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Abstract— With the increasing number of online learning
material in the web, search for specific content in lecture videos
can be time consuming. Therefore, automatic slide extraction
from the lecture videos can be helpful to give a brief overview
of the main content and to support the students in their studies.
For this task, we propose a deep learning method to detect slide
transitions in lectures videos. We first process each frame of the
video by a heuristic-based approach using a 2-D convolutional
neural network to predict transition candidates. Then, we
increase the complexity by employing two 3-D convolutional
neural networks to refine the transition candidates. Evaluation
results demonstrate the effectiveness of our method in finding
slide transitions.

I. INTRODUCTION

Nowadays, there is a huge number of online learning
material available to students and researchers. Lecture videos
uploaded by the universities to video sharing platforms such
as YouTube or to in-build video platforms are accessible
from anywhere and at any time. The high amount of video
material makes it tedious for the user to search for specific
content by browsing through the individual videos. Hence,
video summarization can help to quickly grasp the overview
of the lecture video. This can be done by the automatic
detection of slide transitions to extract the slide and time
stamp at each slide change. Automatic detection of slide
transitions can also support the lecturer in creating lecture
notes. In combination with the audio transcript of the lecture
video, the extracted slides can be automatically inserted into
the audio text based on their time stamp. For instance, the
free video-to-blog post conversion software AutoBlog [21]
automatically extracts the transcript of a lecture video to
generate a blog post [9]. So far, the slides are manually
inserted into the blog text. However, using our slide transition
detection method, the software could be extended.

The variety in the types of lecture videos makes the task
challenging. For example, the lecture slides can be full screen
with the lecturer screen inserted as a small window on top,
or the lecture slides can be depicted next to the view of the
lecturer. Further, memes (e.g. animations and short videos) to
illustrate the lecture content can be inserted into the lecture
video. Memes and the actual slides can have very similar
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Fig. 1: Overview of our SliTraNet for slide transition de-
tection: First, we predict initial slide-slide or slide-video
transition candidates by comparing each frame (cropped to
the slide content) to its respective anchor frame using a
2-D ResNet. At the transition candidate positions, we extract
overlapping video clips with a length of eight frames from
the cropped video and the raw video. Two 3-D ResNets have
been trained to extract spatio-temporal features to classify the
cropped video clips into hard or gradual transitions, static
slides or video sequences and the raw video clips into slide-
video transitions, slide sequences or video sequences. Lastly,
we combine the class predictions of both 3-D ResNets to
exclude transitions mutually classified as video sequence.

frames from the style and color distribution. Thus, lecture
videos that not only contain the slides and the speaker’s view,
but also these meme videos make the task even more difficult.

In this paper, we propose a deep learning method for the
detection of slide transitions in lecture videos, which we
train and test on a dataset that contains video sequences of
lectures with slides, speaker views, and memes. To detect
the slide transitions, we present a multi-step approach. First,
we predict initial transition candidates by inserting a 2-D
convolutional neural network (CNN) into a heuristic-based
approach. Then, we extract spatio-temporal features at the
candidate positions using two 3-D CNNs to exclude transi-
tions that were classified as video sequences.



II. RELATED WORK

This section summarizes related works in the field of slide
transition detection, scene boundary detection, and video
thumbnail selection.

A. Slide Transition Detection

Traditional approaches to slide detection focus on low-
level features to measure the similarity across adjacent
frames. For example, the maximum peak of the color his-
togram and difference in entropy for horizontal lines were
used to detect slide changes in [14]. Often the use of
histograms for slide detection is supplemented with other
algorithms to detect features such as faces, or text [20], [29].
Similarly in [2], histograms are utilized for shot boundary
detection as part of a larger scheme involving shot classifi-
cation, slide region detection, and slide transition detection.

The variance in image scaling and rotation can be han-
dled by the Scale Invariant feature transform (SIFT) algo-
rithm. This approach detects slide transitions when the SIFT
similarity is under a defined threshold. Features extracted
using the SIFT algorithm have shown good slide detection
accuracy rates in [10], [22] and with slide alignment [28].
SIFT features can also be used with sparse time-varying
graphs [17], where the graph models slide transitions. The
temporal modeling of slide transitions can also be conducted
using a Hidden Markov Model (HMM), where the states
of the model correspond to an individual slide [5], [24],
[31, [4]. The likelihood of the states are computed with a
correlation measure and the most probable sequence of slides
is calculated using the Viterbi algorithm.

The current study approaches the slide transition detection
problem by using 3-D CNNs which can learn spatio-temporal
features that are useful for detecting slide transitions. How-
ever, the training time and memory consumption can be prob-
lematic. Therefore, Residual Networks (ResNet [8]) have
been suggested by [18] for this task. They propose a novel
residual block that contains an extra 1x1 3-D convolutional
layer to the shortcut connection layer. They show better
results for ResNet compared to the traditional slide transition
approaches on their to 6 frames per second temporally down-
sampled dataset. In [6], a Dual Path Network (DPN) [1] that
combines both ResNeXt and DenseNet is proposed. Further,
they introduce a Convolutional Block Attention module to
their network that sequentially infers a 1-D channel attention
map, followed by a 2-D spatial attention map, and lastly a
1-D time attention map. Further improvements in the Fi-
score were obtained compared to traditional approaches or
with ResNets alone.

B. Scene Boundary Detection

A related field of work is scene boundary detection or shot
boundary detection (SBD) [11]. Traditionally, SBD relied on
the same low-level features such as histograms. However, the
issue of detecting changes is complex and requires attention
to the variability of transitions. Detecting gradual transitions
is a particularly difficult problem and recent studies on
SBD now take into consideration the presence of sharp cut
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transitions and gradual transitions. For example, a 3-D CNN-
based model from [7] was combined with an SVM classifier
to label frames as being either normal, a gradual transition,
or a sharp transition. In [15], both types of transitions are
detected by separate 3-D CNNs. A similar approach using
deep CNNs was taken by [27] where SBD was implemented
via a three stage process; candidate detection, cut transition
detection, and gradual transition detection. TransNet [26]
and TransNet2 [25] use Dilated DCNNSs to detect sharp and
gradual transitions.

C. Video Thumbnail Selection

Another related area is video thumbnail selection, which
summarizes the video content by selecting a representative
frame as the thumbnail. To extract the representative frames,
learning-based approaches have been proposed that take the
user’s perspective selection of representative frames into
account [12], [19]. Based on visual features, the videos are
classified according to image quality, visual details, user
attention, and display duration [12], or different types of
camera motion [19]. Approaches also combine the visual
content with side semantic information such as the title or
transcript for query-dependent thumbnail selection [16] or to
visually enrich the thumbnail with keywords [30].

III. METHODOLOGY

In this section, our method for slide transition detection
is presented. We describe the network architectures and
introduce training and inference of the different parts of the
pipeline.

A. Overview of SliTraNet

SliTraNet is composed of three convolutional neural net-
works, which are all separately trained for the three different
tasks and combined for inference, see Fig. 1. We process
the complete data once by applying a 2-D ResNetl8 [§]
to pairs of each frame with its anchor frame resulting in
initial slide-slide or slide-video transition candidates. For the
refinement step, we increase the complexity of the networks
by using two 3-D ResNet50s and apply these to video clips
extracted from the transition candidate positions. A short
video clip of eight frames can contain a sequence with one
hard transition, a gradual transition, a static sequence of
the same slide or a sequence of video frames, such as a
short animation, a speaker view, or a meme. We train one
3-D ResNet for these four classes and another 3-D ResNet
to distinguish slide-video transitions, slide sequences, and
video sequences. Based on the class predictions, we exclude
transition candidates that were classified as video sequence
by both networks.

B. Initial Transition Candidates Estimation

We train a 2-D ResNetl8 for the discrimination task
whether two images are from the same slide (class 1) or
not (class 0). For this task, we concatenate both images
along the color channel dimension to obtain 6 channels for
RGB input or 2 channels for grayscale input and modify the
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Fig. 2: Comparison to anchor frame using a neural network to detect static slide sequences and video sequences.

input channels of the ResNet18 [8] architecture accordingly.
For training, we generate the same number of positive and
negative pairs. For the negative pairs, we first select frames
from the neighboring slides for each slide and then fill the
rest with randomly chosen frames that have a different slide
id. For the optimization, we employ the binary cross-entropy
loss.

To predict the transition candidates, we plug the neural
network into a heuristic-based approach, as illustrated in
Fig. 2a and 2b. We compare each frame to an anchor frame
by the neural network to search for static slides (Fig. 2a).
As long as both frames are classified as the same, we keep
the anchor and as soon as the two frames are classified
as different, we set the anchor to the current frame. A
static slide is detected if the time, measured in number
of frames, is higher than a threshold. This general idea
is borrowed from Perelman [23], which uses the absolute
difference of the blurred grayscale versions of the frames.
Since the lecture videos also contain video sequences without
slides, we extended the approach further by adding two video
anchors, see Fig. 2b. If a frame difference is detected by
the neural network and the time from the current frame &
to the anchor k — 1 is smaller or equal to the threshold,
the video anchor and previous video anchor are set to the
current frame k. As long as the frames are not classified
as the same, the video anchor is updated. After the next
static slide sequence is detected, a video sequence is recorded
from the previous video anchor to the video anchor and both
anchors are deleted. The slide-slide and slide-video transition
candidates are determined from the detected static slide and
video sequences.

C. Transition Candidates Refinement

Since the video sequences can also contain static frames
that might be classified as static slides using the deep-
heuristic-based approach, a refinement step is necessary
to reduce the number of false positives. To better exploit
the spatio-temporal character of the video, we train a
3-D ResNet50 using cross-entropy loss for the multi-task
classification problem that assigns a short video clip of
eight frames to one of the classes: hard transition, gradual
transition, static slide and video. The network architecture is

61

depicted in Fig. 3, which is slightly adapted from the 3-D
ResNet backbone in [13]. For the initial layers and 3-D max
pooling, we modified the strides of the temporal dimension
to be 1 to only reduce the spatial dimensions.

The slides of lecture videos are not necessarily filling the
full screen, but can be placed on top of some background. In
our particular lecture video dataset, the memes, animations
and speaker video sequences are full screen in contrast to
the slides, see Fig. 4. Using this knowledge, we use the raw
video input to train our second 3-D ResNet50 to classify
the short clip into slide-video transitions, slide sequences or
video sequences.

For training both networks, we extract video clips at
striking positions such as placing the middle of the clip (plus
minus one frame) at the position of the hard transition, the
begin, middle and end of the gradual transition and in the
middle of a static slide sequence or at some equally spaced
positions within the video sequence. For the second task,
the slide-video transitions occur only rarely in the dataset in
comparison to slide sequences or video sequences. Hence,
we use the weighted cross-entropy loss to account for the
frequency of the classes.

During inference, we use the predictions of the deep-
heuristic-based approach to extract the video clips to feed
them to the 3-D ResNets and based on the output of both
networks, we filter out slide transition candidates that were
classified to be video sequences by both networks.

IV. EXPERIMENTS AND RESULTS

In this section, we describe our dataset and measure the
performance of our method.

A. Lecture Video Dataset

The dataset comprises a subset of lecture videos from
two courses in the field of deep learning and medical image
processing of the Pattern Recognition Lab, FAU Erlangen-
Nuremberg. The videos are recorded in Full HD with 25
frames per second and range between a duration of 6 to 33
min. The slides of one course are in the format 4 : 3 and
of the other in 16 : 9. The dataset is split into 12 videos
for training, 4 for validation and 14 for testing. To feed the
data to the network, the frames are cropped to the content
of the slides except for the video-slide differentiation task
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from the Loyalton Fire", 2020, https://youtu.be/zISr9AA200w
Source of meme 2: YOLO Object Detection, "YOLO v2", 2016, https://youtu.be/VOC3hugHrss
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Fig. 4: Frames of the lecture video dataset. Top row: raw
video frames, bottom row: cropped frames.

(see Fig. 4) and for all tasks are scaled to a maximum
length of 256 and filled up with zero padding to a patch
size of 256 x 256. The ground truth slide transitions were
obtained semi-automatically. Based on the difference of
the frames, static slides were roughly detected and were
manually corrected at frame level and split into hard and
gradual transitions.

B. Implementation Details

We trained all networks from scratch for 100 epochs
with early stopping using the following training parameters:
learning rate 7 =2-10~%, linear decay to O starting at epoch
50 for 2-D ResNet18 and 60 for 3-D ResNet50, Adam solver,
momentum (0.9,0.999), batch size of 64 for 2-D ResNet18
and of 32 for 3-D ResNet50 for training and validation
and online data augmentation for the training data split
(color jittering, horizontal flipping, color inversion, Gaussian
blurring with kernel size in range 1 to 21, reversed ordering
of the clips and one frame offsets at clip extraction). For
inference, the threshold for static slides is set to 8 frames.

C. Qualitative and Quantitative Evaluation

We evaluate our method using precision, recall, and F)
score of slide transitions for our test dataset. Since the grad-
ual transitions are annotated and predicted by our method as
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frame intervals, we compare the closest euclidean distances
of the start and end points of the predicted and labeled
transitions to a threshold of 20. This comparison is performed
bi-directionally and the mutually valid counts determine the
number of true positive transitions.

The quantitative evaluation results are summarized in
Tab. 1. In the top rows, we compare the first step of our
approach using the 2-D ResNet18 (trained and tested in RGB
and grayscale) to the traditional approach inspired by [23]
of using the frame difference with Gaussian blur (kernel size
ks = (21,21)) in RGB and grayscale. From these methods,
the grayscale 2-D ResNet achieves the highest Fj score,
which is slightly above 50 %. The 2-D methods have a high
recall but a low precision due to their high number of false
positives. The frame to anchor comparison detects many
false positive transitions for video frames, where short static
sequences alternate with motions.

Hence, the second part of our pipeline is necessary to
reduce these false positives, whose results are shown in the
bottom rows of Tab. I. Using the combination of the first step
and the 3-D ResNets a performance gain in the F} score of up
to 35 % is achieved, i.e., our SliTraNet reaches an F} score of
almost 90 %, which is closely followed by the combination
of difference + 3-D ResNets. This second step maintains the
high recognition rate while decreasing the number of false
positives, resulting in higher precision, which is partly due
to the spatio-temporal convolutions in the 3-D ResNets that
recognize the different transition types better than the 2-D
approach.

Additionally, we evaluate how the order of the networks
influences the result by reversing the order. First, we apply
the 3-D ResNet to classify overlapping video clips of length
8 into slide-video, slides and videos. We use the slide-video
and slide candidates to apply the next 3-D ResNet to classify
the remaining clips into the transition types, static slides and
videos. We iterate through the potential transition regions and
apply the 2-D ResNet pairwise to localize slide changes. This



TABLE I: Evaluation of precision, recall, and F| score of slide transition detection for the test set with 14 videos. In the
top rows is the comparison of the first step of the approach: 2-D ResNetl8 versus difference with Gaussian blur in both
color and grayscale. In the bottom rows the combination of the above methods with the 3-D ResNet50 (in color) and the
application of the three networks in reverse order (first 3-D then 2-D) is shown.

Number TP FP FN  Precision Recall F; score
of transitions

Ground Truth 380 380 0 0 100.00 100.00 100.00
Diff-RGB-blur 992 365 627 15 36.79 96.05 53.21
Diff-gray-blur 1011 365 646 15 36.10 96.05 52.48
2-D ResNet18-RGB 1188 358 830 22 30.13 94.21 45.66
2-D ResNetl18-gray 911 355 556 25 38.97 93.42 55.00
ResNets-Reverse-RGB-gray 366 303 63 77 82.79 79.74 81.23
Diff-RGB-blur + 3-D ResNet50-RGB 435 364 71 16 83.68 95.79 89.33
Diff-gray-blur + 3-D ResNet50-RGB 442 364 78 16 82.35 95.79 88.56
SliTraNet-RGB-RGB 453 357 96 23 78.81 93.95 85.71
SliTraNet-gray-RGB 408 354 54 26 86.76 93.16 89.85
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Fig. 5: Qualitative results for slide transition detection using SliTraNet: Correct and failure cases.

approach with an F} score of around 81 % misses more slide Overall our SliTraNet demonstrates high effectiveness in
transitions than the competing methods and due to the high the task of slide transition detection in lecture videos, which
complexity in the first two steps consumes a long execution is also confirmed by the qualitative evaluation. In Fig. 5 some
time. In contrast, SliTraNet takes less than 90 min to process  difficult cases are depicted to highlight the advantage of our
the 190 min test data. method and also define some limitations. One difficulty is
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represented by animated slides, where little content changes
in a short time. Fig. 5a shows an example of a correctly
detected gradual transition, where the start and end point
are marked by the blue arrow. From the hard transitions
in Fig. 5b only the right one is detected by SliTraNet.
A plausible reason for the failure of the network for the
first transition is the small difference of the two frames
as only thin lines appear that connect the nodes, while for
the detected transition the slide change is larger due to the
added node. Another difficulty that arises are the memes that
are inserted into the lecture videos. The meme in Fig. Sc
has a similar color distribution as the lecture slides and
thus the transition within the meme is falsely detected as
a slide transition. In Fig. 5d an example is shown, where the
meme was inserted to the end of a static slide. The slide-
video transition is correctly detected, but from the two fast
slide changes, only one is detected. In the first step of the
approach, we defined that a static slide has to be at least
eight frames long, hence slides of one frame length cannot
be detected by our method, but for the most applications
these limitations are acceptable.

V. CONCLUSIONS

We presented a deep learning method to detect slide
changes in lecture videos such as hard and gradual transi-
tions. The quantitative evaluation showed a high performance
of our method for this task. Future work could comprise
extending the approach for a larger dataset and integrating it
for online teaching, for instance to automatically insert slides
for creating lecture notes in the AutoBlog framework.
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