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Abstract— We investigate the problem of explainability for
visual object detectors. Specifically, we demonstrate on the
example of the YOLO object detector how to integrate Grad-
CAM into the model architecture and analyze the results.
We show how to compute attribution-based explanations for
individual detections and find that the normalization of the
results has a great impact on their interpretation.

I. INTRODUCTION

Today’s complex computer vision models require mecha-
nisms that explain their behavior. This has fueled intensive
research in eXplainable Artificial Intelligence (XAI) [1].
Most work on XAI in the visual domain focuses on explain-
ing visual classifiers, i.e., their representations learned and/or
their decisions. Currently, there is a lack of XAI approaches
for visual object detectors, because their special architectures
impede the application of XAI methods.

In this paper, we investigate the problem of XAI for visual
object detectors on the example of the YOLO detector [5].
We integrate Grad-CAM [7] into the model to generate expla-
nations for individual object detections, i.e., bounding boxes.
We compute attention maps at detection level to assess which
information leads to a certain decision. For this purpose,
we focus on both scores estimated by the YOLO detector,
namely objectness and class probability, to obtain a more
comprehensive explanation. We critically analyze the results
and propose different normalization strategies to make the
attention maps of different object detections within an input
image or across different images comparable. We analyze
results obtained for true and false detections and compare
different normalization variants for result presentation.

There is a large corpus of related work both on object de-
tection [3] and on XAI [1]. Surprisingly, the combination of
both fields has hardly been investigated. Rare exceptions are
the work of Tsunakawa et al. [8], who proposed an extension
of a propagation-based XAI method (Layer-wise Relevance
Propagation, LRP) for Single Shot MultiBox Detectors and
Petsiuk et al. [4], who proposed a post-hoc model-agnostic
XAI method for object detectors based on randomized input
sampling. The lack of literature may be a consequence of the
highly specific architectures of object detectors that impedes
the integration of XAI methods. Object detectors require
the explanation of localization and classification aspects and
provide multiple scores that influence the likelihood of a
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detection. This makes the direct application of many, es-
pecially self-learned explainability approaches [2], difficult.
More promising candidates are post-hoc XAI approaches.
A popular example is LIME [6], which can be adapted
easily to explain the final output of a detector. To explain
internal scores, the direct application is, however, not pos-
sible. Additionally, the iterative probing approach of LIME
makes it slow. A faster and more flexible approach is Grad-
CAM, which propagates back the activation of a certain
neuron (an output neuron or some intermediate neuron) to
the last feature map of the underlying convolutional filter
stack and uses it to weight its activations. The weighted
activations in the last feature map can be directly up-scaled
and overlaid with the input image to obtain an attribution-
based explanation in terms of the high-level features learned
by the convolutional filter stack. Note that this is more mean-
ingful than back-propagating along the gradients completely
through the network until the input pixels (guided Grad-
CAM), as individual pixels lack semantic meaning.

II. METHOD

Our detection model is based on Tiny YOLO v3 [5] archi-
tecture with optimizations for inference on re-configurable
hardware [9] and contains two detection heads to account
for objects with different scales. The last convolutional
layer of each head stores multiple scores for each potential
bounding box: (i) objectness, which provides the likelihood
for observing an object in general and (ii) a vector of class
probabilities for all target classes. For head 1, this layer has
a size of 1x1x512x30 and for head 2 1x1x256x30. Specific
neurons in these layers represent the input to Grad-CAM for
the generation of explanations. After these layers the YOLO
architectures applies a non-maximum suppression (NMS)
and a decision threshold filters out the most likely detections.
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Fig. 1. Proposed explainability approach. Here pg represents the objectness
neuron and p; the target class neuron in the last layer of the respective
detection head.

Grad-CAM was originally proposed for conventional CNN
architectures to explain decisions in terms of abstract features
learned in the last convolutional layer. Considering that
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Fig. 2. Explanations for a true positive detection for objectness and class probability and three different normalization variants.

YOLO is based on a convolutional filter stack, Grad-CAM
is applicable, however, not without certain modifications.
For a given detection, we first identify the neurons in the
last convolutional layer of the respective head corresponding
to the class probability and objectness of the investigated
bounding box by reversing the NMS process. These neurons
represent the starting points to calculate gradients towards the
neurons of the underlying convolutional layer (i.e., the top-
level feature map of the convolutional stack). We follow a
two-step approach to obtain explanations for both scores. The
gradients are first used to weight the activation map of the
underlying convolutional layer. The weighted activation map
is then averaged over all channels of the layer and upscaled
(i.e., interpolation) and mapped (i.e., color coding) to the
input image (416px x 416px), see Figure 1. The upscaled
activation pattern highlights sections in the input image that
have a strong relation to the class or objectness of the
investigated bounding box. Note that due to the architecture
of YOLO the result of Grad-CAM are activations at the
global image level, i.e., they are not limited to the observed
bounding box, e.g., as shown in Figure 2.

Grad-CAM activations are by default min-max normalized
to improve visibility. This leads to incomparable activations
patterns between different object detections in the same
image and across different images. To account for this, we
propose three different normalization levels: detection-level
(default), image-level (joint normalization of all explanations
in an image), and dataset-level (joint normalization of all
explanations across a set of images).

III. EXPERIMENTS AND RESULTS

a) Model training: The network was trained on data
of front collision and rearview cameras from both public
datasets including COCO, KITTI, BDD, and Openlmages as
well as non-public data from the company EYYES GmbH
(www.eyyes.com). The network was trained to detect five
classes, i.e., person, cycle, car, truck, and train.

b) Experimental Setup: Our evaluation scenario origi-
nates from autonomous driving. For the evaluation, we use a
subset of the Cityscapes (www.cityscapes—dataset.
com/) dataset (which was not used for training). It consists
of 3470 images showing urban street scenes from 21 cities
and containing annotations of 30 classes at pixel-level. We
use a subset of the above mentioned five classes. For the
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different normalization strategies we use min-max normal-
ization of the Grad-CAM activations at different levels.
¢) Results: Results are shown as differently normalized

heatmaps overlaid on the input image for the objectness and
the probability of the detected class. Figure 2 shows a correct
detection of a person. The objectness shows a different
activation pattern than the class probability. While class
probability provides strong activations mostly on persons
(including the detected one), objectness activates on all
regions where the network sees potential objects. Results
for detection-level normalization are most distinct, which
can, however, lead to wrong conclusions, especially, when
the explanation shall be compared with other detections. It
actually depends on the question investigated which type of
normalization is best suited. For example by normalization
at dataset-level the activation strength of the detected person
becomes directly comparable to all explanations in all other
images and thus direct comparisons become possible which
cannot be performed at detection level. This can help to
develop a deeper understanding of the detector’s behavior.

Figure 3 shows a falsely detected truck on the same
input image. The white rectangular shaped text on the red
poster seems to mislead the detector into seeing a truck.
Both objectness and class probability strongly activate at
detection-level raising the impression that the detector fails
with high confidence. This is actually not true, which can be
seen via normalization at dataset-level (not shown) where
both activations are strongly attenuated, showing that the
detector is actually not sure about the detection.
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Fig. 3.

IV. CONCLUSION AND FUTURE WORK

We have investigated explainability for object detection
by integrating Grad-CAM into YOLO. We can visualize its
internal decision scores and thereby help to explain object
detections. Our results show that normalization is essential to
make different explanations comparable, e.g., across different
images. Our approach is efficient: generating one explanation
takes approx. half a second. In future, we aim to use these
explanations to identify potential false detections at run-time.

Explanations for a false positive detection.
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