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Efficient Instance Segmentation of Panoramic Images of Indoor Scenes

Werner Bailer and Hannes Fassold

Abstract— This paper addresses the issue of efficient 2D
instance segmentation of 360◦ images of indoor scenes. In
particular, we study the use of equirectangular convolutions
and the impact of different approaches to handle wrap-around
areas. We consider the use of Mollweide projection as a
representation for performing segmentation, and we provide a
toolchain to prepare the Matterport panoramic images for use
in workflows designed for COCO-style annotated datasets. The
results show no significant differences between using regular
and equirectangular convolutions. While the Mollweide projec-
tion allows for segmentation of otherwise missed objects, the
overall results do not outperform analysis on equirectangular
projection.

I. INTRODUCTION
In many application areas (e.g., interior design, furniture

retailing or renovation), communication with a customer or
future user during the planning and design phase is crucial
to select the right products and configurations. Making this
communication process effective saves costs, avoids later
modifications, and results in providing tailored solutions and
higher customer satisfaction. Augmented Reality (AR) has
the potential to make these communication processes highly
effective and provide a better experience for the customer.
However, AR content needs to be created by experts from
the respective domains, who often lack IT and media skills,
and shall provide a lightweight AR experience for the
customer. Current AR authoring solutions are quite complex
and require manually creating scenes or rely on objects
prepared with even more complex applications (e.g. CAD).
In order to facilitate this process, a simple capture process
(e.g., using consumer grade 360◦ cameras) and intelligent
scene understanding tools are needed.

One important component is segmenting and classifying
the relevant objects such as furniture in interior scenes.
In particular, we aim to perform instance segmentation for
indoor scenes in single panoramas of rooms. This shall also
be possible on consumer hardware with limited processing
capabilities. In order to process the 360◦ images, we aim
to avoid training or fine-tuning models specifically for 360◦

data. This is motivated by the fact that annotated datasets for
object segmentation on panoramic images are very scarce.
Due to the efficiency requirements, performing the analysis
on separate viewports of the 360◦ image is not feasible.
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The contributions of this paper are: (i) we study the
use of equirectangular convolutions and the impact of han-
dling the wrap-around areas, (ii) we consider the use of
Mollweide projection as a representation for performing the
segmentation, and (iii) we provide a toolchain to prepare the
Matterport panoramic images for use in workflows designed
for COCO-style annotated datasets.

The rest of this paper is organized as follows. Section II
discusses related work and Section III presents the ap-
proaches that were investigated. Section IV discusses the
evaluation (including dataset preparation) and the obtained
results, and Section V concludes the paper.

II. RELATED WORK

Impressive progress has been made in instance segmen-
tation of indoor environments represented as point clouds.
Such point clouds can be obtained from capturing the scene
with multiple views or depth sensors. Recent approaches
such as PointGroup [16], 3D-SIS [14] and 3D-MPA [10]
show good performance on benchmarks such as ScanNet [7].
However, in many consumer application scenarios, depth
information is not available, and thus 2D approaches are
required.

We are thus interested in an efficient and reliable 2D
instance segmentation approach. A well known approach is
Mask R-CNN [12], a two stage instance segmentation based
on Faster R-CNN. Masklab [5] is a further evolution of
this type of approaches. In terms of efficiency, single stage
approaches are preferable. Recent methods showing good
performance on benchmark datasets include SOLO v2 [24],
Yolact++ [2], proposal free instance segmentation [15] and
SipMask [3].

We aim to apply instance segmentation to 360◦ images.
Different approaches to handle this issue have been proposed
in literature. One group of methods requires specific training
on 360◦ images or at least fine-tuning. This can be done
by adapting early layers of a pretrained network to work
on equirectangular images, which is proposed in [22] and
tested for object detection using VGG and Faster R-CNN. [6]
follow a similar approach with SphereNet, learning a network
adjusted to equirectangular inputs. The use of icosahedral
Snyder equal-area (ISEA) projections is proposed in [8]
and results in significant improvement for semantic indoor
segmentation on the SUMO dataset.

To avoid the need for specifically training the network
on panoramic data, [25] perform segmentation on multiple
stereographic projections. Equirectangular convolutions are
proposed in [23] as a convolution kernel for equirectangular
images that adjusts the input values to the image positions,
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including handling of wrap-around. A similar approach is
proposed in [9], with generalised convolutions that use a
mapping function. That paper analyses different mapping
functions and proposes mapping to a geodesic grid. Equirect-
angular convolutions have been recently used for indoor
semantic segmentation [11], and the authors report small
improvements over processing the equirectangular image
with standard convolutions.

While a number of approaches for handling 360◦ images
in CNNs have been proposed, many of them require some
kind of training or fine-tuning, which limits the practical
application. Using specific types of convolutions is reported
to improve performance (at least slightly) in some papers,
but most of the work deals with object detection rather than
segmentation. We are thus interested to study the impact of
these choices in our applications, as well as the use of the
Mollweide projection, which to the best of our knowledge
has not yet been investigated for this purpose.

III. INVESTIGATED APPROACHES

Due to the lightweight implementation and the potential
to run the method also on a mobile device, we select
Yolact++ [2] as the basis of our work. We implement two
approaches for processing 360◦ images with Yolact++: the
first one is to integrate equirectangular convolutions, and the
second is to transform input images using the Mollweide
projection.

For both equirectangular and Mollweide projected images
we also optionally extend the image to wrap-around the
seam of the panorama in order to facilitate segmentation of
objects cut across by the seam. We found experimentally that
using 1/8 of the image width is a useful value for indoor
scenes to ensure that objects of interest become visible in an
unseparated way on at least one side.

A. Equirectangular content processing

Yolact++ uses ResNet-101 [13] with FPN [19] as its
backbone. We thus replace the convolutions in the first
layer of the backbone network with the equirectangular
convolutions proposed in [23], leaving the parameters of
the convolutions otherwise unchanged. In particular, we use
the EquiConv Pytorch implementation1. These convolutions
change which pixels are used as input depending on the
position, simulating regular sampling on a spherical surface.
This includes handling wrap-around, i.e., accessing pixels
from the opposite image border when necessary.

While EquiConv is only used in one layer, the runtime dif-
ference in inference is still noticable, compared to the highly
optimized implementations for regular convolutions, which
are increasingly available (including on mobile devices).

B. Mollweide projection

The Mollweide projection [17] is a pseudocylindrical,
equal-area projection. It is also known as homolographic
projection or elliptical projection. In contrast to the equirect-
angular projection, it does not stretch areas near the poles.

1https://github.com/palver7/EquiConvPytorch

As a downside, the Mollweide projection bends vertical
longitude lines, whereas the equirectangular projection keeps
them straight. So each projection has its strong points as well
as weak points. In order to retain at least to a certain degree
the desirable properties of both projections, we propose a mix
of both Mollweide and equirectangular projection, which we
will term hybrid Mollweide projection in the following. We
define a blending factor α in the range [0,1], which allows
use to interpolate smoothly between the two projections.
We retrieve the standard Mollweide projection by setting
α = 0.0, the equirectangular projection by setting α = 1.0
and a mix where both projections are weighted equally by
setting α = 0.5. The implementation of standard Mollweide
and hybrid Mollweide projections follows the equations
given in [26] for the equirectangular projection, with a few
modifications in some places. Specifically, the equations
for the conversion between the sampling point (u,v) and
longitude-latitude (φ ,θ) have to be modified properly in the
following way: Equation (6) from [26] is to be replaced by

u = (x+0.5)/W ′

with

W ′ = ((1−α) d (θ)+α) ·W

d (θ) =

√
1−

(
2
π

θ
)2

Another point we have to take into account is that the
longitude φ is cyclic, meaning that the image pixels on the
left and right border of the Mollweide projection actually
belong to the same region on the sphere. To address this,
we add additional border pixels in each image row, on the
left and right side. The border pixels are taken from the
respective inner region of the other side (so the border pixels
added on the left side are taken from the inner region of
the right side, and vice versa). Figure 1 shows examples of
(hybrid) Mollweide projections.

IV. EVALUATION

A. Dataset preparation

For evaluation we require a dataset that provides natu-
ral panoramic images of indoor scenes. A number of the
indoor datasets containing panoramic images, such as Inte-
riorNet [18] and Structured3D [27], contain only synthetic
images. Sun-CG [21] (and the derived SUMO dataset) were
very actively used datasets for this purpose, but the dataset
has been withdrawn. Thus there are two remaining datasets
that meet this condition: Matterport3D [4] and 2D-3D-S [1].
As Matterport3D contains rather private homes than office
spaces, we selected this dataset. The dataset contains 10,800
panoramic views of 90 houses. As we use a model trained on
the COCO dataset, we only use the test split of Matterport3D,
consisting of 18 houses with 1,848 panoramic views.

While panoramic RGB images are provided with the
dataset, the instance and semantic segmentation ground
truth maps are not. The scenes have been labelled on 3D
meshes, and thus the annotations are provided in this format.
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ftFig. 1. Example of Mollweide projection (top), hybrid Mollweide pro-
jection (α = 0.5, middle) and hybrid Mollweide projection with border
(α = 0.5, border=0.125, bottom).

We modified the mpview tool, that is provided with the
dataset2, in order to batch render the semantic and instance
segmentation maps corresponding to each view. As support
for 360◦ cameras is not easy to integrate into this viewer,
we generate the segmentation maps for each of the 18 tiles
used to compose the panoramas in the dataset, and perform
the stitching process for the segmentation maps. Apart from
some mislabelled parts of the mesh, some object and wall
meshes have holes, that makes other objects visible (e.g., a
TV screen from the outside view of a house). These issues,
that cannot be resolved automatically, create some level of
noise in the annotations which we have to accept due to lack
of resources to manually fix them.

The annotations are provided for a set of 40 indoor classes
specific for this dataset. These classes mostly (though not
fully) overlap with the more commonly used NYU40 set of
classes [20]. In order to work with models pretrained on the
COCO dataset, we use the overlapping set of classes between
Matterport3D and COCO: chair, couch, potted plant, bed,
dining table, toilet, TV, sink.

Most semantic and instance segmentation methods support
the COCO annotation format. We have thus created a tool
to convert the Matterport3D segmentation maps to COCO
annotations. This involves generating polygons from the
object masks, for which we use pycococreator3. The COCO
annotation format does not support the notion of subtracting
partial polygons, thus we apply hole filling to the binary
mask. In order to reduce the issue of border pixels or small

2https://github.com/niessner/Matterport/tree/
master/code/gaps/apps/mpview

3https://github.com/waspinator/pycococreator

regions caused by triangles cutting through the surface of
other objects, we also apply morphologic closing. However,
this does in many cases not remove the false annotations
caused by holes in the mesh mentioned above.

One other property of the Matterport dataset is that many
of the rooms are rather “loft-style”, i.e., other capture loca-
tions are visible in the background. Most objects thus appear
multiple times, once quite prominently in the room being
captured, and one or more times in another (part of the)
room. This also results in a large number of small annotated
objects. In fact, 64.8% of the object instances are smaller
than 0.05% of the image area, and 85.1% of the object
instances occur more than once. The size differences are
significant: in 62.8% of cases the smallest occurrence has an
area of 1% or less than the largest occurrence of the same
object instance.

For equirectangular images, annotations extending across
the seam of the image will result in polygons at the left
and right borders of the image. For the cases where bor-
ders for handling wrap-around have been added (either to
equirectangular, Mollweide or hybrid images), we process
the annotations in the border regions to keep only those that
continue from the image center into the border, but remove
those that only start in the border regions (and are likely to
wrap around, unless they are small).

Our toolchain for preparing the Matterport3D dataset
is made available at https://github.com/
atlantis-ar/matterport_utils. It consists of
a modified version of the mpview tool for generating class
and instance segmentation maps, a script of combining
source images and generated maps into panoramas, and a
script for creating COCO style annotation files.

B. RESULTS

We compare the performance of a Yolact++ model trained
on COCO applied to the panoramic Matterport3D views
under different conditions in terms of projection, convolution
type and wrap-around handling. We measure the average
precision (AP) of detected masks at overlaps (IoU) of 50%
(AP@50) and 70% (AP@70). An overview of the results
is provided in Table I. In order to show the impact of the
many small regions from far away objects, we provide results
for evaluating against the unfiltered ground truth as well as
against a ground truth where objects smaller than 0.5% of the
image area have been filtered out. Note that this is a very
conservative choice, that will not remove all the multiply
depicted objects, but has been chosen to ensure that no
smaller foreground objects are removed. To put the results
in relation, it is worth noting that the current state of the art
for 2D instance segmentation on the ScanNet benchmark4 is
0.358 in terms of AP@50 (consisting of regular rather than
panoramic images).

From the results we can see that there is no significant
difference between using regular convolutions and equirect-
angular convolutions. Also the configurations adding extra

4http://kaldir.vc.in.tum.de/scannet_benchmark/
semantic_instance_2d.php?metric=ap50
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Projection conv min wrap border AP
IoU50 IoU70

Equirect regular 0.0 no 0 15.07 6.64
Equirect regular 0.5 no 0 26.88 12.77
Equirect equiconv 0.5 yes 1/8 26.82 12.49
Equirect regular 0.5 no 1/8 25.21 11.86
Equirect regular 0.5 yes 1/8 24.92 11.78
Mollweide regular 0.5 no 1/8 16.10 6.63
α = 0.0
Mollweide regular 0.5 yes 1/8 15.97 6.58
α = 0.0
Mollweide regular 0.5 no 1/8 21.95 10.10
α = 0.5
Mollweide regular 0.5 yes 1/8 21.82 9.93
α = 0.5

TABLE I
OVERVIEW OF THE RESULTS OBTAINED WITH A YOLACT++ MODEL

TRAINED ON COCO. conv REFERS TO TYPE OF CONVOLUTION USED,
min DESCRIBES THE MINIMUM AREA OF OBJECTS (IN PERCENT OF THE

IMAGE AREA) THAT WERE RETAINED IN THE GROUND TRUTH, wrap

DESCRIBES WHETHER WRAP AROUND HANDLING HAS BEEN APPLIED TO

THE GROUND TRUTH AND border SPECIFIES THE WIDTH OF A BORDER

BEING ADDED.

borders for wrap around handling perform very similar,
though slightly worse. In addition, filtering the ground truth
to have each object in the border region only once performs
slightly worse (for all projections and overlaps) than not
doing so. The reasons seem to be that it is not necessarily
the more prominent version of the object that is better
segmented, and that partial objects at borders are sometimes
quite well segmented. The pure Mollweide projection per-
forms clearly worse, and the results improve when we mix
the projections.

Figure 2 shows an example of the results obtained with
the different configurations and the detection of some ob-
jects, e.g., the second chair, the falsely detected TV in
the office and the bed visible from the room next door.
While the Mollweide projection performs generally worse
than equirectangular, there are some objects that are only
detected in Mollweide projection, and get lost already in the
hybrid projection. We also observe some differences between
the equirectangular projection with and without border. The
presumption is that the aspect ratio change due to adding the
border also plays a role in this behaviour.

We have performed further experiments with the
SOLOv2 [24] framework, training it on the COCO and Scan-
Net datasets. The results indicate that the small differences
in terms of performance between regular or equirectangular
convolutions also hold for other models and datasets. How-
ever, the dataset determines how well the model generalises
to equirectangular images. We observe that models trained on
COCO images generally provide better segmentation quality
(in particular, concerning the accuracy of the mask) for
equirectangular images than those trained on ScanNet.

V. CONCLUSION

In this paper we have studied the problem of efficient 2D
instance segmentation of 360◦ images of indoor scenes. We

have analysed different ways of preparing equirectangular
content, and assessed the use of regular vs. equirectangular
convolutions on equirectangular projections. In addition, we
consider the Mollweide projection as an alternative projec-
tion. We performed evaluation for the different configurations
on panoramic images from the Matterport3D dataset. One
contribution of this paper is thus a toolchain for preparing
the panoramic dataset, and provide class and instance labels
in COCO-style annotation format for use with a wide range
of object detection and segmentation methods.

The conclusion from our experiments is that using
equirectangular convolutions does not improve performance,
but is computationally less efficient than the well opti-
mised implementations for regular convolutions. While the
Mollweide projection allows for segmentation of otherwise
missed objects in a number of cases, the overall results do
not outperform those on equirectangular projection. It needs
to be further studied, if combining results from different
projections provides benefits and justifies the increased com-
putational effort.

REFERENCES

[1] I. Armeni, S. Sax, A. Zamir, and S. Savarese, “Joint 2d-3d-semantic
data for indoor scene understanding,” ArXiv, vol. abs/1702.01105,
2017.

[2] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact++: Better real-time
instance segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

[3] J. Cao, R. M. Anwer, H. Cholakkal, F. S. Khan, Y. Pang, and
L. Shao, “Sipmask: Spatial information preservation for fast image
and video instance segmentation,” in Computer Vision – ECCV 2020,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham:
Springer International Publishing, 2020, pp. 1–18.

[4] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “Matterport3d: Learning from rgb-d
data in indoor environments,” International Conference on 3D Vision
(3DV), 2017.

[5] L.-C. Chen, A. Hermans, G. Papandreou, F. Schroff, P. Wang, and
H. Adam, “Masklab: Instance segmentation by refining object detec-
tion with semantic and direction features,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
4013–4022.

[6] B. Coors, A. Paul Condurache, and A. Geiger, “Spherenet: Learning
spherical representations for detection and classification in omnidi-
rectional images,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 518–533.

[7] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017.

[8] M. Eder and J.-M. Frahm, “Convolutions on spherical images,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2019, pp. 1–5.

[9] M. Eder, T. Price, T. Vu, A. Bapat, and J.-M. Frahm, “Mapped
convolutions,” arXiv:1906.11096, Tech. Rep., 2019.

[10] F. Engelmann, M. Bokeloh, A. Fathi, B. Leibe, and M. Nießner, “3d-
mpa: Multi-proposal aggregation for 3d semantic instance segmenta-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 9031–9040.

[11] J. Guerrero-Viu, C. Fernandez-Labrador, C. Demonceaux, and J. J.
Guerrero, “Whats in my room? object recognition on indoor panoramic
images,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 567–573.

[12] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

19



D
ra

ft
Fig. 2. Example from Matterport3D dataset: input image (upper left), results on equirectangular projection with standard convolution (upper right) /
equiconv (middle left), with wraparound (middle right), Mollweide projection with standard convolution (lower left: α = 0.0, lower right: α = 0.5). Best
viewed in color.

[14] J. Hou, A. Dai, and M. Nießner, “3d-sis: 3d semantic instance
segmentation of rgb-d scans,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4421–4430.

[15] Y.-C. Hsu, Z. Xu, Z. Kira, and J. Huang, “Learning to cluster
for proposal-free instance segmentation,” in 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1–8.

[16] L. Jiang, H. Zhao, S. Shi, S. Liu, C.-W. Fu, and J. Jia, “Pointgroup:
Dual-set point grouping for 3d instance segmentation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 4867–4876.

[17] M. Kennedy and S. Kopp, Understanding map projections. Redlands,
California: Esri Press, 2011.

[18] W. Li, S. Saeedi, J. McCormac, R. Clark, D. Tzoumanikas, Q. Ye,
Y. Huang, R. Tang, and S. Leutenegger, “Interiornet: Mega-scale multi-
sensor photo-realistic indoor scenes dataset,” in British Machine Vision
Conference (BMVC), 2018.

[19] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017,
pp. 2117–2125.

[20] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor seg-
mentation and support inference from rgbd images,” in ECCV, 2012.

[21] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser,
“Semantic scene completion from a single depth image,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 1746–1754.

[22] Y.-C. Su and K. Grauman, “Learning spherical convolution for fast
features from 360 imagery,” in Advances in Neural Information
Processing Systems, 2017, pp. 529–539.

[23] K. Tateno, N. Navab, and F. Tombari, “Distortion-aware convolutional
filters for dense prediction in panoramic images,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 707–
722.

[24] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “Solov2: Dynamic
and fast instance segmentation,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[25] W. Yang, Y. Qian, J.-K. Kämäräinen, F. Cricri, and L. Fan, “Object
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