivatives with respect to intermediate positions
and clocks

The partial derivatives of the observation equations with respect to rs, rr, δs, and δr can
be determined by rephrasing (5.2). This section assumes that all of these parameters are
to be estimated in meters. Since δr and ∆ttransit are generally small (i.e., below 0.1 s)
and both satellites and ground-based stations move smoothly through space, the satellite
position can be expressed as

rs(ts) = rs(t)− δr(t)
c

ṙs(t)−∆ttransitṙs(t) (5.8)
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and the receiver position as

rr(tr) = rr(t)−
δr(t)
c

ṙr(t) , (5.9)

where ṙs and ṙr are the satellite and receiver velocity in the chosen reference frame,
respectively, and c is the speed of light. Substituting (5.8) and (5.9) into (5.2) gives

range(rs, rr) = ρg =
∥∥∥∥rs(t)− δr(t)

c
ṙs(t)−∆ttransitṙs(t)− rr(t)−

δr(t)
c

ṙr(t)
∥∥∥∥ (5.10)

or, with ∆ttransit ≈
ρg
c

as well as omitting the time dependency to improve readability,

ρg =
∥∥∥∥rs − δr

c
ṙs − ρg

c
ṙs − rr + δr

c
ṙr
∥∥∥∥ . (5.11)

Equation (5.11) shows that the range depends not only on the satellite and receiver
position but also on the receiver clock error and, by proxy of the transit time, on itself.
Therefore, the transmission time ts and the corresponding satellite position rs(ts) can be
determined iteratively based on the reception time tr and the receiver position rr(tr).
Applying the chain rule with ρg = ‖h‖ and h = rs − δr

c ṙs − ρg
c ṙs − rr + δr

c ṙr gives

∂fg
∂z = ∂fg

∂h
∂h
∂z . (5.12)

Utilizing that the partial derivative of the Euclidean norm of a vector in Rn with respect
to its components is the same as the normalized vector leads to

∂fg
∂h

= h
‖h‖

=
rs − δr

c ṙs − ρg
c ṙs − rr + δr

c ṙr
ρg

= −kg , (5.13)

where kg is the normalized line-of-sight vector from the satellite to the receiver.

The partial derivative of the observation equations with respect to one of the receiver
coordinates, for example rrx , then is

∂fg
∂rrx

= ∂ρg
∂h

∂h
rrx

= −kg ·
(
−1
c
ṙs ∂ρg
∂rrx

−
[ 1

0
0

])
= −kg ·

{
−1
c
ṙs
[
−kg ·

(
−1
c
ṙs ∂ρg
∂rrx

−
[ 1

0
0

])]
−
[ 1

0
0

]}

= −kg ·

− 1
c2 |ṙ

s|2 kg
∂ρg
∂rrx︸ ︷︷ ︸

≈0

−1
c
ṙs
(
kg ·

[ 1
0
0

])
−
[ 1

0
0

]
= kgx

(
1 + 1

c
ṙs · kg

)
,

(5.14)
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where � · � is the dot product of two vectors and the subscript �x refers to the first
component of a vector in 3D space (i.e., kg = [ kgx kgy kgz ]T ). Therefore, the partial
derivative with respect to the intermediate receiver position vector is

∂fg
∂rr

= kTg
(

1 + 1
c
ṙs · kg

)
. (5.15)

For one of the satellite coordinates, for instance rsx, the partial derivative is

∂fg
∂rsx

= ∂ρg
∂h

∂h
rsx

= −kg ·
([ 1

0
0

]
− 1
c
ṙs∂ρg
∂rsx

)
= −kg ·

{[ 1
0
0

]
− 1
c
ṙs
[
−kg ·

([ 1
0
0

]
− 1
c
ṙs∂ρg
∂rsx

)]}

= −kg ·

[ 1
0
0

]
+ 1
c
ṙs
(
kg ·

[ 1
0
0

])
− 1
c2 |ṙ

s|2 kg
∂ρg
∂rsx︸ ︷︷ ︸

≈0


= −kgx

(
1 + 1

c
ṙs · kg

)
.

(5.16)

In this case, the partial derivative with respect to the intermediate satellite position
vector is

∂fg
∂rs = −kTg

(
1 + 1

c
ṙs · kg

)
. (5.17)

Equations (5.15) and (5.17) show that the intermediate receiver and satellite coordinates
are influenced by the projection of the satellite velocity into the line of sight between
receiver and satellite. The same approach can also be used for the partial derivative with
respect to the receiver clock error δr, resulting in

∂fg
∂δr

= ∂ clockr
∂δr

+ ∂ρg
∂h

∂h
δr

= 1 + (−kg) ·

−1
c
ṙs − 1

c
ṙs∂ρg
∂δr︸ ︷︷ ︸
≈0

+1
c
ṙr


= 1 + 1

c
kg · (ṙs − ṙr) ,

(5.18)

which reveals that the receiver clock error is affected by the relative velocity between
satellite and receiver projected into their line of sight. Finally, the partial derivative with
respect to the satellite clock error δs is simply

∂fg
∂δs

= ∂ clockr
∂δs

= −1 . (5.19)
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5.3.2 Partial derivatives with respect to other intermediate
parameters

The partial derivative with respect to the slant delay parameter sg is

∂fg
∂sg

= 1 (5.20)

for all signals, as it covers the effect that is the same for each observation, for instance
the tropospheric delay.

At the receiver, an intermediate bias parameter is set up for each observed code and
phase signal. The reason for this is that usually these signals are processed largely
independently within receivers and thus each signal presumably has an individual bias.
The partial derivatives with respect to the signal biases for the observation group thus
follow as

∂fg
∂br

= I . (5.21)

The situation is slightly different for the signal biases at the satellite. GNSS satellites
transmit a clearly defined set of signals, for instance the code signals C1C, C1W, and
C2W in case of older GPS satellites. Some receivers, however, do not measure each of
these signals directly, rather they sometimes measure a linear combination of multiple
transmitted signals (Won and Pany, 2017). For example, many early GPS receivers
measured the linear combination C2D = C1C + (C1W− C2W) (Woo, 2000). It is also
assumed that while the different codes that are modulated onto the carrier phases might
lead to individual code biases at the satellite, the phase biases are identical for all signals
transmitted on the same frequency. All of this means that the observed signal types need
to be mapped to the original signal types transmitted by the satellite in order to factor in
the correct signal bias parameters. An example for one of the aforementioned legacy
GPS receivers are the partial derivatives

∂fg
∂bs =

C1C C1W C2W L1 L2


C1C 1
C2D 1 −1 1
L1C 1
L2D 1

, (5.22)
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Figure 5.1: A priori phase accuracy over elevation angle used for initial observation weighting

which map the four observed signal types C1C, C2D, L1C, and L2D to the five bias
parameters covering the signals transmitted by the satellite. More information about the
mapping of signal types can be found in Sections 6.5 and 6.6.

5.4 Observation weighting

Observation weighting is directly applied to the observation equations in (5.4) by ho-
mogenizing them as shown in Section 4.2.1. Each reduced observation in ∆lg and its
corresponding rows in the design matrices Cg and Bg covering the intermediate param-
eters and the STEC parameter are divided by the standard deviation (i.e., measurement
accuracy) of the respective observation.

Initially, observations are weighted based on their elevation angle (e.g., Vermeer, 1997;
Rothacher et al., 1998). The a priori standard deviation of a signal of type τ depending
on the elevation angle e can be expressed as

σ[τ ](e) = σz[τ ]
sin e . (5.23)

Equation (5.23) maps the measurement accuracy at zenith σz[τ ] (e.g., σz[L] = 1 mm
and σz[C] = 20 cm) to the elevation angle of an observation. Figure 5.1 visualizes the
phase accuracy from horizon to zenith and clearly shows that the accuracy quickly
deteriorates close to the horizon and thus these observations get a much lower weight.
The main reason for the lower measurement accuracy close to the horizon is the antenna
gain (Maqsood et al., 2017). Other reasons include the longer signal path through the
atmosphere, multipath effects, and orbit errors (Kermarrec, 2018).
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Section 5.7 details how new observation weights can be determined by analyzing the
residuals after solving the least-squares adjustment and applying variance component
estimation. The determined weights comprise individual weights for each code observa-
tion and a combined weight for all phase observations in an observation group. They are
applied by adjusting the standard deviations of the observations, which then takes effect
in the homogenization step of a subsequent iteration in the least-squares adjustment.

5.5 Preelimination of the ionospheric influence

In the next step, the STEC parameter contained in yg is eliminated from the observation
equations

∆lg = CgDg∆x + Bgyg + eg . (5.24)

Splitting the design matrix as Ag = CgDg has the benefit that the transformation
described in Section 4.2.2 can be applied to Cg instead of Ag. Therefore, only a small
number of parameters are involved in the parameter elimination process and relatively
few mathematical operations are required. Combining this with the possibility to process
observation groups in parallel enables high computational efficiency.

Note that the following equations represent the general form valid for eliminating one
or more parameters from an observation group. The equations can be simplified signifi-
cantly in case only a single STEC parameter is eliminated. However, this simplification is
not shown here.

Based on the QR decomposition (e.g., Golub and Van Loan, 2013)

B = QR =
[
Q1 Q2

] [R1

0

]
, (5.25)

where B has dimensions ng × 1, Q2 is an ng × (ng − 1) matrix, and ng is the number of
observations in the group, the transformations

C̄g = QT
2 Cg and ∆̄lg = QT

2 ∆lg (5.26)

lead to reduced observation equations

∆̄lg = C̄gDg∆x + ēg . (5.27)
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Due to the elimination of the STEC parameter, the observation vector ∆̄lg, the design
matrix C̄g, and the residual vector ēg have one fewer row than ∆lg, Cg, and eg, re-
spectively. All STEC parameters are later reconstructed during residual analysis (see
Section 5.7). The full design matrix with respect to all parameters in ∆x is

Āg = C̄gDg = C̄g
∂zg
∂x

∣∣∣∣
x0

. (5.28)

The composition of Dg depends on the parametrization of the different components
involved in the full observation equations. These parametrizations and their correspond-
ing design matrix entries are discussed in detail in Chapter 6. The subsequent sections
assume that STEC parameters have been eliminated from the observation equations and
the bar notation is omitted for the sake of readability.

5.6 Normal equation structure

The type of GNSS processing described in this thesis usually results in a highly sparse
normal equation matrix. Since the normal equations are solved via Cholesky decompo-
sition (see Section 4.2.4), it is important that the upper triangular Cholesky factor W
involved in this step remains sparse. This can be achieved by ordering the parameters
in ∆x in a specific way. The sparsity of both matrices can then be utilized by splitting
them into smaller subblocks. As many of these subblocks will only contain zeros, they
do not have to be kept in memory and their matrix operations may be skipped. This is
an important aspect with respect to computational efficiency, specifically memory usage
in case of a large number of parameters.

Figure 5.2 schematically visualizes the structure of the design matrix Ag for one obser-
vation group. For an easier interpretation of the connection between observations and
design matrix columns, this visualization assumes that the STEC parameter has not been
eliminated as described in Section 5.5. Therefore, the original observations are listed on
the left and no row has been eliminated from the design matrix. The structure comprises
blocks for all epochs and one block each for receiver, satellite, and global parameters
as well as ambiguities. Global parameters refer to those parameters that cannot be
attributed to a specific receiver or satellite, for example Earth orientation parameters or
ionosphere maps. An observation group is only related to one receiver and satellite at a
single epoch and thus only concerns a small number of the overall parameters covered
by the design matrix Ag. Therefore, only a few columns in the design matrix of a specific
observation group are filled.
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Figure 5.2: Schematic view of design matrix structure for one observation group (not to scale)

The full normal equations are set up by accumulating individual normal equation
matrices and right-hand sides of each observation group according to Section 4.2.3. This
means the design matrices for all observation groups can be set up consecutively, which
massively reduces the memory requirements compared to setting up the design matrix
for all observations at once. As the individual observation groups are independent of
each other, their design matrices can also be setup up in parallel, further improving
computational performance in distributed computing environments.

5.6.1 Schematic structure of the normal equation matrix

Whenever multiple parameters occur in the same observation equation, the resulting
normal equation matrix contains off-diagonal elements. For example, the observation
equations displayed in Figure 5.2 lead to populated off-diagonal elements between all
highlighted parameters. Figure 5.3 schematically visualizes the structure of the final
accumulated normal equation matrix. This visualization contains the same blocks and
colors as the design matrix in Figure 5.2. Ordering parameters in the described way
yields a so-called kite structure (Tewarson and Cheng, 1973; Boxhammer and Schuh,
2006), which is largely retained during Cholesky decomposition. The structure features
individual blocks for each epoch followed by the blocks for receiver, satellite, and global
parameters as well as the ambiguity block on its diagonal.

The epoch parameter section of the normal equation matrix has a block-diagonal struc-
ture. This is the case because observation equations only ever contain clock parameters
from a single epoch and thus no off-diagonal elements between epochs are populated. In
principal, this structure also facilitates the introduction of off-diagonal blocks between
epoch blocks. An example for this would be the stochastic modeling of clock parameters,
which connects subsequent epochs and would result in a block-banded structure. Epoch
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Figure 5.3: Schematic view of normal equation matrix structure (not to scale)
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blocks usually contain receiver (red) and satellite (yellow) clock parameters. The popu-
lated off-diagonal elements between receiver and satellite clocks within one epoch block
are represented by the checkered pattern of the respective colors.

The off-diagonal blocks between epoch and nonepoch parameters are largely populated,
which is again visualized by the checkerboard pattern in Figure 5.3. These elements
are populated because the same nonepoch parameters can appear in the observation
equations of multiple epoch. For example, station positions are usually estimated
as constant values over one day and thus the same three parameters appear in all
observation equations of a receiver. These observation equations also contain the clock
parameter of that receiver and those of the observed satellites at the respective epoch,
resulting in the off-diagonal elements. The off-diagonal blocks between epoch and
nonepoch blocks make up the majority of the required memory for the normal equation
matrix. Hence, it is important that they are as dense as possible. Since the matrix is
symmetric, only its upper or lower triangle has to be kept in memory, almost halving its
overall memory demands.

5.6.2 Example of actual normal equation matrix structure

The schematic view in Figure 5.3 is not to scale and, therefore, somewhat misleading
with respect to how the normal equation matrix looks like in practice. Figure 5.4 shows
the actual (to-scale) structure based on an example. This example involves a small
network of 56 stations and the GPS constellation and uses a 5-minute sampling period.
For this visualization, the matrix is divided into subblocks covering around 90 parameters
each. Black and white pixels represent nonzero and zero subblocks, respectively. The
global block is not clearly discernible as it only contains six Earth orientation parameters
in this example and is thus represented by a single pixel.

Figure 5.4 reveals several characteristics of the normal equation matrix. First of all, the
receiver, satellite, and ambiguity blocks are block-diagonal in the unconstrained normal
equations. For the receiver and satellite blocks, this is the case because observation
equations only concern one receiver and one transmitter at a time. The structure slightly
changes once constraints are added to the normal equation matrix in order to resolve
the rank deficiencies. An example for this are no-net rotation constraints on the station
positions (see Section 6.9.1), which result in populated off-diagonal elements between
the position parameters of all involved receivers. While the addition of these constraints
results in fully populated receiver and satellite blocks, the overall structure of the normal
equation matrix stays largely the same. Ambiguity parameters for different tracks never
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(a) Unconstrained (b) Constrained

Figure 5.4: Actual (to-scale) structure of the example normal equation matrix. Each black pixel
represents a nonzero subblock of ≈90 parameters

appear in the same observation equations, which is why only the subblocks on the main
diagonal of that section are populated.

Second, the off-diagonal block between the epoch and ambiguity blocks has a roughly
block-banded structure. This is the result of ordering the ambiguity parameters by the
mean time of their associated tracks. The benefit of this ordering is that the band is
densely populated, while around 75% of the overall block is unpopulated. Splitting this
off-diagonal block into subblocks and only keeping the dense nonzero blocks in memory
thus results in high memory efficiency.

Finally, the off-diagonal blocks between the ambiguity block and the other nonepoch
blocks are not fully populated and contain some zero subblocks. The ratio of zero
to nonzero subblocks depends on the chosen subblock size. Smaller subblocks result
in more zero blocks and, therefore, lower memory demand. On the other hand, the
efficiency of matrix-matrix operations decreases with smaller matrix dimensions (e.g.,
Goto and Van De Geijn, 2008). Therefore, choosing the size of the subblocks is a trade-off
between memory usage and computational performance.

Zooming into a single epoch block reveals its composition, which is shown in Figure 5.5.
Here, each pixel represents a single matrix element, with white being zero. In the
unconstrained case, the receiver and satellite parts are diagonal matrices, as observation
equations only contain clock parameters for a single receiver and satellite. The off-
diagonal elements between receiver and satellite clock parameters are partly populated
and depend on which satellites each receiver is observing at that epoch. In this example,
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(a) Unconstrained (b) Constrained

Figure 5.5: Structure of a single epoch block in the example normal equation matrix. Receiver
clock parameters on the top left and satellite clock parameters on the bottom right

the rank deficiency of the clock parameters is resolved by a zero-mean constraint over
all satellite clocks at each epoch (see Section 6.3.2). This is clearly visible as the satellite
part becomes fully populated once the constraints are added.

As mentioned at the beginning of this section, it is important that the Cholesky decompo-
sition of the normal equation matrix keeps a sparse structure. Figure 5.6 visualizes the
upper triangular Cholesky factor W from the Cholesky decomposition N = WTW next
to the example normal equation matrix N. It is clearly visible that the structure is largely
retained and only the triangle covering the receiver, satellite, and ambiguity parameters
becomes fully populated. As the Cholesky decomposition can be performed in place,
another benefit of the similar structure is that no major reallocation of subblocks outside
of the mentioned triangle is required.

The sparsity of the normal equation matrix is highly influenced by the size of the
problem to be solved. The example described in this section, which is rather small with
its 56 stations, 32 GPS satellites, and 5-minute sampling period, produces a normal
equation matrix with 388×388 subblocks of around 90 parameters each. Out of the
75 466 subblocks in one triangle of the symmetric matrix, only 15 771 or 21% are
populated, resulting in a sparsity of 79%. Storing this matrix in memory takes up
15 771 · 902 · 8 bytes or approximately 1 GB. In the last years of the contribution to
the IGS reprocessing campaign, more than 800 stations and up to 80 satellites were
processed at a 30-second sampling period. With optimized subblock sizes, the full
normal equation matrix for a problem of such a large size would have a sparsity of
99%. Even with such an extreme sparsity, storing the populated subblocks would require
several hundred gigabytes of memory. Therefore, it is necessary to adapt the processing
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(a) Normal equation matrix N (b) Cholesky factor W

Figure 5.6: Actual (to-scale) structure of the Cholesky decomposition of the example normal
equation matrix. Each black pixel represents a nonzero subblock of ≈90 parameters

strategy in order to reduce the problem to a more manageable size. More details on this
topic are provided in Section 5.9.

5.7 Residual computation and reconstruction of
ionospheric influence

Once the normal equation system has been solved, the residuals can be computed in
order to determine new weights via VCE. This step can again be performed on the basis
of the observation groups as introduced in Section 5.3. Since the components of the
observation equations are discarded after a group’s normal equations are added to the
full normal equations, they have to be set up again in this step. However, this time
the STEC parameter is not immediately preeliminated from the observation equations.
Instead, the full observation equations

∆lg = Ag∆x + Bgyg + eg . (5.29)

are set up, containing the full number of rows for all observation in ∆lg. Note that these
observation equations are again homogenized and weighted according to Section 5.4.
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Based on the estimated parameter corrections ∆x̂, biased residuals ẽg can then be
computed via

ẽg = eg + Bgyg = ∆lg −Ag∆x̂ . (5.30)

These residuals are biased because the ionospheric influence was not preeliminated
from the observation equations as was the case when the parameter corrections ∆x̂
were estimated. This can be utilized to reconstruct the eliminated STEC parameters
by estimating them from the biased residuals ẽg. Note that the following equations
represent the general form valid for reconstructing one or more eliminated parameters
within an observation group. In the case of a single STEC parameter, the equations
can be simplified significantly. However, this is not shown here. Introducing the biased
residuals as pseudoobservations into a small equation system

ẽg = Bgyg + eg (5.31)

allows the estimation of yg containing the STEC parameter for the observation group
and the subsequent computation of the unbiased estimated residuals êg. The equation
system in (5.31) can be solved efficiently based on the QR decomposition

Bg = QR =
[
Q1 Q2

] [R1

0

]
. (5.32)

Since R1 is an upper triangular matrix and Q−1 = QT due to the orthogonality of Q,
the equation system

QT
1 ẽg = R1yg (5.33)

can be solved directly for yg via backward substitution and without having to compute
the inverse matrices Q−1 and R−1

1 (e.g., Golub and Van Loan, 2013). The STEC
parameter contained in yg has thus been reconstructed. It can be introduced as an
initial value for the computation of higher-order ionospheric corrections and their partial
derivatives in a subsequent iteration of the full equation system.

The unbiased estimated residuals can be obtained as

ēg =
[
Q1 Q2

] [0 0
0 I

] [
QT

1
QT

2

]
ẽg = Q2QT

2 ẽg . (5.34)

Here, the biased residuals ẽg are first transformed into the space of the ionospheric
parameters via multiplication with QT . In this space, the first p rows or transformed
pseudoobservations are solely used to determine the p ionospheric parameters and
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do not contribute to the residuals. Therefore, setting these rows to zero removes the
influence of these parameters from the residuals. Transforming the modified vector back
to the original space via multiplication with Q results in the unbiased estimated residuals
ēg. As (5.34) shows, this is the same as projecting the biased residuals into the space
orthogonal to the column space of B using the orthogonal projector Π⊥B = Q2QT

2 .

The residuals contained in ēg are homogenized. This is the case because the observation
equations have been homogenized as described in Section 5.4. The actual residuals
can be obtained as êi = σiēi, where σi is the standard deviation of the corresponding
observation.

5.8 Redundancy computation and weight
determination

The determination of new weights based on VCE requires the computation of the
redundancies, as described in Section 4.4. Equation (4.56) shows that the redundancies
can be computed based on a stochastic trace estimator (Koch and Kusche, 2002) using
the vector

ug = AgW−1z , (5.35)

where Ag is the design matrix for an observation group g, W is the Cholesky factor of
the full normal equation matrix, and z contains m discrete realizations of a random
variable. Here, m is the number of parameters in the full normal equation system. The
design matrix Ag is the same one as used for residual computation in the previous
section, meaning ionospheric parameters have not been preeliminated. The inversion of
W in (5.35) can again be avoided by setting up the equation system

Wv = z (5.36)

and solving it directly for v via backward substitution. Equation (5.35) then becomes

ug = Agv . (5.37)

Section 4.4 also mentions that multiple independent realizations of z can lead to different
trace estimates and, therefore, a mean over multiple realizations gives a more stable
estimate. By defining a matrix

V =
[
v1 v2 · · · vz

]
(5.38)
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containing z columns vi = W−1zi based on z independent realizations of z, the trace
computation can be performed for all realizations at once. In practice, z = 100 realiza-
tions have been determined to be sufficient for getting a stable trace estimate in the
context of GNSS processing. The vector ug = Agv then becomes a matrix Ug = AgV
with z columns. Since V is independent of the observation group, it only has to be set
up once and can be used for all groups.

The influence of the ionospheric parameters on the redundancy computation can be
removed via

Ūg =
[
Q1 Q2

]([0 0
0 I

] [
QT

1
QT

2

]
Ug +

[
I
0

])
= Q

[
Ip×z

QT
2 Ug

]
. (5.39)

Similar to the computation of unbiased residuals in (5.34), the matrix Ug is first trans-
formed to the space of the ionospheric parameters via multiplication with QT . This time,
however, the first p rows of the transformed matrix are replaced by an p× z unit matrix
instead of setting them to zero. Imagining QTUg as a transformed design matrix, this
has the effect that the first p rows of the associated observation vector are solely used
to determine the ionospheric parameters. Hence, these rows do not contribute to the
redundancies in the same way that the corresponding rows in the biased residual vector
transformed to this space do not contribute to the unbiased residuals. The modified
matrix is then transformed back to the original space via multiplication with Q.

Another way to show this is by transforming the design matrix A to the space of
the ionosphere parameters and adding R as additional columns for the ionospheric
parameters. In case of representing the ionospheric influence by the STEC parameter,
this is a single additional column. Note that the subscript g is omitted in the following
equations to increase readability. The extended design matrix

Ã =
[
R1 Ã1

0 Ã2

]
=
[
R1 QT

1 A
0 QT

2 A

]
(5.40)

can then be used to form the normal equation matrix

Ñ = ÃT Ã =
[
RT

1 R1 RT
1 Ã1

Ã1R1 ÃT
1 Ã1 + ÃT

2 Ã2

]
. (5.41)

Since Ã2 = QT
2 A is the same matrix as if the ionospheric parameters had been pree-

liminated from the observation equations (see Section 5.5), it can be shown that
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ÃT
2 Ã2 = WTW = N. Here, W is the Cholesky factor of the normal equation ma-

trix N obtained by these reduced observation equations. The Cholesky factor

W̃ =
[
R1 Ã1

0 W

]
(5.42)

of Ñ can thus be expressed as an extension of the Cholesky factor W. Substituting

(5.40) and (5.42) into Ũ = QÃW̃−1Z̃ along with an extended matrix Z̃ =
[
I Z

]T
leads to

Ũ = QÃW̃−1Z̃

= Q
[
R1 Ã1

0 Ã2

] [
R1 Ã1

0 W

]−1 [
I
Z

]

= Q
[
R1 Ã1

0 Ã2

]R−1
1

(
I− Ã1W−1Z

)
W−1Z


= Q

[
I− Ã1W−1Z + Ã1W−1Z

Ã2W−1Z

]

= Q
[

I
Ã2W−1Z

]

= Q
[

I
QT

2 U

]
,

(5.43)

which is the same as Ūg obtained from (5.39). The redundancy for the ith observation
in the group can then be computed from ūTi := rowi Ūg as

ri = 1− ūTi ūi
z

, (5.44)

where z is the number of independent realizations of the random vector z used in the
stochastic trace estimation. As (5.44) gives the redundancy for a single observation,
the variance factor appearing in Equation (4.56) has already been applied implicitly by
homogenizing the observation equations.
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5.8.1 Determination of new weights

Once residuals and redundancies have been computed for all observations in all groups,
new weights can be determined for the observations. This is done by adjusting the
standard deviation of an observation by two factors such that

σ̂i = ŝ0[τνa]r w(ŝi)σi . (5.45)

Here, σ̂i is the adjusted standard deviation and σi is the standard deviation of the mea-
surement from the a priori elevation-dependent weighting or from the previous iteration
in the VCE process. The first factor in (5.45) is the variance factor ŝ0[τνa]r, which is
determined separately for each receiver and signal based on all epochs and observed
satellites. τ , ν, and a refer to the signal type, frequency, and attribute, respectively, and
r denotes the receiver. Code observations are treated as individual signals per frequency,
attribute, and satellite constellation, while all phase observations per constellation are
treated as one group. For example, if a receiver measures the GPS signals C1C, C2W,
L1C, L2W and the Galileo signals C1C, C5Q, C7Q, L1C, L5Q, L7Q, variance factors are
determined for GPS C1C, C2W, L and Galileo C1C, C5Q, C7Q, L. The reason for grouping
the phase observation is their low redundancy, which hinders the determination of robust
variance factors for individual signals. The signal-specific estimated variance factor is

ŝ0[τνa]2r = α

k∑
i=1

ê2
i

σ2
i

k∑
i=1

ri

, (5.46)

where the sum over k includes all measurements of that signal over all epochs and
observed satellites at the respective receiver. σi is the current standard deviation of
a measurement, êi is its actual residual and not the homogenized one, and ri is its
redundancy. Equation (5.46) contains a normalization factor

α =

∫ ∞
−∞

x2f(x) dx∫ ∞
−∞

(
x

w(x)

)2
f(x) dx

X ∼ N(0, 1) . (5.47)

It corrects for the deviation from a normal distribution due to the fact that observations
with a standard deviation above a certain threshold are weighted down by the factor

w(x) =


(
x

Tσ

)p
if x > Tσ

1 otherwise
. (5.48)
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Figure 5.7: Weighting factor for Tσ = 2.5 and various powers p

Here, Tσ represents the normalized threshold over which observations start to get
weighted down and the power p controls how strongly the observations are weighted
down above that threshold (Huber, 1981). In practice, Tσ = 2.5 and p = 1.5 have
proven to be effective values. Figure 5.7 shows the weighting factors for various powers
p for a threshold of Tσ = 2.5. The integrals in (5.47) can be solved by numerical
approximation.

The second factor w(ŝi) in (5.45) is obtained by providing the square root of the
observation-specific variance factor

ŝ2
i = e2

i

ŝ0[τνa]2r σ2
i ri

. (5.49)

to the function in (5.48). Here, the current standard deviation σi is already scaled by the
signal-specific estimated variance factor. This has the effect that only observations that
are significantly less accurate than other measurements of the same signal at a receiver,
for example outliers, are weighted down further. In addition, single observations are
only weighted down if their redundancy is not too low (i.e. ri > 0.1).

Once the new weights are applied to all observations by adjusting their standard de-
viations, the VCE process is finished for the current iteration. The adjusted standard
deviations take effect in the observation weighting step (see Section 5.4) of the next iter-
ation in the iterative least-squares adjustment. With each iteration, the relative weights
between receivers and signals are adjusted automatically and outliers are weighted
down until the process converges and a robust solution is obtained.
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5.9 Strategies for solving large systems

The computational complexity of GNSS processing depends on many factors. Some
of these factors are the selection of stations, satellites, and signals to be processed
as well as the chosen sampling period. For example, the complexity of processing
observations from hundreds of stations to multiple satellite constellations at three or
more frequencies together at a 30-second sampling period is orders of magnitude higher
than that of a dual-frequency, GPS-only processing using 100 stations and a 5-minute
sampling period. While the latter scenario can be processed on a standard desktop
computer, the former may not even be computationally feasible on high-performance
computer clusters. Therefore, special strategies can be applied to facilitate the solution
of large-scale systems with the approach described in this chapter.

5.9.1 Elimination and reconstruction of epoch parameters

The structure of the normal equation matrix described in Section 5.6 is clearly dominated
by the number of epoch parameters (i.e., clock errors). In large-scale processing involving
several hundred stations and multiple satellite constellations, setting up the full normal
equation matrix would require hundreds of gigabytes of memory even with optimized
subblock management. In order to circumvent this problem, it is possible to eliminate
the epoch parameters before solving the normal equation system and to reconstruct them
afterwards. This eliminates the need to keep all off-diagonal blocks between epoch and
nonepoch parameters, which account for the majority of required memory, in memory at
the same time and thus massively reduces the overall memory usage.

The prerequisite for the elimination of epoch parameters is that the normal equations
are set up epoch by epoch. After setting up the normal equations for an epoch, they are
added to the full normal equations as described in Section 4.2.3. In case constraints have
to be applied to the parameters of the epoch, for example to resolve the rank deficiency
in the clock errors (see Section 6.3.2), they are added to the normal equations as well.
Figure 5.8 schematically visualizes the structure of the normal equation matrix from
a single epoch. As can be seen, large parts of the overall normal equation matrix are
unpopulated and the respective subblocks do not have to be kept in memory.
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Figure 5.8: Schematic view of normal equation matrix structure from a single epoch (not to
scale, full structure in the background)
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Epoch parameters are then eliminated on the normal equation level as detailed in
Section 4.2.2. In this case, however, the epoch parameters contained in ∆x are to be
eliminated from the normal equations[

Nxx Nxy

NT
xy Nyy

] [
∆x
∆y

]
=
[
nx

ny

]
(5.50)

instead of ∆y, which contain all nonepoch parameters. Therefore, the reduced normal
equation matrix follows as

N̄ = Nyy −Nxy
TN−1

xxNxy (5.51)

and the reduced right-hand side is

n̄ = ny −Nxy
TN−1

xxnx . (5.52)

Based on the blocked Cholesky decomposition[
Nxx Nxy

NT
xy Nyy

]
=
[
Wxx

T

Wxy
T WT

yy

] [
Wxx Wxy

Wyy

]
, (5.53)

where Wxx and Wyy are upper triangular matrices and Wxy is a fully populated
rectangular matrix, it follows that

Nxx = Wxx
TWxx (5.54)

and

Nxy = Wxx
TWxy . (5.55)

Substituting (5.54) and (5.55) into (5.51) leads to a reduced normal equation matrix

N̄ = Nyy −Wxy
TWxxWxx

−1Wxx
−TWxx

TWxy

= Nyy −Wxy
TWxy

(5.56)

with eliminated epoch parameters ∆x. This is exactly what happens during an in-place
Cholesky decomposition, which operates row by row, or in case of a blocked matrix block
row by block row, from top to bottom (e.g., Golub and Van Loan, 2013). Therefore,
applying a partial, blocked, in-place Cholesky decomposition over an epoch block row
efficiently eliminates these epoch parameters from the normal equation matrix. The
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reduced right-hand side can be obtained by substituting (5.54) and (5.55) into (5.52)
such that

n̄ = ny −Wxy
TWxxWxx

−1Wxx
−Tnx

= ny −Wxy
TWxx

−Tnx

= ny −Wxy
T z

, (5.57)

where z is determined by solving the equation system Wxx
T z = nx via forward substi-

tution. After the parameters are eliminated, the Nyy block, which now actually contains
Wxy due to the in-place Cholesky decomposition, can be freed from memory. The matrix
Wxx now contained in the Nxx block is kept in memory as it does not require much
space and is needed later to reconstruct the epoch parameters.

This process can be repeated after each epoch’s normal equations are set up and added
to the full normal equations. Once all epoch parameters have been eliminated, the
reduced normal equations can be solved as described in Section 4.2.4. The resulting
parameter correction vector ∆ŷ contains estimates for all nonepoch parameters, which
are the same as if they had been estimated together with all epoch parameters.

In the next step, the eliminated epoch parameters are reconstructed one epoch block at
a time. The first row of the equation system in (5.50) can be rewritten as

∆x = N−1
xx (nx −Nxy∆y) (5.58)

Since the epoch’s off-diagonal block Nxy has been freed to reduce memory usage during
the previous step, it would have to be reconstructed to solve (5.58) directly. However,
the epoch parameters can be reconstructed more efficiently by setting up the equation
system

Nxx∆x = ñx (5.59)

using the right-hand side

ñx = ÃT ∆̃l = ÃT
(
∆l− Ã∆ŷ

)
. (5.60)

This involves setting up the design matrix A for the epoch again as described in Sec-
tions 5.2 to 5.5. The matrix Ã is the slice (i.e., the columns) of A that covers only the
nonepoch parameters. The right-hand side vector ñx can then be computed based on
the reduced observations ∆̃l, which are obtained by correcting the original observations
∆l for the influence of the estimated nonepoch parameters in ∆ŷ. This means that the
information related to the epoch parameters stays contained in ∆̃l. The equation system
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in (5.59) is then solved for ∆x via forward and backward substitution based on the
Cholesky decomposition Nxx = Wxx

TWxx. As Wxx has been kept in memory from the
preceding elimination step, the decomposition does not actually have to be performed
again. After this process has been repeated for all epochs, estimates for all epoch and
nonepoch parameters have been determined.

Eliminating and reconstructing the epoch parameters is one of the strategies that enabled
the large scale of the processing described in Chapter 8. It can reduce the memory
requirements for solving large systems from several hundred gigabytes to a more feasible
size. From this perspective, it is usually well worth the drawback of a slightly increased
computational effort and processing time compared to directly solving all parameters.

5.9.2 Core network, PPP, and full network processing scheme

Another key strategy to solve large systems efficiently is to circumvent having to deal
with the phase ambiguities of the full network all at once. As can be seen in Figures 5.3
and 5.4, the off-diagonal block between epoch parameters and ambiguities accounts for
a major part of the overall memory usage. Therefore, removing ambiguity parameters
from the equation system greatly reduces the memory requirements and computational
cost of solving the normal equations. Section 6.6.2 details how ambiguities, which are
initially estimated as float values together with all other parameters, can be resolved
to their integer values. Once fixed, they can be introduced as known corrections into
the observation equations and do not have to be estimated as unknown parameters in
further iterations of the least-squares adjustment.

Unfortunately, the integer nature of ambiguities is obfuscated by unknown satellite and
receiver phase biases (see Section 6.6). This prevents simply resolving them station by
station. The correlation between phase biases and ambiguities necessitates a network
solution involving the combined processing of multiple stations and satellites. This can
become an issue as the complexity of integer ambiguity resolution scales exponentially
with the number of ambiguities (Verhagen et al., 2012). Using sophisticated ambiguity
resolution techniques is already a challenge in small station networks, but for large
networks with hundreds of stations it can become an insurmountable computational
bottleneck (Jazaeri et al., 2012). For example, a large network of 800 stations combined
with 80 satellites can lead to approximately 155 000 ambiguity parameters. Therefore,
network-based ambiguity resolution is more manageable with smaller networks.

The processing scheme described in Strasser et al. (2019) and visualized in Figure 5.9
is a solution to both problems mentioned above. It separates the processing into three
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major parts. Initially, the processing is limited to a small subset of stations from the
full network. This core network has to be well-distributed around the globe to ensure
full coverage and stable estimation of all relevant parameters. Too few stations might
lead to a weak and inaccurate solution, while too many stations might prevent resolving
the ambiguities efficiently. In practice, a network of 50–60 stations has proven to be
sufficient for a stable solution while still keeping the ambiguity resolution complexity on
a feasible level.

The initial iterative least-squares adjustment using the core network stops once a conver-
gence threshold or a maximum number of iterations has been reached. New observation
weights are determined at the end of each iteration and outliers are automatically
weighted down, leading to a robust float solution. At this point, all parameters have
usually been determined sufficiently precise to enable ambiguity resolution. Fixing the
ambiguities to integer values can lead to significant changes in other parameter estimates.
Therefore, some additional iterations of the least-squares adjustment may be necessary
after this step to reach convergence again. At this point, the satellite parameters related
to their orbits, clocks, and signal biases have been determined precisely enough to enable
the next part of the processing.

In the second part, all satellite and global parameters are held fixed and are introduced
as known into the observation equations. This enables the individual processing of all
stations that are not part of the core network. Blewitt (2008) presented a similar concept
to enable the processing of massive networks. By introducing the satellite parameters as
known, this step is equivalent to PPP (Zumberge et al., 1997). The processing scheme
for a single station follows that of the core network, meaning several iterations of a least-
squares adjustment are followed by ambiguity resolution and possibly more iterations
afterwards. PPP with ambiguity resolution (e.g., Ge et al., 2008; Laurichesse et al., 2009;
Collins et al., 2010; Geng et al., 2010; Shi and Gao, 2014; Glaner and Weber, 2021)
is possible at this point because the satellite phase biases have been determined using
the core network. The stations can be processed in parallel as the involved steps can
all be performed independently. Once all stations have been processed, all ambiguity
parameters in the equation system have been resolved and can be introduced as known
into the final part.

At the end, all stations in the full network are processed together in order to get the best
estimates for all parameters. In this part, all parameters, including the satellite and global
parameters, are estimated again. The only exception are the ambiguity parameters,
which do not have to be set up again since they have already been fixed. Therefore,
the issue of an exceedingly large normal equation matrix described at the beginning
of this section is much reduced. Multiple iterations of the full network adjustment
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Figure 5.9: Flowchart of processing scheme starting with processing only the core network,
followed by individual processing of all noncore stations, and finally processing the
full network together
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usually improve the solution, because adding observations from potentially hundreds of
additional stations to the system can have a significant impact on the parameters. Here,
new observation weights are again determined at the end of each iteration, and the end
result is a robust solution based on a large station network.

5.9.3 Separation of ionosphere and signal biases in an
intermediate step

Section 5.2 describes how an ionospheric STEC parameter is set up for each observation
group. These parameters cannot be fully separated from signal bias parameters without
introducing additional information about the ionosphere (Schaer, 1999). This means the
resulting signal biases are biased by the ionosphere. Other parameters, such as satellite
orbits or station positions, are unaffected by this bias. Therefore, this issue only has to
be resolved in case signal biases are a product of interest.

Section 6.4 details how the ionospheric influence can be modeled and parameterized.
This includes possible ways to introduce the additional information that is required to
separate it from the signal biases. The approach used for the reprocessing conducted
within the context of this thesis was to introduce an ionospheric mapping function that
maps the STEC from a specific signal path to the zenith direction at each station (see
Section 6.4.2). However, this approach potentially leads to millions of additional epoch
parameters in the main equation system when large networks with hundreds of stations
are processed. Even when applying the strategies described in the previous sections,
this can significantly increase the required computational effort of a large-scale GNSS
processing.

One way to circumvent this issue is to determine the part of the signal biases that is
affected by the ionosphere in a separate step (Strasser et al., 2019). This step features a
separate equation system using the full observation equations described in Section 5.1.
However, only specific signal bias and ionosphere parameters are set up and all other
parameters are introduced as known. Therefore, this intermediate step is only possible
after the main equation system has been solved at least once. Section 6.5.3.3 describes
how the set of parameters for this separate equation system is determined. Once it
has been solved, the obtained signal bias corrections can be introduced as known in
subsequent iterations of the main least-squares adjustment in order to obtain signal bias
estimates that are not biased by the ionosphere anymore. Further information about the
estimation of signal biases is provided in Sections 6.5 and 6.6.
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5.10 GROOPS

All algorithms described in this chapter are implemented into the software Gravity
Recovery Object Oriented Programming System (GROOPS). GROOPS is an open-source
software toolkit for core geodetic tasks. Mayer-Gürr et al. (2021) gives an overview
of the software and its features, which include gravity recovery, GNSS-based orbit
determination for LEO satellites, and the processing of GNSS constellations and ground
station networks as described in this thesis. The source code of GROOPS is available
on GitHub (https://github.com/groops-devs/groops) together with documentation
and guided examples.

The software is written in C++ and supports both desktop computers and large computer
clusters through its implementation of the Message Passing Interface (MPI) standard.
This is especially important for the type of large-scale processing conducted within
the context of this thesis. Mayer-Gürr et al. (2021) provides more details on how
large distributed least-squares problems are solved within GROOPS. This includes the
handling of highly-sparse blocked matrices such as the normal equation matrix described
in Section 5.6. For example, it provides more information on the block-cyclic distribution
(e.g., Blackford et al., 1997) of matrix blocks among parallel processes. Mayer-Gürr et al.
(2021) further notes that the operations for solving the normal equations via in-place
Cholesky decomposition and forward and backward substitution are implemented as
parallel block algorithms following Choi et al. (1996).

The author of this thesis has contributed to the software in numerous ways, for example
in the form of source code, testing, user interface design, and documentation. Most of
these contributions concern the parametrizations, models, and corrections involved in
GNSS processing (see Chapter 6) as well as the handling of the associated large amounts
of data and metadata. Much of this work directly benefited the reprocessing campaign
conducted in the context of this thesis, which is further described in Chapter 8.
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Parametrizations, models, and
corrections

6
The GNSS observation equations described in Section 5.1 contain various parametriza-
tions and corrections based on a number of physical models. The choice of representing
a certain component by unknown parameters, relying on an a priori model, or not
considering it at all can depend on the application and its accuracy requirements (Kouba
et al., 2017). The type of GNSS processing conducted in the context of this thesis aims
for the highest possible accuracy and precision and thus often applies a combination of
parametrizations and a priori corrections for the different components. For this reason,
each section in this chapter covers a component of the observation equations and details
the various relevant parametrizations, corrections, and models. Some sections also
present analyses and comparisons of different models and parametrizations and their
effect on GNSS products.

6.1 Satellite attitude

The knowledge of a GNSS satellite’s attitude or orientation in space is vital for high-
precision applications (Kouba and Héroux, 2001). Montenbruck et al. (2015a) lists three
areas that require accurate satellite attitude modeling. First, it is necessary to correctly
account for horizontal (i.e., in the plane normal to the antenna boresight) satellite
antenna offsets with respect to the center of mass (Schmid et al., 2016) and potential
direction-dependent variations (see Section 6.10). Second, the circularly-polarized
nature of GNSS signals leads to variations of the phase measurement depending on
the relative orientation between the transmitting and receiving antennas (J. T. Wu
et al., 1993). The correction for this so-called phase wind-up, which is detailed in
Section 6.11.2, is essential in the determination of high-quality satellite products. Finally,
knowing the orientation of a satellite’s body and solar panels is important for modeling
accelerations induced by solar and Earth radiation pressure during orbit integration
(Rodriguez-Solano, 2014). Section 6.2 provides more information on satellite orbit
modeling and the effects of these forces.
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Figure 6.1: Default attitude modes applied by GNSS satellites and their satellite orientation at
specific points along the orbit (adapted from Montenbruck et al., 2015a)

GNSS satellites usually apply either a yaw-steering or an orbit normal mode for their
default attitude (Montenbruck et al., 2015a). Figure 6.1 visualizes a satellite’s orientation
in space at different points in an orbit for each mode. Both modes have in common that
the satellite’s main transmission antenna always points towards the center of Earth. In
yaw-steering mode, which is predominantly used by GNSS satellites in medium Earth
orbit (MEO), the satellite actively rotates (i.e., yaws) around the Earth-pointing axis in
order to keep its solar panels aligned towards the Sun (Bar-Sever, 1996). A satellite
in orbit normal mode, on the other hand, does not yaw around the Earth-pointing axis
and instead keeps a constant alignment in the local orbit frame (see Section 3.6). Orbit
normal mode is usually applied by GNSS satellites in geostationary or geosynchronous
orbits, which occur in the BDS and QZSS constellations (e.g., Hauschild et al., 2012;
Lou et al., 2014).

6.1.1 Principal axes and angles

The three unit vectors

eYS
x = eYS

y × eYS
z (6.1)

eYS
y = e� × er

‖e� × er‖
(6.2)

eYS
z = −er (6.3)

define the axes of a yaw-steering frame. Here, er = r
‖r‖ is the normalized satellite

position vector, or radial vector, and e� = rSun−r
‖rSun−r‖ is the unit vector pointing from the

70 Chapter 6 Parametrizations, models, and corrections



satellite towards the Sun. rSun and r are the position vectors of the Sun and satellite,
respectively. This section assumes that all vectors are given in the CRF unless otherwise
noted. If a satellite is in yaw-steering mode and the definition of its body axes follows
the IGS conventions (Montenbruck et al., 2015a), its body frame is nominally aligned to
this frame. The same axes can be obtained by rotating the orbit normal frame, which is
defined by the three unit vectors

eON
x = ea (6.4)

eON
y = −ec (6.5)

eON
z = −er , (6.6)

around the ez axis by the nominal yaw angle (Bar-Sever, 1996)

ψnom = atan2 (− tan β, sinµ) . (6.7)

The unit vectors ea, ec, and er represent the along, cross, and radial axes of a local orbit
frame. Their definition can be found in Section 3.6. The orbit angle

µ = u(r)− u(rSun) + π (6.8)

describes the position of the satellite along the orbit counting from orbit midnight, which
is the point farthest from the Sun (Beutler et al., 1994). Since the orbit midnight point
moves with the Sun, the orbit angle is computed based on the argument of latitude of
the satellite and Sun. The argument of latitude of an object projected into the satellite’s
orbital plane is

u(r) = atan2 (r · (ec × eh) , r · eh) , (6.9)

where r is the position vector of the object and eh = [ 0 0 1 ]T×ec
‖[ 0 0 1 ]T×ec‖ . The angle between

the Earth-Sun vector rSun and the satellite’s orbital plane is (Kouba, 2009b)

β = acos
(
−ec ·

rSun

‖rSun‖

)
− π

2 . (6.10)

Figure 6.2 visualizes the three principal angles from (6.7), (6.8), and (6.10).

6.1.2 Special attitude behavior around orbit noon and midnight

A major problem of the yaw-steering attitude mode is that a satellite would have to
yaw at a very high rate around the orbit noon and midnight points when the Sun is
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Figure 6.2: Principal angles for attitude modeling (adapted from Montenbruck et al., 2015a)
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Figure 6.3: Nominal yaw angle around orbit midnight for various angles β

close to the orbital plane (Bar-Sever, 1996). Figure 6.3 shows the yaw angle close to
orbit midnight for various angles β. It is clearly visible that the satellite would have to
yaw instantly by 180° at β = 0°, which is impossible. At very low angles, for example
|β| = 1°, the yaw rate required to maintain the nominal attitude usually exceeds the
maximum yaw rate a satellite can physically achieve. Another problem is that when a
satellite crosses Earth’s shadow, which happen once per revolution at orbit midnight
when β is below a certain threshold (e.g., |β| ≈ 14° for GPS), solar sensors mounted
on the satellite cannot provide information to the attitude control system (Bar-Sever,
1996).

For these reasons, satellite manufacturers developed special attitude behavior around
orbit noon and midnight. This behavior can differ between manufacturers, but also be-
tween different satellite types from the same manufacturer (Kouba, 2009b). For example,
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GPS-IIR satellites were manufactured by Lockheed Martin and behave differently during
shadow crossings than GPS-IIA and GPS-IIF satellites, which were both manufactured
by Rockwell International/Boeing. GPS-IIA and GPS-IIF satellites also do not share the
same behavior. In addition, satellites might not necessarily behave the same way around
orbit noon and midnight (e.g., Bar-Sever, 1996; Dilssner, 2010; Dilssner et al., 2011b).

Figure 6.4 visualizes all known attitude modes for GPS, GLONASS, and Galileo satellites.
The attitude models for Galileo satellites have been officially published by the European
GNSS Service Centre (2017). In the absence of official models for GPS and GLONASS
satellites, researchers have developed attitude models based on confidential information
or empirical observations. For example, Dilssner et al. (2011b) applied reverse kinematic
PPP to determine the attitude behavior of GLO-M satellites and subsequently developed
an analytical model that describes this behavior. An attitude model for GPS-II and
GPS-IIA satellites is described in Bar-Sever (1996) and simplified in Kouba (2009b),
which also provides a model for GPS-IIR and GPS-IIR-M satellites. When one of these
satellite types is mentioned subsequently, it is implied that the same is valid for the other
type sharing the same model. Finally, Kuang et al. (2017) presents an attitude model
for GPS-IIF satellites. As of yet, no attitude models have been published for the new
GPS-IIIA and GLO-K satellites as well as for the original GPS-I and GLO satellites. An
overview and comparison of all known attitude models including BDS and QZSS, which
are not covered in this thesis, can be found in Strasser et al. (2021).

6.1.3 Generalization of attitude models

Satellite attitude models can be quite complex and often contain many special cases.
Therefore, correctly implementing them into GNSS software packages is not always
an easy task. Loyer et al. (2021) compares attitude data from several IGS analysis
centers, which presumably have implemented the same attitude models into their
software packages. While the differences for Galileo satellites are minimal, GPS and
GLONASS attitude often deviates significantly between analysis centers. The analyses
and comparisons conducted in preparation of this study also revealed some issues in the
implementation of attitude models in the software GROOPS used at Graz University of
Technology. This prompted a complete reimplementation of all models in a generalized
way, the result of which was presented in Strasser et al. (2021). This section provides
more details on the generalized models, focusing on GPS, GLONASS, and Galileo.

Table 6.1 provides an overview of the implemented attitude modes used by GNSS
satellites around orbit noon and midnight. It includes BDS and QZSS to better highlight
that several attitude modes can be reused across satellite types. The generalization is
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Figure 6.4: Examples of known attitude behavior for GPS, GLONASS, and Galileo satellites
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Table 6.1: Overview of satellite attitude modes (Strasser et al., 2021)

Satellite type Default Midnight Noon Reference
GPS-II/IIA A C D Bar-Sever (1996), Kouba (2009b)
GPS-IIR/IIR-M A C C Kouba (2009b)
GPS-IIF A C F Kuang et al. (2017)
GLO-M A E G Dilssner et al. (2011b)
GAL-1 A H H European GNSS Service Centre (2017)
GAL-2 A I I European GNSS Service Centre (2017)
BDS-2G/3G B B B C. Wang et al. (2018), P. Li et al. (2018)
BDS-2I/2M* A J J C. Wang et al. (2018)
BDS-3I/3M A I I P. Li et al. (2018)
QZS-1 A J J Cabinet Office, Gov. of Japan (2021)
QZS-2G B B B Cabinet Office, Gov. of Japan (2021)
QZS-2I A G G Cabinet Office, Gov. of Japan (2021)
*Most BDS-2I/2M satellites have transitioned to BDS-3I/3M modes

based on three attitude modes: midnight and noon modes used around those points in
the orbit, and a default mode that is used when neither of these two modes is active or
relevant. The default mode for all GPS, GLONASS, and Galileo satellites is the nominal
yaw-steering mode (A). The orbit normal mode (B) is only applied by geostationary
satellites and as part of a mode that switches between yaw-steering and orbit normal
attitude under certain conditions (J). These two modes are not discussed further here.
The two "smoothed" (Montenbruck et al., 2015a) yaw-steering modes (H and I) applied
by Galileo satellites do not offer much room for simplification. However, P. Li et al.
(2018) showed that one of them (I) can be reused to describe the behavior of certain
BDS satellites by replacing some of the variables used in the mode.

6.1.3.1 Example implementations of modes with constant yaw rate

Figure 6.4 reveals that GPS and GLONASS satellites only feature yaw maneuvers with
constant yaw rate. In reality, the maneuvers must contain some yaw acceleration and
deceleration phases, as described in Bar-Sever (1996), but they are usually disregarded
because their impact is small and the information required to model these phases is
often not available (Kouba, 2009b). Several satellites show the same yaw behavior,
for example GPS-IIA (orange), GPS-IIR (green), and GPS-IIF (red) around orbit noon.
They only differ in their maximum yaw rates, which are approximately 0.12°/s, 0.20°/s,
and 0.11°/s for GPS-IIA, GPS-IIR, and GPS-IIF, respectively (Kouba, 2009b; Dilssner,
2010).

Most of the simplifications and generalizations thus concern these modes applying linear
yaw changes (C, D, E, F, and G). All modes only require an approximate orbit and some
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satellite- or type-specific metadata, for example the maximum yaw rate, as input. In a
first step, the principal angles µ and β, the nominal yaw angle ψnom, and the nominal
yaw rate (Bar-Sever, 1996)

ψ̇nom = µ̇ tan β cosµ
sin2 µ+ tan2 β

(6.11)

are computed at each epoch. The orbit angle rate µ̇ = ‖ṙ‖
‖r‖ in (6.11) depends on the

position and velocity vector of the satellite at that epoch. In order to ensure proper and
precise modeling even for very short maneuvers, these steps should be performed at a
high sampling rate, for example every second.

The type-specific attitude modes with linear yaw changes can then all be implemented
based on a single common function. This function yaws at a constant rate ψ̇ forward or
backward in time starting from a reference epoch t0 with yaw angle ψ0 and stops once
the computed yaw angle

ψ(t, ψ̇) = ψ0 + (t− t0) · ψ̇ (6.12)

catches up with the nominal yaw angle ψnom at some epoch. The sign of ψ̇ (i.e., the
yaw direction) is set to that of the nominal yaw rate ψ̇nom at the reference epoch.
The described function is called catchUpYawAngle in Listings 6.1 to 6.6, which show
example implementations for the modes C, D, E, F, and G in the form of simplified
pseudocode. Actual C++ implementations of these modes can be found in the source
code of GROOPS, which is openly available on GitHub (see Section 5.10).

Listing 6.1 reveals that mode C can be implemented simply using the aforementioned
function and only requires the maximum yaw rate ψ̇max of the satellite and the starting
epoch at which ψ̇nom > ψ̇max, which can be easily determined. Dilssner et al. (2011a),
Kouba (2013), and Kuang et al. (2017) note that GPS-IIA and GPS-IIF satellites yaw into
the wrong direction around orbit noon if 0° < β < 0.5° and −0.7° < β < 0°, respectively.
This anomalous behavior is caused by a yaw bias introduced into the attitude control
system of these satellites and must be considered in the function described above.

1 catchUpYawAngle ( epochWhereYawRateIsExceeded , maxYawRate , forward )

Listing 6.1: Simplified pseudocode for mode C (Strasser et al., 2021)

Satellites applying mode D (see Listing 6.2) start yawing at maximum yaw rate once they
enter Earth’s shadow and continue to do so until shadow exit, at which point they try to
align themselves back to nominal attitude. This can be achieved by either continuing
to yaw in the same direction or by reversing the yaw direction. The decision usually
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depends on the yaw angle at shadow exit and which direction requires less yawing to
achieve nominal attitude. For GPS-IIA satellites, which apply this mode around orbit
midnight, the yaw direction becomes ambiguous if the difference between actual and
nominal yaw angle at shadow exit is close to 180°. This is the reason why observations
during this post-shadow recovery period are often discarded in GNSS processing (Bar-
Sever, 1996). The yaw direction of GPS-IIA satellites within Earth’s shadow can also be
ambiguous due to solar sensor noise being misinterpreted as signals when the Sun is not
visible. For this reason, the satellite operator introduced the aforementioned yaw bias
into their attitude control system, which results in predictable yaw directions (Bar-Sever,
1996). To consider this, the constant yaw rate inside Earth’s shadow is set to ψ̇max with
the same sign as the yaw bias. If there is no yaw bias, ψ̇max with the same sign as ψ̇nom

at shadow entry is used instead.

1 for each epoch between shadowEntry and shadowExit :
2 epoch. yawAngle = shadowEntry . yawAngle +
3 (epoch.time - shadowEntry .time) * shadowYawRate
4 catchUpYawAngle (shadowExit , maxYawRate , forward )

Listing 6.2: Simplified pseudocode for mode D (Strasser et al., 2021)

In mode E, which is applied by GLO-M satellites during shadow crossings, satellites start
yawing at maximum rate once they enter Earth’s shadow and stop once they arrive at
the nominal yaw angle ψnom at shadow exit. They then keep this angle until they exit
the shadow. As Listing 6.3 shows, this behavior can be easily modeled by setting the yaw
angle of all epochs inside Earth’s shadow (except for the shadow entry epoch) to the
nominal yaw angle ψnom at shadow exit. Starting from the shadow entry epoch, the yaw
angle then simply has to catch up with the modified nominal yaw angle, resulting in the
behavior displayed in Figure 6.4.

1 for each epoch between shadowEntry +1 and shadowExit :
2 epoch. yawAngle = shadowExit . yawAngle
3 catchUpYawAngle ( shadowEntry , maxYawRate , forward )

Listing 6.3: Simplified pseudocode for mode E (Strasser et al., 2021)

Mode F describes a behavior where satellites start yawing at a constant yaw rate ψ̇ once
they enter Earth’s shadow such that they exit the shadow at the nominal yaw angle ψnom.
This mode is applied by GPS-IIF satellites around orbit midnight. Listings 6.4 and 6.5
show two ways to implement this behavior. In both cases, the yaw rate ψ̇ is computed
based on the yaw angle and time at shadow entry and exit. Listing 6.4 simply computes
the yaw angle at each shadow epoch based on Equation (6.12), while Listing 6.5 starts at
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orbit midnight and catches up to the nominal yaw angle ψnom forwards and backwards
in time.

1 yawRate = ( shadowExit . yawAngle - shadowEntry . yawAngle ) /
2 ( shadowExit .time - shadowEntry .time)
3 for each epoch between shadowEntry and shadowExit :
4 epoch. yawAngle = shadowEntry . yawAngle +
5 (epoch.time - shadowEntry .time) * yawRate

Listing 6.4: Simplified pseudocode for mode F (Strasser et al., 2021)

1 yawRate = ( shadowExit . yawAngle - shadowEntry . yawAngle ) /
2 ( shadowExit .time - shadowEntry .time)
3 catchUpYawAngle ( orbitMidnight , yawRate , backward )
4 catchUpYawAngle ( orbitMidnight , yawRate , forward )

Listing 6.5: Simplified alternative pseudocode for mode F (Strasser et al., 2021)

Finally, satellites applying mode G (see Listing 6.6) yaw at their maximum yaw rate
around orbit noon or midnight, ensuring that their yaw angle ψ matches the nominal
yaw angle ψnom at the respective reference point. For instance, GLO-M satellites use
this mode around orbit noon. This mode is similar to the alternative implementation of
mode F shown in Listing 6.5, except that the satellite yaws at its maximum yaw rate.

1 catchUpYawAngle ( orbitMidnightOrNoon , maxYawRate , backward )
2 catchUpYawAngle ( orbitMidnightOrNoon , maxYawRate , forward )

Listing 6.6: Simplified pseudocode for mode G (Strasser et al., 2021)

6.1.3.2 Reusing models and handling special cases

The attitude behavior is not necessarily identical for all GNSS satellites of the same
type and may also change over time. For example, Kouba (2009a) lists estimated
yaw rates that slightly vary per GPS-IIA satellite and also notes that the yaw biases of
those satellites were routinely changed in the early 1990s. This can be considered by
storing time-variable attitude metadata in a database or, in the case of GROOPS, in type-
or satellite-specific files. The metadata should include the applied modes as well as
any mode-specific values that might vary over time or between satellites, such as the
maximum yaw rate, yaw bias, or certain activation thresholds.

Tables 6.2 to 6.7 list example metadata for several GNSS satellites. Comparing Table 6.2
and Table 6.3 reveals the varying maximum yaw rates ψ̇max for different GPS-IIA satellites
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as well as the changes to their yaw biases ψbias over time. Special cases, such as GLO-M
satellite R713 behaving similar to GPS-IIR satellites due to malfunctioning solar sensors
(Dilssner et al., 2011b), can be accommodated by changing the mode for this specific
satellite (see Table 6.4). All other GLO-M satellites keep their default metadata (e.g.,
mode G only activates if |β| ≤ βNoon

threshold), as shown for R714 in Table 6.5. Another special
case occurs for some BDS-2M satellites, which have switched from their original attitude
behavior to one very similar to that of GAL-2 satellites (Dilssner et al., 2018; C. Wang
et al., 2018). Table 6.7 shows this mode switch, which happened sometime in mid-2017
for satellite C015, as well as the constants βthreshold, εthreshold, and Tmax required for
mode I (cf. European GNSS Service Centre, 2017). These values are different than those
for GAL-2 satellites, which are exemplified in Table 6.6.

6.2 Satellite orbits

Satellite orbits are usually determined in a kinematic or dynamic way. In kinematic
orbit determination, satellite positions are estimated at each epoch purely from the
observational geometry. The main advantage of this approach is that the physical
forces acting on a satellite do not have to be known. This is why it is often applied to
determine orbits of LEO satellites in the context of gravity field recovery (e.g., Švehla
and Rothacher, 2005; Zehentner, 2016). However, kinematic orbit determination also
has several disadvantages. The determined satellite positions are affected by noise,
might contain gaps and outliers, and are sensitive to measurement errors and poor
observational geometry. The latter is especially relevant in case of ground station-based
GNSS satellite orbit determination due to the acute angles of intersection between
satellite-station vectors at the satellites. Therefore, the kinematic approach is not
commonly used for this task. Still, Koch et al. (2017) shows that it can be used to
validate GNSS satellite orbits when combined with clock modeling.

In contrast, dynamic orbit determination is based on force models that describe the
motion of a satellite in space (Ashkenazi et al., 1990). This results in a smooth orbit
containing positions at an arbitrary sampling rate that is independent of the observation
sampling rate. Dynamic orbits are free of gaps and outliers and are less affected by
measurement errors at specific epochs. For these reasons, GNSS satellite orbits are
usually determined dynamically. The quality of dynamic orbits is mainly limited by that
of the applied force models. While gravitational or conservative forces, such as Earth’s
gravity field or tidal forces, can be modeled with sufficient accuracy, the same is not
the case for some of the nongravitational or nonconservative forces, particularly solar
radiation pressure. Therefore, empirical model parameters are often estimated during
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Table 6.2: Attitude metadata for GPS-IIA satellite G023

Start time Default Midnight Noon ψ̇max [°/s] ψbias [°]
1990-11-26 21:39 A D C 0.1152 0
1992-12-31 23:59 A D C 0.1152 0.5
1995-02-08 05:59 A D C 0.1152 -0.5
1995-02-08 17:59 A D C 0.1152 0.5
1995-08-03 23:59 A D C 0.1152 -0.5
1995-08-06 10:04 A D C 0.1152 0.5
2002-01-20 23:59 A D C 0.1152 -3.5
2006-12-31 23:59 A D C 0.1152 0.5

Table 6.3: Attitude metadata for GPS-IIA satellite G024

Start time Default Midnight Noon ψ̇max [°/s] ψbias [°]
1991-07-04 02:32 A D C 0.1089 0
1992-12-31 23:59 A D C 0.1089 0.5
1995-06-11 23:59 A D C 0.1089 -0.5
1995-06-13 04:58 A D C 0.1089 0.5

Table 6.4: Attitude metadata for GLO-M satellite R713

Start time Default Midnight Noon ψ̇max [°/s] βNoon
threshold [°]

2005-12-25 05:07 A C C 0.25 –

Table 6.5: Attitude metadata for GLO-M satellite R714

Start time Default Midnight Noon ψ̇max [°/s] βNoon
threshold [°]

2005-12-25 05:07 A E G 0.25 2

Table 6.6: Attitude metadata for GAL-2 satellite E201

Start time Default Midnight Noon βthreshold [°] εthreshold [°] Tmax [s]
2014-08-22 12:27 A I I 4.1 10 5656

Table 6.7: Attitude metadata for BDS-2M satellite C015

Start time Default Midnight Noon βthreshold [°] εthreshold [°] Tmax [s]
2012-09-18 19:10 A J J 4 5 –
2017-07-01 00:00 A I I 3 6 3090
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dynamic orbit determination to overcome these modeling deficiencies (e.g., Beutler et al.,
1994; Montenbruck et al., 2005; Jäggi et al., 2006). If this is the case, the approach is
generally called reduced-dynamic orbit determination (S. C. Wu et al., 1991).

This section is structured as follows. The basic principle of orbit modeling is discussed in
Section 6.2.1. This is followed by a summary of all relevant force models in Section 6.2.2.
Section 6.2.3 describes how unknown orbit parameters can be linked to the GNSS
observation equations. Finally, Section 6.2.4 presents some analyses regarding the
sensitivity of satellite orbits with respect to certain force models.

6.2.1 Orbit modeling

Orbit modeling is part of dynamic orbit determination and describes the process of
integrating force models to obtain a satellite orbit. Newton’s second law of motion

F = mr̈ (6.13)

states that a force F acting on a satellite with mass m results in an acceleration

r̈ = F
m

= a(t, r, ṙ,p) . (6.14)

Equation (6.14) is called equation of motion (e.g., Hugentobler and Montenbruck,
2017). In this case, it describes the motion of a satellite around a central body (i.e.,
Earth). The function a represents the sum of all accelerations acting on the satellite
and depends on the time t, the satellite’s position r and velocity ṙ, and a number of
additional force model parameters p = [ p1 . . . pn ]T . These parameters are required to
model the accelerations due to gravitational and nongravitational forces acting on the
satellite. They are either known or unknown, in which case they have to be estimated
during orbit determination. Integrating (6.14) twice leads to the velocity

ṙ(t) = ṙ0 +
∫ t

t0
a(t′, . . .) dt′ (6.15)

and center-of-mass position

r(t) = r0 + (t− t0) ṙ0 +
∫ t

t0

∫ t′

t0
a(t′′, . . .) dt′′ dt′ , (6.16)

which together form a system of second-order differential equations. The satellite state
vector y(t) = [ r(t) ṙ(t) ]T at each epoch depends on the unknown initial state vector
y0 = [ r0 ṙ0 ]T and the vector of force model parameters p.
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6.2.2 Force models

The IERS conventions (Petit and Luzum, 2010) provide in-depth descriptions of gravi-
tational forces and how to apply the respective models. The following brief summary
aims to give an overview of the gravitational forces that have to be considered for orbit
modeling.

Earth’s gravity field The gravitational attraction acting on a satellite orbiting Earth
varies depending on its location due to the inhomogeneous distribution of mass
inside the planet. This effect is usually separated into a static and time-variable
part. The former describes the mean gravity field over the period it was observed by
space-geodetic techniques. Temporal variations of this mass distribution commonly
include a trend and annual component derived from monthly snapshots of satellite
gravimetry missions.

Astronomical tides Other bodies in the solar system also cause gravitational attraction,
which can be modeled in the form of a tidal potential. The two main sources are
the Sun due to its large mass and the Moon due to its close proximity. The effect
of other planets is much smaller but can still be significant. Third-body attractions
vary over time because of the changing relative geometry.

Solid Earth tides Earth’s body deforms due to the gravitational attraction of other
bodies, primarily the Sun and Moon. The resulting redistribution of mass can be
modeled in terms of a tidal potential.

Ocean tides External gravitational forces also affect the oceans. Ocean tide models
describe the mass redistribution in the oceans in the form of a tidal potential at
several tidal frequencies. Continents and large land masses inhibit the free flow
of water, resulting in complex geographical patterns, especially close to coastal
regions.

Atmospheric tides The atmosphere is affected by external gravitational forces in the
same way as the oceans. This effect describes the redistribution of atmospheric
masses in terms of a tidal potential.

Pole tides Earth’s rotational axis varies over time relative to its solid body. This polar
motion results in a centrifugal effect that deforms Earth’s body and causes mass
redistribution. The pole tides describe this effect in terms of a perturbation in the
gravitational potential.

Ocean pole tides Similar to the gravitational pull of external bodies, the centrifugal
effect of polar motion not only affects the solid Earth but the oceans as well. The
resulting redistribution of ocean masses can again be described as gravitational
potential perturbations.
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Nontidal mass variations As the name suggests, this effect describes mass variations
on Earth’s surface that cannot be expressed in the form of a tidal potential. The
main sources for these are variations in atmospheric pressure, wind-induced ocean
currents, and changes in terrestrial water storage.

Nongravitational or nonconservative forces acting on GNSS satellites include solar
radiation pressure, Earth radiation pressure, and antenna thrust. These forces can often
not be modeled with sufficient accuracy. The main issue is that modeling them correctly
requires accurate knowledge of a satellite’s physical properties, such as its shape and the
materials used for its body and solar panels. In most cases, this information has not been
officially disclosed by satellite operators. Therefore, nonconservative force models are
often based on approximate satellite properties, which severely limits their accuracy.

Figure 6.5 compares the magnitude of the forces acting on GNSS satellites in terms of
the resulting acceleration on the various satellite types. Orbit altitude and inclination
as well as satellite mass, size, shape, and transmit power are the main sources for the
differences between satellite types. After Earth’s gravity field and astronomical tides,
nonconservative forces are among the most significant forces affecting GNSS satellites.
Therefore, improvements in the accuracy of nonconservative force models directly benefit
the quality of the modeled orbits. One of the most direct ways to achieve this would be
if satellite operators were publishing more accurate satellite metadata.

6.2.2.1 Solar radiation pressure

Solar radiation induces an acceleration on satellites that are exposed to it. The total
acceleration depends on the satellite’s mass as well as the area, material properties, and
orientation of all exposed surfaces. Photons emitted by the Sun are either reflected or
absorbed by a surface depending on its material properties.

Following Milani et al. (1987), Fliegel et al. (1992), Rodriguez-Solano et al. (2012a),
and Rodriguez-Solano (2014), the acceleration acting on a surface is

asurface
SRP =

(1 AU
d

)2 S0
c

A

m
cos θ [(α+ δ) eD − (C1δ + C2 ρ cos θ) eN ] . (6.17)

Here, d is the distance between satellite and Sun, S0 ≈ 1367 W/m2 is the solar irradiance
at a distance of one astronomical unit (AU) from the Sun, A is the surface area, m is
the satellite’s mass, and α, δ, and ρ are the absorption, diffuse reflection, and specular
reflection coefficients of the surface, respectively. eD is the unit vector from Sun to
satellite (i.e., the direction of radiation), eN is the unit normal vector of the surface, and
cos θ = −eD · eN . The coefficients C1 and C2 depend on the shape of the surface, with
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Figure 6.5: Mean force model accelerations per satellite type

C1 = 2
3 and C2 = 2 in case of a flat surface or C1 = π

6 and C2 = 4
3 in case of a cylindrical

surface.

According to Fliegel et al. (1992), most materials used to cover the satellite bus instantly
reradiate the absorbed energy in the form of heat. This thermal reradiation (TRR) can
be modeled as

asurface
TRR = −

(1 AU
d

)2 S0
c

A

m
cos θ C1α eN . (6.18)

The total acceleration induced by solar radiation can then be obtained as the sum of the
accelerations from all surfaces

aSRP = ν
surfaces∑

i

(
asurface

SRP,i + asurface
TRR,i

)
. (6.19)

The factor 0 ≤ ν ≤ 1 scales the acceleration based on a conical shadow model, for
example as described in Montenbruck and Gill (2000). It represents the percentage of
the Sun that is visible from the satellite’s point of view. Thus, ν = 0 means the satellite
is fully inside the occulting body’s shadow (umbra) and 0 < ν < 1 means it is in partial
shadow (penumbra). Figure 6.6 visualizes the conical shadow model and the partial
occultation occuring when a satellite is inside penumbra.
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Figure 6.6: Schematic visualization of conical shadow model and partial occultation (adapted
from Montenbruck and Gill, 2000)

In case of GNSS satellites, the main occulting body is Earth. The relative geometry
between Earth, Sun, and a satellite’s orbital plane leads to GPS, GLONASS, and Galileo
satellites entering a so-called eclipse season approximately twice per year. An eclipse
season usually lasts for around one month, during which a satellite crosses Earth’s
shadow once per revolution. Contrary to how it might appear in Figure 6.6, GNSS
satellites usually cross Earth’s penumbra in a few minutes, while the period in full
shadow can last up to an hour at the center of an eclipse season. Moon shadow crossings,
which can be modeled in the same way as for Earth, occur less frequently but should be
taken into account as well.

As mentioned at the beginning of this section, modeling solar radiation pressure analyti-
cally based on Equations (6.17) to (6.19) requires detailed information about all satellite
surfaces. In most cases, this information is only available in simplified form, for example
as a so-called box-wing model. Such a model represents the satellite bus as a cuboid
shape with six surfaces and two additional flat surfaces for the solar panels, hence the
name. Since most GNSS satellites have cuboid buses, this is a good approximation, al-
though it is missing many detailed structures on the surfaces, such as antennas, radiators,
and thrusters. Therefore, even if the areas and material properties of a box-wing model
were known perfectly, which is often not the case, the accuracy of such an analytical
model is limited.

Another limiting factor is that box-wing models do not account for self-shadowing (e.g.,
antennas or solar panels casting shadows on the bus) as they consider a satellite as a set
of independent surfaces and not as a whole. One reason for this is that in many cases
only values for the surface areas and not the full dimensions of the satellite are publicly
available. If detailed 3D models of the satellites were available publicly, solar radiation
pressure could ideally be modeled analytically based on ray tracing, as demonstrated,
for example, in Ziebart and Dare (2001), Z. Li et al. (2018), and Bhattarai et al. (2019).
Nevertheless, box-wing models allow for a physics-based approximate a priori modeling
of solar radiation pressure.
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In absence of sufficiently accurate analytical solar radiation pressure models, empirical
models are commonly applied in GNSS satellite orbit determination. These models aim
to describe the effect of solar radiation pressure on satellite orbits by means of a set
of empirical coefficients, which can be set up as parameters in the orbit determination
process. While empirical models usually improve the fit of orbits to observation data, it
is often difficult to derive physical meaning from their coefficients.

The most widely used empirical models are the Empirical CODE Orbit Model (ECOM)
presented in Beutler et al. (1994) and its extension ECOM2 (Arnold et al., 2015). They
represent the acceleration caused by solar radiation pressure (SRP) as

aSRP = a0,SRP + ν [D(∆u) eD + Y (∆u) eY +B(∆u) eB] , (6.20)

where a0,SRP is the acceleration from an optional a priori model, ν is the scale factor
from a conical shadow model, and

D(∆u) = D0 +DC1 cos ∆u+DS1 sin ∆u (6.21)

Y (∆u) = Y0 + YC1 cos ∆u + YS1 sin ∆u (6.22)

B(∆u) = B0 +BC1 cos ∆u +BS1 sin ∆u (6.23)

in case of ECOM or

D(∆u) = D0 +DC2 cos 2∆u+DS2 sin 2∆u+DC4 cos 4∆u+DS4 sin 4∆u (6.24)

Y (∆u) = Y0 (6.25)

B(∆u) = B0 +BC1 cos ∆u+BS1 sin ∆u (6.26)

in case of ECOM2. These functions describe the accelerations along three axes of a
satellite-Sun reference frame, where eD points from the satellite to the Sun, eY points
along the satellite’s solar panel axis, and eB completes the right-handed frame. The
acceleration along each axis consists of constant (�0) and x-per-revolution sine and
cosine (�Sx, �Cx) terms. The angular argument for ECOM was originally the argument
of latitude of the satellite uSat, but was changed to the difference between the argument
of latitude of the satellite and Sun ∆u = uSat − uSun with the introduction of ECOM2.
According to Arnold et al. (2015), this better suits the interpretation of the estimated
model parameters.

Not all of the terms in Equations (6.21) to (6.26) have to be used. Arnold et al. (2015)
compares several variations with different terms used in the parametrization of solar
radiation pressure during orbit determination. Within the analysis centers of the IGS,
the two most common parametrizations comprise D0, Y0, B0, BC1, BS1 (subsequently
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dubbed ECOM-5), as proposed in Springer et al. (1999b), and D0, DC2, DS2, Y0, B0,
BC1, BS1 (subsequently dubbed ECOM2-7). They only differ by the addition of the
twice-per-revolution terms along the satellite-Sun axis, which improves the ability of
the model to catch systematic effects caused by the elongated shape of GLONASS and
Galileo satellite buses (Arnold et al., 2015; Prange et al., 2017). In the reprocessing
campaign conducted within the context of this thesis, a combination of a priori box-wing
model and ECOM2-7 was used for all satellites.

It is also possible to use an empirical instead of an analytical model to determine a priori
solar radiation pressure. These models usually represent the acceleration due to solar
radiation pressure as a Fourier series with predetermined coefficients. Examples are the
ROCK-T models (Fliegel et al., 1992; Fliegel and Gallini, 1996), the model presented in
Springer et al. (1999a), and the GPS Solar Pressure Model (GSPM; Bar-Sever and Kuang,
2004). The latter two models have been derived from multiple years of in-orbit GPS
data. While they can be more accurate than box-wing models, the limited availability of
such models for newer satellite types and constellations means they are not widely used
for multi-GNSS orbit determination.

Rodriguez-Solano et al. (2012a) proposed an adjustable box-wing model as an inter-
mediate approach between analytical and empirical model. In this model the optical
properties of the satellite surfaces are estimated together with parameters for an acceler-
ation bias along the solar panel axis and a solar panel rotation lag. Rodriguez-Solano
et al. (2012a) showed that the model performs comparable to the ECOM in terms of
orbit overlaps, though there were systematic differences in the obtained orbits due to the
different nature of the two models. Duan et al. (2019, 2020) and Duan and Hugentobler
(2021) applied a similar approach to determine adjusted optical properties for several
satellite types that can be used in an a priori box-wing model. While these adjusted
optical properties do not strictly fulfill the constraint α + δ + ρ = 1, they have been
found to improve orbit discontinuities, ECOM parameter estimates, and SLR residuals.
Unfortunately, extended tests with these adjusted optical properties could not be made in
time for them to be considered in the reprocessing campaign presented in this thesis.

6.2.2.2 Earth radiation pressure

Earth reflects some of the incoming solar radiation back to space, thus inducing indirect
radiation pressure on orbiting satellites (Ziebart et al., 2004). This effect, called Earth
albedo, is limited to the illuminated part of Earth that is visible from a satellite’s point
of view. In addition, part of the incoming radiation is absorbed by Earth’s surface and
reemitted as thermal radiation. The absorbed heat is usually released slowly over time,
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which is the reason why thermal radiation can also originate from the dark side of
Earth.

Rodriguez-Solano (2009) and Rodriguez-Solano et al. (2012b) developed an Earth
radiation pressure model that is now widely used in GNSS satellite orbit determination.
It is based on a box-wing representation of the satellite and reflectivity and emissivity
maps of Earth’s surface. These maps were derived as monthly means over ten years
(2000-2009) of data from the Clouds and the Earth’s Radiant Energy System (CERES)
mission (Wielicki et al., 1996).

Following Knocke et al. (1988), the acceleration due to Earth radiation pressure (ERP)
can be computed by dividing Earth’s surface into small segments. On the satellite
side, the radiation from one segment of Earth’s surface induces an acceleration on all
illuminated surfaces of the box-wing model. Equations (6.17) and (6.18) can be reused
for this purpose. As the unit vector eD represents the direction of radiation in these
equations, here eD is the unit vector from the segment’s center (instead of the Sun) to
the satellite. The acceleration caused by one segment of Earth’s surface then is

asegment
ERP = A

πs2 cosφ
surfaces∑

i

[
τR cos γ

(
asurface

SRP,i (αO, δO, ρO) + asurface
TRR,i (αO)

)
+E

4
(
asurface

SRP,i (αI , δI , ρI) + asurface
TRR,i (αI)

) ]
.

(6.27)

Here, cosφ = eD · n represents the angle of reflected radiation, with n being the unit
normal vector of the segment. A is the surface area of the segment and s is the distance
between the satellite and the segment’s center. cos γ = eSun · n is the cosine of the angle
of incident radiation, based on the unit vector eSun from the segment’s center to the Sun.
The factor τ is 1 if the segment is illuminated by the Sun (i.e., cos γ > 0) or 0 otherwise.
Therefore, only illuminated segments produce an albedo effect based on the reflectivity
R of the segment. Since albedo concerns the visible spectrum of light, the respective
optical properties αO, δO, and ρO of a satellite surface are used. The effect caused by
thermal radiation, on the other hand, depends on the emissivity E of a segment and the
infrared properties αI , δI , and ρI of the satellite’s surface materials.

The total acceleration acting on the satellite can thus be obtained by accumulating the
accelerations caused by the individual visible segments

aERP =

visible
segments∑

j

asegment
ERP,j . (6.28)

A segment is only visible from the satellite’s point of view if cosφ > 0.
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Modeling Earth radiation pressure reduces several systematic effects in GNSS products
(Rodriguez-Solano et al., 2012c). It mainly affects the radial component of the satellite
orbits in the order of 1–2 cm. While the effect in the along and cross track components
is much smaller, it leads to systematic north-south biases in the station coordinates.
Therefore, it is important to consider this effect in GNSS processing.

6.2.2.3 Antenna thrust

GNSS satellites continuously transmit their navigation signals towards Earth. This radia-
tion results in a small, constant acceleration along the direction opposite to the antenna
boresight (i.e., away from Earth). Following Milani et al. (1987), this acceleration can
be modeled as

aAT = − P

cm
ez , (6.29)

where P is the transmit power of the satellite, c is the speed of light, m is the satellite’s
mass, and ez is the antenna boresight direction. Steigenberger et al. (2018) provides
transmit power values, which were measured with a large dish antenna, for several types
of GNSS satellites. Transmit power largely depends on the satellite type, with most types
only showing small variations between their satellites. In general, modern satellites
transmit at higher power levels than older ones due to more signals being transmitted
on more frequencies.

6.2.2.4 Relativistic correction of the equations of motion

It is important to consider relativistic effects in the equations of motion during orbit
modeling of near-Earth satellites. According to Petit and Luzum (2010), this relativistic
correction can be expressed in the form of an acceleration

arel = GMEarth

c2r3

{[
2 (β + γ) GMEarth

r
− γ ṙ · ṙ

]
r + 2 (1 + γ) (r · ṙ) ṙ

}
+ (1 + γ) GMEarth

c2r3

[ 3
r2 (r× ṙ) (r · J) + (ṙ× J)

]
+ (1 + 2γ) GMSun

c2r3
Sun

[(rSun × ṙSun)× ṙ] .

(6.30)

Here, GMEarth and GMSun are the gravitational coefficients of Earth and the Sun, c
is the speed of light, β and γ are post-Newtonian parameters (β = 1 and γ = 1 in
general relativity), and J is the vector of Earth’s angular momentum per unit mass
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(‖J‖ ∼= 9.8 · 108 m2/s). The vectors r, ṙ, rSun, and ṙSun are the geocentric positions and
velocities of the satellite and Sun, while r and rSun are their respective norms.

The relativistic correction in (6.30) comprises different effects. The first line describes
the main relativistic effect, which is induced by Earth’s Schwarzschild field and results in
a shift of the argument of perigee (Ashby and Bertotti, 1986). The terms in the second
and third line represent the Lense-Thirring and de Sitter precession, respectively. As
their names suggest, these effects cause a small precession of the orbital plane.

6.2.3 Variational equations and orbit parametrization

Variational equations (e.g., Montenbruck and Gill, 2000; Beutler, 2005) are one approach
to solve the system of equations in (6.15) and (6.16). Ellmer (2018) details how
variational equations are used to determine orbits of the Gravity Recovery And Climate
Experiment (GRACE) mission at Graz University of Technology. The same concept and
implementation is also used for GNSS orbit determination. The following brief summary
of variational equations is based on the above-mentioned references.

The equations of motion can be expressed as a first-order differential equation system

ẏ(t) = f(t,y,p, . . .) (6.31)

based on the satellite state vector

y(t) =
[
r(t)
ṙ(t)

]
, (6.32)

its time derivative

ẏ(t) =
[

ṙ(t)
a(t, r,p, . . .)

]
, (6.33)

and the vector of force model parameters p =
[
p1 . . . pn

]T
. Derivating Equa-

tion (6.31) with respect to the initial state vector y0 =
[
r0 ṙ0

]T
leads to

∂ẏ(t)
∂y0

= ∂f(t,y,p, . . .)
∂y0︸ ︷︷ ︸
=0

+∂f(t,y,p, . . .)
∂y

∂y(t)
∂y0

. (6.34)
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By introducing the state transition matrix

Φ(t) = ∂y(t)
∂y0

=


∂r(t)
∂r0

∂r(t)
∂ṙ0

∂ṙ(t)
∂r0

∂ṙ(t)
∂ṙ0

 , (6.35)

which contains the partial derivatives of the satellite position and velocity with respect
to the initial position and velocity, (6.34) can be written as

Φ̇(t) = ∂f(t,y,p, . . .)
∂y Φ(t) =

 03×3 I3×3
∂a(t, r,p, . . .)

∂r(t) 03×3

Φ(t) . (6.36)

Starting from the initial value Φ0 = I, the state transition matrix for each epoch t can
be determined by numerical integration using (6.36). Derivating Equation (6.31) with
respect to the unknown force model parameters p gives

∂ẏ(t)
∂p = ∂f(t,y,p, . . .)

∂p + ∂f(t,y,p, . . .)
∂y

∂y(t)
∂p . (6.37)

The parameter sensitivity matrix

S(t) = ∂y(t)
∂p =


∂r(t)
∂p
∂ṙ(t)
∂p

 (6.38)

contains the partial derivatives of the satellite state with respect to the n unknown
force model parameters p and can also be computed via numerical integration (e.g., see
Ellmer, 2018). Alternatively, it can be determined directly at each epoch t from the state
transition matrix via

S(t) = −Φ(t)
∫ t

t0
Φ−1(t′)

 03×n
∂a(t′, r,p, . . .)

∂p

 dt′ . (6.39)

The state transition and parameter sensitivity matrices are then used to connect the GNSS
observation equations to the orbit parameters (y0, p). The intermediate parameters zg
of an observation group (see Section 5.3) already contain the satellite position rs at
the respective epoch. Therefore, only the partial derivatives of rs(t) with respect to the
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satellite’s orbit parameters are missing to complete the link. The respective entries in
the design matrix Dg are

∂rs(t)
∂y0

= Φr(t) (6.40)

and

∂rs(t)
∂p = Sr(t) . (6.41)

Here, Φr and Sr refer to the position-related parts (i.e., the top half) of the respective
matrices. The partial derivatives of the velocity with respect to the orbit parameters
are not needed for the design matrix Dg as the intermediate parameters do not contain
satellite velocities.

The most common force model parameters in GNSS orbit determination are those of the
ECOM model. In this case, the partial derivatives in (6.38) are determined by derivating
(6.20) with respect to the ECOM parameters, for example

∂aSRP(t)
∂DC2

= ν cos 2∆u eD . (6.42)

Additional empirical parameters are often set up to further improve the fit of an orbit to
observations. This is done to mitigate imperfections in the applied force models. Various
parametrizations are possible (see Jäggi, 2007, for examples) and in use among the IGS
analysis centers. One parametrization, which was used for the reprocessing campaign
presented in this thesis, are so-called pseudostochastic pulses (Beutler et al., 1994).
These are small, instantaneous velocity changes at specific epochs, for example at the
center of a 24-hour orbit arc. Such empirical parameters are usually constrained in
order to limit their impact. The main reason is that they usually do not have a physical
interpretation and the dynamic nature of an orbit should be maintained as much as
possible. Ideally, future improvements in force modeling would render this type of
parameter unnecessary.

6.2.4 Sensitivity analysis

This section presents analyses of how sensitive GNSS satellite orbits are to certain forces
being disregarded or modeled in different ways. The motivation for these analyses
was threefold: Firstly, to assess the impact of certain forces that are not commonly
modeled by IGS analysis centers but were included in the reprocessing conducted at
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TUG. Secondly, to see how some model changes introduced for repro3 affect the modeled
orbits. Lastly, to get an overview of how the various satellite types in use over the years
and constellations are affected by certain models.

The analyses were conducted by integrating daily orbits based on various force model
configurations. These orbits were then fitted to the orbits determined in the reprocessing
campaign by estimating the initial state vector and a set of solar radiation pressure
parameters. The reference solution followed the configuration of the reprocessing
campaign (see Section 8.1.1). For each solution, only the targeted force model was
disabled or replaced by another model, while all other force models remained identical
to the reference solution. The analyses covered all GPS, GLONASS, and Galileo satellites
over the period 1994–2020. The impact of the respective model was then assessed in
terms of 1D root mean square (RMS) of the orbit differences between that solution and
the reference solution. The RMS values were computed per day and satellite type since
this is the main differentiating factor for certain forces.

The results of these analyses are briefly summarized in the following list.

Satellite attitude Satellite attitude not only affects the GNSS phase observations, but
also directly influences the effects of nonconservative forces, mainly solar radiation
pressure. Figure 6.7 shows the impact of using the attitude models described in
Section 6.1 versus using nominal yaw-steering attitude. The values are limited
to those satellites that are in eclipse season at the respective days. The largest
differences can be seen for GPS-II and GPS-IIA mainly due to their post-shadow
recovery maneuvers, where the yaw angle can deviate significantly from its nominal
value while the satellite is exposed to solar radiation pressure. Other satellite
types show RMS values up to a few millimeters, which can largely be attributed to
their attitude behavior around orbit noon. Overall, the results show that attitude
modeling definitely should be applied during orbit integration.

A priori box-wing solar radiation pressure The impact of using an a priori box-wing
model in addition to estimating the ECOM2-7 parameters can be seen in Figure 6.8.
An RMS of around 3 mm for most satellite types shows that empirical parameters
alone cannot fully replace a physics-based model. This is even more obvious for
Galileo satellites, where even the additional DC2 and DS2 ECOM parameters do
not appear to be able to fully account for their elongated bus shape. The large
differences for GPS-I satellites, on the other hand, can more likely be attributed to
an inadequate box-wing model.

Empirical solar radiation pressure Figure 6.9 showcases the very significant impact
of the additional DC2 and DS2 parameters of ECOM2-7 compared to ECOM-5. An
a priori box-wing model was used in both cases. Galileo satellites being among
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the smallest differences indicates that their box-wing model already accounts for a
good part of these twice-per-revolution effects.

Antenna thrust Figure 6.10 makes it clear why modeling antenna thrust is important.
This is especially true for newer satellites that usually transmit at a higher power
level, and even more so for the comparatively lightweight Galileo satellites.

Ocean tides The choice of ocean tide model (FES2004, EOT11a, FES2014b) does not
have a significant impact on orbit modeling. Differences are below 1 mm, which
accords with the findings of Dach et al. (2021).

Atmospheric tides The impact of atmospheric tides on modeled orbits is below 1 mm.

Nontidal mass variations Variations in atmospheric pressure, wind-induced ocean
currents, and changes in terrestrial water storage affect GNSS satellite orbits at a
level below 1 mm.

C20 gravity field coefficient In the 1990s and early 2000s, the trend component of
the C20 gravity field coefficient diverges between recent gravity field models (e.g.,
GOCO06s) and what is observed by SLR (e.g., Meyer et al., 2019). However, the
impact of using the SLR-based trend on GNSS satellite orbits is well below 1 mm.

Secular pole The adoption of the secular pole (Ries, 2017) instead of the mean pole
originally stated in the IERS conventions (Petit and Luzum, 2010) does not mean-
ingfully affect orbit modeling.

These analyses confirm that some of the investigated models, such as atmospheric tides
and nontidal mass variations, can be safely disregarded during orbit modeling at the
current level of GNSS orbit accuracy. However, they may become significant once higher
orbit accuracies can be achieved in the future.

6.3 Clock errors

The fundamental principle of GNSS is a one-way runtime measurement using two clocks,
one at the transmitter and one at the receiver (e.g., Beard and Senior, 2017). Since these
clocks are usually not synchronized, their clock readings refer to different time scales. In
high-precision GNSS processing, it is essential that all measurements are processed in a
common reference time scale. Therefore, the offset or error between the individual time
scales and the reference time scale has to be accounted for.

In undifferenced processing approaches, such as the raw observation approach described
in this thesis, clock errors have to be estimated as unknown parameters. Since clocks
are affected by noise and other short-term variability, clock errors are commonly set up
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Figure 6.7: Impact of attitude modeling on orbits

Figure 6.8: Impact of a priori solar radiation pressure box-wing model on orbits

Figure 6.9: Impact of empirical solar radiation pressure model (ECOM-5 vs. ECOM2-7) on orbits

Figure 6.10: Impact of antenna thrust on orbits
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as independent epoch-wise parameters per transmitter and receiver (e.g., Weiss et al.,
2017). Several studies (e.g., Weinbach and Schön, 2011; Orliac et al., 2012; Hackel et al.,
2015; Koch et al., 2017; Qing et al., 2017) have investigated clock modeling techniques
that introduce stochastic and/or deterministic connections between epochs. They found
that this benefits the resulting GNSS solutions in various ways, for example by reducing
orbit midnight discontinuities and SLR residuals. Nonetheless, clock modeling is not yet
commonly applied by IGS analysis centers and was also not used during the reprocessing
presented in this thesis. Therefore, it is not discussed further here, even though research
in this direction is currently ongoing at Graz University of Technology.

6.3.1 Clock parametrization

As described in Section 5.3, the intermediate parameters for an observation group
contain clock errors at the transmitter and receiver. The partial derivatives of the
observation equations with respect to these parameters are already addressed in the
design matrix Cg. Therefore, the elements of the design matrix Dg that connect the
intermediate clock parameters to the final clock parameters of the respective receiver
and transmitter at that epoch are simply 1.

6.3.2 Rank deficiencies and time scale alignment

Estimating clock errors for all transmitters and receivers at the same time leads to a rank
deficiency in the normal equation matrix (e.g., Weiss et al., 2017). The reason for this is
that there are only relative observations between the satellites and receivers while there
is no absolute alignment of the clocks. A common way to resolve this rank deficiency is
to introduce one highly stable clock as a known absolute reference. For example, this
could be a GNSS receiver that is connected to a hydrogen maser operated at a timing
laboratory. This implies that the time scale of that clock is used as the reference time
scale in the processing.

Alternatively, it is also possible to use the mean over a set of clocks as an absolute
alignment. This could comprise several highly stable ground-based clocks or, for example,
all satellite clocks of one or more GNSS constellations. Since these satellites also have
highly stable on-board atomic clocks, in case of Galileo even hydrogen masers, they are
well suited for such a zero-mean constraint. In principle, a combination of receivers and
satellites is possible as well.
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In case of epoch-wise clock estimation, a zero-mean constraint has to be added at each
epoch. It can be introduced in the form of an additional observation equation

0 =

zero-mean
satellites∑

i

δsi(t) +

zero-mean
receivers∑

j

δrj (t) . (6.43)

The resulting row in the design matrix A(t) then contains ones at the parameter in-
dices of the receiver and/or satellite clocks used for the zero-mean constraint. The
strength of the constraint can be controlled via the standard deviation associated to the
pseudoobservation.

As mentioned above, a zero-mean constraint can be used to absolutely align the reference
time scale. In the reprocessing conducted in the context of this thesis, a zero-mean
constraint over all GPS satellites was applied to resolve the rank deficiency and to align
the reference time scale to GPS time. Since the clock errors at the receivers are the same
for all GNSS constellations, this means that any offsets in system-wide time scales with
respect to GPS time are shifted to the satellite clocks of the other systems (i.e., GLONASS
and Galileo). Therefore, no additional parameters have to be set up to account for such
inter-system time offsets.

Clock errors at the satellites and receivers are also fully correlated with their respective
code biases. Thus, additional rank deficiencies occur when clock errors and code biases
are estimated together. Section 6.5 addresses this issue and how it can be solved.

6.4 Ionosphere

The ionosphere is the part of Earth’s atmosphere that contains a high density of ionized
molecules and free electrons (e.g., Hofmann-Wellenhof et al., 2008; Hernández-Pajares
et al., 2011; Hobiger and Jakowski, 2017). It typically ranges from 50 km to 1000 km
altitude. Radio waves traveling through the ionosphere are refracted. The refractive
index mainly depends on the electron density ne. The STEC describes the integral

STEC =
∫
ne ds (6.44)

of this density along the signal path psr. The vertical total electron content (VTEC), on
the other hand, is the integral

VTEC =
∫
ne dh (6.45)
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Figure 6.11: Single-layer ionosphere model (adapted from Schaer, 1999)

along the zenith direction starting from a point usually located on Earth’s surface. Both
are commonly expressed in TEC units (TECU), with 1 TECU = 1016 electrons/m2.

The ionosphere is a dispersive medium with respect to the frequency bands used in
GNSS (Hofmann-Wellenhof et al., 2008). Therefore, the ionospheric refraction depends
on the signal frequency. In addition, the ionosphere increases the phase velocity of
waves traveling through it while decreasing the velocity of the signal group envelope
(i.e., codes modulated onto the carrier wave). For GNSS signals, this means that phase
observations are measured too short and code observations too long.

The ionosphere can be modeled using so-called Chapman layers (Chapman, 1931).
These layers describe the electron density at a certain altitude. The most important
layers are called D, E, F1, and F2 (e.g., Budden, 1985). They describe regions of special
interest in terms of ionospheric characteristics. A detailed description of these layers and
their vertical distribution can be found, for example, in Hobiger and Jakowski (2017). In
practice, the ionosphere is often approximated by a single thin layer at a certain altitude
(Hoque and Jakowski, 2008). Such a single-layer model is visualized in Figure 6.11.

6.4.1 Ionospheric correction

The ionospheric correction becomes a nonlinear function of the STEC when higher-order
ionospheric effects are taken into account. Higher-order ionospheric corrections were
first considered by Brunner and Gu (1991) and Bassiri and Hajj (1993) and can amount
to several centimeters under severe ionospheric conditions, especially at low elevation
angles. Following Fritsche et al. (2005) and Hoque and Jakowski (2008), the ionospheric
correction for code and phase measurements (in meters) on frequency ν are

iono([Cν], t,psr) = q

ν2 STEC + s

ν3 STEC + r

ν4 STEC2 (6.46)
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and

iono([Lν], t,psr) =− q

ν2 STEC− s

2ν3 STEC− r

3ν4 STEC2

+
bgeometric − bdTEC

ν4 STEC2 ,
(6.47)

respectively. Here, ν is in Hz and STEC is in electrons/m2.

The first three terms in both equations are the first-, second-, and third-order corrections.
The first-order term uses the constant factor

q = e2

8π2ε0me
≈ 40.309 m3/s2 , (6.48)

where e is the elementary charge (i.e., the electric charge of a proton), ε0 is the vacuum
permittivity, and me is the electron rest mass (Hobiger and Jakowski, 2017).

The second-order term contains

s = 7527 cb · k , (6.49)

where c is the speed of light, b is the magnetic field vector at the point where the signal
path pierces the single ionosphere layer (see Figure 6.11), and k is the line-of-sight
unit vector from the satellite to the receiver as defined in Equation (5.13). Both vectors
must be expressed in the same reference frame (e.g., the CRF). The magnetic field
vector b can be determined from a magnetosphere model, for example the International
Geomagnetic Reference Field (IGRF; Alken et al., 2021). The choice of altitude for the
single ionosphere layer usually varies between 350 km and 450 km depending on the
study (e.g., Schaer, 1999; Fritsche et al., 2005; Hernández-Pajares et al., 2007). In this
thesis, the layer is set at an altitude of H = 450 km.

The third-order term uses the coefficient

r = 2437 η Nmax (6.50)

with the peak electron density Nmax = (20−6) 1012

(4.55−1.38) 1018 and a shape parameter η = 0.66
(Fritsche et al., 2005).

The fourth term in (6.47) is a combined correction for what Hoque and Jakowski (2008)
calls excess path length and range error due to TEC difference at different frequencies.
They are also commonly referred to as geometric bending and dTEC bending. The former
describes the difference in length between the geometrical range and the curved path
for a signal on frequency ν, while the latter corrects for the slightly different STEC that
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signals experience on their curved paths compared to the STEC along the line-of-sight
path. The geometric bending factor is

bgeometric = 7.5 e−2.13E

109HF2 h
0.25
m,F2

(6.51)

and the dTEC bending factor is

bdTEC = q
0.1108 e−2.1844E

HF2 h
0.3
m,F2

. (6.52)

Here, q is the constant factor from (6.48), E is the elevation angle of the incoming
signal at the receiver, HF2 = 70 km is the F2 layer scale height in kilometers, and
hm,F2 = 350 km is the F2 peak ionization height, also in kilometers. Equations (6.51)
and (6.52) have been slightly reformulated compared to Hoque and Jakowski (2008)
such that all terms in (6.47) result in units of length (i.e. meters) given that ν is in
Hz and STEC is in electrons/m2. In this thesis, the two bending corrections are only
applied to phase observations, as they are insignificant with respect to the relatively low
precision of code observations.

Hobiger and Jakowski (2017) provides approximate values for the magnitude of the
different corrections. The following ranges are representative for phase observations
on the typical GNSS frequency bands, with GPS L1 on the low end and L5 on the high
end of the spectrum. The corrections for code observations are larger by factors 2 and 3
for the second- and third-order effects, see (6.46) and (6.47). The first-order correction
can amount up to 100–150 m. Under high solar activity and at low elevations, the
second-order correction can reach 12–29 cm. The third-order correction should not
exceed 6–19 mm even under extreme conditions. The geometric bending errors are
usually only significant at elevations below 30°, where they can exceed 1 cm. Under
severe solar activity, they can, however, reach up to 5–17 cm. No values are given for
dTEC bending, but since it has opposite sign, it at least partially cancels the geometric
bending (Petrie et al., 2010).

6.4.2 Parametrization of the ionosphere

Section 5.2 describes how the ionospheric influence can be considered by preeliminating
an STEC parameter from the observation equations of an observation group. The
design matrix Bg from Equation (5.5) contains the partial derivatives of the observation
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equations with respect to the STEC parameter. Based on (6.46) and (6.47), these partial
derivatives are

∂ iono([Cν], t,psr)
∂STEC = q

ν2 + s

ν3 + 2r
ν4 STEC (6.53)

and

∂ iono([Lν], t,psr)
∂STEC =− q

ν2 −
s

2ν3 −
2r
3ν4 STEC + 2

bgeometric − bdTEC

ν4 STEC (6.54)

for code and phase observations, respectively. The third-order and bending terms
in (6.53) and (6.54) already depend on the STEC. Section 5.7 describes how the
preeliminated STEC parameters can be reconstructed after the normal equation system
is solved. Thus, the estimated STEC values can be stored and used as a priori values
in (6.53) and (6.54) for subsequent iterations of the least-squares adjustment. For the
first iteration, when no STEC values have been determined yet, setting STEC = 0 is
sufficient, as the third-order and bending terms only have a small effect on the solution.
They are then considered starting from the second iteration. Alternatively, an a priori
ionosphere model could be used to determine STEC values for the first iteration, if
available.

One issue of estimating ionospheric STEC parameters is that they cannot be separated
from clock and code bias parameters (Schaer, 1999). This results in biased estimates
for these parameters. A proper separation is only possible if additional information is
introduced into the equation system. This can be done in several ways. One option is to
apply an ionospheric mapping function. Such a function maps the STEC values from
the different observation groups at one point in time to a common VTEC value for each
receiver.

Schaer (1999) proposed a mapping function mI based on a modified single-layer model
in the form of

STEC(z) = mI(z) VTEC = 1
cos z′VTEC (6.55)

with

sin z′ = R

R+H
sin(αz) . (6.56)

Here, z is the zenith angle of the incoming signals at the receiver, R = 6371 km is
the radius of Earth, H = 506.7 km is the altitude of the single ionosphere layer (see
Figure 6.11), and α = 0.9782 is a correction factor (Feltens et al., 2018).
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VTEC parameters are usually set up for each station and each epoch. The corresponding
entry for a VTEC parameter in the design matrix Dg is

∂fg
∂VTEC = mI(z)

∂fg
∂STEC = mI(z) Bg . (6.57)

As described above, mI is the mapping function from (6.55). The design matrix Bg

contains the partial derivatives with respect to the STEC parameter as defined in (6.53)
and (6.54) . Note that in this case Bg refers to the respective design matrix before the
homogenization step described in Section 5.4.

Ionospheric mapping functions cannot fully describe the ionosphere. Therefore, if they
are used to set up VTEC parameters, it is still necessary to parameterize ionospheric
scintillations in the form of residual STEC parameters ∆STEC, resulting in

STEC = mI(z) VTEC + ∆STEC . (6.58)

These parameters should be loosely constrained (e.g., with σ∆STEC = 40 TECU) so that
they only capture residual scintillations while the VTEC parameters represent the main
part of the ionospheric delay. Such a constraint can be applied by adding an additional
observation equation

0 = ∆STEC (6.59)

to each observation group. The standard deviation assigned to this pseudoobservation
defines the strength of the constraint.

Setting up epoch-wise VTEC parameters for each station results in a large number of
parameters. This can become an issue when processing large networks with hundreds
of stations at a high sampling period. In such a case, the equation system can contain
millions of VTEC parameters. Additionally, the ionospheric parameters themselves
are not of primary interest in the analyses described in this thesis. The main goal of
introducing additional information about the ionosphere is to obtain unbiased signal
bias estimates.

These considerations lead to another possible approach (see Section 5.9.3). Instead
of introducing potentially millions of VTEC parameters into the main equation system,
the additional ionospheric information is introduced in a separate step. Section 6.5.3
describes how code biases are parameterized in the form of linear combinations. Some of
these bias linear combinations are not estimable due to the influence of the ionosphere.
However, they can be estimated in a separate equation system that only contains VTEC
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parameters and the inestimable bias linear combinations while all other parameters are
introduced as known. This procedure is described further in Section 6.5.3.3.

An alternative to estimating VTEC parameters at each receiver is to estimate global
ionosphere maps. They usually represent the ionosphere in the form of spherical
harmonics. However, they were not used for the reprocessing conducted in the context
of this thesis and are thus not discussed further here. For more information on global
ionosphere maps, see, for example, Schaer (1999), Hernández-Pajares et al. (2009), and
Wielgosz et al. (2021)

6.5 Code biases

Signal biases are hardware delays that occur during the transmission and reception of
GNSS signals (Håkansson et al., 2017). On the satellite side, there is a delay between
the generation of a signal and its transmission at the antenna. The same is the case on
the receiver side, where a delay occurs between signal reception at the antenna and the
actual measurement of a specific signal in the receiver. As the name suggests, code biases
refer to the delays affecting code observations. Similarly, phase observations are affected
by phase biases, which are discussed in Section 6.6. In general, signal biases differ per
constellation, satellite, frequency, signal attribute (e.g., C, W, I, Q), as well as receiver
hardware and settings (Hauschild and Montenbruck, 2016; Sleewaegen and Clemente,
2018; N. Wang et al., 2020). This section assumes that code biases are constant over the
processing period (e.g., one day), which is usually valid according to Håkansson et al.
(2017).

The main issue with signal biases is that they are usually not known. Therefore, they
have to be estimated during GNSS processing. However, the relative nature of GNSS
observations prevents the estimation of absolute signal biases (Villiger et al., 2019).
Furthermore, code biases are highly correlated with clock errors (see Section 6.3) and
the ionospheric STEC described in Section 6.4 (e.g., Schaer, 1999; N. Wang et al., 2020).
This results in several rank deficiencies in the normal equation system, which have to
be resolved in some way. One possible solution to resolve these rank deficiencies is
presented in Section 6.5.3.

6.5.1 Composite signals

Another issue is that some receivers track linear combinations of the signals transmitted
by the satellites (e.g., Won and Pany, 2017). For instance, some legacy GPS receivers
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track the linear combination C2D = C1C + (C1W− C2W) of the basic signals C1C, C1W,
and C2W (Woo, 2000). Another common technique is to track a combination of data
and pilot signal (e.g., Borio and Lo Presti, 2008). One example for this are the Galileo
X signals (e.g., C1X, C5X), which are linear combinations of the respective data (C1B,
C5I) and pilot (C1C, C5Q) signals (Romero, 2020). However, in an exemplary linear
combination C5X = αC5I + β C5Q, it is not always clear what the factors α and β are
(Sleewaegen and Clemente, 2018). They might be split evenly (i.e., α = β = 0.5), but
some receivers might also employ more sophisticated techniques, such as adjusting the
factors depending on the elevation angle. Since receiver manufacturers often implement
proprietary tracking techniques, information on this is usually not publicly available. In
absence of this information, an even split is assumed for all composite signals in this
thesis (except for GPS C2D, see above).

In terms of parametrization, composite signals are handled differently at the receiver
and satellite. At the receiver side, each observed code signal has its own bias parameter,
regardless of whether it is one of the basic signals transmitted by a satellite or a composite
signal. The reason for this is that biases for the composite signals generally cannot be
separated at the receiver level. Even if a receiver would additionally track the basic
signals that form the composite signals, they would likely be processed in separate
channels within the receiver, which could result in differing biases.

In contrast, code biases are only set up for the basic signals that are actually transmitted
at the satellite side. For instance, at one of the older GPS satellites, only code biases
for C1C, C1W, and C2W are set up. This implies the need for a transformation matrix
that maps observed signal types to transmitted signal types. An example of such a
transformation matrix for legacy GPS signals is given in Equation (5.22). For a receiver
tracking Galileo X signals, this transformation matrix (limited to code signals) could be

∂f [C]g
∂b[C]s =

C1B C1C C5I C5Q C7I C7Q C8I C8Q


C1X 0.5 0.5
C5X 0.5 0.5
C7X 0.5 0.5
C8X 0.5 0.5

. (6.60)

This transformation already gets taken into account when setting up the intermediate
parameters (see Section 5.3). As stated in (6.60), the transformation matrix represents
the partial derivatives of the code observation equations f [C]g with respect to the
intermediate satellite code biases b[C]s.
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6.5.2 GLONASS

In contrast to other GNSS, GLONASS employs FDMA to distinguish between satellites
(e.g., Revnivykh et al., 2017). This means that their satellites transmit at slightly
different frequencies, denoted by a frequency number (see Section 2.2). As a result, the
receiver code bias for a specific code observation type (e.g., C1P) can differ per frequency
number (N. Wang et al., 2020). Therefore, it is necessary to set up an individual code
bias parameter for each combination of code observation type and frequency number
that is observed at the receiver. This significantly increases the number of signal bias
parameters that have to be set up per receiver, resulting in longer processing times and
increased memory demand. In addition, it further increases the complexity of resolving
the rank deficiencies in the normal equation system, as the GLONASS constellation
practically splits up into a number of subconstellations. Each of these subconstellations
consists of one or two satellites that transmit on the same frequencies and thus share
the same receiver code biases.

6.5.3 Parametrization and resolution of rank deficiencies

Code biases are most commonly considered in the form of differential code biases
(e.g., Montenbruck et al., 2014; N. Wang et al., 2016; Xue et al., 2016; Sanz et al.,
2017). However, with an increasing number of different signals transmitted by the GNSS
constellations, it becomes more and more complex to analytically define differential
parametrizations for code biases. Another approach is to estimate observable-specific,
pseudo-absolute code biases (Villiger et al., 2019). In this case, each observable has its
own code bias. This simplifies the formulation of the bias parameters, but additional
conditions have to be introduced in order to deal with the rank deficiencies arising
from the increase in parameters. Both parametrizations are compatible, meaning code
biases can be transformed from observable-specific to differential and vice versa (e.g.,
Håkansson et al., 2017; Villiger et al., 2019; Banville et al., 2020).

As mentioned above, estimating code biases for each signal together with ionospheric
parameters and clock errors leads to rank deficiencies in the normal equation system.
The approach taken in this thesis is to utilize linear combinations of code biases. The
basic idea is to not estimate the individual code biases directly, but to instead determine
estimable linear combinations of biases. These estimable linear combinations are,
however, not defined analytically. The reason for this is that it is exceptionally complex
to define which linear combinations of biases are estimable in a particular multi-GNSS
environment. Some of the main challenges (i.e., composite signals, GLONASS using
FDMA, network splits) have been mentioned in the previous sections. Instead, the linear
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combinations of code biases that are estimable are determined numerically. This process
can be separated into a local and a global component. The former is local to one receiver
or satellite, while the latter concerns the collective of all receivers and satellites in the
system.

6.5.3.1 Local satellite and receiver rank deficiencies

A simplified normal equation system is set up independently for each satellite and each
receiver. In case of a satellite, each receiver tracking that satellite contributes a single
time-independent group of pseudoobservations. The respective observation equations
are of the simplified form

f [Cνa]sr = −δs + t[Cνa]r · b[C]s + q

ν2 STECs
r , (6.61)

where δs is the (mean) satellite clock error and t[Cνa]r is a vector containing the
mapping from the observed code type to the signal biases of the transmitted code types
in b[C]s. For instance, this mapping could be t[Cνa]r = [1 1 −1]T in case of a legacy
C2D observation to an older GPS satellite that only transmits C1C, C1W, and C2W. More
generally, it follows from

∂f [C]g
∂b[C]s = Tr =


t[Cνa]Tr,1

...
t[Cνa]Tr,n

 , (6.62)

for which an example was given in (6.60). The last term in (6.61) represents the (mean)
ionospheric influence in these simplified observation equations. Here, it is sufficient
to only consider the first-order correction based on q from Equation (6.48) and the
signal frequency ν. If additional information about the ionosphere is introduced into
the overall normal equation system, for instance in the form of VTEC mapping functions
(see Section 6.4.2), this last term is discarded and no STEC parameter is set up in the
simplified normal equation system. Otherwise, the STEC parameter is eliminated from
each group on the observation equation level following the procedure described in
Section 4.2.2.1 and using the design matrices

A =
[
∂f [C]sr
∂δs

∂f [C]sr
∂b[C]s

]
=


−1 t[Cνa]Tr,1
...

...
−1 t[Cνa]Tr,n

 and B = ∂f [C]sr
∂STECs

r

=


q
ν2 1
...
q
ν2 n

 . (6.63)

106 Chapter 6 Parametrizations, models, and corrections



If one wants to follow the IGS convention of defining the clock datum based on the GPS
C1W and C2W signals (e.g., Kouba, 2009a; Villiger et al., 2019), the respective two
columns in A have to be set to zero (or removed) for GPS satellites. The code biases for
the two types are then implicitly set to zero at the satellites.

In the next step, the individual normal equation matrices Ni = AT
i Ai for each receiver

are accumulated following Section 4.2.3. The satellite clock parameter can then be
eliminated from this accumulated normal equation matrix (see Section 4.2.2.2), leaving
only the bias parameters. The eigenvalue decomposition (e.g., Golub and Van Loan,
2013)

N = QΛQT (6.64)

of this matrix reveals its nullspace. The eigenvectors linked to zero eigenvalues contain
the linear combinations of the code bias parameters that are not estimable, while those
linked to nonzero eigenvalues are. The dimension of the nullspace changes depending
on whether additional ionospheric information has been introduced or not. It is smaller
when, for example, additional VTEC parameters are set up based on mapping functions
and residual STEC parameters are loosely constrained to zero (see Section 6.4.2). If
no additional information about the ionosphere is introduced and all STEC parameters
are estimated freely, the resulting nullspace is larger and fewer linear combinations are
estimable.

Figure 6.12 shows some examples of the eigenvector matrices for this case. Each column
represents a linear combination and each cell in a column corresponds to the factor of
the respective observable. For instance, the nullspace at satellite G01 is fully defined
by applying the above-mentioned IGS convention (i.e., setting C1W and C2W to zero).
Another interpretation of this nullspace is that one linear combination represents a clock
bias and the other a common TEC bias to all GPS receivers. This TEC bias cannot be
determined without additional information about the ionosphere. The nullspace for
Galileo satellite E01 contains three linear combinations because the receiver network
splits into one set of receivers tracking the pilot (C, Q) signals and another tracking a
combination of data and pilot (X) signals. Therefore, the nullspace comprises a clock
bias and two TEC biases, one for each subnetwork.

The rank deficiencies local to the satellite can be resolved by removing the local nullspace.
This can be achieved with the parameter transformation

b[C]s = Q̄sxb̄[C]s , (6.65)
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(b) Satellite E01 (E210, GAL-2)
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(d) Station WTZ3 (Wettzell, Germany) with re-
ceiver JAVAD TRE_G3TH DELTA

Figure 6.12: Examples for eigenvector matrices (Qs, Qr) used to determine nullspace and
estimable code bias linear combinations at each satellite and receiver in case of
GPS and Galileo processing and no additional ionospheric information
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where b[C]s are the observable-specific satellite code bias parameters, xb̄[C]s are the
parameters for the estimable satellite code bias linear combinations, and Q̄s

is the
slice of the eigenvector matrix Q that only contains the eigenvectors linked to nonzero
eigenvalues in its columns. This implies that no parameters are set up for the linear
combinations that cannot be estimated. The slice of the design matrix Dg containing
the partial derivatives of the intermediate satellite code bias parameters b[C]s of an
observation group g (see Section 5.3) with respect to the estimable satellite code bias
linear combinations then follows as

∂b[C]s

∂xb̄[C]s
= Q̄s

. (6.66)

The procedure is almost identical for the code biases local to a receiver. In this case,
each satellite tracked by the receiver contributes a single time-independent group of
pseudoobservations. The simplified observation equations

f [Cνa]sr = δr + b[Cνa]r + q

ν2 STECs
r (6.67)

contain the receiver clock error δr and the observable-specific receiver code bias b[Cνa]r.
No bias type mapping is necessary here since each code observable has its own code
bias at the receiver. Again, the STEC parameter is only set up in case no additional
information about the ionosphere has been introduced. The STEC (if set up) and
clock parameters are eliminated in the same way as detailed above and the normal
equations are accumulated over all satellites. The accumulated normal equation matrix
is eigenvalue decomposed and the columns of the eigenvector matrix linked to nonzero
eigenvalues form a parameter transformation matrix Q̄r for the receiver. Two examples
of eigenvector matrices for receivers observing GPS and Galileo are shown in Figure 6.12.
The three linear combinations in the nullspace at each receiver can again be interpreted
as a clock bias and two TEC biases, one for the GPS and one for Galileo constellation. The
entries in the design matrix Dg that contain the partial derivatives of the intermediate
receiver code bias parameters b[C]r with respect to the estimable receiver code bias
linear combinations xb̄[C]r are

∂b[C]r
∂xb̄[C]r

= Q̄r . (6.68)

The parameter transformation matrices Q̄s
and Q̄r can be stored and used later to trans-

form the estimated code bias linear combinations back to observable-specific code biases.
With the local rank deficiencies resolved, there still remain global rank deficiencies,
which are discussed in the next section.
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6.5.3.2 Global rank deficiencies

Global rank deficiencies occur when both satellite and receiver code biases are estimated
together. This issue is comparable to the combined estimation of satellite and receiver
clock errors (see Section 6.3.2). However, in the case of code biases the situation is much
more complex. Firstly, the signals transmitted by the satellites differ per constellation and
sometimes within a constellation. Secondly, some receivers measure linear combinations
of the transmitted signals. Lastly, the network of receivers might split into subnetworks
that do not share any observation types to a specific constellation. For example, most
Galileo-capable receivers observe either the pilot signals (e.g., C1C, C5Q, C7Q, C8Q)
or a combination of data and pilot (e.g., C1X, C5X, C7X, C8X), but usually none of the
receivers in the network observe both at the same time. All of this makes it exceptionally
hard to define an analytical resolution to these rank deficiencies that is valid under all
circumstances.

An alternative approach is to dynamically determine the linear combinations of code
biases that are not estimable globally. Similar to the local case, a small, time-independent
normal equation system that only contains the relevant parameters is set up. In this case,
the pseudoobservation equations between a receiver and a satellite have the form

f [Cνa]sr = δr − δs + q̄[Cνa]r · xb̄[C]r + t[Cνa]r ·
(
Q̄sxb̄[C]s

)
+ q

ν2 STECs
r . (6.69)

They contain the receiver and satellite clock errors (δr, δs), the estimable linear combina-
tions of receiver and transmitter code biases (xb̄[C]r , xb̄[C]s), and the ionospheric STEC.
Identical to the local case, the STEC term is discarded if additional information about
the ionosphere has been introduced (see Section 6.4.2). The vector q̄[Cνa]r contains
the transformation from the observable-specific receiver code bias to the estimable bias
linear combinations and can be obtained from

Q̄r =


q̄[Cνa]Tr,1

...
q̄[Cνa]Tr,n

 . (6.70)

The matrix Q̄r has been determined during the resolution of the local rank deficiencies
at each receiver. Similarly, Q̄s

comes from resolving the local rank deficiencies at each
satellite. The transformation t[Cνa]r from observed signal type to transmitted signal
types is defined in (6.62).

110 Chapter 6 Parametrizations, models, and corrections



The design matrices for one group of pseudoobservations between a receiver and
transmitter are

A =
[
∂f [C]sr
∂δr

∂f [C]sr
∂δs

∂f [C]sr
∂xb̄[C]r

∂f [C]sr
∂xb̄[C]s

]
=
[
1 −1 Q̄r TrQ̄

s
]

(6.71)

and B as defined in (6.63) in case the STEC parameter has been set up. In (6.71), 1
is a vector populated by ones and Tr follows from (6.62). Equivalently to the local
case, the ionospheric STEC parameter is eliminated on the observation equation level
(see Section 4.2.2.1) if it has been set up (i.e., no additional information about the
ionosphere has been introduced). Then, the normal equation matrices Ni = AT

i Ai are
formed for each observation group (i.e., receiver-satellite pair). All individual normal
equation matrices are then accumulated. The accumulated normal equation matrix
contains clock error and code bias parameters for each receiver and satellite.

In the next step, all clock error parameters are eliminated on the normal equation level
(see Section 4.2.2.2). However, in the global case, a rank deficiency occurs when receiver
and transmitter clock errors are set up together. It can be resolved by adding a zero-mean
constraint over all receiver and satellite clock parameters to the normal equations in
the form of an additional pseudoobservation equation (see Section 6.3.2). After the
constraint has been added and all clock errors have been eliminated, only the code bias
parameters remain in the normal equation matrix.

Finally, the eigenvalue decomposition N = QΛQT of this normal equation matrix
reveals its nullspace. In contrast to the local case, the inestimable parameters are not
removed globally. Instead, the matrix Q̃, which contains the eigenvectors from Q that
are linked to zero eigenvalues in its columns, is used to define constraint equations

0 = Q̃xb̄[C] . (6.72)

Here, xb̄[C] contains all estimable receiver and satellite code bias linear combinations as
determined in Section 6.5.3.1. These constraint equations can be introduced into the
full normal equation system, where they resolve the remaining global rank deficiencies
of the code bias parameters.

As mentioned further above, after the code bias linear combinations have been estimated,
they can be transformed back to observable-specific code biases via b[C]s = Q̄sxb̄[C]s and
b[C]r = Q̄rxb̄[C]r . At the receiver end, they include all observed code types (including
composite signals). The satellite code biases, on the other hand, comprise the code types
that are actually transmitted.
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6.5.3.3 Determination of inestimable linear combinations in a separate step

Some of the bias linear combinations mentioned in Section 6.5.3.1 cannot be estimated
without introducing additional information about the ionosphere. Section 6.4.2 describes
several ways in which such information can be introduced. The approach of adding
VTEC parameters directly to the main equation system has already been covered in the
previous two sections. Another way is to estimate these bias linear combinations together
with VTEC parameters in a separate least-squares adjustment while introducing all other
parameters as known. This section briefly describes the process for this estimation.

The first step is to determine which bias linear combinations are inestimable without
additional ionospheric information. This procedure is almost identical to the one
described in Section 6.5.3.1, as the inestimable linear combinations are part of the
local rank deficiencies at the receivers and satellites. However, the clock parameters in
Equations (6.61) and (6.67) are not set up because the clock errors are introduced as
known. Thus, there is no rank deficiency due to the estimation of the clock parameters
and only the rank deficiencies due to the ionospheric influence remain. As described
in Section 6.5.3.1, the STEC parameter is eliminated on the observation equation level
before the normal equation matrix is accumulated and then eigenvalue decomposed.

In this case, however, the nullspaces of the eigenvector matrices are of interest. The
matrices Q̃s and Q̃r contain the respective columns of Qs and Qr that are linked to
zero eigenvalues. Q̃s and Q̃r can then be used to transform the signal-specific code bias
parameters (b[C]s, b[C]r) to the linear combination parameters (xb̃[C]s , xb̃[C]r) as stated
in (6.65). These parameters are then set up together with the VTEC parameters in the
separate equation system. This equation system uses the full observation equations as
described in Section 5.1. They also include all models and parametrizations described
in Chapter 6, with all parameters except those mentioned above introduced as known.
This implies that these parameters have already been estimated in a preceding iteration
of the main least-squares adjustment.

The separate equation system suffers from global rank deficiencies since the bias linear
combinations are estimated at receivers and satellites at the same time. These rank
deficiencies can be resolved in a similar way as described in Section 6.5.3.2. In this
case, the pseudoobservation equations from (6.69) do not contain the clock parameters
and the STEC parameter. The former are omitted since the clock errors are introduced
as known and the latter is not required because the separate equation system includes
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additional ionospheric information in the form of TEC mapping functions. Therefore,
Equation (6.69) becomes

f [Cνa]sr = q̃[Cνa]r · xb̃[C]r + t[Cνa]r ·
(
Q̃sxb̃[C]s

)
, (6.73)

where q̃[Cνa]r is a part of Q̃r as defined in (6.70). Following the procedure described in
Section 6.5.3.2, the accumulated normal equation matrix from this system of equations
is eigenvalue decomposed into N = QΛQT . The matrix Q̃ containing the eigenvectors
from Q that are linked to zero eigenvalues is then used to define constraint equations

0 = Q̃xb̃[C] . (6.74)

These are introduced into the separate equation system to resolve the global rank
deficiencies.

The separate equation system can now be solved via least-squares adjustment. The
estimates for the bias linear combinations (xb̃[C]s , xb̃[C]r) can be transformed back to
(partial) observable-specific code biases (b̃[C]s, b̃[C]r) using Q̃s and Q̃r. They are
subsequently introduced as known corrections into the main equation system, where the
set of bias linear combinations that does not require additional ionospheric information is
estimated. As a result, the full code biases b[C]s = b̃[C]s+b̄[C]s and b[C]r = b̃[C]r+b̄[C]r
are not biased by the ionosphere anymore.

6.6 Ambiguities and phase biases

The introduction of Section 6.5 briefly describes the concept of signal biases and code
biases in particular. Phase biases are the unknown hardware delays that affect phase
measurements (Håkansson et al., 2017). These measurements also contain an unknown
phase ambiguity, which is an integer number of full phase cycles (e.g., Hauschild, 2017a).
The presence of phase biases, specifically their fractional cycle part, prohibits direct
access to these ambiguities. Several methods have been developed to handle phase biases
in undifferenced GNSS processing in order to facilitate integer ambiguity resolution
(e.g., Ge et al., 2008; Laurichesse et al., 2009; Collins et al., 2010; Geng et al., 2010;
Loyer et al., 2012; Shi and Gao, 2014).

The connection between phase biases and ambiguities can be described using a simple
ambiguity observation equation

n[Lνa]sr,i = b[Lνa]r + b[Lν]s +N [Lνa]sr,i , (6.75)
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where n[Lνa]sr,i is the biased ambiguity for a phase observation with frequency ν and
signal attribute a between receiver r and satellite s. It consists of a signal-specific
receiver phase bias b[Lνa]r and a frequency-specific satellite phase bias b[Lν]s as well as
the actual ambiguity N [Lνa]sr,i. The relation between the phase biases in Equation (6.75)
and the intermediate signal bias parameters described in Section 5.3 is discussed in
Section 6.6.1.3. In contrast to the GNSS observation equation (5.1), where the signal
biases are expressed in meters, all components in (6.75) are expressed in cycles.

The index i in (6.75) represents a track or arc. This is the time period where a receiver
continuously tracks a passing satellite and keeps track of the changing phase cycles.
As a result, the unknown phase ambiguity is constant over a track and can thus be
parameterized as a constant value (e.g., Hofmann-Wellenhof et al., 2008). The track
identifier i distinguishes between multiple tracks involving the same receiver and satellite
within the processing period. For example, GPS satellites usually pass over the same
location on Earth twice per day.

Section 6.6.1 details how phase biases and ambiguities can be separated by an appropri-
ate parametrization. It also discusses how to handle issues such as time-variable phase
biases and GLONASS using FDMA instead of CDMA. Finally, Section 6.6.2 describes
how the ambiguity parameters, which are estimated as float values in the least-squares
adjustment, can be resolved to actual integer values.

6.6.1 Parametrization

The classic approach to separate ambiguities and phase biases is to form double differ-
ences of the observations (e.g., Hofmann-Wellenhof et al., 2008; Hauschild, 2017b).
This eliminates the phase biases from the observation equations and parameters can be
directly set up for the double-differenced ambiguities. However, when processing raw
observations, for example with the approach described in this thesis, forming observation
differences is not an option.

Another approach operates in the parameter space instead of the observation space
(Reckeweg, 2020). Here, parameters are set up directly for all biased ambiguities.
These parameters are then constrained by applying constraint equations based on
double differences of the parameters. Such a constraint equation states that the double
difference of four specific biased ambiguity parameters must result in an integer value.
One drawback of this approach is that the ambiguity parameters remain in the equation
system, which can become problematic in terms of computational performance when
processing large systems.
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The approach chosen in this thesis is to find a parametrization that directly separates
phase biases and ambiguities. The idea is that once the ambiguities have been resolved
to integer values, they become known corrections and their corresponding parameters
do not have to be set up anymore. Thus, only phase bias parameters and possibly
a few unresolved ambiguity parameters remain in the normal equation system. In
combination with the processing scheme described in Section 5.9.2, this approach keeps
the computational requirements on a manageable level even for very large networks
such as the one used for the reprocessing campaign conducted within the context of this
thesis.

6.6.1.1 Algorithm for phase bias and ambiguity parametrization

The algorithm to find an appropriate parametrization for phase biases and ambiguities
relies on the following assumptions.

1. Receiver and satellite phase biases are constant over the processing period (e.g.,
one day). The only exception to this are the L5 phase biases of GPS-IIF satellites,
which show an additional temporal variation (see Section 6.6.1.4).

2. Based on assumption 1, ambiguities of multiple tracks between the same receiver
and satellite must only differ by an integer number of cycles. For example, ground-
based receivers typically observe GPS satellites twice per day. Tracks might also be
split during observation preprocessing in case of cycle slips (see Section 7).

3. There is only one carrier phase per frequency at a satellite. Thus, all signals
transmitted on this frequency (e.g., L1C, L1W, L1S, and L1L in case of a GPS-IIIA
satellite) share a common phase bias.

4. Different phase signals are processed independently at the receiver, for example
in separate hardware or software channels. In addition, it is uncertain if a phase
alignment, such as required by the RINEX format (Romero, 2020), has been
performed (correctly) within the receiver or conversion software. Therefore, each
phase observation type has an independent receiver phase bias.

Algorithm 6.1 describes how the phase bias and ambiguity parameters are defined. This
algorithm is performed independently for each frequency ν and satellite constellation.
The input is a sequence of biased ambiguities A containing one or more (if the receiver
tracks multiple phase attributes a on the same frequency) biased ambiguities n[Lνa]sr,i
for each track i between one receiver r and one satellite s. The algorithm sets up a type-
specific receiver phase bias parameter b[Lνa]r or frequency-specific satellite phase bias
parameter b[Lν]s the first time it encounters a biased ambiguity involving that receiver
or satellite. Only for the very first biased ambiguity both are set up, but this reference
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satellite phase bias parameter is removed at the end of the algorithm. At this point, no
ambiguity parameter N [Lνa]sr,i is set up for the biased ambiguity, as it is required purely
for the definition of the phase bias. An ambiguity parameter N [Lνa]sr,i is only assigned to
a biased ambiguity once the phase biases at both the receiver and satellite corresponding
to this ambiguity have been defined. Finally, the first satellite phase bias parameter that
was set up is removed (i.e., implicitly set to zero) to solve the rank deficiency that occurs
when receiver and satellite phase biases are estimated together. This means the satellite
s0 acts as a reference for the satellite phase biases of frequency ν and all other phase
biases are defined relative to the reference bias. An alternative to removing the phase
bias parameter would be to add a zero-mean constraint over all satellite phase biases of
this frequency.

Data: Sequence of biased ambiguities (A) for one frequency ν
Result: Sets of phase biases (Br, Bs) and ambiguities (N) for this frequency

1 s0 ← null /* reference satellite */
2 while A 6= 0 do
3 restart← false
4 foreach n[Lνa]sr,i ∈ A do
5 if b[Lνa]r /∈ Br and b[Lν]s /∈ Bs then
6 if s0 is null then
7 s0 ← s /* set reference satellite */
8 else
9 continue /* skip n[Lνa]sr,i for now and try again later */

10 if b[Lνa]r ∈ Br and b[Lν]s ∈ Bs then
11 add N [Lνa]sr,i to N /* set up ambiguity */

12 if b[Lνa]r /∈ Br then
13 add b[Lνa]r to Br /* set up receiver phase bias */
14 restart← true

15 if b[Lν]s /∈ Bs then
16 add b[Lν]s to Bs /* set up satellite phase bias */
17 restart← true

18 remove n[Lνa]sr,i from A

19 if restart = true then
20 break /* new phase bias defined → restart search */

21 remove b[Lν]s0 from Bs /* do not set up bias for reference satellite */
Algorithm 6.1: Definition of phase biases and ambiguities for one frequency

The workings of the algorithm are best shown based on a simple example. It involves
three satellites (G01, G02, G03) and three receivers (A, B, C). All ambiguities have the
same signal type (e.g., L1C), which is omitted for the sake of readability. The sequence
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Table 6.8: Ambiguity observation equations for example 1 using the sequence of biased ambigu-
ities A =

{
nG01

A , nG02
A , nG03

A , nG01
B , nG02

B , nG03
B , nG01

C , nG02
C , nG03

C

}
Receiver A Receiver B Receiver C

G01 nG01
A = bA +���bG01 nG01

B = bB +���bG01 nG01
C = bC +���bG01

G02 nG02
A = bA + bG02 nG02

B = bB + bG02 +NG02
B nG02

C = bC + bG02 +NG02
C

G03 nG03
A = bA + bG03 nG03

B = bB + bG03 +NG03
B nG03

C = bC + bG03 +NG03
C

Table 6.9: Ambiguity observation equations for example 2 using the sequence of biased ambigu-
ities A =

{
nG03

B , nG02
A , nG01

A , nG01
C , nG02

B , nG03
A , nG03

C , nG02
C , nG01

B

}
Receiver A Receiver B Receiver C

G01 nG01
A = bA + bG01 nG01

B = bB + bG01 +NG01
B nG01

C = bC + bG01

G02 nG02
A = bA + bG02 nG02

B = bB + bG02 nG02
C = bC + bG02 +NG02

C
G03 nG03

A = bA +���bG03 +NG03
A nG03

B = bB +���bG03 nG03
C = bC +���bG03 +NG03

C

of biased ambiguities A =
{
nG01

A , nG02
A , nG03

A , nG01
B , nG02

B , nG03
B , nG01

C , nG02
C , nG03

C

}
serves as

input to the algorithm. Table 6.8 shows the ambiguity observation equations that the
algorithm sets up for each of these biased ambiguities. The first four biased ambiguities
(nG01

A , nG02
A , nG03

A , nG01
B ) are used purely to define the receiver phase biases bA and bB

and the satellite phase biases bG01, bG02, and bG03. Then, nG02
B and nG03

B are assigned
ambiguities (NG02

B , NG03
B ) since the phase biases for the involved receiver and satellites

have already been defined. Next, nG01
C defines the receiver phase bias bC. Finally,

ambiguities are again assigned to nG02
C and nG03

C . The first biased ambiguity in the
sequence involves satellite G01, which becomes the reference satellite and thus the
phase bias bG01 is removed at the end of the algorithm.

In practice, the estimation becomes more robust when the phase biases are defined by
the most precise biased ambiguities. Assuming that longer tracks can be determined
more precisely, one option is to sort the biased ambiguities in A by descending track
length. For instance, the sequence of biased ambiguities from the first example sorted
by track length could be A =

{
nG03

B , nG02
A , nG01

A , nG01
C , nG02

B , nG03
A , nG03

C , nG02
C , nG01

B

}
. The

resulting ambiguity observation equations are shown in Table 6.9. Since the first biased
ambiguity now involves satellite G03, the satellite phase bias parameter bG03 is removed
at the end. The set of ambiguities N also differs compared to the first example because
different biased ambiguities have been used to define the receiver and satellite phase
biases.

6.6.1.2 Reduction of ambiguity parameters

Once the algorithm has finished, the number of ambiguity parameters in N can usually
be reduced. Assumptions 1, 3, and 4 listed above imply that two or more ambiguities
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on the same track and frequency that only differ in their attribute (e.g., N [L1C]G01
A,1 and

N [L1W]G01
A,1 ) must differ by an integer number of cycles. This integer difference can be

determined in advance by forming observation differences

∆n(t) = ν

c

(
obs[Lνa2]sr(t)− obs[Lνa1]sr(t)

)
= b[Lνa2]r − b[Lνa1]r +N [Lνa2]sr,i −N [Lνa1]sr,i + ε(t)

(6.76)

for all epochs of all tracks i involving the receiver r, satellites of one constellation, and
two signal types [Lνa1] and [Lνa2] on the same frequency ν. Only the difference between
the receiver biases and ambiguities as well as the combined observation noise ε remain
since all other components cancel. The receiver bias difference ∆b = b[Lνa2]r − b[Lνa1]r
can be approximated as the median of all float components

∆n̄(t) = ∆n(t)− round(∆n(t)) (6.77)

of these differential ambiguity values. Finally, the observations of type [Lνa2] can be
corrected by the difference in ambiguities to those of the reference type [Lνa1] via

obs[Lνa2]sr(t) := obs[Lνa2]sr(t)−
c

ν
round(∆n(t)−∆b) . (6.78)

This process is performed independently for each receiver, where it involves different
combinations of two signals of the same frequency and constellation. Thus, it is possible
to set up a single ambiguity parameter N [Lν]sr,i per frequency and track that is indepen-
dent of the signal attribute. This can significantly reduce the number of ambiguities in
the system, especially in modern multi-GNSS environments, where multiple signals per
frequency become more and more common.

6.6.1.3 Design matrix entries

The design matrix Dg contains the partial derivatives of the intermediate parameters of
an observation group g (see Section 5.3) with respect to the final parameters. Once the
algorithm described in Section 6.6.1.1 has determined which phase bias and ambiguity
parameters have to be set up, the composition of this matrix is straightforward. The
intermediate parameters include a receiver phase bias for each observed phase type
[Lνa] and a satellite phase bias per transmitted frequency [Lν]. Therefore, the partial
derivatives of the intermediate phase bias parameters with respect to the final phase
bias parameters are either 1 if they are to be estimated in meters or λ[Lν] = c

ν in case
of cycles. As mentioned in Section 6.6.1.1, for each frequency one satellite acts as a
reference and no final parameter is set up for the respective satellite phase bias.
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The intermediate satellite phase bias parameter represents the component of the obser-
vation equations that is the same for each phase observation on one frequency. Following
the reduction described in Section 6.6.1.2, only a single ambiguity parameter has to be
set up per frequency and track. As both definitions match, the ambiguity parameters can
be determined from the intermediate satellite phase bias parameters. The partial deriva-
tive of the intermediate satellite phase bias parameter with respect to the ambiguity
parameter is λ[Lν] = c

ν since ambiguities are set up in cycles.

The order of the ambiguity parameters in the normal equation matrix is important for
the computational performance. Section 5.6.2 mentions that ordering these parameters
by the mean time of the corresponding track leads to a roughly block-banded structure
in the off-diagonal block between epoch and ambiguity parameters. Splitting the off-
diagonal block into subblocks and only storing the densely populated subblocks of the
band significantly reduces the memory requirements of this part of the normal equation
matrix.

6.6.1.4 Time-variable phase biases

Montenbruck et al. (2012) found that GPS-IIF satellites are affected by time-variable
phase biases on the L5 frequency. This variation seems to originate from thermal effects
within the satellite. Its amplitude mainly depends on the angle of the Sun with respect
to the orbital plane and can reach up to approximately 20 cm. The total satellite L5
phase bias

b̄[L5]s(t) = b[L5]s + ∆b[L5]s(t) (6.79)

can be split into the constant part b[L5]s, which is parameterized as described in Sec-
tions 6.6.1.1 to 6.6.1.3, and the time-variable part ∆b[L5]s(t). This latter part can be
represented by a linear combination

∆b[L5]s(t) =
∑
i

xb[L5]s,i ψi(t) , (6.80)

where ψi(t) are basis functions in time and xb[L5]s,i are the corresponding coefficients
that can be estimated. For example, the time-variable behavior of the L5 phase bias can
be parameterized as a cubic spline with hourly knots. Figure 6.13 displays estimated
time-variable L5 phase biases for GPS-IIF and GPS-IIIA satellites. While the former show
large variations in agreement with Montenbruck et al. (2012), the latter do not seem to
be affected by these variations. This indicates that the thermal issue does not occur in
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Figure 6.13: Example of L5 phase biases for GPS-IIF and GPS-IIIA satellites parameterized as
cubic splines with hourly knots. Y-axis limits differ, but scale is identical

the GPS-IIIA satellites, which are newer and built by a different manufacturer than the
GPS-IIF satellites.

6.6.1.5 GLONASS

As mentioned in Sections 2.2 and 6.5.2, GLONASS applies FDMA to distinguish between
satellites (e.g., Revnivykh et al., 2017). Therefore, the receiver phase biases can differ
depending on the frequency number (i.e., per two satellites transmitting on the same
frequency). This means that the algorithm described in Section 6.6.1.1 has to be
performed separately for each frequency number. Another interpretation of this is
that the GLONASS satellite constellation splits into subconstellations with one or two
satellites each and the algorithm is performed independently per subconstellation. As
one satellite phase bias parameter is removed per frequency and subconstellation, the
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number of estimated GLONASS satellite phase bias parameters is much lower than
that of other constellations. On the other hand, the number of receiver phase bias
parameters is much higher because one phase bias parameter per frequency number and
subconstellation has to be set up at each receiver. This also implies that fewer ambiguity
parameters can be set up for GLONASS compared to other GNSS constellations.

Some studies (e.g., Sleewaegen et al., 2012; Wanninger, 2012; Al-Shaery et al., 2013;
Banville et al., 2013; Banville, 2016) suggest a linear relationship between the re-
ceiver phase biases on different frequency numbers. This would reduce the number of
GLONASS receiver phase bias parameters significantly from one per frequency number
to two (i.e., constant and trend components). However, such a parametrization was
not used in the reprocessing conducted within the context of this thesis and thus is not
discussed further here.

6.6.2 Ambiguity resolution

Teunissen (2017) provides a comprehensive overview of the concept of integer ambiguity
resolution. The process used in this thesis was first described in Strasser et al. (2019). It
is based on the least-squares ambiguity decorrelation adjustment (LAMBDA) method
(Teunissen, 1995) and includes modifications of the MLAMBDA algorithm presented
in Chang et al. (2005) and Al Borno et al. (2014), which increase the computational
efficiency. While these methods perform well for small problems with a few hundred
ambiguities (Li and Teunissen, 2011), a GNSS processing involving hundreds of stations
and multiple satellite constellations leads to tens of thousands of ambiguities. Unfortu-
nately, the complexity of the ambiguity search process and, consequently, the required
computational effort scale exponentially with the dimension of the ambiguity vector
(Verhagen et al., 2012). As outlined in Strasser et al. (2019), this issue is circumvented
by splitting the search process into smaller problems that can be solved more efficiently.
This approach can be broadly assigned to what Teunissen et al. (2021) defines as vecto-
rial integer bootstrapping methods. Massarweh et al. (2021) compares the approach
used in this thesis to a simple vectorial integer bootstrapping implementation and a
classic (scalar) integer bootstrapping algorithm in terms of methodology and resulting
orbit quality from a small GNSS processing.

6.6.2.1 Preparation for the search process

Several steps are performed in preparation of integer ambiguity resolution. First, the full
normal equation system is set up. All parameters except for the ambiguity parameters are
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then eliminated on the normal equation level (see Section 4.2.2.2). Next, the resulting
normal equation matrix is Cholesky decomposed (e.g., Koch, 1999) into

N = WTW , (6.81)

where W is a regular upper triangular matrix. During this decomposition, a pivoting
as described in the MLAMBDA method (Chang et al., 2005) is performed to order the
ambiguity parameters by their formal accuracy. This pivoting increases the performance
of subsequent steps in the ambiguity resolution process. By inverting the Cholesky factor
W, the covariance matrix

Σ = W−1W−T = LTDL (6.82)

can be obtained. As Equation (6.82) shows, it is possible to transform this decomposition
of the covariance matrix into a LTDL decomposition (e.g. Golub and Van Loan, 2013).
Here, L is a lower triangular matrix and D is a diagonal matrix. In the next step, these
matrices are used to decorrelate the ambiguities as described in Al Borno et al. (2014),
where this process is called reduction. The purpose of this reduction is to increase the
efficiency of the subsequent integer least-squares (ILS) search process by transforming
the original search problem to a new one with more favorable conditions (Chang et al.,
2005). This is achieved by so-called Z-transformations, which maintain the integer
nature of the ambiguities.

6.6.2.2 Blocked search algorithm

After these preparatory steps, the actual search process begins. The blocked search
algorithm applied in this thesis has been broadly described in Strasser et al. (2019)
and Massarweh et al. (2021). For the purpose of completeness, this section includes
a more in-depth description of the algorithm including some additional aspects not
discussed in the listed references. Algorithm 6.2 describes the logic behind the process
and Figure 6.14 shows a schematic visualization based on an example.

The basic idea of the algorithm is to move a search window over the full ambiguity
vector and resolve it block by block. The reason for this is that performing an ILS search
over the full vector is computationally infeasible in case of a large number of ambiguities.
It starts with the most accurate ambiguities, which have the highest fixing probability
and are located at the end of the vector. A block size of 200 has proven to be a good
trade-off between performance and robustness of the overall solution. Once an ILS
search has been completed for a block, the remaining unresolved ambiguities in the
vector are conditioned based on the ILS solution of this block. Then, the window moves
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Data: Vector of float ambiguities xfloat (sorted from least to most accurate), matrices
LT and D, σthreshold, searchBlockSize, maxSearchSteps, and incompleteAction

Result: Vector of integer ambiguities xint resolved up to indexResolved

1 d← diag D
2 dimension← dim xFloat
3 xint ← 0 of dimension
4 minIndex← index of first ambiguity in xfloat with σ < σthreshold
5 defaultBlockSize← min(dimension−minIndex, searchBlockSize)
6 blockSize← defaultBlockSize
7 blockStart← dimension− blockSize
8 prevBlockStart← dimension
9 indexResolved← dimension

10 while true do
11 x̄← xfloat − xint
12 blockEnd← blockStart + blockSize
13 for i← dimension− 1 to blockEnd by −1 do
14 x̄[0 : i]← x̄[0 : i]− x̄i LT [0 : i, i] /* conditioning */

15 completed, ∆xint ← ILS(maxSearchSteps, x̄[blockStart : blockEnd],
LT [blockStart : blockEnd, blockStart : blockEnd], d[blockStart : blockEnd])

16 xint[blockStart : blockEnd]← xint[blockStart : blockEnd] + ∆xint
17 indexResolved← blockStart

18 if completed = false then
19 switch incompleteAction do
20 case STOP do
21 indexResolved← blockEnd
22 break

23 case SHRINK_BLOCK_SIZE do
24 defaultBlockSize← (defaultBlockSize + 1) // 2
25 blockStart← min(prevBlockStart, blockStart + (blockSize + 1) // 2)
26 blockSize← blockSize− (blockSize + 1) // 2
27 continue /* try again with half block size */

/* default: use best solution found after maxSearchSteps */

28 if ‖∆xint[prevBlockStart− blockStart : ]‖ > 0 then /* if overlap differs */
29 prevBlockStart← blockStart + blockSize
30 blockSize← blockSize + min(defaultBlockSize//2, dimension−prevBlockStart)
31 continue /* try again with joint block */

32 if blockStart = minIndex then /* if accuracy threshold is reached */
33 break

34 prevBlockStart← blockStart
35 blockSize← defaultBlockSize
36 blockStart←

max(blockStart, minIndex + defaultBlockSize // 2)− defaultBlockSize // 2
Algorithm 6.2: Blocked search algorithm. Notation definition: xi is the ith element of vector
x, x[i : j] is the slice of vector x from index i to j (exclusive), A[i : j, k : l] is the slice of
matrix A from row index i to j and column index k to l (exclusive in both cases), omitted
slice indices (e.g., [ : ]) imply from start and/or until end, and // is an integer division
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Figure 6.14: Schematic visualization of blocked search algorithm for an example with 1000
ambiguities and a search block size of 200. The algorithm operates from bottom
(most accurate) to top (least accurate)

by half the block size and the next ILS search is performed. The ILS solutions of two
subsequent blocks should match within the overlapping part. If this is the case, the
algorithm continues by moving the block further and comparing the solution of the next
two subsequent blocks.

Two issues can arise during the processing. First, the overlapping part of two subsequent
solutions does not match. In this case, the two blocks are merged into one block and the
ILS search is performed over the joint block. A larger block size increases the robustness
and likeliness to obtain a solution closer to the global optimum. If the overlap between
this joint block and the block preceding those merged together matches, the search
window reverts back to the original size and moves on to the next block. Otherwise,
both blocks are merged again, resulting in an even larger joint block.

The second issue arises when the ILS search within one block does not complete after
some maximum number of steps. This can happen when the block size increases too
much because the overlaps keep differing, which often points to bad observation data
hampering the resolution of certain ambiguities. Another point where the ILS iteration
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threshold might be reached is towards the end of the process, when a block mainly
contains ambiguities with lower accuracy, making it more difficult to find the optimal
solution. In both cases, the threshold serves to limit the overall processing time, which
might otherwise increase to infeasible levels.

There are a few options to deal with this second issue. Firstly, the algorithm can just stop
and all remaining ambiguities are left as float values. Secondly, the best ILS solution
found before the iteration threshold was reached can be used and the process continues
with the next block. In this case, however, it is likely that the overlap will not match,
leading to a joint block that is even more unlikely to be completed within the iteration
threshold. The third option is to shrink the block size (e.g., by halving it) and to try
solving a smaller block. This can lead to more of the remaining ambiguities being
resolved to integer values. However, the chance of wrong fixes increases for smaller
block sizes. Practical experience has shown that this option often leads to better results
than leaving the remaining ambiguities as float values. Nevertheless, this should not be
taken as a general recommendation as it might differ from case to case.

In case the algorithm has not been stopped prematurely, it continues until all ambiguities
have been resolved or an accuracy threshold σthreshold has been reached. Ambiguities
with a lower accuracy than this threshold are not resolved in any case because the
chance of wrong fixes is too high.

6.7 Troposphere

Earth’s troposphere contains dry gases and water particles that delay GNSS signals
traveling through it. The troposphere is a nondispersive medium with respect to GNSS
signals, which means this delay does not depend on the frequency of the signal. The
effect is commonly split into a hydrostatic part and a wet part. The hydrostatic part
describes the delay due to dry gases and accounts for roughly 90% of the total delay
(Petit and Luzum, 2010). This component can be modeled accurately, as it mainly
depends on the surface pressure, which is well observed globally. The wet part, on the
other hand, can change rapidly in space and time due to the fluctuating nature of water
vapor and water particles in the troposphere. Therefore, this part can usually not be
modeled with sufficient accuracy, which is why it is essential to estimate a residual wet
delay in high-precision GNSS processing. More detailed background information on
tropospheric signal propagation can be found, for example, in Hobiger and Jakowski
(2017).
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Tropospheric delays can also be systematically biased with respect to a horizontal
direction. This can be interpreted as a tilting of the zenith direction at a specific
location (i.e., a station) towards some azimuth angle. Bar-Sever et al. (1998), Rothacher
et al. (1998), and Meindl et al. (2004) show that taking this bias into account by
additionally estimating horizontal north-south and east-west gradient delays improves
station coordinate repeatability.

The tropospheric slant delay is thus usually considered in the form

D(A, e) = mH(e)DZH +mW(e) (DZW + ∆DZW)

+mG(e) (DGN cosA+DGE sinA) .
(6.83)

Here, DZH and DZW are the a priori hydrostatic and wet delays in zenith direction,
respectively. The residual zenith wet delay ∆DZW is specifically listed to highlight the
fact that this part has to be estimated. Similarly, DGN and DGE are the north-south and
east-west gradient delays that have to be estimated. They depend on the azimuth angle
A of the observation at the station. The mapping functions mH, mW, and mG map these
components from zenith direction to the elevation angle e of an observation. Herring
(1992) proposed the form

mH,W(e) =

1 + a

1 + b

1 + c

sin e+ a

sin e+ b

sin e+ c

(6.84)

for the hydrostatic and wet mapping functions. The coefficients a, b, and c are nowadays
usually determined based on numerical weather models, which offer a global representa-
tion of the atmospheric state and its changes over time (Niell, 2001). Chen and Herring
(1997) introduced the commonly used gradient mapping function

mG(e) = 1
sin e tan e+ C

(6.85)

and suggested values of CH = 0.0031 and CW = 0.0007 for the hydrostatic and wet com-
ponent, respectively, or C = 0.0032 in case both components are estimated together.

6.7.1 Troposphere models

Several models have been developed over time to determine the coefficients for the
mapping function in (6.84). Examples are the Niell Mapping Function (NMF; Niell,

126 Chapter 6 Parametrizations, models, and corrections



1996), the Isobaric Mapping Function (IMF; Niell, 2000), and the Vienna Mapping
Functions 1 (VMF1; Böhm et al., 2006). The most sophisticated representation of the
troposphere based on mapping functions that is currently available is Vienna Mapping
Functions 3 (VMF3; Landskron and Böhm, 2018).

6.7.1.1 Vienna Mapping Functions 3 (VMF3)

An in-depth description of the development and evaluation of VMF3 can be found in
Landskron (2017). The coefficients of VMF1 and VMF3 are determined via ray tracing
using the numerical weather model of the European Centre for Medium-Range Weather
Forecasts (ECMWF). VMF3 is an an evolution of VMF1 that better approximates the
underlying ray-traced delays, particularly at low elevations (Landskron and Böhm,
2018).

VMF3 includes an empirical spatio-temporal representation of the mapping function
coefficients bH, bW, cH, and cW. Landskron and Böhm (2018) states that these coefficients
were determined by first computing monthly means of ray tracing delays on a global
1×1° grid for the years 2001–2010. Mean, annual, and semiannual components were
then fitted to the time series of each grid point to represent its temporal variations.
Finally, these grid-based parameters were converted to spherical harmonic coefficients
(e.g., Borden and Luscombe, 2017) up to degree and order 12. Users of the model can
then evaluate this spatio-temporal representation at any point on Earth’s surface and in
time to get the respective mapping function coefficients. Figure 6.15 shows an example
of the spatial variations of these coefficients at the beginning of 2020.

Discrete mapping function coefficients aH and aW are then estimated at a 6-hour sampling
period. This is done by substituting the empirical coefficients bH, bW, cH, and cW into
(6.84) and then fitting the mapping functions to ray tracing delays over several elevations
in a least-squares adjustment. The VMF3 data service (re3data.org, 2016) provides the
coefficients aH and aW together with zenith hydrostatic and wet delays (DZH, DZW) either
on a global grid or directly at specific GNSS station locations. The grid version is provided
at a maximum resolution of 1×1° and is valid at the mean height of the topography in
each grid cell. Each variant optionally includes horizontal hydrostatic and wet gradient
delays (DGNH, DGEH, DGNW, DGEW) at the same sampling rate. These gradient delays
are intended to be used with Equation (6.85) and the respective hydrostatic or wet value
for C. Landskron (2017) provides a detailed description of how the VMF3 gradient
delays are determined.
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(a) Coefficient bH (b) Coefficient bW

(c) Coefficient cH (d) Coefficient cW

Figure 6.15: Empirical VMF3 coefficients evaluated on 2020-01-01

6.7.1.2 Global Pressure and Temperature 3 (GPT3)

Landskron and Böhm (2018) also presents the purely empirical model Global Pressure
and Temperature 3 (GPT3), which is fully consistent with VMF3. This model has
been determined by fitting mean, annual, and semiannual components to the aH and
aW coefficients of the 1×1° grid version of VMF3. GPT3 also contains an empirical
representation of horizontal hydrostatic and wet gradient delays with mean, annual, and
semiannual components on the same grid. The model further includes a spatio-temporal
representation of several meteorological parameters that are needed to empirically
determine the zenith delays. Examples are the pressure p0 (in Pa) and temperature T0

(in K) at grid height, the specific humidity Q (in kg/kg), the water vapor decrease factor
λ, and the mean temperature of water vapor Tm (in K).

These parameters can be bilinearly interpolated from the grid points to a specific
longitude and latitude, after which the interpolated mean, annual, and semiannual
temporal components can be evaluated at any point in time. For a station at latitude ϕ
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and ellipsoidal height hell, the zenith hydrostatic delay (ZHD) can then be computed as
(Saastamoinen, 1972)

DZH = 0.0022768 p
1− 0.00266 cos (2ϕ)− 0.00000028hell

(6.86)

and the zenith wet delay (ZWD) as (Askne and Nordius, 1987)

DZW = 10−6
(
k′2 + k3

Tm

)
pRg Q

gMd (0.622 + 0.378Q)(1 + λ) (6.87)

using the universal gas constant Rg = 8.3143 J/K/mol, the molar mass of dry air
Md = 0.028 965 kg/mol, the mean gravity g = 9.806 65 m/s2, as well as the refractivity
constants k1 = 77.604 K/hPa, k2 = 64.79 K/hPa, k′2 = k2 − 18.0152

28.9644 k1 = 16.522 K/hPa,
and k3 = 377 600 K2/hPa. Further, ∆h = hell − hgrid is the reduced height in meters,
Tv = T0 (1 + 0.6077Q) is the virtual temperature in Kelvin, and

p = p0 e
− gMd ∆h

Rg Tv (6.88)

is the pressure at height hell based on the pressure p0 at grid height. Equations (6.86)
and (6.87) expect p in hPa.

6.7.1.3 Height correction

One important aspect to consider is that gridded VMF3 and GPT3 data is valid at the
mean height of each grid cell. This value can deviate significantly from the actual station
height. An extreme example is the station MKEA on Mauna Kea, Hawaii, USA, which
is located at a height of 3754 m. Figure 6.16 shows that three of the four surrounding
grid points have a mean height close to 0 m because their grid cells mostly cover the
ocean. Only one cell covers most of the island and thus has a mean height of 589 m. A
difference of more than 3000 m between the bilinearly interpolated grid height and the
actual station height has a large impact on the tropospheric parameters, for example
pressure. Therefore, applying a height correction to some of the data and coefficients is
important in order to model the tropospheric delay at such stations properly.

Kouba (2008) recommends to apply a height correction to ZHDs, ZWDs, and the mapping
function coefficients aH. Equation (6.86) already considers the station height hell, thus
GPT3 ZHDs determined with this equation do not have to be corrected further. Gridded
VMF3 ZHDs, on the other hand, have to be brought to station height via

DZH(hstation) = DZH(hgrid) e−
gMd ∆h
Rg Tv , (6.89)
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Figure 6.16: Height of station MKEA (Mauna Kea, Hawaii) and surrounding VMF3 grid points

which has the same form as the pressure correction in (6.88). For ZWD height correction,
Kouba (2008) provides the equation

DZW(hstation) = DZW(hgrid) e−
∆h

2000 . (6.90)

For the hydrostatic mapping function, Landskron and Böhm (2018) suggests using the
height correction formula from Niell (1996), which is

mH(hstation) = mH(hgrid)+ hstation

1000 ·


1

sin e −

1 +
aheight

1 +
bheight

1 + cheight

sin e+
aheight

sin e+
bheight

sin e+ cheight


, (6.91)

with the constants aheight = 2.53 · 10−5, bheight = 5.49 · 10−3, and cheight = 1.14 · 10−3.
No general correction formula is provided for the wet mapping function as there the
height difference is usually not significant (Kouba, 2008).
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6.7.2 Slant delay correction and parametrization

With the inclusion of a priori horizontal gradient delays in VMF3 and GPT3, the tropo-
spheric slant delay correction in the observation equations (5.1) becomes

tropo(t,psr) = mH(e)DZH +mW(e) (DZW + ∆DZW)

+mGH(e) (DGNH cosA+DGEH sinA)

+mGW(e) (DGNW cosA+DGEW sinA)

+mG(e) (∆DGN cosA+ ∆DGE sinA) .

(6.92)

Here, mGH, mGW, and mG come from (6.85) with coefficients CH = 0.0031, CW = 0.0007,
and C = 0.0032, respectively. DGNH and DGEH are the a priori north-south and east-west
hydrostatic gradient delays, while DGNW and DGEW are those for wet gradient delays.
Finally, ∆DGN and ∆DGE are the residual gradient delays that are estimated in addition
to the a priori model values. While the separation of the zenith wet delay into an a priori
(DZW) and residual (∆DZW) part in (6.92) is not technically necessary, the residual
gradient delays are based on a different mapping function than the a priori gradient
delays and, therefore, cannot be lumped together. Furthermore, (6.92) implies that all a
priori delays and mapping functions are valid at epoch t and the location of the station.
In time domain, they have to be interpolated from a discrete time series or evaluated
from empirical functions. In space domain, bilinear interpolation combined with height
correction can be used in case no station-specific values are available.

∆DZW, ∆DGN, and ∆DGE are usually estimated as station-wise time-variable parameters
over the processing period. This means they are represented by a linear combination

x(t) =
∑
i

xi ψi(t) , (6.93)

where ψi(t) are basis functions in time and xi are the coefficients of these functions
that are estimated as parameters. For example, gradient delays are estimated as linear
functions per day in the form

x(t) = xconst + (t− t0)xtrend , (6.94)

with xconst and xtrend being the two parameters to be estimated and 1 and (t− t0) being
their respective basis functions. Zenith wet delays are usually parameterized as splines
of degree 1 with two-hourly knots. In this case, ψi(t) are the basis splines and xi the
delay values at each knot. Both parametrizations are visualized in Figure 6.17.
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Figure 6.17: Temporal representation of residual zenith wet and gradient delays

The partial derivatives of the intermediate slant delay parameter sg (see Section 5.3) with
respect to the tropospheric parameters can thus be determined using the chain rule. First,
Equation (6.92) is partially derived for ∆DZW, ∆DGN, and ∆DGE. These derivatives are
then multiplied by the partial derivatives of the tropospheric parameters with respect to
the coefficients of their temporal representations. Taking the north gradient delay as
an example, the slice of the design matrix Dg that connects the intermediate parameter
sg with the constant and trend parameters of the station’s north gradient delay has
dimensions 1× 2 and is

∂sg
∂x∆DGN,r

= ∂sg
∂∆DGN,r

∂∆DGN,r

∂x∆DGN,r

= mG(e) cosA
[
1 (t− t0)

]
. (6.95)

For the east gradient delay, (6.95) contains sinA instead of cosA, while the partial
derivatives for the residual zenith wet delay are mW(e) multiplied with a 1× 13 matrix
containing the factors for the two-hourly spline knots over a 24-hour day.

6.7.3 Model selection

The availability of two VMF3 variants (station-specific and gridded) as well as GPT3
raises the question of which one is best suited for GNSS processing. In theory, the
station-specific VMF3 model should be preferable. This is because it is based on ray
tracing computations at the actual station locations, presumably making it the most
accurate variant. However, its main drawback is that model data is only provided for a
predefined set of 546 (as of 2020-11-25) GNSS stations, which covers only 523 (or 44%)
of the 1182 stations processed by TUG for the reprocessing campaign. This leaves the
choice between gridded VMF3 data and GPT3, which can both be evaluated anywhere
on Earth.

Both models can be analyzed with respect to how well they can recreate the station-
specific VMF3 data, which is chosen as a reference due to its presumably higher accuracy.
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Table 6.10: Means and standard deviations (in mm) of zenith delay differences when comparing
GPT3 and gridded VMF3 data to station-wise VMF3 data (with/without height
correction)

Without height correction With height correction
GRAZ MKEA GRAZ MKEA

GPT3 DZH −5.1 ± 17.6 15.6 ± 4.0 −5.1 ± 17.6 15.6 ± 4.0
GPT3 DZW −5.4 ± 29.3 84.8 ± 16.5 −0.2 ± 29.1 −0.2 ± 14.4
GPT3 D̂ZW 5.7 ± 16.8 −9.2 ± 4.9 5.7 ± 16.7 −9.3 ± 3.9
GPT3 DZH + D̂ZW 0.5 ± 2.7 6.4 ± 3.0 0.6 ± 2.5 6.4 ± 0.8
VMF3 DZH −27.9 ± 0.9 727.0 ± 3.9 −0.2 ± 0.5 16.3 ± 2.2
VMF3 DZW −4.8 ± 5.0 140.7 ± 24.8 0.5 ± 3.9 10.3 ± 9.7
VMF3 D̂ZW 28.0 ± 2.1 −699.0 ± 25.7 1.5 ± 0.7 −9.6 ± 2.4
VMF3 DZH + D̂ZW 0.1 ± 1.9 28.0 ± 25.5 1.3 ± 0.4 6.7 ± 1.0

This analysis was not only conducted to decide which model to choose for the reprocess-
ing, but also to confirm that the findings about height correction presented in Kouba
(2008) with respect to VMF1 are still valid for VMF3. Table 6.10 summarizes the results
in terms of zenith delays for two select stations, GRAZ in Graz, Austria, and MKEA on
Mauna Kea, Hawaii, USA. Station GRAZ is located on the southeastern end of the Alps
and its height of 538 m does not differ from its surrounding grid points by more than
a few hundred meters. As mentioned further above, the height difference for station
MKEA is more than 3000 m. The analysis was conducted over the period of one year
(2020) with daily processing intervals.

Table 6.10 shows that height correction significantly improves the a priori zenith delays.
The height-corrected a priori zenith delay differences for both stations are also visualized
in Figures 6.18 and 6.19. VMF3 ZHDs (DZH) show the largest impact, with a mean
difference to the station-specific delays of 727 mm for the extreme example of MKEA.
This bias decreases to only 16.3 mm when height correction is applied and is then
similar to the bias of 15.6 mm from GPT3, which does not have to be corrected since
the station height is already considered in Equation (6.86). For station GRAZ, the mean
ZHD difference is significantly smaller for both models, and the height-corrected VMF3
delays show no significant remaining bias. Interestingly, the GPT3 ZHD differences for
GRAZ only have a small bias of −5.1 mm, but a large standard deviation of 17.6 mm.
This can also be seen in Figure 6.18 and indicates that the empirical mean, annual,
and semiannual components of GPT3 cannot adequately represent short-term ZHD
variations.

In addition, the height correction leads to a significant improvement in a priori ZWDs
(DZW). The bias of around −5 mm at GRAZ vanishes for both models, although the
standard deviation again remains very high in case of GPT3. For station MKEA, the biases
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Table 6.11: Means and standard deviations (in mm) of gradient delay differences when compar-
ing GPT3 and gridded VMF3 data to station-wise VMF3 data

GPT3 data Gridded VMF3 data
GRAZ MKEA GRAZ MKEA

DGNH −16.3 ± 1.8 −2.9 ± 3.0 0.0 ± 0.0 0.0 ± 0.0
DGEH −5.6 ± 2.4 −6.7 ± 0.7 0.0 ± 0.0 0.0 ± 0.0
DGNW −3.0 ± 1.1 −4.8 ± 2.3 0.0 ± 0.0 −0.1 ± 0.2
DGEW −5.0 ± 4.2 −1.5 ± 3.5 0.0 ± 0.1 −0.1 ± 0.3
∆D̂GN 19.5 ± 2.5 8.0 ± 3.2 0.0 ± 0.0 −0.1 ± 0.1
∆D̂GE 11.1 ± 3.6 8.4 ± 3.2 0.0 ± 0.1 0.2 ± 0.4

decrease from 84.8 mm to −0.2 mm for GPT3 and from 140.7 mm to 10.3 mm for VMF3.
While it can be useful to have good a priori wet delays, for example during observation
preprocessing, the fact that residual ZWDs are estimated makes it more interesting to
look at the sum of modeled and estimated wet delays (D̂ZW). Here, Table 6.10 and
Figures 6.20 and 6.21 reveal that this parameter not only compensates for any modeling
issues with a priori ZWDs, but also largely absorbs mismodeled ZHDs. Both models show
small biases at both stations when compared to station-specific VMF3 data and temporal
variations that largely mirror those of the ZHDs. Finally, the zenith total delay (ZTD;
DZH + D̂ZW) is almost unbiased for station GRAZ, although GPT3 has larger temporal
variations with a standard deviation of 2.5 mm compared to 0.4 mm for VMF3. The
biases and standard deviations at MKEA are almost identical for both models.

The analysis results for gradient delays are summarized in Table 6.11. It is clearly
visible that the gridded VMF3 gradient delays are almost identical to the station-specific
variant. The slight differences are caused by the bilinear interpolation from the grid
points to the actual station location. In contrast, GPT3 a priori gradient delays show
large discrepancies in the hydrostatic and wet components in both north-south (DGNH,
DGNW) and east-west (DGEH, DGEW) directions. The estimated residual gradient delays
(∆D̂GN, ∆D̂GE) then appear to largely compensate for these discrepancies. This is in
accordance with Landskron (2017), where analyses revealed that empirical gradient
delays cannot describe the random, short-term variations caused by weather events
sufficiently.

These analyses show that it is preferable to use gridded VMF3 data over the empirical
model GPT3. The main advantage is that the 6-hourly data from VMF3 better represents
short-term variations in zenith and gradient delays. The estimated troposphere param-
eters cannot always compensate an insufficient modeling of these variations. For this
reason, the gridded VMF3 variant was used as the a priori tropospheric model for the
reprocessing campaign.
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(a) Station GRAZ (Austria) (b) Station MKEA (Hawaii)

Figure 6.18: Difference in a priori zenith hydrostatic (orange) and wet (blue) delay between
GPT3 and station-wise VMF3 data

(a) Station GRAZ (Austria) (b) Station MKEA (Hawaii)

Figure 6.19: Difference in a priori zenith hydrostatic (orange) and wet (blue) delay between
grid-interpolated and station-wise VMF3 data (including height correction)
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(a) Station GRAZ (Austria) (b) Station MKEA (Hawaii)

Figure 6.20: Difference in zenith hydrostatic (orange), wet (blue), and total (green) delay be-
tween GPT3 and station-wise VMF3 data (including residual wet delay estimation)

(a) Station GRAZ (Austria) (b) Station MKEA (Hawaii)

Figure 6.21: Difference in zenith hydrostatic (orange), wet (blue), and total (green) delay
between grid-interpolated and station-wise VMF3 data (including height correction
and residual wet delay estimation)
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6.8 Earth orientation

In GNSS processing, satellite orbits realize a celestial reference frame (CRF) and station
coordinates realize a terrestrial reference frame (TRF). Thus, the transformation between
these two frames has to be taken into account when processing observations between
satellites and ground-based receivers.

Following the IERS conventions (Petit and Luzum, 2010), the transformation

rGCRS = Q(t) R(t) W(t) rITRS (6.96)

relates the Geocentric Celestial Reference System (GCRS) to the ITRS. Here, the matrix
Q(t) represents the precession and nutation of the celestial pole in the GCRS, R(t) is
the rotation of Earth around the pole axis, and W(t) describes polar motion.

These transformation matrices are based on conventional models and a set of Earth
orientation parameters (EOPs). The conventional model for precession and nutation
is provided by the International Astronomical Union (IAU) via the Standards of Fun-
damental Astronomy (SOFA) service (IAU SOFA Board, 2022). The IERS conventions
define the conventional model for the rotation around the pole axis and polar motion.
The IERS further provides daily EOPs (Bizouard et al., 2019) as a correction for these
conventional models. They comprise the correction parameters ∆X and ∆Y for the
precession-nutation model, the difference ∆UT1 = UT1 − UTC between UT1 and
Coordinated Universal Time (UTC), the so-called length of day (LOD), which is the rate
of ∆UT1, and the pole coordinates xp and yp.

The precession-nutation matrix Q(t) can be determined as

Q(t) = Rz(−E) Ry(−d) Rz(E) Rz(s) (6.97)

using the angles

E = atan2 (Y, X) (6.98)

and

d = atan

√
X2 + Y 2

1−X2 + Y 2 . (6.99)

The matrices Rx, Ry, and Rz represent the basic rotations around the x, y, and z

axes, respectively. The angle s in (6.97) can be computed via the SOFA routines. The
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coordinates X = Xmodel+∆XEOP and Y = Ymodel+∆YEOP of the so-called Celestial Inter-
mediate Pole (CIP) used in (6.98) and (6.99) are composed of those of the conventional
model (Xmodel, Ymodel) and the EOPs corrections (∆XEOP, ∆YEOP).

The matrix describing the rotation of Earth around the pole axis is

R(t) = Rz(−ERA) , (6.100)

where ERA is the Earth Rotation Angle. Following the IERS conventions,

ERA(TUT1) = 2π (0.7790572732640 + 1.00273781191135448TUT1) (6.101)

with TUT1 = (tUTC + ∆UT1− 2451545.0) in units of days. tUTC is the Julian UTC date
and ∆UT1 = ∆UT1model + ∆UT1EOP, also expressed in days.

The polar motion matrix

W(t) = Rz(−s′) Ry(xp) Rx(yp) (6.102)

requires the angle s′, which can be determined using SOFA routines, as well as the
compound pole coordinates xp = xp,model + xp,EOP and yp = yp,model + yp,EOP.

6.8.1 High-frequency tidal model

The conventional IERS model for xp,model, yp,model, and ∆UT1model describes diurnal and
semidiurnal variations in these parameters caused by ocean tides and libration in the
form (Petit and Luzum, 2010)

�IERS
model = �IERS

ocean tides + �IERS
libration . (6.103)

The ocean tidal part includes variations at 41 diurnal and 30 semidiurnal tidal frequen-
cies. Desai and Sibois (2016) developed a high-frequency model that comprises 86
diurnal and 73 semidiurnal tidal components. This model was adopted for IGS repro3
to replace the IERS model. The model is distributed in the form of Fourier coefficients
at the 159 tidal frequencies for each of the parameters. Thus, the parameters xp,model,
yp,model, and ∆UT1model can be determined as

�HF
model = �HF

ocean tides + �IERS
libration , (6.104)

where �HF
ocean tides is the sum of the evaluated Fourier series at all provided tidal frequen-

cies, while �IERS
libration comes from the IERS software routines.
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6.8.2 Parametrization of Earth orientation

In Section 5.1, it was mentioned that Equation (5.2) implies that both the transmitter and
receiver coordinates are in the same reference frame. When the observation equations
are set up in the CRF, the intermediate parameters described in Section 5.3 contain the
receiver position also in the CRF. Therefore, only the relation

rCRF
r = RCRF

TRF(t) rTRF
r = Q(t) R(t) W(t) rTRF

r (6.105)

has to be considered for the design matrix Dg. This can be interpreted as the design
matrix Cg containing the exterior derivative of (5.2) with respect to Earth rotation
parameters while Dg contains the interior derivative.

Earth rotation parameters can have different temporal representations. They can be
described by a linear combination

x(t) =
∑
i

xi ψi(t) , (6.106)

where ψi(t) are basis functions in time and xi are the coefficients of these functions.
Bizouard et al. (2019) lists the Earth rotation parameters typically estimated via GNSS.
They include polar motion (xp, yp), polar motion rate (ẋp, ẏp) and LOD (i.e., the rate of
∆UT1). The absolute value of ∆UT1 cannot be determined directly by GNSS. However,
it is commonly set up as a parameter that is tightly constrained to its a priori value
in order to facilitate combination of the normal equations with other space-geodetic
techniques that can determine this parameter, for example VLBI. While the absolute
values of the nutation parameters X and Y can also not be determined by GNSS, their
rates (Ẋ, Ẏ ) can be estimated (Rothacher et al., 1999).

6.8.2.1 Nutation

Partially derivating (6.105) with respect to the nutation parameters X and Y leads to

∂rCRF
r

∂X
= ∂Q(t)

∂X
R(t) W(t) rTRF

r (6.107)

and

∂rCRF
r

∂Y
= ∂Q(t)

∂Y
R(t) W(t) rTRF

r . (6.108)
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Alternatively to Equation (6.97), the precession-nutation matrix can also be stated as

Q(t) =


1− aX2 −aXY X

−aXY 1− aY 2 Y

−X −Y 1− a(X2 + Y 2)

Rz(s) (6.109)

with

a = 1
2 + 1

8(X2 + Y 2) . (6.110)

This alternative form simplifies the formation of the partial derivatives

∂Q(t)
∂X

=


−2aX − X3

4 −aY − X2Y
4 1

−aY − X2Y
4 −XY 2

4 0
−1 0 −2aX − X(X2+Y 2)

4

Rz(s) (6.111)

and

∂Q(t)
∂Y

=


−X2Y

4 −aX − XY 2

4 0
−aX − XY 2

4 −2aY − Y 3

4 1
0 −1 −2aY − Y (X2+Y 2)

4

Rz(s) . (6.112)

As mentioned above, the absolute values for the nutation parameters cannot be estimated
via GNSS. Their rates can be parameterized by using the basis function ψ(t) = t− t0 as
a temporal representation. The entries in the design matrix Dg then are

∂rCRF
r

∂xX
= ∂rCRF

r

∂X

[
t− t0

]
(6.113)

and

∂rCRF
r

∂xY
= ∂rCRF

r

∂Y

[
t− t0

]
. (6.114)

6.8.2.2 Rotation around the pole axis

The partial derivative of (6.105) with respect to ∆UT1 (in seconds) is

∂rCRF
r

∂∆UT1 = 1.00273781191135448 2π
86400 Q(t) ∂R(t)

∂∆UT1 W(t) rTRF
r (6.115)

140 Chapter 6 Parametrizations, models, and corrections



with

∂R(t)
∂∆UT1 =


sin(−ERA) − cos(−ERA) 0
cos(−ERA) sin(−ERA) 0

0 0 0

 . (6.116)

In case the absolute value of ∆UT1 should be part of the normal equations, its temporal
basis function is just ψ(t) = 1. LOD is parameterized as the rate of ∆UT1, although
with opposing sign due to convention. Therefore, its temporal basis function is ψ(t) =
−(t− t0). The entries in the design matrix Dg then follow as

∂rCRF
r

∂x∆UT1
= ∂rCRF

r

∂∆UT1
[
1 −(t− t0)

]
. (6.117)

6.8.2.3 Polar motion

The partial derivatives of (6.105) with respect to the polar coordinates xp and yp are

∂rCRF
r

∂xp
= Q(t) R(t) ∂W(t)

∂xp
rTRF
r (6.118)

and

∂rCRF
r

∂yp
= Q(t) R(t) ∂W(t)

∂yp
rTRF
r . (6.119)

Due to the infinitesimal nature of the polar motion angles, small-angle approximations
can be used to obtain the partial derivatives

∂W(t)
∂∆xp

' Rz(−s′)


0 0 −1
0 0 0
1 0 0

Rx(yp) (6.120)

and

∂W(t)
∂∆yp

' Rz(−s′) Ry(xp)


0 0 0
0 0 1
0 −1 0

 . (6.121)

Since both the absolute values and the rates of polar motion can be determined by GNSS,
the entries in the design matrix Dg follow as

∂rCRF
r

∂xxp
= ∂rCRF

r

∂xp

[
1 t− t0

]
(6.122)
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and

∂rCRF
r

∂xyp
= ∂rCRF

r

∂yp

[
1 t− t0

]
. (6.123)

6.9 Station coordinates

Equation (5.2) in Section 5.1 describes the geometric range within the observation
equations (5.1). When the observation equations are set up in the CRF, the receiver
position is

rCRF
r (t) = RCRF

TRF(t)
(
rTRF
r (t) + ∆rTRF

r,tides(t) + ∆rTRF
r,loading(t)

)
. (6.124)

Here, RCRF
TRF is the Earth rotation matrix (see Section 6.8) and rTRF

r is the receiver position
in the TRF corrected for displacements due to tidal (∆rTRF

r,tides) and loading (∆rTRF
r,loading)

deformations acting on the station.

Time-variable tidal displacements ∆rTRF
r,tides(t) include

• Solid Earth tides,

• Ocean tides,

• Atmospheric tides,

• Pole tides, and

• Ocean pole tides.

These effects are briefly summarized in Section 6.2.2, while extensive descriptions are
available in the IERS conventions (Petit and Luzum, 2010). Section 8.1.1 lists the
specific models that were used in the reprocessing. In addition, variations in atmospheric
pressure, wind-induced ocean currents, and changes in terrestrial water storage induce
loading displacements ∆rTRF

r,loading(t) (e.g., Klos et al., 2021).

Receiver positions rTRF
r are usually assumed to be static within one day. The design

matrix Cg already contains the partial derivatives of the observation equations with
respect to the receiver position in the CRF. Therefore, only the partial derivatives of
(6.124) with respect to the receiver position in the TRF are needed for the design matrix
Dg. They are simply

∂rCRF
r

∂rTRF
r

= RCRF
TRF(t) . (6.125)
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The linearization of the GNSS observation equations requires approximate station coor-
dinates. They are usually provided by station operators via station log files. Alternatively,
precise coordinates can be obtained for stations that are part of a TRF. Current versions
of the ITRF (e.g., ITRF2014) describe station positions as

rITRF
r (t) = rr(t0) + ṙr(t0) (t− t0) + ∆rr,PSD(t) , (6.126)

where rr(t0) and ṙr(t0) are the station position and velocity at a reference time t0.
∆rr,PSD(g) is a correction for post-seismic deformation in case the station was affected
by an earthquake (Altamimi et al., 2016).

A receiver or station position usually refers to a so-called station marker. This is the
physical or virtual reference point of the GNSS station. In most cases, the receiving
antenna is mounted close to the station marker (usually above, on a monument).
This eccentricity from the station marker to the antenna reference point is covered in
Section 6.10 along with other antenna offsets.

Antennas of IGS stations are supposed to be horizontally aligned towards north (IGS
Infrastructure Committee, 2015). However, for a variety of reasons, not all antennas are
or have always been oriented in that way. Until repro3, this misalignment had not been
considered by IGS analysis centers. Depending on the misalignment and antenna type,
this can lead to offsets of several centimeters in the station coordinates. Section 6.10.3
covers this topic in more detail and provides some examples of the effect of such a
misalignment on the estimated station coordinates.

6.9.1 No-net constraints and alignment

No-net constraints are a common tool to resolve certain rank deficiencies in GNSS
processing and to align the solution to a reference frame. They can be separated into
three constituents: rotation, translation, and scale. A no-net rotation (NNR) constraint
is mandatory when station coordinates and satellite orbits are estimated together. In
this case, a rank deficiency arises because the absolute orientation of the system cannot
be determined by the relative GNSS observations. When geocenter coordinates are set
up as additional parameters, it is also necessary to apply a no-net translation (NNT)
constraint. A no-net scale (NNS) constraint is only needed in special cases, for example
when antenna center z-offsets are estimated.

Section 3.7 describes the principle of the 7-parameter Helmert transformation. It also
shows how the transformation parameters between two reference frames A and B can
be estimated. The goal of no-net constraints is to constrain these parameters to zero.
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This aligns the estimated station coordinates (i.e., frame B) to the reference coordinates
(i.e., frame A). The resulting absolute alignment also resolves the rank deficiencies
mentioned above. Equation (3.13) can be written in matrix notation as

∆xrNN = By . (6.127)

Here, the coordinate differences in ∆xrNN are those between the estimated coordinates
(i.e., the station coordinate parameters) and the reference coordinates for all stations
used in the no-net constraint. The no-net constraint can then be applied by introducing
pseudoobservation equations

0 =
(
BTB

)−1
BT∆xrNN (6.128)

into the estimation process described in Chapter 5 (e.g., Zajdel et al., 2019). The
strength of the constraints is controlled by the standard deviations assigned to these
constraint equations. Usually, only a subset of all stations are used for no-net constraints
(e.g., IGS reference frame stations). In this case, the columns of the matrix

(
BTB

)−1
BT

from (6.128) have to be mapped to those of the respective station coordinate parameters
in the design matrix A of the full equation system.

Equation (6.128) gives equal weight to all stations. Processing issues of specific stations
(e.g., gross outliers, systematic effects) can lead to erroneous station coordinate estimates.
In extreme cases, using such a station for no-net constraints can result in a misalignment
of the whole solution. Therefore, it is preferable to use weighted no-net constraints. A
robust least-squares adjustment based on the equation system in (3.13) can be used for
this purpose. The three coordinate differences of each station form a pseudoobservation
group and the same weight is assigned to each group initially. The system is then solved
iteratively and outlying stations are weighted down using a modified Huber estimator
(Huber, 1981), similar to the procedure described in Section 5.8.1. Once the solution
converges, the resulting weights for each group can be introduced into the constraint
equations by homogenizing (6.128) as described in Section 4.2.1.

6.10 Antennas

Various antenna-related offsets and corrections have to be taken into account in GNSS
processing (e.g., Maqsood et al., 2017). Figure 6.22 illustrates them at the transmitter
and receiver end. The geometric range in the observation equation (5.1) described in
Section 5.1 is defined between the antenna reference points (ARPs) of the satellite and
receiver antennas. However, the satellite orbits refer to center-of-mass positions, while
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Figure 6.22: Illustration of connection between station marker, antenna reference points (ARPs),
antenna centers (ACs), and satellite center of mass (COM) considering antenna
eccentricities, antenna center offsets (ACOs), and antenna center variations (ACVs)
(partly adapted from Maqsood et al., 2017)

the receiver coordinates refer to the position of a marker that represents the station.
These antenna offsets are detailed in Section 6.10.1. In addition, the electronic center of
an antenna can vary for different frequencies. Section 6.10.2 describes these antenna
center offsets and also discusses direction-dependent variations.

6.10.1 Antenna offsets

At the station, the ARP is usually located at the bottom of the physical antenna. Since
ground station antennas are often mounted on monuments, the connection between
station marker and ARP is

rTRF
ARP,r = rTRF

Marker,r + TTRF
LRF∆rLRF

Eccentricity,r . (6.129)

Station operators usually provide ∆rLRF
Eccentricity,r in a local topocentric reference frame

(i.e., north, east, up). Therefore, this vector has to be transformed to the TRF via TTRF
LRF

(see Section 3.3).

At the satellite, the center of mass (COM) and the ARP are related via

rCRF,s
ARP = rCRF,s

COM + RCRF
SRF

(
∆rSRF,s

Eccentricity −∆rSRF,s
COM

)
. (6.130)
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Here, the center-of-mass offset ∆rSRF,s
COM and the eccentricity of the ARP ∆rSRF,s

Eccentricity are
given in the SRF with respect to a physical origin. The location of this origin and the
orientation of the SRF depend on the satellite type (Montenbruck et al., 2015b). For this
reason, the IGS has adopted a common SRF for all GNSS satellites (see Section 3.4). The
ARP and the origin are tied to the physical structure of the satellite, making ∆rSRF,s

Eccentricity

constant over time. In contrast, the position of the center of mass can change over time,
mainly due to the usage of propellant to maneuver the satellite. An example for this are
the two Galileo satellites that were launched into highly elliptical orbits (Navarro-Reyes
et al., 2015). After the maneuvers to correct their orbits, which consumed a large part
of their on-board propellant, the center of mass has changed by about 5 cm (European
GNSS Service Centre, 2017).

The formulation in (6.130) assumes that values for ∆rSRF,s
Eccentricity and ∆rSRF,s

COM are known
(i.e., have been published by satellite manufacturers). However, of the three GNSS
constellations considered in this thesis, Galileo is the only one where this is the case
(European GNSS Service Centre, 2017). For GPS and GLONASS satellites only estimated
offsets between the satellite center of mass and the antenna center are available (e.g.,
Schmid et al., 2007; Schmid et al., 2016; Villiger et al., 2020). Lockheed Martin has
recently started to publish calibrated offset values for the new GPS-IIIA satellites.

One way to work around the missing information is to assume that the origin and center
of mass of the satellite are identical (i.e., ∆rSRF,s

COM = 0). The offset between a virtual
antenna reference point and the origin can then be determined as the mean of the
AC-COM offsets for the nν frequencies such that

∆rSRF,s
Eccentricity = 1

nν

nν∑
ν

∆rSRF
AC-COM[ν]s . (6.131)

The antenna center offset (ACO) between this virtual antenna reference point and the
electronic antenna center at frequency ν then is

∆rARF
ACO[ν]s = TARF

SRF

(
∆rSRF

AC-COM[ν]s −∆rSRF,s
Eccentricity

)
. (6.132)

6.10.2 Antenna center offsets and variations

Following the sign conventions of the IGS ANTEX file format (Rothacher and Schmid,
2010), antenna center offset and variation corrections for a satellite or receiver antenna
can be applied as

ant[τνa](kARF) = −kARF ·∆rARF
ACO[τνa] + ∆rACV[τνa](A, e) . (6.133)
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Figure 6.23: Projection of antenna center offset (ACO) into line of sight and antenna center
variation (ACV) correction (adapted from Maqsood et al., 2017)

Here, ∆rARF
ACO[τνa] is the offset from the antenna reference point to the electronic antenna

center for a signal [τνa]. Figure 6.23 shows that it is projected into the line-of-sight
vector kARF, which is defined from the local antenna center to the remote antenna
center. Due to the large distance between GNSS transmitters and receivers, this vector
is equivalent to the line-of-sight vector between the antenna reference points, which
was defined in Equation (5.13). Therefore, in case of the satellite antenna correction
ant[τνa]s(psr) listed in the observation equation (5.1), the vector

kARF,s = TARF
SRF RSRF

CRF kCRF (6.134)

is substituted into (6.133). In case of the receiver antenna correction ant[τνa]r(psr), the
substituted vector is

kARF
r = −RARF

LRF TLRF
TRF RTRF

CRF kCRF . (6.135)

ACOs are not commonly estimated in GNSS processing because it would lead to a
rank deficiency in the normal equation system. However, it is possible to set up ACO
parameters and tightly constrain them to their a priori value. The resulting normal
equations, for example from a daily processing, can then be stacked over long time
periods to estimate a stable set of ACOs if needed. The intermediate parameters (see
Section 5.3) already contain one bias parameter for each transmitted and received
signal. An example for the partial derivatives of an observation group with respect to
these parameters (i.e., their entries in the design matrix Cg) is given in Equation (5.22).
Consequently, the slice in the design matrix Dg that corresponds to the partial derivatives
of one such bias parameter to its respective ACO parameters ∆rARF

ACO[τνa] is simply

∂b[τνa]
∂∆rARF

ACO[τνa]
= ∂ ant[τνa](kARF)

∂∆rARF
ACO[τνa]

= (−kARF)T . (6.136)
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Here, kARF is either (6.134) in case of satellite ACOs or (6.135) in case of receiver
ACOs.

The antenna center variation (ACV) correction ∆rACV[τνa] in (6.133) describes direction-
dependent variations for a signal [τνa] (e.g. Maqsood et al., 2017). The azimuth and
elevation angles A and e are those of kARF in the respective ARF. Figure 6.24 shows
examples for variations of a Galileo satellite and a receiver antenna on two different
frequencies. As can be seen, the patterns clearly differ between the two frequencies both
at the satellite and receiver antenna. Depending on the antenna and signal direction,
ACV corrections can range from a few millimeters to several centimeters.

ACV patterns are usually determined from calibrations or, if such data is not available,
they can be estimated. Fully calibrated Galileo ACV patterns have been published in
European GNSS Service Centre (2017). For GPS and GLONASS satellites, only estimated
circular patterns are available in the IGS ANTEX file (e.g., Schmid and Rothacher, 2003;
Schmid et al., 2007; Schmid et al., 2016). Zehentner (2016) and Zehentner and Mayer-
Gürr (2016) estimated full GPS satellite ACV patterns from LEO satellite observations,
which indicate that there are also significant noncircular variations present at those
antennas. They also showed that code observations can have distinct patterns from
phase observations. Satellite ACVs are limited to a maximum opening angle of 15°
to 20°, which covers the whole Earth and, in the latter case, also most LEO satellites.
Receiver ACV patterns are determined using robot or anechoic chamber calibrations
(e.g., Görres et al., 2006; Schmid et al., 2007; Schmid et al., 2016; Villiger et al., 2020).
They typically cover the full hemisphere of the antenna.

6.10.3 Orientation of receiver antennas

Section 3.5 mentions that IGS stations are instructed to orient their receiver antennas
towards geographic north (IGS Infrastructure Committee, 2015). This has the benefit
that the axes of the ARF are aligned to those of the LRF. Therefore, this frame transition
does not have to be considered when applying antenna center offsets and variations.
However, for a variety of reasons, not all receiver antennas are or always have been
oriented towards north. Information about the misalignment of receiver antennas can
usually be found in the station log files provided by station operators, but was not
reported together with other station metadata in commonly used file formats such as
SINEX (Rothacher and Thaller, 2006). As a result, receiver antenna misorientations
were typically disregarded by IGS analysis centers.

Depending on the antenna type, this disregard can lead to significant horizontal off-
sets in the estimated station coordinates. For example, the receiver antenna of IGS
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(a) Galileo satellite E210, signal L1*
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(b) Galileo satellite E210, signal L5*
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(c) Receiver antenna JAV_GRANT-G3T, signal L1*
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(d) Receiver antenna JAV_GRANT-G3T, signal L5*

Figure 6.24: Antenna center variations (ACVs) for Galileo satellite E210 (top) and receiver
antenna JAV_GRANT-G3T (bottom) for signals L1* (left) and L5* (right). Satellite
figures are limited to 15° opening angle from boresight direction. Note the different
colorbar limits for satellite and receiver antennas.
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station ABPO (Ambohimpanompo, Madagascar) was misaligned by 180° (i.e., oriented
towards geographic south) from 2007 to 2018. The antenna used during that time
(ASH701945G_M with SCIT radome) only has calibrations for GPS L1 and L2 phase
observations. ACVs are circular for both frequencies, which means they are irrelevant
for this example.

The horizontal phase center offsets in the ARF are x1 = 0.8 mm, y1 = −0.4 mm for
L1 and x2 = −0.4 mm, y2 = −0.5 mm for L2. In this case, the actual effect on the
station coordinates is approximately that of the ionosphere-free linear combination (e.g.,
Hauschild, 2017b) of the ACOs. It is x = ν2

1x1−ν2
2x2

ν2
1−ν

2
2

= 2.5 mm and y = ν2
1y1−ν2

2y2
ν2
1−ν

2
2

=
−0.4 mm. An experiment where this station was processed over the period of 2014 with
and without considering the antenna misalignment lead to median horizontal coordinate
differences of ∆rn = 5.1 mm in north-south direction and ∆re = −0.8 mm in east-west
direction. This is almost exactly two times the ionosphere-free offset, which is the result
of the ACOs being applied in opposite directions in the two solutions.

Another example is the IGS station ULAB (Ulaanbataar, Mongolia), whose antenna was
also misaligned by 180° from 2011 to 2018. Its antenna at the time (JAV_RINGANT_G3T
without radome) has multi-GNSS calibrations and features noncircular ACVs. Repeating
the experiment from above for this station lead to mean horizontal coordinate differ-
ences of ∆rn = −27.8 mm and ∆re = 18.2 mm. Figure 6.25 displays the daily station
coordinate differences, confirming that this offset is very stable over time. This station
was processed using all available GPS, GLONASS, and Galileo signals. Therefore, the
combined effect of the varying ACOs as well as the noncircular ACVs on the station
coordinates becomes much more obfuscated. Nonetheless, the determined horizontal
coordinate differences closely matched to an average of linear combinations for the
different signals weighted by the number of observed satellites of that constellation.
Table 6.12 shows results for further stations.

The issue of antenna misalignments first came up during preliminary station coordinate
combinations of an IGS repro3 test processing. For the stations with misaligned antennas,
TUG’s contribution, which considered these misalignments, showed offsets close to those
showcased in Table 6.12 compared to other analysis centers. After extended discussions,
most analysis centers participating in repro3 started to consider antenna misalignments
in their contribution. One important reason is that several GNSS stations that have or
had misaligned receiver antennas are colocated with other space-geodetic techniques.
Biases in the coordinates of such stations would negatively affect the determination of
the ITRF, which combines these techniques based on local ties at colocation sites (e.g.,
Altamimi et al., 2016). Analysis centers also agreed to include metadata on antenna
rotations in their solutions (e.g., SINEX files).

150 Chapter 6 Parametrizations, models, and corrections



Table 6.12: Median coordinate differences (in LRF) between receiver antenna misalignments
from geographic north being considered or not over the period of 2014 for several
GNSS stations

Station Rotation [°] North [mm] East [mm] Up [mm]
ABPO 180 5.1 -0.8 0.0
BSMK 165 3.3 -2.9 0.1
CALL 121 5.2 5.1 -0.5
CHPI -20 -0.4 -0.3 -0.4
GDMA 110 0.6 -0.1 -0.3
GLSV 160 12.3 -4.0 1.4
GSR1 1 0.1 -0.0 -0.0
HALY 3 -0.0 -0.1 0.0
HIL1 -15 0.7 -0.4 -0.6
HOLB 40 0.8 -0.7 -0.3
HYDE 3 0.2 -0.1 0.1
IQUI -120 -2.0 7.0 0.2
JOEN 10 -0.4 -0.1 -0.2
JOZE 4 -0.7 -0.2 -0.2
KATC 4 0.0 -0.0 -0.0
KHAR 45 1.0 -4.5 0.3
KTVL 30 0.1 -3.0 -0.2
MCHN 180 0.9 0.6 0.1
NAMA 2 -0.0 -0.1 0.0
NAUR -13 -0.5 0.2 0.2
NHIL -18 -0.2 0.8 -0.2
NTJN 17 0.7 -0.0 0.2
POHN 180 4.2 6.8 -0.4
PPER 28 1.2 -0.1 1.6
PTAG -1 -0.1 0.0 -0.0
RCMN -170 1.5 8.3 0.1
SHE2 43 1.7 -0.1 2.3
STJ3 -85 -1.6 1.3 0.3
SVTL 5 -0.1 0.1 -0.1
TEHN 3 0.0 -0.2 0.1
ULAB 180 -27.8 18.2 -1.2
UZHL 180 12.9 -2.1 1.5
YCBA 83 4.9 2.3 0.3
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Figure 6.25: Differences between station coordinates when considering or disregarding the 180°
antenna misalignment from geographic north for station ULAB

6.11 Other effects and corrections

The term other(. . .) in the observation equation (5.1) described in Section 5.1 represents
corrections that do not fit in any of the previous sections. They comprise several
relativistic effects and phase wind-up.

6.11.1 Relativistic effects

Various relativistic effects have to be considered in GNSS processing (e.g., Ashby, 2003;
Hofmann-Wellenhof et al., 2008; Formichella et al., 2021). Section 6.2.2.4 describes a
relativistic correction of the equation of motion that forms the basis of dynamic satellite
orbits. In addition, relativity affects satellite clocks and signal propagation. These effects
can be directly applied to the observation equations in the form of range corrections.

First of all, time dilation and gravitational redshift cause a constant frequency offset in
the satellite clocks (e.g., Ashby, 2003). The offset depends on the semimajor axis of the
satellite orbit and thus differs per GNSS constellation. However, this offset is corrected
for on a hardware level directly in the satellites so that for ground-based receivers the
apparent satellite clock frequency conforms to its nominal value. Therefore, no explicit
correction of this constant offset is required when processing GNSS observations.

Next to this constant offset, satellite clock frequencies are also affected by periodic
variations. The main effect is caused by the slight eccentricity of the satellite orbits.
Following Ashby (2003), this effect can be modeled directly as a range correction

δeccentricity
relativity (t) = 2

c
rs(t) · ṙs(t) . (6.137)
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Here, rs and ṙs are the satellite position and velocity in the CRF and c is the speed of
light.

Kouba (2004) describes an additional periodic variation in the satellite clock frequency.
This effect is caused by variations in Earth’s gravitational potential due to Earth’s
oblateness. It can be modeled as a range correction

δ
J2,0
relativity(t) = 3

2J2,0
R2

c

√
GM

a3 sin2 i sin 2u(t) , (6.138)

where J2,0 = 1.083 · 10−3 is the potential coefficient describing Earth’s oblateness, R is
Earth’s equatorial radius, c is the speed of light, GM is Earth’s gravitational constant, a
is the semimajor axis of the satellite’s orbit, and i is its inclination angle. The argument
of latitude u(t) = ω + ν(t) describes the position of the satellite in the Keplerian orbit
based on the argument of perigee ω and the true anomaly ν. It can also be obtained
via Equation (6.9). According to Kouba (2009a) it is IGS convention to not apply this
correction in GNSS processing.

GNSS signals are additionally delayed due to the curvature of spacetime (e.g., Ashby,
2003). The range correction due to this delay can be modeled as

δspacetime
relativity (t) = 2GM

c2 ln ‖rr(t)‖+ ‖rs(t)‖+ ρsr(t)
‖rr(t)‖+ ‖rs(t)‖ − ρsr(t)

. (6.139)

Here, GM is Earth’s gravitational constant, c is the speed of light, rr and rs are the
receiver and satellite position, and ρsr is the geometric range between receiver and
satellite as described in Equation (5.2).

A correction for the Sagnac effect is necessary in case the computations are conducted in
an Earth-fixed reference frame (e.g., Ashby, 2003). However, in the context of this thesis,
the observation equations are set up in an inertial reference frame and receiver positions
and velocities are rotated into this frame when needed. Therefore, this correction can
be disregarded and is not further discussed here.

6.11.2 Phase wind-up

The circularly polarized nature of GNSS signals leads to variations in the phase mea-
surements. This effect is called phase wind-up and is caused by changes in the relative
orientation of transmitter and receiver antennas (J. T. Wu et al., 1993). From the
perspective of an inertial frame, a ground-based receiver antenna rotates with Earth.
At the same time, a GNSS satellite orbits Earth while constantly adjusting its attitude
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(see Section 6.1) and thus its antenna orientation. Therefore, the relative orientation
between these two antennas continuously changes over time.

Beyerle (2009) derived an analytical formula to correct for this effect. Based on the two
satellite antenna dipoles eSARF

x = [ 1 0 0 ]T and eSARF
y = [ 0 1 0 ]T in the satellite ARF, the

effective dipoles of the transmitted signal in the receiver ARF are

x = TRARF
CRF

[(
k×TCRF

SARF eSARF
x

)
× k

]
(6.140)

and

y = TRARF
CRF

[(
k×TCRF

SARF eSARF
y

)
× k

]
. (6.141)

Here, k is the line-of-sight unit vector from the satellite to the receiver in the CRF as
defined in Equation (5.13). The transformation matrix TCRF

SARF = RCRF
SRF TSRF

SARF describes
the transition from the left-handed satellite ARF to the right-handed CRF. Similarly,
TRARF

CRF = RRARF
LRF TLRF

TRF RTRF
CRF is the transformation matrix from the CRF to the left-handed

receiver ARF. The individual transformation and rotation matrices are described in
Section 3. The phase wind-up in units of length for a signal at frequency ν then follows
as

δPWU[Lν] = c

2πν
[
2πN + atan2

(
xy + yx, yy − xx

)]
, (6.142)

where the subscripts refer to the x and y components of the respective vectors and c is
the speed of light. Equation (6.142) considers that both ARFs are left-handed frames.
The integer number of full phase cycles N must be taken into account by continuously
tracking the phase wind-up angle between a satellite and receiver over time.
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Observation preprocessing 7
Observation preprocessing is one of the first steps in GNSS processing. The goal is to
detect observations that are faulty or of poor quality in order to remove them or weight
them down. The reason for this is that they might negatively affect the least-squares
solution and resulting products.

In the context of this thesis, observation preprocessing comprises the following steps.
They are performed independently for each receiver.

1. Observation initialization All observations are checked against an inclusion/ex-
clusion list of signal types. For example, observations with a certain attribute
or frequency (e.g., GLONASS G3, Galileo E6) might want to be excluded from
the processing. Observations are also checked for their reasonableness. Some
RINEX observation files contain observations of a signal type that is not actually
transmitted by the respective satellites. GLONASS observations are also checked
to have the correct frequency number.

2. Track definition Continuous observations to the same satellite are linked to form
tracks. They are used to define the ambiguity parameters in the processing (see
Section 6.6.1). A track must contain continuous phase observations of the same
phase types on at least two frequencies. A new track is formed in case a gap of
more than one epoch (e.g., 30 seconds) occurs or the set of phase types changes.

3. Initial clock estimation from code observations A small equation system using
only code observations is set up to get a rough estimation of the receiver clock
errors. The parameters comprise a static receiver position, one clock error per
epoch and observed GNSS constellation, and an STEC parameter per observation
group. Separate clock errors are necessary because no code bias and satellite clock
parameters are set up in this simplified equation system. The STEC parameters
are preeliminated as described in Section 5.5. The equation system is then solved
using a robust least-squares adjustment. It operates iteratively and weights down
outlying observations based on a modified Huber estimator (see Section 5.8.1).
The approximate clock error at each epoch then follows as the mean over all
system-specific clock errors.
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The whole process described above is performed iteratively until no clock error
changes by more than some threshold (e.g., 100 m) from one iteration to the next
or ten iterations have been reached. Any epoch where the clock error did not
converge is disabled at the receiver. The whole receiver is disabled in case the
static position did not converge below the above threshold.

4. Removal of observations with gross code outliers Observation groups that con-
tain gross code outliers above a certain threshold (e.g., 100 m) are removed. This
check uses reduced observations (i.e., "observed minus computed") based on all a
priori models, approximate satellite orbits, satellite clocks, and receiver positions,
as well as the estimated receiver clock errors from the previous step. If the obser-
vation groups to more than, for example, half of all satellites at one epoch contain
gross code outliers, the whole epoch is disabled at the receiver.

5. Cycle slip detection Each track is analyzed with respect to possible cycle slips.
Section 7.1 describes this process in detail. Tracks are split at each detected cycle
slip. This can result in some very short tracks, especially close to the horizon,
which are subsequently removed in the next step.

6. Removal of poorly defined tracks Tracks that do not fulfill certain criteria are
removed. A track must contain a minimum number of epochs with observations
(i.e., have a certain length). In addition, tracks that never exceed an elevation
angle threshold (e.g., 15°) are removed as well. Such tracks containing almost
exclusively observations close to the horizon, where the noise level is significantly
higher, often result in inaccurate ambiguity parameters that can hamper the
ambiguity resolution process (see Section 6.6.2).

7. Outlier detection In this final step, each track is checked for outliers. This procedure
is described in Section 7.2. Observation groups with gross outliers are weighted
down and these weights are carried over to the full processing.

The above steps ensure an overall high quality of the observation data used in the full
processing. However, these methods are not perfect and some bad data is inadver-
tently going to end up in the processing. The combination of iterative least-squares
adjustment and variance component estimation described in Chapter 5 mitigates this by
automatically weighting down any remaining problematic observations.

7.1 Cycle slip detection

There are numerous studies on methods for cycle slip detection in GNSS phase observa-
tions (e.g., Beutler et al., 1984; Blewitt, 1990; Bisnath, 2000; de Lacy et al., 2008; Dai
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et al., 2009; Banville and Langley, 2013; Cai et al., 2013). It is also still an active field
of research, especially in the context of multi-GNSS and multi-frequency observations
(e.g., Zhang and Li, 2016; Xiao et al., 2017; Li and Melachroinos, 2018; B. Li et al.,
2019). Many of these methods use linear combinations of specific signals, such as the
Hatch-Melbourne-Wübbena (HWM) linear combination (Hatch, 1983; Melbourne, 1985;
Wübbena, 1985; Hauschild, 2017b). However, in a modern GNSS environment with a
multitude of signals on several frequencies, it becomes more and more challenging to
select a set of signal combinations in advance.

7.1.1 Estimation of epoch-wise ambiguities

The cycle slip detection method applied in this thesis is based on generalized HWM-like
linear combinations. Using the simplified observation equations

f [τνa](t) = ρ(t) + I[τν] STEC(t) + λ[Lν]n[Lνa](t) , (7.1)

an equation system

[
∆l[C]
∆l[L]

]
=
[
1 I[C] 0
1 I[L] λ[L]

]
ρ

STEC
n[L]

 (7.2)

is set up for each epoch of a track. In Equation (7.1), ρ and STEC are the geometric and
ionospheric components and n[Lνa] is a biased ambiguity (see Section 6.6) for a specific
phase type. The ionospheric factor I represents the first-order ionospheric correction
and is I[Cν] = q

ν for code observations and I[Lν] = − q
ν for phase observations (see

Section 6.4.1 for the definition of q). λ[Lν] is the wavelength of a phase observation
at frequency ν in meters, implying that the biased ambiguities are estimated in cycles.
In (7.2), ∆l[C] and ∆l[L] are vectors containing reduced code and phase observations,
respectively. 1 is a vector of ones, I[C] and I[L] are vectors consisting of the respective
ionospheric factors, 0 is a matrix of zeros, and λ[L] is a diagonal matrix containing the
wavelengths of the corresponding phase observations. Finally, n[L] is the vector of biased
ambiguities linked to each phase observation. A simple example of (7.2) with two GPS
code and phase observations on two frequencies is

∆l[C1W]
∆l[C2W]
∆l[L1W]
∆l[L2W]

 =


1 I[C1] 0 0
1 I[C2] 0 0
1 I[L1] λ[L1] 0
1 I[L2] 0 λ[L2]




ρ

STEC
n[L1W]
n[L2W]

 . (7.3)
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The equation system is solved separately for each epoch using a weighted least-squares
adjustment. The resulting time series of the biased ambiguities n[Lνa] should be constant
over the track, except if a cycle slip occurs. However, the noise of the time series is usually
too high to confidently detect cycle slips. This is because the geometric and ionospheric
components are determined solely by the code observations. For this reason, linear
combinations of the individual biased ambiguities are formed. Such linear combinations
result in different wavelengths and noise levels. For example, the popular wide-lane
combination (e.g., Hauschild, 2017b) of phase ambiguities on the GPS L1 and L2
frequencies results in a wavelength of 86 cm. This makes it much easier to detect cycle
slips.

7.1.2 Automatic determination of linear combinations

A modern GNSS environment usually involves more than two frequencies and possi-
bly multiple phase signals per frequency. Therefore, it is favorable to automatically
determine the optimal linear combinations of all available signals. The decorrelation/re-
duction process of the LAMBDA method (Teunissen, 1995; Al Borno et al., 2014) can be
used to achieve this. Section 6.6.2.1 describes how this process is originally applied in
preparation of integer ambiguity resolution. It automatically forms linear combinations
that maintain the integer nature of the ambiguities while minimizing their correlations.
The resulting linear combinations are sorted by their accuracy.

The determined linear combinations for the example from (7.3) are nLC1 = −7n[L1W] +
8n[L2W] and nLC2 = n[L1W] − n[L2W]. The latter is the same as the aforementioned
wide-lane combination, while the former is a less accurate linear combination. Another
example, which involves five phase signals on three GPS frequencies, results in a
transformation matrix

T =

n[L1C] n[L1L] n[L2W] n[L2L] n[L5Q]



nLC1 −12 −11 72 73 −121
nLC2 1 −2 −1 2
nLC3 1 −1
nLC4 1 −1
nLC5 1 −1

. (7.4)

Here, it becomes obvious that the most accurate linear combinations are those between
signals on the same frequency (nLC4 and nLC5). This is because the geometric and
ionospheric influence are completely removed by forming the difference of two such
signals. The next most accurate linear combination is nLC3 = n[L2W]− n[L5Q] because
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those two frequencies are close together, resulting in a long wavelength of 5.86 m.
Another linear combination (nLC2) combines four signals, and the least accurate linear
combination (nLC1) uses all original signals. The advantage of the LAMBDA algorithm is
that it finds the optimal set of linear combinations for any mix of signals occurring in a
track.

In the next step, the time series of biased ambiguities are transformed based on the
determined linear combinations. A total variation denoising algorithm (Condat, 2013)
is then performed on each linear combination time series except for the least accurate
one. Then, cycle slips can be detected by forming epoch-wise differences of the denoised
time series and checking them against a threshold of, for instance, 0.75 cycles. In case a
cycle slip is detected, the track is split at this epoch.

7.1.3 Analysis of the ionospheric STEC

At this point, it is assumed that all cycle slips in the analyzed linear combinations have
been detected successfully with the approach described above. Therefore, only the
least accurate linear combination can still contain potential cycle slips. However, this
linear combination is too noisy to reliably detect cycle slips. The time series of STEC
estimates is analyzed instead to circumvent this issue. The assumption is that the STEC
is a continuous function over time and any remaining jumps in this time series must be
caused by cycle slips in the least accurate linear combination. Since the STEC values from
solving (7.2) are determined solely from code observations and thus have a relatively
low accuracy, a new equation system

∆l[L] =
[
1 I[L]

] [ ρ

STEC

]
(7.5)

using only phase observation is set up for each epoch. Here, the only parameters are the
geometric range ρ and the ionospheric STEC. This is similar to forming the geometry-
free linear combination (e.g., Hofmann-Wellenhof et al., 2008), except that the equation
system is overdetermined when more than two phase observations on two frequencies
are involved. Solving this equation system using a weighted least-squares adjustment
results in a time series of STEC values that are estimated purely from phase observations.
This significantly reduces the noise of this time series.

The question now is how much a slip of one cycle in the least accurate linear combination
amounts to in TEC units. This can be determined by setting up another equation system
in the same form as Equation (7.5). However, in this case, ∆l[L] contains the first
column of the inverse transformation matrix T−1 from (7.4) multiplied by the respective
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wavelengths as pseudoobservations. In other words, the pseudoobservations represent
the effect a jump of one cycle in the least accurate linear combination has on the original
ambiguities. Taking the example from (7.4), the pseudoobservation vector is

∆l[L] =



λ[L1]
λ[L1]
λ[L2]
λ[L2]
λ[L5]


. (7.6)

The equation system from (7.5) is then solved. In this example, the result is STEC =
−0.501 TEC units. A cycle slip in the least accurate linear combination then must amount
to an integer multiple of the resulting STEC value. In the simpler example using only two
phase signals on two GPS frequencies (i.e., n[L1W] and n[L2W]), the determined jump
threshold is STEC = −0.513 TEC units. This amounts to a jump of λ[L2]−λ[L1] = 5.4 cm
in the classic geometry-free linear combination of these two signals.

As summarized by Wei et al. (2019), there are many different methods to detect jumps
of the determined size in the STEC time series. Some of those methods are polyno-
mial fitting (e.g., Beutler et al., 1984; Lichtenegger and Hofmann-Wellenhof, 1990),
Kalman filtering (e.g., Bastos and Landau, 1988), or higher-order time differencing (e.g.,
Hofmann-Wellenhof et al., 2008). Cai et al. (2013) proposed a method that is effective
even under high ionospheric activity, where STEC values can rapidly change in time. Any
jumps detected by these methods that are close to or exceed the threshold determined
above then point to cycle slips in the least accurate linear combination. Same as with
cycle slips in the other, more accurate linear combinations, the track is then split at the
these epochs. In principle, it is also possible to repair some of the detected cycle slips
instead of splitting the track. However, this was not done within the context of this
thesis and the associated reprocessing and thus it is not discussed further here.

Figure 7.1 visualizes the effect of several simulated cycle slips on the linear combinations
and STEC. This example uses real data of a track observed between station KOUR
(Kourou, French Guiana) and GPS-IIIA satellite G04, The observed phase types and
corresponding linear combinations match those of the example from Equation (7.4).
The first simulated cycle slip of ∆n[L1C] = 1 at 12:00 is visible in the linear combination
nLC4 = n[L1C]−n[L1L] of the two signals on L1. It cannot be detected by the other linear
combinations because they do not involve this signal. The two cycle slips ∆n[L2W] = 1
and ∆n[L5Q] = 1 at 15:00 are visible in nLC5 = n[L2W] − n[L2L], but not in nLC3 =
n[L2W]− n[L5Q]. The latter is insensitive to this specific combination of cycle slips on
the two signals, even though it involves both signals. The last cycle slip of ∆n[L5Q] = 1
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Figure 7.1: Noisy (light) and denoised (dark) linear combinations as well as STEC for track
between station KOUR (Kourou, French Guiana) and GPS-IIIA satellite G04 using
real data in combination with simulated cycle slips of ∆n[L1C] = 1 at 12:00,
∆n[L2W] = 1 and ∆n[L5Q] = 1 at 15:00, and ∆n[L5Q] = 1 at 18:00

at 18:00 is visible in both nLC3 = n[L2W] − n[L5Q] and nLC2 = n[L1L] − 2n[L2W] −
n[L2L] + 2n[L5Q]. The STEC time series is continuous and relatively smooth, except for
the epochs where cycle slips were simulated into the observations. In this particular
case, all of the simulated cycle slips are also visible as jumps in the STEC.

7.2 Outlier detection

Outlier detection is performed separately for each track. An equation system is set up
based on the simplified observation equation

f [τνa](t) = ρ(t) + I[τν] STEC(t) + b[τνa] , (7.7)

where ρ and STEC are epoch-wise parameters for the range and ionospheric influence
and b[τνa] is a signal-specific bias parameter that is constant over the track. In case
of phase observations, these bias parameters also contain the respective ambiguities.
The ionospheric factor I[Cν] = q

ν for code observations and I[Lν] = − q
ν for phase

observations considers the first-order ionospheric correction, with q being defined in
Equation (6.48).

Estimating range and STEC parameters together with signal-specific bias parameters
leads to a rank deficiency. Therefore, a set of estimable bias linear combinations has to
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be determined. This step only has to be performed once per track using the full set of
occurring signal types. A design matrix

B =


1 I1
...

...
1 In

 (7.8)

containing one row per occurring signal type and two columns for the range and STEC
parameters is set up. It contains the partial derivatives of (7.7) with respect to these
parameters. After QR decomposing (e.g., Golub and Van Loan, 2013) this matrix into

B =
[
Q1 Q2

] [R1

0

]
, (7.9)

the matrix Q2 then defines the estimable bias linear combinations for this track. Next,
observation equations

∆l = Ax + By (7.10)

are set up for each epoch. Here, x contains the estimable bias linear combinations
using A = Q2 and y contains the range and STEC parameters based on B as defined
in (7.8). These observation equations are homogenized following Section 4.2.1. The
range and STEC parameters are then eliminated on the observation equation level as
detailed in Section 4.2.2.1. The resulting equation system now only contains parameters
for the estimable bias linear combinations, which are constant over the track. A robust
least-squares adjustment is then used to solve the equation system. This iterative process
is similar to the one described in Section 5.8. It estimates variance factors for each
observation group (i.e., epoch) and adjusts their weights based on the factor stated in
Equation (5.48). As a result, observations above a certain threshold are weighted down.
The lowered weights of these gross outliers are then adopted as initial weights in the
actual processing.
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Reprocessing campaign 8
This chapter describes the reprocessing conducted within the context of this thesis. The
resulting GNSS products represent the contribution of Graz University of Technology
(TUG) to the third reprocessing campaign (repro3) of the IGS. Section 8.1 provides
details on the processing setup. This comprises information on the used models, settings,
data, and metadata as well as the resulting products. It also briefly discusses some of
the challenges a reprocessing of this scale brings with it.

The results are then evaluated and summarized in Section 8.2. This includes internal
and external evaluations. The former focus on the internal consistency of the products,
for example by looking at orbit midnight discontinuities or the noise level of station time
series. External evaluations are mainly conducted by comparing the results to products
from other analysis centers.

8.1 Processing setup

8.1.1 Models and settings

Table 8.1 lists the force models that were used to determine the dynamic satellite
orbits (see Section 6.2). Earth’s gravity field comprised the static field as well as trend
and annual components. All components were evaluated up to a maximum spherical
harmonics degree of 60. The grid-based ocean tide model FES2014b was converted to
spherical harmonics and evaluated up to degree 10. Nontidal atmosphere and ocean
mass variations from the model AOD1B RL06 were limited to degree 60. All other
models were utilized up to their respective maximum resolution, if applicable. Following
the v1.2.0 update of the IERS conventions (Petit and Luzum, 2010), the mean pole
representation was replaced by the secular pole (Ries, 2017).

The surface areas and optical properties of the satellite box-wing models originated
from various sources. Rodriguez-Solano et al. (2014) provided values for all GPS and
GLONASS satellite types except for GPS-IIIA, which were taken from Steigenberger et al.
(2020). The official box-wing models from European GNSS Service Centre (2017) were
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Table 8.1: A priori force models used in satellite orbit integration

Effect Model Reference
Earth’s gravity field GOCO06s Kvas et al. (2021)
Astronomical tides JPL DE432 Folkner et al. (2009)
Solid Earth tides IERS 2010 Petit and Luzum (2010)
Ocean tides FES2014b Lyard et al. (2021)
Pole tides IERS 2010 Petit and Luzum (2010)
Ocean pole tides IERS 2010 Petit and Luzum (2010)
Atmospheric tides AOD1B RL06 Dobslaw et al. (2017)
Nontidal mass variations AOD1B RL06 Dobslaw et al. (2017)
General relativity IERS 2010 Petit and Luzum (2010)
Solar radiation pressure Box-wing Rodriguez-Solano et al. (2014)
Earth radiation pressure Box-wing (CERES) Rodriguez-Solano (2009)
Antenna thrust Measured values Steigenberger et al. (2018)

used for Galileo satellites. In the absence of information about the infrared properties
of the materials used on satellites, the values αI = 0.8, δI = 0.1, and ρI = 0.1 for
absorption, diffuse reflection, and specular reflection were used for all satellite surfaces.
These approximate properties were derived empirically and may significantly deviate
from the actual material properties. Thus, modeling of infrared radiation pressure would
benefit from officially published values.

Sixteen parameters were set up per satellite orbit on each day. They comprised six
initial state parameters, seven solar radiation parameters from the ECOM2-7 model, and
three pseudostochastic pulse parameters at the center of each 24-hour orbit arc (see
Section 6.2). The pseudostochastic pulse parameters were constrained with σ = 0.1µm/s
in the along-track, cross-track, and radial directions of a local orbit reference frame. The
same parametrization was used for all satellite types of all three constellations.

Constant station coordinate parameters were set up for each day. The network was
aligned to the IGSR3 reference frame by applying no-net rotation and no-net translation
constraints (see Section 6.9.1) with standard deviations of σNNR/NNT = 0.01 mm. The
no-net translation constraint was added so that the resulting orbits refer to the center of
network/figure.

Tidal deformations acting on station coordinates (see Section 6.9) were accounted for
using the models listed in Table 8.2. In this case, the ocean tide model was evaluated
up to degree 720 in order to capture localized effects, especially in coastal areas. The
secular pole from the updated IERS conventions (Petit and Luzum, 2010) was also used
in the tidal deformation models. Following the ITRF conventions, loading deformations
due to nontidal mass variations were not applied as corrections and are thus present in
the resulting station coordinates.
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Table 8.2: Tidal deformation models applied to station positions

Effect Model Reference
Solid Earth tides IERS 2010 Petit and Luzum (2010)
Ocean tides FES2014b Lyard et al. (2021)
Pole tides IERS 2010 Petit and Luzum (2010)
Ocean pole tides IERS 2010 Petit and Luzum (2010)
Atmospheric tides AOD1B RL06 Dobslaw et al. (2017)

Tropospheric slant delays were modeled based on Vienna Mapping Functions 3 (VMF3)
(Landskron and Böhm, 2018). The 1×1° grid-based version of VMF3 with included
a priori gradients was used. As described in Section 6.7, the grid-based values were
interpolated to the actual station positions. This model comes in two variants, one based
on an ERA-Interim reanalyis and one based on the operational model of the ECMWF.
The former provides a consistent model from 1979 to 2019, which is why it was chosen
for the reprocessing conducted within the context of this thesis. Since the ERA-Interim
version was only available until August 2019, the operational variant had to be used
from that point until the end of 2020.

Tropospheric residual zenith wet delays were estimated at each station using first-degree
splines with two-hourly knots (i.e., a piecewise linear representation). Horizontal
gradient delays in north-south and east-west direction were parameterized as constant
and trend components over the full day for each station. Therefore, 17 tropospheric
parameters (13 for wet delays and two each for both gradient directions) were set up
per station and day.

8.1.2 Station network

A list of 1212 stations for consideration in repro3 was proposed within the IGS. These
stations were ordered by their priority with respect to the ITRF. IGS14 stations and sites
co-located with other space-geodetic techniques had the highest priority, while regional
networks and other IGS stations had lower priorities. Figure 8.1 visualizes the locations
of all stations on a global map. The color coding represents how long each station has
been operating within the repro3 time period.

One aim of this thesis was to process as many of these stations as possible. In total, 1182
(or 97.5%) of all 1212 suggested stations have been processed. However, as Figure 8.1
shows, not all stations have been active over the full period. Figure 8.2 displays the
number of stations processed each day. The station count linearly increases from 1994 to
2015 and then plateaus around 850 stations per day before it slightly decreases towards

8.1 Processing setup 165



Figure 8.1: Stations used in the reprocessing and their time series lengths (adapted from
Rebischung, 2021)

the end of the time series. The main reason for this drop at the end is that observation
data from a number of stations could not be obtained in time for the processing, which
was conducted with a short delay of some weeks throughout large parts of 2020.

The processing scheme described in Section 5.9.2 relies on the definition of a core
network. There are two main requirements for this network. Firstly, it should be well
and evenly distributed around the globe. This was achieved by splitting Earth’s surface
into 78 regions based on a Reuter grid (Reuter, 1982). Such a grid has equidistant
spacing along the meridians and the number of points per circle of latitude decreases
with increasing latitude (Eicker, 2008). All stations were then assigned to grid points
based on a nearest neighbor algorithm. The resulting core station list consisted of 69
groups, as nine grid cells over the oceans contained no stations. Figure 8.3 shows
the distribution of the Reuter grid points, the corresponding Voronoi regions, and the
resulting groups of stations.

The second requirement for the core network is that it should cover all signal types
observed by any receiver in the full network. This implies that it should consist mainly
of multi-GNSS receivers so that all constellations are covered by the core network. The
stations within each group defined above were prioritized by their multi-GNSS capability.
Galileo-capable receivers gained the highest priority, followed by GLONASS-capable
receivers and lastly by GPS-only receivers. This prioritization was chosen because almost
all Galileo-capable receivers can also observe GLONASS satellites and all receivers can
track GPS satellites. Within each category, stations were ordered by the earliest date they
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Figure 8.2: Number of processed stations and satellites per day

Figure 8.3: Definition of the core network groups. Black diamonds represent Reuter grid
points and colored points are stations. Different colors are only used for easier
differentiation between groups

operated a receiver capable of tracking the respective constellation. For the processing
of a particular day, the core network was then defined by choosing the first available
station per group.

8.1.3 Data and metadata

A brief summary about the data and metadata used in the reprocessing follows below.

Observations The processing used the full 30-second observation sampling period.
Observation data in RINEX 3 format was prioritized over the older RINEX 2 format
for stations that provided both. GLONASS observations on frequency G3 were
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Figure 8.4: Number of processed observations per day

excluded because only a few satellites transmitted on this frequency and a mix
of FDMA and CDMA signals further complicates the definition of signal biases.
Galileo observations on frequency E6 were excluded as well. Tests before the start
of the reprocessing revealed processing issues in the early Galileo years, where only
a few stations tracked this frequency. For reasons of consistency, it was decided to
exclude this frequency over the full period, even though the situation significantly
improved towards the end of the time series. Figure 8.4 shows the number of
processed observations per day over the full period. In total, around 1.65 trillion
code and phase observations were processed over the 27 years.

Antenna calibrations Satellite and receiver antenna calibrations were taken from the
igsR3_2135.atx ANTEX file. In case no satellite antenna calibrations were available
for signals on a specific frequency (e.g., GPS L5), the calibrations from the nearest
frequency were used. The IGS repro3 conventions for receiver antenna calibrations
were stricter. All observations on frequencies without antenna calibrations at the
respective receiver had to be excluded from the processing.

Station data and metadata The approximate position and the history of used antenna
and receiver types for each station were extracted from the respective station
log files. This included the eccentricity and orientation of the antennas (see
Section 6.10.3). The solution was aligned to the IGSR3 reference frame using
precise station positions from the IGSR3_2077.snx SINEX file. The instantaneous
position on a particular day was determined from the linear motion in combination
with possible post-seismic deformation effects. In case a station experienced a
discontinuity occurring after the definition of the reference frame, it was excluded
from the no-net constraints from this point onward.

168 Chapter 8 Reprocessing campaign



94 96 98 00 02 04 06 08 10 12 14 16 18 20

0

100

200

300

400

500

600

700

800

900

N
u

m
b

e
r 

o
f 

s
ta

ti
o

n
s

Year

94 96 98 00 02 04 06 08 10 12 14 16 18 20

0

100

200

300

400

500

600

700

800

900

N
u

m
b

e
r 

o
f 

s
ta

ti
o

n
s

COD (197)

ESA (161)

GFZ (185)

GRG (127)

JPL (78)

MIT (339)

NGS (361)

TUG (525)

ULR (375)

WHU (139)

Figure 8.5: Daily number of stations contributing to the IGS combination for each analysis
center. Average over full period in parenthesis (adapted from Rebischung, 2021)

8.1.4 Processing challenges

The reprocessing conducted within the context of this thesis was very computationally
challenging. The main reason for this was the aim of including as many signals and sta-
tions as possible in the processing. Figure 8.5 shows that the number of stations included
in the contribution by TUG is significantly higher than in any other contribution. As
displayed in Figure 8.4, this led to a very high number of observation per day, especially
once GLONASS and Galileo entered the processing in 2009 and 2013, respectively.

The large number of parameters was even more of a challenge. Figure 8.6 displays
the number of parameters that had to be set up for each day. While the ionospheric
STEC parameters were preeliminated (see Section 5.5), there still remained millions
of parameters per day during the later periods of the time series. This issue was
mitigated to some degree by applying the strategies for solving large systems described
in Section 5.9.

The computations were performed on a cluster of servers owned by the Institute of
Geodesy at Graz University of Technology. It featured a total of 248 processor cores and
2.2 terabytes of memory at the time. Several days were processed simultaneously on the
cluster, with each day using 16 cores in parallel. Figure 8.7 shows the time it took to
process each daily solution on one of these servers. While the GPS-only periods up until
2009 only took 1–3 hours on average per day, the processing runtime started to increase
significantly once GLONASS and Galileo were included. The spread increases towards
the end of the time series because the differences between the various server hardware
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Figure 8.7: Processing runtime per day

configurations became more pronounced the longer each day took to process. It took
around 685 000 core hours in total to process the full 27-year time period.

The processing scheme described in Section 5.9.2 was not applied from 1994 to the
end of 1997. The reason for this was that the limited number of stations and their
unfavorable global distribution during that period did not facilitate the utilization of
a core network. Therefore, all stations were processed together from the start, which
was more computationally demanding, but still feasible with the low number of stations
operating at the time. The increased runtimes during this period are clearly visible in
Figure 8.7.

Finally, Figure 8.8 shows the memory usage throughout the processing for one exemplary
day in 2020. The color coding in the background represents the steps of the processing
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Figure 8.8: Example of memory usage and runtime for a day in 2020

scheme described in Section 5.9.2. It becomes obvious that most of the time was spent
on the four full network iterations. The initial iterations using only the core network
and the subsequent ambiguity resolution step finished in less than two hours. Processing
the around 700 other stations individually then only took about 1.5 hours. The final
step of setting up the full normal equation system including the antenna center offset
parameters also took a significant amount of time. These normal equations are one of
the products provided to users.

8.1.5 Products

Table 8.3 lists the GNSS products resulting from the reprocessing conducted within the
context of this thesis. These files are available in the data repository of Graz University
of Technology (Strasser and Mayer-Gürr, 2021) and in the IGS global data centers.
Satellite orbits and troposphere parameters are provided at a 5-minute sampling period,
while satellite attitude as well as satellite and receiver clock errors are provided at a
30-second sampling period. All other products have a daily sampling period. The only
exception are the GPS L5 phase biases, which are provided in the form of piecewise linear
functions with 15-minute intervals within the SINEX_BIAS file format (Schaer, 2018).
The clock files only contain receiver clock errors for a subset of stations connected to
Hydrogen masers or timing laboratories. This is because the large number of processed
stations would otherwise result in very large clock files and clock errors of receivers with
low-quality internal clocks are of limited interest to users.
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Table 8.3: IGS repro3 products by Graz University of Technology (TUG). yyyy and ddd are
placeholders for year and day of year, respectively

Product Filename
Satellite orbits TUG0R03FIN_yyyyddd0000_01D_05M_ORB.SP3.gz
Satellite attitude TUG0R03FIN_yyyyddd0000_01D_30S_ATT.OBX.gz
Satellite/receiver clock errors TUG0R03FIN_yyyyddd0000_01D_30S_CLK.CLK.gz
Satellite/receiver signal biases TUG0R03FIN_yyyyddd0000_01D_01D_OSB.BIA.gz
Station coordinates TUG0R03FIN_yyyyddd0000_01D_01D_CRD.SNX.gz
Solution and normal equations TUG0R03FIN_yyyyddd0000_01D_01D_SOL.SNX.gz
Earth rotation parameters TUG0R03FIN_yyyyddd0000_01D_01D_ERP.ERP.gz
Troposphere parameters TUG0R03FIN_yyyyddd0000_01D_05M_TRO.TRO.gz

Some postprocessing steps were performed on clock errors and code biases during the
conversion to the IGS file formats. Firstly, satellite clocks were absolutely aligned to the
daily mean of the broadcast clocks for each constellation. The mean clock offset

δ̄ = 1
S

S∑
s

1
N s

Ns∑
i

(
δ̂si − δsi,0

)
(8.1)

between the estimated clocks δ̂si and the broadcast clocks δsi,0 over all epochs N s and
satellites S of one constellation was determined. This constant offset was then shifted
from the respective satellite clock errors to the receiver code biases of the corresponding
system. For GLONASS, the offset was determined per frequency number and shifted to
the receiver code biases linked to the respective frequency number. The offset for GPS
was always zero since the time system was aligned to the GPS broadcast clocks in the
processing (see Section 6.3.2).

Secondly, GLONASS satellite signal biases were aligned so the differences between the
frequency numbers are minimal at the receivers. This is beneficial for PPP users that
do not set up individual signal biases per frequency number at the receiver. For this
alignment, the mean signal bias

b̄[τνa]r = 1
K

K∑
k

b̂[τνka]r (8.2)

over all frequency numbers K was determined per signal type [τνa] at each receiver r. It
was used to obtain bias residuals b̃[τνka]r = b̂[τνka]r − b̄[τνa]r for the individual signal
biases. Then, the mean of the bias residuals

b̄[τνka] = 1
R

R∑
r

b̃[τνka]r (8.3)
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over all receivers R for a signal type and frequency number was shifted from the
respective receiver biases to the satellite biases. Both of these alignments do not affect
the internal consistency of the products.

8.2 Evaluation of results

8.2.1 Station positions

Station positions are the most important product of the reprocessing. The solutions
of all IGS analysis centers are combined to form the contribution of GNSS to the next
ITRF. Rebischung (2021) states that the combination process for the IGS contribution
to ITRF2020 was similar to that of ITRF2014 (Rebischung et al., 2016) with only
some minor changes. Section 8.2.1.1 evaluates the station positions by comparing the
contributions of the analysis centers with respect to the combination. Section 8.2.1.2
then analyzes the internal quality of the station positions by determining upper bounds
of their noise. This includes an investigation about remaining geophysical signals that
artificially increase the determined noise floor.

8.2.1.1 External evaluation via combination results

The external evaluation is based on the residuals and formal errors from the IGS
combination process. Rebischung (2021) features an in-depth analysis of these and
other combination results. One of the conclusions is that TUG is the clear front runner
among all analysis center contributions. Another conclusion is that the combined IGS
time series is only marginally cleaner than the TUG time series, which further confirms
the high quality of the contribution by TUG.

Figure 8.9 compares the RMS values of station position residuals from the different
analysis center contributions. The time series have been smoothed with a 91-day median
filter to facilitate an easier interpretation of the otherwise noisy original time series.
It is clearly visible that the TUG solution has a significantly smaller RMS in all three
coordinate components than other solutions over most of the repro3 period. This is
confirmed by the median values of the daily station position residuals RMS, which
are listed in Table 8.4 for all analysis centers. Here, TUG is the only solution with
submillimeter RMS values in the horizontal components and an up component RMS
below 3 mm.
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Figure 8.9: Smoothed (i.e., 91-day median filtered) station position residuals RMS of individual
analysis center solutions with respect to the IGS combination. Note the different
y-axis scale for the up component
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Table 8.4: Median values of daily station position residuals RMS for individual analysis center
solutions with respect to the IGS combination and their median formal errors after
optimal weighting

Analysis Median residuals RMS [mm] Median formal errors [mm]
center North East Up North East Up
COD 1.5 1.5 4.1 1.3 1.2 4.2
ESA 1.0 1.0 3.3 1.0 0.9 3.3
GFZ 1.1 1.2 3.4 1.0 1.0 3.5
GRG 1.2 1.2 3.6 1.1 0.9 3.3
JPL 1.2 1.3 3.5 1.2 1.1 3.6
MIT 1.2 1.3 3.8 1.2 1.2 3.7
NGS 1.4 1.6 4.1 1.3 1.1 3.9
TUG 0.7 0.8 2.7 0.7 0.7 2.5
ULR 1.3 1.4 3.6 1.2 1.2 3.6
WHU 1.0 1.1 3.6 1.0 1.0 3.3

Table 8.4 also lists the median formal errors of the analysis center contributions. Ac-
cording to Rebischung (2021), the daily formal errors can be seen as a proxy for the
analysis center weights in the combined solution. The median formal errors of the TUG
solution are significantly smaller than those of other analysis centers, which implies that
it got the highest weight on average over the full time series. Figure 8.10 shows the time
series of formal errors for the TUG contribution. The daily variation of the formal errors
is very small from the mid 2000s onward. This means the solution has a consistently
high quality during that period. Earlier in the repro3 period, especially in the 1990s,
the daily variations are much higher. This increased variation can be mainly attributed
to processing difficulties caused by the limited quality of the station network and GPS
constellation at the time.

8.2.1.2 Internal evaluation and geophysical signal analysis

The individual station position time series can provide an insight into their noise levels
without relying on external products. However, it is difficult to separate the actual
noise from remaining geophysical signals. Such signals can remain in the position time
series because the applied correction models are neither perfect nor complete. For
example, loading effects caused by high-frequency nontidal variations in the atmosphere,
oceans, and continental hydrology were not considered in repro3 by convention. These
geophysical processes mainly affect the up component, where they can amount to several
millimeters to centimeters depending on the location of the station.

However, several more prominent signals had to be considered in the following noise
analysis. First, the time series had to be split at known discontinuities. For instance,
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Figure 8.10: Original and smoothed (i.e., 91-day median filtered) station position formal errors
of TUG solution from the IGS combination. Note the different y-axis scale for the
up component
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equipment changes or earthquakes can lead to jumps in one or more coordinate compo-
nents. For this reason, the analysis was limited to 257 stations from the IGb14 reference
frame for which these discontinuities are known. Four other IGb14 stations (METS,
RIOG, TAH1, VACS) had to be excluded since their position time series contained re-
maining jumps or other large systematic effects. Intervals shorter than two years were
removed as they might misrepresent the long-term noise behavior. Finally, constant,
trend, and annual components were estimated for and removed from each interval. This
was done to remove large geophysical signals such as those from plate tectonics and the
seasonal water cycle.

Figure 8.11 shows the standard deviations over the resulting time series for each station.
The stations are ordered by the standard deviation for each coordinate component.
The median standard deviations for the north, east, and up components are 1.76 mm,
1.88 mm, and 5.34 mm, respectively. A few stations have significantly higher standard
deviations than the rest, pointing to remaining systematic effects in their time series.

As mentioned at the beginning of this section, the up component potentially includes
remaining signals that might be explained by geophysical models. The following analysis
focused on loading effects caused by high-frequency nontidal variations in the atmo-
sphere, oceans, and continental hydrology. The former two were determined using
the model AOD1B RL06 (Dobslaw et al., 2017) and the latter using the Land Surface
Discharge Model (LSDM; Dill, 2008). Both models were evaluated up to a spherical
harmonics degree of 180. Their time series were processed in the same way as the
station position time series. This included splitting at IGb14 discontinuities and removing
constant, trend, and annual components. They were then removed from the station
position time series before computing updated standard deviations.

Figure 8.12 visualizes the changes in standard deviations of the up component due to
the removal of these geophysical signals. The order of the stations corresponds to that
of Figure 8.11c. It can be seen that removing atmospheric and oceanic loading had
the most significant effect. The standard deviations decreased by a median of 6.6%
(to 4.99 mm) over all stations and up to around 30% for individual stations. Some
stations showed an increase in their standard deviations, which might be caused by
model insufficiencies or its limited spatial resolution.

The influence of removing a hydrological model was much lower. The median standard
deviation over all stations only decreased by 0.5% (to 5.31 mm), with the highest reduc-
tion being around 10%. On the other hand, some stations showed a large degradation
of their standard deviations of up to 30%. A possible explanation is that continental
hydrology is difficult to model and its effects are often very localized (Döll et al., 2016),
resulting in unrealistic corrections at some locations. Finally, removing both models
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Figure 8.11: Coordinate standard deviations of IGb14 stations after considering discontinuities
and removing constant, trend, and annual signals. Stations are ordered by standard
deviation per component. Note the different y-axis scale for the up component
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(c) Up component change due to removal of atmospheric and ocean (AOD1B) loading and hydrological
(LSDM) loading

Figure 8.12: Change in standard deviations of up coordinate components for IGb14 stations
due to the removal of atmospheric, oceanic, and hydrological loading. Stations are
ordered by original standard deviation (see Figure 8.11c)
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resulted in a decrease of 6.9% (to 4.97 mm) in the median over all station standard
deviations. Interestingly, for some stations the compound effect is higher than the sum
of the individual effects while for others the effects partially cancel.

Overall, the obtained standard deviations in the three coordinate components can be seen
as upper bounds for the noise levels at the various stations. Some of the signals remaining
in the time series could be explained by loading effects caused by high-frequency
nontidal variations in the atmosphere, oceans, and continental hydrology. However, other
systematic effects possibly remain in the time series, for example variations introduced
by snow accumulating on the antenna. Nonetheless, median standard deviations of
1.76 mm and 1.88 mm in the north and east components as well as 4.97 mm in the up
component (after removing nontidal loading) over the 257 IGb14 stations used in this
analysis confirm the high quality of the determined station positions.

8.2.2 Earth rotation and reference frame parameters

The combination of station positions also considered Earth rotation and reference frame
parameters. This section provides a brief summary of the results that confirms the high
quality of the TUG products also with respect to these parameters. A more detailed
analysis can be found in Rebischung (2021).

Table 8.5 lists median residuals and formal errors for the daily Earth rotation parameters
from the combination of the analysis center solutions. They comprise polar motion
(xp, yp), polar motion rate (ẋp, ẏp), and length of day (LOD). The median residuals
for polar motion of the TUG solution are among the smallest of all analysis centers.
The corresponding median formal errors are at least 40% smaller than those of other
solutions. The polar motion rate residuals are also among the smallest of all contributions,
with ẋp being about two times larger than ẏp. Again, the median formal errors are more
than 40% smaller than those of the closest other analysis center. Finally, LOD median
residuals are similar among most solutions, which is also the case for its formal errors.

The reference frame parameters that were determined during the combination process
include geocenter motion (XGC, YGC, ZGC) and scale (s). The median geocenter residuals
are similar among most analysis centers, with TUG having the smallest overall. The
same is the case for their formal errors, where those of TUG are 30-50% smaller than
those of the closest other solution depending on the axis. The median residuals of the
scale parameter are comparable between most contributions. Again, the median formal
errors from the TUG solution are around a third smaller than those of other analysis
centers.
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Table 8.5: Median values of daily Earth rotation parameter residuals for individual analysis
center solutions with respect to the IGS combination and their median formal er-
rors after optimal weighting. Units: xp and yp in microarcseconds, ẋp and ẏp in
microarcseconds/day, and LOD in microseconds

Median residuals Median formal errors
AC xp yp ẋp ẏp LOD xp yp ẋp ẏp LOD

COD 1.4 14.1 -58.5 -0.6 -0.7 15.1 16.2 42.8 44.1 2.4
ESA 0.1 7.3 -61.6 -2.3 -0.1 7.5 8.1 36.9 33.8 3.2
GFZ 3.7 7.0 -7.5 35.7 0.0 11.2 11.0 44.9 46.3 2.9
GRG -1.4 -0.1 14.1 6.5 -0.0 10.9 9.4 40.2 61.2 2.1
JPL 2.8 10.1 -76.5 -17.2 0.4 13.4 15.0 54.0 50.7 8.0
MIT -6.0 -7.4 83.6 22.6 -0.2 8.2 7.9 27.5 30.2 1.2
NGS 0.0 -5.4 24.7 -1.8 -0.1 14.8 13.1 61.7 78.5 3.1
TUG 0.7 0.9 -9.2 4.0 0.0 4.6 4.5 14.8 17.7 1.0
ULR -11.6 -7.3 116.2 15.6 -0.1 11.6 11.4 45.3 53.0 1.9
WHU -4.4 2.7 7.9 -1.5 -0.1 9.9 11.1 39.7 46.3 2.1

Table 8.6: Median values of daily geocenter and scale residuals for individual analysis center
solutions with respect to the IGS combination and their median formal errors after
optimal weighting. Units: XGC, YGC, and ZGC in millimeters and s in parts per billion

Median residuals Median formal errors
AC XGC YGC ZGC s XGC YGC ZGC s

COD 1.5 1.6 -2.1 0.12 2.3 2.2 3.1 0.12
ESA -0.4 0.4 1.2 0.13 2.0 2.0 2.5 0.09
GFZ 0.5 0.0 -2.6 -0.07 1.9 1.9 2.7 0.09
GRG 2.9 -1.0 -1.7 0.06 2.2 2.3 4.8 0.08
JPL -0.4 0.6 1.5 0.01 3.3 3.2 3.3 0.10
MIT -1.1 0.3 1.6 -0.04 1.4 1.4 1.9 0.09
NGS -0.5 -1.0 2.0 -0.05 2.3 2.4 5.3 0.10
TUG -0.3 -0.3 -0.7 -0.04 0.8 0.7 1.4 0.06
ULR 2.3 0.3 1.0 0.01 1.7 1.7 2.7 0.09
WHU -0.1 -0.8 2.1 0.04 2.0 2.1 3.7 0.09
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8.2.3 Satellite orbits

Satellite orbits are another important product of the reprocessing. Together with satellite
clock errors, signal biases, and attitude, they enable PPP and other applications that
depend on precise satellite products. The benefit of the reprocessing products over
operational products is that they offer a consistent modeling from 1994 to 2020. Sec-
tion 8.2.3.1 analyzes the quality of the obtained orbits via an internal evaluation on the
basis of orbit discontinuities. Results from preliminary external evaluations are then
summarized in Section 8.2.3.2, together with an independent comparison to the orbit
products from ESA’s repro3 contribution.

8.2.3.1 Internal evaluation of orbit quality

Orbit midnight discontinuities are an effective way to determine the quality and internal
consistency of orbit products. Each daily solution is processed independently and results
in a 24-hour orbit arc per satellite. This means two subsequent daily solutions overlap at
the day boundary epoch (i.e., midnight). The difference between these two independent
orbit positions should be zero in theory. In practice, however, imperfections in orbit
modeling and the GNSS observation model lead to discontinuities in the orbits at this
epoch. The magnitude of these orbit discontinuities, therefore, indicates the quality and
consistency of subsequent daily solutions.

Figure 8.13 shows the median orbit discontinuity RMS over all satellites of the three
processed constellations. These values were obtained by computing orbit midnight
discontinuities between all satellites for each subsequent pair of daily solutions. Any
systematic differences between the reference frames realized by the two sets of orbit
positions at an overlapping epoch were removed via a 7-parameter Helmert transforma-
tion (see Section 3.7). Next, RMS values were computed for each obtained coordinate
difference. The light-colored lines in Figure 8.13 represent the medians over the RMS
values of all satellites from one GNSS constellation at each day boundary. In addition, a
smoothed version of these values is shown in dark colors to improve the readability of
the figure.

Several conclusions can be drawn from Figure 8.13. First, the initial periods of each
constellation display significantly larger discontinuities than later periods. This is
expected and is mainly caused by the status of the station network and/or satellite
constellations at the respective periods. In the 1990s, the station network featured a
limited number of stations with poor global distribution and less sophisticated receiver
hardware. The GPS constellation at that time consisted mainly of GPS-I, GPS-II, and
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Figure 8.13: Original and smoothed (i.e., 91-day median filtered) median orbit discontinuity
RMS over all satellites per constellation

GPS-IIA satellites that also used less advanced technologies. In addition, GPS applied
selective availability (e.g., Hegarty, 2017), which artificially degraded the signal quality
for public users, until May 2000. From 2000 onward, the GPS orbit discontinuities
stabilized at a level of 1–2 cm.

The situation was similar for GLONASS and Galileo. Initially, only few stations were able
to track the respective systems, leading to poor observation geometry. The GLONASS
discontinuities significantly decreased in 2010 and stabilized in 2013, although on a
higher level than the other two systems. Until 2015, the Galileo constellation only
comprised the four GAL-1 in-orbit validation satellites and the first two GAL-2 satellites
that were launched into incorrect orbits. As a result, the orbit discontinuities only
improved once more GAL-2 satellites became operational, but then quickly stabilized at
a level similar to that of GPS.

The median discontinuities over the full time series are 1.44 cm for GPS, 1.79 cm for
GLONASS, and 1.41 cm for Galileo. These values were computed over all satellites and
day boundary epochs for each constellation. They confirm that the quality of GPS and
Galileo orbits is very similar, while GLONASS performs slightly worse. However, the
higher level of GLONASS discontinuities can be mostly attributed to a set of satellites
that perform worse than the rest.

This can be seen in Figure 8.14, which shows orbit discontinuities of all satellites for
the year 2020. Here, it becomes obvious that the discontinuities for the majority of
GLONASS satellites are on a similar level to those of GPS and Galileo satellites. On
the other hand, the satellites R01 (R730), R12 (R858), R13 (R721), R16 (R736), R19
(R720), R20 (R719), and R22 (R735) show a clear degradation throughout most of the
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year. This degradation can also be observed in other years. It is unclear what exactly
causes these issues that manifest in a degraded orbit quality. A similar degradation for
these satellites can also be observed in the midnight discontinuities of ESA’s contribution
to repro3 (not shown here). Dach et al. (2019) detected antenna offset changes for most
of the above-mentioned satellites, which point to issues with their antennas or other
hardware components. While some of these changes have been considered in the ANTEX
file used in repro3, others have not. In summary, more investigations are necessary to
determine the origin of these issues and to see if they can be remedied in the future.

Figure 8.15 visualizes the median orbit discontinuity RMS per satellite over their full
operational period. It further shows the median values over all satellites of a specific
type. A clear evolution can be observed in the GPS satellites, with each new type
performing similar to or better than the previous one. Some specific satellites stand
out from others of their type. For example, the navigation payload of G028 failed
after only 4.5 years (Inside GNSS, 2016). The GPS-IIR-M satellite G049 additionally
transmitted a demonstration signal on the L5 frequency, which was later introduced with
the subsequent GPS-IIF satellites. It was found that this had an inadvertent negative
effect on the signals transmitted on L1 and L2 (Goldstein, 2010), which explains the
decreased orbit quality. G077 is a GPS-IIIA satellite that was launched in November 2020
and thus was only processed for slightly more than one month (see G14 in Figure 8.14).
It is not unusual that the orbit quality is worse in the first few weeks to months after a
satellite becomes operational.

Some of the misbehaving GLONASS satellites mentioned above can be clearly identified
in Figure 8.15. Several other GLONASS satellites that were not operational in 2020
anymore also show significantly higher discontinuities than most other satellites of their
type. Many of these satellites can also be found in the list of detected antenna changes
provided in Dach et al. (2019). The quality of Galileo orbits is very consistent within
their two types, with one outlying satellite each. Satellite E104 experienced a power
loss and permanent failure of signal transmission at frequencies E5 and E6 in 2014
(Steigenberger and Montenbruck, 2017). Satellite E204 was removed from operational
services in 2017 due to issues with its on-board clocks (Bury et al., 2020). The two
satellites E201 and E202, which were incorrectly launched into a nonnominal orbit, do
not show degraded orbit discontinuities.

8.2.3.2 External evaluation of orbits

An external evaluation of the obtained satellite orbits is more difficult. The main reason
is that the combined IGS repro3 orbits have not been published at the time of this writing.
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Figure 8.14: Orbit discontinuity RMS per satellite and day boundary for the year 2020
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Figure 8.15: Median of discontinuity RMS per satellite for each constellation. Solid lines
represent median over all satellites of one type
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However, Masoumi and Moore (2021) provides an overview of preliminary combination
results. The results of this combination show that the TUG orbits obtained the highest
overall weight for GPS over most of the test period. The residuals RMS for most Galileo
satellites is also among the smallest of all analysis centers. The results for GLONASS
confirm that several of the misbehaving satellites mentioned in the previous section also
show high residuals in other solutions. For most other GLONASS satellites, the TUG
orbits are, again, among those with the smallest residuals.

Sakic et al. (2022) presents results of an independent experimental orbit combination.
This combination uses a newly developed approach based on variance component
estimation. In this study, the TUG solution also obtained the lowest residuals RMS and
highest weight in case of GPS. The TUG GLONASS orbits did not perform as well in this
combination, most likely due the poor quality of the specific satellites identified above.
For Galileo satellites, on the other hand, the orbits from TUG again are those with the
highest weight for large parts of the time series.

Zajdel et al. (2022) used the TUG repro3 products to analyze orbital artifacts in station
time series obtained via multi-GNSS PPP. The study found that each system introduces
significant artifacts reaching the centimeter level. Galileo offered the best results in
terms of single-system solutions. However, a combined GPS and Galileo solution was
found to be beneficial for the quality of the obtained station coordinate time series
compared to a single-system solution. A three-system solution including GLONASS did
not result in significant further benefits.

Another way to evaluate orbit products is to compare the orbit midnight discontinuities
of different analysis center contributions. As noted in the previous section, these
discontinuities give an indication about the quality and internal consistency of a solution.
Unfortunately, only COD and ESA provide full 24-hour arcs that enable such a comparison
for all three constellations. The other analysis centers contributing to repro3 do not
provide the last (i.e., midnight) epoch of a daily solution in their SP3 files. Furthermore,
the orbits from COD are based on 3-day arcs (Dach et al., 2021), which significantly
reduces the orbit discontinuities, making a direct comparison not meaningful.

Figure 8.16 displays the smoothed median orbit discontinuity RMS per constellation
for TUG and ESA. These values were obtained as described at the beginning of Sec-
tion 8.2.3.1. However, to enable a proper comparison, only orbits processed by both
analysis centers were used in this case. TUG shows smaller discontinuities for all three
systems. The largest difference is visible for GLONASS. This is because ESA did not
resolve the ambiguities to integer values for GLONASS (Tim Springer, personal com-
munication). Overall, these external evaluations confirm the high quality of the orbits
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Figure 8.16: Smoothed (i.e., 91-day median filtered) median orbit discontinuity RMS over all
satellites per constellation for ESA and TUG

produced in the context of this thesis, with the exception of issues with specific GLONASS
satellites.

8.2.4 Signal biases

Evaluating signal biases is very complex. The approaches of resolving the rank defi-
ciencies during their estimation usually differ in the various analysis center solutions.
This results in different types of bias products with possibly differing datum definitions
(e.g, Banville et al., 2020). In addition, only some analysis centers actually provide bias
products and their signal type coverage can vary significantly. COD and TUG are the
only analysis centers that provided observable-specific pseudo-absolute satellite code
biases for their repro3 solutions. However, the repro3 code biases from COD stem from
a clock analysis and not from a combined analysis of clocks and the ionosphere (Selmke
et al., 2020).

For this reason, the satellite code bias products provided as a supplement to Villiger et al.
(2019) were used in this evaluation. These biases were determined in a combined clock
and ionosphere analysis in the frame of COD’s Multi-GNSS Experiment and Pilot Project
(MGEX) contribution. They cover the year 2016 and comprise an extensive set of signal
types on multiple frequencies for GPS, GLONASS, and Galileo. According to Villiger et al.
(2019), the biases were aligned to a common datum over the whole time series. This
was done by realigning the daily solutions to their means values over the full year.

The satellite code biases estimated in the reprocessing presented in this thesis were
aligned to those from Villiger et al. (2019). This alignment was performed on a daily
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basis. For each signal type, the mean difference between the COD and TUG code
biases over all satellites of one GNSS was determined. This system-wide shift was then
removed from the TUG biases of that signal type to align them to those of COD. Such an
alignment preserves the relative bias differences between the satellites within one signal
type. System-wide differences between signal types depend on the respective datum
definition, as they can be freely shifted between satellites and receivers. The described
alignment uses the datum definition of the COD solution (see Villiger et al., 2019).

Figure 8.17 compares the aligned code biases of the two solutions. The biases are
grouped by satellite and the satellites are grouped by their type. Each signal type is
visualized in a different color using dark colors for TUG’s biases and light colors in the
background for COD’s biases. The vertical spread represents the temporal variations of
the daily values over the full year.

The comparisons reveal that the code biases from the two solutions agree very well for
GPS and Galileo. This includes both the relative offsets between satellites as well as the
spread over the time series. In case of GPS, the differences between the various satellite
types are very clear. The offset between the GPS-IIF satellites and the other types is most
prominent. GPS-IIR-B satellites also show significantly different biases to the GPS-IIR-A
satellites, both of which are very similar in many other respects. The most homogeneous
satellite type is GPS-IIR-M, where only G052 and G058 deviate somewhat from the other
satellites.

The relative offsets between satellites are much larger for Galileo. GAL-2 satellites E201,
E202, and E205 show offsets of 10–25 m compared to the mean over the other satellites
of that type. The periods from 26 February to 3 March and from 2 to 6 October 2016
had to be excluded from the Galileo bias comparison. These were the first days after the
inclusion of newly launched satellites (E208 and E209 in the former and E210 and E211
in the latter case). During these days, untypically large variations could be observed in
the TUG biases, pointing to processing issues during the initial days of these satellites.

The GLONASS code biases largely differ between the two solutions. The main reason is
that the COD solution was based on a simplified parametrization that only considered a
common receiver bias for all GLONASS satellites per signal type (Villiger et al., 2019).
In contrast, the reprocessing described in this thesis comprised separate receiver code
biases per frequency number (see Section 6.5.2). As a result, the relative offsets between
GLONASS satellites differ significantly. The TUG solution also shows a higher spread
for several satellites, including some outliers. Furthermore, day 2016-12-24 had to be
excluded due to an exceptionally large outlier.
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(a) GPS

(b) GLONASS

(c) Galileo

Figure 8.17: Comparison of aligned TUG repro3 (dark) and COD MGEX (light; taken from
Villiger et al., 2019) code biases for the year 2016. Note the different y-axis scale
for Galileo
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Figure 8.18: Aligned C1C code bias time series for satellites R716 and R736 in 2016

Satellites R716 and R736 show the largest spread over the time series. This can be
explained by jumps in the time series of TUG’s code biases for these satellites, as shown in
Figure 8.18. Setting up receiver code bias parameters per frequency number means that
each bias is defined by two antipodal satellites transmitting on the same frequency. When
something changes in this setup, for example because one satellite is decommissioned
or replaced by another, the code biases of the other satellite might be affected as well.
Figure 8.18a shows a jump in the time series of satellite R716 in slot number R15 when
its antipodal counterpart (R723 in slot R11) stopped transmission in March 2016. In
June 2016, satellite R853 started operating in slot R11, which, again, resulted in a jump
in the time series of R716.

A similar behavior can be observed for satellite R736 (see Figure 8.18b). This satellite
operated in slot R09 until February 2016, after which it changed to slot R16. This
transition included a change from frequency number -2 to -1. From March 2016 onward
it is clearly visible that whenever its antipodal counterpart (R737 in slot R12) was active,
the bias time series shifted to a different level. In the periods when its counterpart
was not part of the processed constellation, the biases shifted back to the original level.
These changes are induced by the fact that code biases cannot be determined absolutely
because of the rank deficiencies described in Section 6.5.3.
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The estimated code and phase biases have also been evaluated in independent studies.
Banville et al. (2020) and Glaner and Weber (2021) both used preliminary versions of
the TUG repro3 products to perform PPP with ambiguity resolution. In both studies, the
results obtained with the TUG products were competitive with those of other analysis
centers. This confirms that the signal biases are of good quality and enable users to
perform PPP with ambiguity resolution using an extensive set of signal types.
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Conclusion 9
This thesis detailed the methodologies behind the IGS repro3 contribution by Graz
University of Technology. This included a thorough description of the applied raw
observation approach as well as all parametrizations, models, and corrections. All of
these methods and models are implemented in the open-source software GROOPS, which
was used to conduct the reprocessing. As a result, the combination of this thesis and the
open-source nature of GROOPS provides a complete and transparent documentation of
TUG’s repro3 contribution.

One of the main points of this thesis was to present the intricacies of the raw observation
approach as implemented at Graz University of Technology. This included an effective
method of preeliminating the ionospheric influence on the observation equation level.
It was also shown how ordering the parameters in a specific way results in a normal
equation matrix structure that contains both highly dense as well as fully unpopulated
parts. Dividing this matrix into subblocks and only storing the populated ones in memory
significantly reduces the memory requirements and thus enables the processing of large
systems with millions of parameters. In addition, strategies that further decrease the
computational complexity were delineated, such as the elimination and reconstruction
of epoch parameters, a processing scheme that initially uses only a core network, and the
separation of the ionosphere and signal biases in an intermediate step. The description
of the processing approach included the application of variance component estimation to
determine new weights for the observations based on their residuals and redundancies.
This has the benefit that outliers are automatically weighted down with each iteration of
the least-squares adjustment, resulting in a more robust solution.

Another focus was the extensive elaboration of the parametrizations, models, and
corrections used in the GNSS observation equations. For example, a generalization
of satellite attitude models focusing on simple implementations that maintain the
ability to handle special cases was presented. The sections about satellite orbits, clock
errors, station positions, Earth orientation, ionosphere, troposphere, and antennas
featured descriptions of state-of-the-art models and well-established parametrizations.
Another important aspect was the sophisticated handling of GNSS signal biases required
when applying the raw observation approach. A method for determining estimable
linear combinations of observable-specific code biases that considers the various rank
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deficiencies was detailed. In terms of phase biases and ambiguities, this thesis presented
an algorithm that automatically determines an estimable set of corresponding parameters.
Additional details on the blocked ambiguity resolution procedure developed at Graz
University of Technology were given as well.

The evaluation of the resulting GNSS products showed that they are of very high quality.
In fact, TUG’s repro3 contribution gained the highest weight on average in the IGS
reference frame combination. The consistency of the obtained satellite orbits is also very
high, which was confirmed by preliminary orbit combination results. This means that
the methods delineated in this thesis lead to GNSS products that are very competitive
with those of other IGS analysis centers. Therefore, the targets of reaching this quality
level and providing a valuable contribution to ITRF2020 were successfully achieved.

There are a wide variety of research topics that could further improve the applied
methods and obtained results in the future. It is well known that the modeling of solar
radiation pressure is the main limiting factor in terms of orbit quality. Furthermore,
orbit modeling issues can propagate into station position and Earth rotation parameters,
resulting in undesired effects in their time series. A better understanding of the signal
biases occurring in satellite and receiver hardware could lead to improved parametriza-
tions. This is especially important considering the diverse set of signals that is available
in a modern multi-GNSS environment. Finally, a more realistic consideration of the
correlations between observations and among certain parameters would certainly also
benefit the quality of the resulting products.
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Acronyms

AC Antenna center
ACO Antenna center offset
ACV Antenna center variation
ANTEX Antenna Exchange
AOD1B Atmosphere and Ocean De-aliasing Level 1B
ARF Antenna reference frame
ARP Antenna reference point
AU Astronomical unit

BDS BeiDou Navigation Satellite System

CDMA Code division multiple access
CERES Clouds and the Earth’s Radiant Energy System
CIP Celestial Intermediate Pole
COD Center for Orbit Determination in Europe
COM Center of mass
CRF Celestial reference frame

DORIS Doppler orbitography and radiopositioning integrated by satellite

ECMWF European Centre for Medium-Range Weather Forecasts
ECOM Empirical CODE Orbit Model
EOP Earth orientation parameter
ERA Earth Rotation Angle
ERP Earth radiation pressure
ESA European Space Agency

FDMA Frequency division multiple access
FOC Full operational capability
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GCRS Geocentric Celestial Reference System
GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema
GNSS Global navigation satellite system
GPS Global Positioning System
GPT3 Global Pressure and Temperature 3
GRACE Gravity Recovery And Climate Experiment
GROOPS Gravity Recovery Object Oriented Programming System
GSPM GPS Solar Pressure Model

HWM Hatch-Melbourne-Wübbena

IAG International Association of Geodesy
IAU International Astronomical Union
ICRF International Celestial Reference Frame
ICRS International Celestial Reference System
IERS International Earth Rotation and Reference Systems Service
IGRF International Geomagnetic Reference Field
IGS International GNSS Service
ILS Integer least-squares
IMF Isobaric Mapping Function
IOV In-orbit validation
ITRF International Terrestrial Reference Frame
ITRS International Terrestrial Reference System

JPL Jet Propulsion Laboratory

LAMBDA Least-squares ambiguity decorrelation adjustment
LEO Low Earth orbit
LOD Length of day
LRF Local topocentric reference frame
LSDM Land Surface Discharge Model

MEO Medium Earth orbit
MGEX Multi-GNSS Experiment and Pilot Project
MPI Message Passing Interface
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NMF Niell Mapping Function
NNR No-net rotation
NNS No-net scale
NNT No-net translation

ORF Local orbit reference frame

PPP Precise point positioning
PRN Pseudorandom noise

QZSS Quasi-Zenith Satellite System
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