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Abstract

Drowsy driving is an important cause of road accidents that can lead to many fatalities and
monetary losses. Moreover, in the upcoming SAE level 3 (conditionally automated driving), the
state of the drivers must be monitored since the driver must be attentive to drive manually when
the automated driving system cannot control the car any more. To detect driver drowsiness,
three data sources have been generally used in the literature: vehicle-based data, facial-based
data, and biosignals. Recent studies mostly focused on designing driver drowsiness detection
systems using binary classifiers that report the driver’s vigilance into two classes, alert and
drowsy. However, adding a middle level of drowsiness can help better estimate the transition
between alertness and drowsiness to warn the driver early enough to prevent impaired driving. In
addition, previous works mainly concentrated on driver drowsiness detection in manual driving
mode, whereas there is no input from the driver in SAE level 3 automated driving. Therefore,
the drowsiness detection system cannot utilize vehicle-based data to estimate the drowsiness in
automated driving. To address the issues of the previous works, this thesis proposes three new
approaches to classify driver drowsiness in simulated driving tests:

(1) The first approach is data fusion of vehicle-based data, electrocardiogram (ECG) signals,
and facial-based data (eyelid opening and pupil diameter) using traditional machine learning
methods. The input data are preprocessed, their statistical features are extracted, a feature
selection algorithm is applied to remove the redundant and irrelevant features. Finally, random
forest and K-nearest neighbors are employed to classify the drowsiness into three classes of
alert, moderately drowsy, and extremely drowsy. Results show that data fusion of the different
data sources applying the feature selection method outperforms the systems using only one
individual data source and the system without a feature selection algorithm.

(2) The second approach is based on training deep convolutional neural networks using ECG
signals and eyelid opening data. One neural network is constructed for every input data where
the soft voting ensemble method is also applied to ensemble the results of the two different neural
networks. The Bayesian optimization method is employed to optimize the hyperparameters of
the neural networks. Outcomes present that deep convolutional neural networks significantly
outperform the traditional machine learning methods applied to the same input data. Moreover,
the results show that by using only ECG signals, a balanced accuracy of about 80% is achieved
for drowsiness classification.

(3) The third approach is based on electroencephalogram (EEG) data processing for drowsi-
ness detection. The percentage of eyelid closure (PERCLOS) is employed as ground truth for
driver drowsiness, and a neural encoder-decoder modeling framework is proposed to select the
essential EEG features that encode the PERCLOS progression in drivers. Results show that this
framework obtains satisfying performance with an average RMSE of 0.11 to estimate the real
PERCLOS. This framework also provides a set of EEG features that are consistently significant
across different drivers for drowsiness estimation.
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Kurzfassung
Schläfrigkeit von Fahrer*innen ist eine bedeutende Ursache für schwere Verkehrsunfälle, die

zu Todesfällen und anderen Verlusten führen können. Darüber hinaus muss in der kommenden
SAE-Stufe 3 (bedingt automatisiertes Fahren) der Zustand des Fahrers überwacht werden, da
der Fahrer übernahmebereit sein muss, wenn der Fahrroboter die Fahrzeugführung nicht mehr
selbst beherrscht. Zur Erkennung der Müdigkeit des Fahrers wurden in der Literatur im Allge-
meinen drei Datenquellen verwendet: Fahrzeugdaten, gesichtsbasierte Merkmale und Biosignale.
Wissenschaftliche Studien konzentrierten sich hauptsächlich auf die Entwicklung von Systemen
die binäre Klassifikatoren verwendeten und die Vigilanz in zwei Klassen einteilten: wach und
schläfrig. Die Hinzunahme eines mittleren Schläfrigkeitsgrades kann jedoch dazu beitragen,
den Übergang zwischen Wachsamkeit und Schläfrigkeit besser einzuschätzen, um den Fahrer
rechtzeitig über bevorstehende Fahruntüchtigkeit zu warnen. Zusätzlich konzentrierten sich
bisherige Arbeiten auf die Erkennung von Müdigkeit beim manuellen Fahren, während beim
automatisierten Fahren nach SAE Level 3 keine Eingaben des Fahrers vorkommen. Daher
können Systeme zur Müdigkeitserkennung keine Fahrzeugdaten nutzen, um die Müdigkeit beim
automatisierten Fahren einzuschätzen. Um dies zu lösen, werden hier drei neue Ansätze zur
Klassifizierung der Müdigkeit des Fahrers im Fahrsimulator vorgeschlagen:

(1) Der erste Ansatz ist die Fusion von Fahrzeugdaten, Elektrokardiogramm (EKG)-Signalen
und gesichtsbasierten Merkmalen (Augenlidöffnung und Pupillendurchmesser) unter Verwen-
dung traditioneller maschineller Lernmethoden. Die Eingabedaten werden vorverarbeitet, ihre
Merkmale extrahiert und ein Feature Selection Algorithmus angewendet, um redundante und
irrelevante Merkmale zu entfernen. Schließlich werden Random Forest und K-nearest Neigh-
bors Klassifikatoren eingesetzt um die Schläfrigkeit in drei Klassen zu unterscheiden: wach,
mäßig schläfrig und extrem schläfrig. Die Ergebnisse zeigen, dass die Datenfusion der ver-
schiedenen Datenquellen unter Anwendung der Feature Selection Methode die Systeme, die nur
eine einzelne Datenquelle verwenden übertrifft, ebenso das System ohne dem Feature Selection
Algorithmus.

(2) Der zweite Ansatz basiert auf dem Training von Deep Convolutional Neural Networks
unter Verwendung von EKG-Signalen und Augenliddaten. Ein neuronales Netz wird für jede
dieser Eingabedaten aufgebaut, wobei die Soft-Voting-Ensemble-Methode angewendet wird, um
die Ergebnisse der beiden verschiedenen neuronalen Netze zusammenzuführen. Die Bayes’sche
Optimierungsmethode wird zur Optimierung der Hyperparameter der neuronalen Netze einge-
setzt. Die Ergebnisse zeigen, dass Deep Convolutional Neural Networks die traditionellen Meth-
oden des maschinellen Lernens, angewandt auf dieselben Eingabedaten, deutlich übertreffen.
Darüber hinaus zeigen die Ergebnisse, dass durch die ausschließliche Verwendung von EKG-
Signalen eine mittlere Genauigkeit von etwa 80% bei der Klassifizierung von Schläfrigkeit erre-
icht wird.

(3) Der dritte Ansatz basiert auf der Verarbeitung von Elektroenzephalogramm (EEG)-
Daten zur Erkennung von Müdigkeit. Percentage of Eyelid Closure (PERCLOS) wird als
Ground Truth für die Schläfrigkeit des Fahrers verwendet und ein neuronales Encoder-Decoder-
Framework vorgeschlagen um die relevanten EEG-Merkmale auszuwählen, die den PERCLOS-
Verlauf bei Fahrern beschreiben. Die Ergebnisse zeigen, dass dieses Framework mit einem RMSE
von 0.11 eine zufriedenstellende Genauigkeit bei der Klassifikation von Schläfrigkeit erzielt.
Dieses Framework liefert auch EEG Merkmale, die bei verschiedenen Fahrern durchgängig
kennzeichnend sind um Schläfrigkeit abzuschätzen.
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Chapter 1

Introduction and Motivation

Drowsiness is an intermediate condition that fluctuates between alertness and sleep. It reduces
the consciousness level and hinders a person from responding quickly on important road safety
issues [1]. The American Automobile Association (AAA) has reported that about 24% of
2,714 drivers that participated in a survey revealed being extremely drowsy while driving,
at least once in the last month [2]. In 2017, the National Highway Transportation Safety
Administration (NHTSA) also reported 795 fatalities in traffic accidents which involve drowsy
driving [3]. Drowsy driving has caused about 2.5% of fatal accidents from 2011 through 2015 in
the USA, and it is estimated to produce an economic loss of USD 230 billion annually [4]. Klauer
et al. have found in their study that drowsy drivers contributed to 22-24% of the crashes or
near-crash risks [5]. The German Road Safety Council (DVR) has reported that drowsy drivers
have caused one out of four fatal highway crashes [6]. In a study carried out in 2015, it has been
reported that the average prevalence of falling asleep while driving in the previous two years
was about 17% in the 19 European countries [7]. The results of these studies emphasize the
importance of detecting drowsiness early enough to initiate preventive measures. Drowsiness
detection systems are intended to warn the drivers before an upcoming level of drowsiness gets
critical to prevent drowsiness-related accidents.

Intelligent systems that automate motor vehicle driving on the roads are being introduced
to the market step-wise. The Society of Automotive Engineers (SAE) issued a standard defining
six levels ranging from no driving automation (level 0) to full driving automation (level 5) [8].
While the SAE levels 0-2 require that an attentive driver carries out or at least monitors the
dynamic driving task, in the SAE level 3 of automated driving, drivers will be allowed to do
a secondary task allowing the system to control the vehicle under limited conditions, e.g., on
a motorway. Still, the automation system has to hand back the vehicle guidance to the driver
whenever it cannot control the state of the vehicle anymore. However, the handover of vehicle
control to a drowsy driver is not safe. Therefore, the system should be informed about the state
of the driver.

To date, different Advanced Driver Assistance Systems (ADAS) have been made by car
manufactures and researchers to improve driving safety and manage the traffic flow. ADAS
systems have been benefited from advanced machine perception methods, improved comput-
ing hardware systems, and intelligent vehicle control algorithms. By recently increasing the
availability of vast amounts of sensor data to ADAS, data-driven approaches are extensively
exploited to enhance their performance. The driver drowsiness detection systems have gained
much attention from researchers. Before its use in the development of driving automation,
drowsiness warning systems have been produced for the direct benefit of avoiding accidents.

The rest of this chapter first explains the state-of-the-art of driver drowsiness detection
methods. Then, it will describe the contribution of this thesis to enhance the previous works.
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Table 1.1: Karolinska sleepiness scale (KSS) [9]

Rating Verbal Description
1 Extremely alert
2 Very alert
3 Alert
4 Fairly alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, but no effort to keep alert
8 Sleepy, some effort to keep alert
9 Very sleepy, great effort to keep alert, fighting sleep

1.1 State-of-the-art of Driver Drowsiness Detection Methods

1.1.1 Subjective Measures for Driver Drowsiness

Subjective measures determine the drowsiness using questionnaires that drivers fill to report
their levels of vigilance. One of the most commonly used subjective scales for drowsiness is the
Karolinska Sleepiness Scale (KSS) [9] that is a nine-point scale that each scale describes the
driver’s vigilance. Table 1.1 presents the scales of KSS.

The KSS was validated using objective scores derived by brain activities in [10]. Results
show that sleepiness can be measured using the relationship between brain signals and the KSS.
Results of [11] also show that median reaction time and alpha and theta power densities of brain
signals are highly correlated with the KSS.

Datasets that have been exploited to design a driver drowsiness detection system can be
categorized into three main groups: 1) Vehicle-based data, 2) Facial-based data, and 3) Bio-
signals. The following sections will explain each of these data sources and their corresponding
recent studies to develop a driver drowsiness detection system.

1.1.2 Driver Drowsiness Detection using Vehicle-based Data

Researchers have utilized vehicle-based data to design non-invasive driver drowsiness detection
systems. The most frequently exploited vehicle-based data for this goal include lateral and
longitudinal accelerations, steering wheel angle, steering wheel angular velocity, yaw angle,
lateral deviation from road center-line, and speed. In this section, recent studies that have used
vehicle-based data to design driver drowsiness detection systems are described.

Steering wheel data has been commonly employed in many studies for this application. For
example, Li et al. [12] designed an online driver drowsiness detection system using the extracted
approximate entropy [13] of the steering wheel angle signal in real-world driving tests. They
employed the rates collected using video observation of the driving tests as ground truth for
driver drowsiness. In this method, approximated entropy features were first extracted using
fixed-length sliding windows on real-time steering wheel angle data. Then, an adaptive piece-
wise linear fitting was employed to linearize the extracted entropy, followed by calculation of
the wrapping distance [14] between the linear feature series. Finally, the wrapping distance was
used as input to a binary decision classifier to determine the vigilance state (alert or drowsy).
Results of that study showed that the accuracy of this method for drowsiness detection is about
78%. Figure 1.1 shows the flowchart of the proposed method in [12].

2



Table 1.2: Proposed steering wheel angle features to detect the drowsiness in [16].

Feature Name Description
ELLIPSE Steering angle and absolute steering velocity

NMWRONG Number of times steering wheel is corrected
NMRHOLD Number of times steering wheel is hold longer than a

predefined duration
AmpD2Theta Area under steering angle graph

VHAL Ratio of high to low steering wheel corrections
MICROSTEERINGS Small steering adjustment rate

STWZCR Steering zero crossing rate
STWVELZCR Steering velocity zero crossing rate

STV25 First quartile of steering velocity
STV50 Second quartile of steering velocity
STV75 Third quartile of steering velocity

Steering
Wheel Angle ApEn APLA

on ApEn
Online

Detection
Drowsy/Alert

Figure 1.1: Proposed method in [12] for driver drowsiness detection. ApEn: approximate entropy;
APLA: adaptive piece wise linear approximation.

Meng et al. [15] extracted 11 features from the steering wheel angle signal and applied
multivariate analysis of variance to find parameters that have a significant correlation with the
level of drowsiness. By applying this method, the number of parameters was reduced to the
four most important features. The KSS was used to define the ground truth for three levels of
drowsiness: (1) 1≤KSS≤6, (2) KSS = 7, and (3) KSS = 8-9. Three different classifiers, includ-
ing Back Propagation (BP) neural network, Support Vector Machine (SVM), and Multilevel
Ordered Logit (MOL), were built based on these selected parameters. Results showed that the
MOL achieved a higher recognition accuracy than two other models to classify three levels of
driver drowsiness. The balanced accuracies of the MOL, SVM, and BP were 72.92%, 63.86%,
and 62.10%, respectively.

Friedrichs and Yang [16] proposed time-domain features of steering wheel angle for drowsi-
ness detection obtained from real-world driving tests. These features are listed in Table 1.2. In
their study, the effects of the external environment, such as road bumps and cross-wind, were
also considered. They used KSS reports as ground truth for driver drowsiness and defined three
classes based on this scale: (1) alert (KSS<6), (2) questionable (KSS = 6-7), and (3) drowsy
(KSS = 8-9). Correlation of features with the subjective Karolinska Sleepiness Scale (KSS) was
analyzed, and their performance was investigated using K-Nearest Neighbors (KNN; k=5) [17],
Gaussian Mixture Modes (GMM; 3 Modes) [18], linear discriminant [19], Bayes classifier [20]
combined with Sequential Floating Forward Selection (SFFS) [21] and Artificial Neural Network
(ANN). The results showed that the ANN outperformed other classifiers. The balanced accu-
racy (average accuracy of three classes) was 73.5%; however, the accuracy of the drowsy class
was only 54.6%. Therefore, extreme drowsiness levels can be misclassified in the questionable
or alert classes.

Wang and Xu implemented MOL modeling on vehicle-based, and eye movement measures

3



[22]. In their study, 19 driving behavior variables (such as the average of lateral position, lane
departure frequency, steering wheel reversals, etc.) and four eye feature variables, including
average blink frequency per second, average blink duration per second, PERcentage of eyelid
CLOSure (PERCLOS) and average pupil diameter were measured. To record the driver drowsi-
ness levels, drivers were asked to report their KSS, and they are used to define three classes
of drowsiness: (1) KSS range from 1 to 6, no drowsiness or low-level drowsiness, (2) KSS is 7,
moderate-level drowsiness, (3) KSS is 8 or 9, high-level drowsiness. Their results showed that
considering the individual differences between drivers in the structure of MOL improves the
models’ ability for drowsiness detection.

McDonald et al. [23] proposed a contextual and temporal algorithm for drowsiness detec-
tion that exploited steering wheel angle, gas pedal input, brake pedal input, vehicle speed, and
acceleration as input data. Speed and acceleration were used to build a real-time measure of
driving context. In their study, dynamic Bayesian networks [24] were employed for considering
the time dependencies in the transition between drowsiness and awake states. The drowsiness-
related lane departures, which were identified using video observation of all lane departures,
were employed to define the ground truth of drowsiness. The modeling approach considered in
that study consists of two types of features: driver behavioral measures (steering wheel angle,
gas pedal input, and brake pedal input) and road context measures (speed and acceleration)
while random forest algorithm [25] and Symbolic Aggregate Approximation (SAX) [26] were
employed to generate features form each type of this data, respectively. Results showed that
the number of false-positive of drowsiness detection was decreased in highway and rural envi-
ronments. According to the results, the false positive rate and true positive rate of their method
were 0.89 and 1.00, respectively.

An ensemble learning for detection of drowsiness-related lane departures was presented in
[27]. In that study, they identified the drowsiness-related lane departures and used the steering
data from 60 s to 6 s before a lane departure as input data. Observer Rating Drowsiness
(ORD) scale [28] was used as the ground truth for driver drowsiness that is a continuous scale
between 0 and 100, and it was separated into five levels: not drowsy (ORD<12), slightly
drowsy (12≤ORD<37), moderately drowsy (37≤ORD<62), very drowsy (62≤ORD<90), and
extremely drowsy (ORD≥90). The ORD scale was matched with the lane departures, and
the segments which observed as moderately, very, or extremely drowsy and contained lane
departures were labeled as drowsy. Other lane departures were considered as members of the
alert class. Thus, they labeled the drowsiness in two classes: drowsy and alert. Finally, the
random forest algorithm was utilized as a classifier by inputting the segmented drowsiness-
related raw steering data. Results showed that the overall accuracy of this approach is about
79% for binary classification of drowsiness.

Three feature sets in time, frequency, and state-space domains were extracted from steering
angle data in [29] to capture impaired driving caused by drowsiness. Each feature set was
separately used as input to 5 different classifiers, and the output of every single classifier was
combined in an ensemble classifier. Finally, a meta-ensemble classifier was employed to combine
the outputs of three ensemble classifiers by averaging their outputs. The results showed that
this approach obtained an accuracy of 86.1%.

Standard Deviation of Lane Position (SDLP) is another vehicle-based feature used in pre-
vious research for driver drowsiness classification. For example, Ingre et al. [30] studied the
relationship between SDLP and KSS ratings. They designed two 2-hours driving tests for ten
shift workers, five male, and five female. Drivers performed one of the tests after a normal night
sleep and another one after working a night shift. The subjective drowsiness was monitored
using KSS in 5-min intervals during the driving tests. A mixed ANalysis Of VAriance (ANOVA)
was employed to study the relationship between the average of SDLP and KSS levels. Results
show that the average SDLP (average of 20 driving tests) increased in higher KSS levels. For
example, the KSS levels of 1, 5, and 9 are associated to mean SDLP of 0.19, 0.26, 0.47, re-
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Figure 1.2: Schematic representation of ECG wave, adopted from [31].

spectively. However, SDLP is not higher than 0.25 for some drivers, even at the KSS rating of
9.

1.1.3 Driver Drowsiness Detection using Bio-signals

Biosignals that have been commonly employed for driver drowsiness detection include Elec-
troencephalography (EEG), Electrocardiography (ECG), Photoplethysmogram (PPG), Elec-
tromyography (EMG), Electrooculography (EOG), Electrodermal (EDA), and respiration. In
this subsection, the structure of each one of these signals and some of the corresponding studies
for driver drowsiness detection are explained.

• ECG

Electrocardiography (ECG) is a method to measure the electric activity of the heart over
a period of time which is recorded by electrodes connected to body [31]. Figure 1.2 shows the
scheme of a normal ECG recording.

Detection of R Peaks is the first step to extract the Heart Rate (HR) and Heart Rate
Variability (HRV), which are employed in medical applications to detect heart diseases [32, 33].
The HRV can represent the Autonomic Nervous System (ANS) activity related to drowsiness
and stress levels. Activities of this system are classified into two general parts: sympathetic and
parasympathetic activities. Alertness states are characterized by an increase in sympathetic
activity and/or a decrease in parasympathetic activity, while extreme relaxation states are
characterized by an increase in parasympathetic activity and/or a decrease in sympathetic
activity [34, 35]. Therefore, HRV signals have been used to detect drowsiness in drivers in
different studies [36, 37, 38]. The most widely extracted features from HRV signals are as
follows [36, 37]:

• Avg: Average heart rate.

• MeanRR: Mean of R-to-R Interval (RRI).
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• RMSSD: Root mean squares of the difference of adjacent RRI.

• RR50: The number of pairs of adjacent RRI whose difference is more than 50ms.

• PRR50: The percentage of RR50 of all RR intervals.

• SDRR: Standard deviation of RRI.

• Total Power (TP): Variance of RRI.

• LF: Power of low-frequency band (0.04 Hz-0.15 Hz) in the Power Spectral Density (PSD)
calculated in each sliding window of the RRI signal. This feature reflects both the
parasympathetic and sympathetic nervous system activities.

• HF: Power of high-frequency band (0.15 Hz-0.40 Hz) in the PSD of the RRI signal. This
feature reflects parasympathetic nervous system activity only.

• LF/HF: Ratio of LF to HF. This feature presents the balance between parasympathetic
and sympathetic nervous systems’ activities.

To discriminate between the HRV dynamics in two states of fatigued (caused by sleep de-
privation) and drowsy (caused by monotonous driving ), two different monitoring systems were
proposed in [39] based on extracted features from HRV and respiration signals. One of these sys-
tems is a binary classifier (alert/drowsy) for assessing the level of driver vigilance every minute.
Another one detects the driver’s sleep deprivation in the first three minutes of his driving. Thirty
drivers participated in their driving tests, and every driver was classified as sleep-deprived if ei-
ther s/he slept less than 4 hours in the night before the test (partially sleep-deprived) or s/he was
awake for at least 20 hours before conducting the test (fully sleep-deprived). Thirteen drivers
were sleep-deprived (either partially or fully) out of thirty drivers. A combination of EEG signal
analysis, video observation-based rating, and PERcentage of eyelid CLOsure (PERCLOS) was
employed to define the ground truth for driver drowsiness [40]. Results of this study showed
that the balanced accuracy of the drowsiness detection system that only used the HRV-based
features is about 65.5%. However, by adding the extracted features from respiration signals,
this system achieves a balanced accuracy of 78.5% (about 13% improvement). The balanced
accuracy of the sleep deprivation system was also about 75% (it detected eight out of thirteen
sleep-deprived drivers correctly).

The behavior of the extracted features from HRV dynamics in different levels of driver
drowsiness was studied in [41] where ECG signals were collected using embedded ECG sensors
on the steering wheel. Two male drivers (aged 27 and 31) conducted a driving test with a
duration of 2 hours. The driver was vigilant at the beginning of the test while they showed
clear signs of drowsiness, such as yawning at the end of the test. Results showed that heart
rate, SDNN, and RMSSD decreased by increasing the drowsiness level, whereas the LF/HF
ratio increased by the transition from alertness to the extremely drowsy level.

Li and Chung [42] employed the combination of HRV wavelet analysis and SVM classifier
to detect the driver drowsiness. The PERCLOS was used to define the two driving states. The
PERCLOS between 0% to 30% and upper that 30% indicated the alert and drowsy states of the
drivers, respectively. Receiver Operating Curve (ORC) [43] analysis was also used to select the
extracted features from HRV data, and its results represented that the wavelet-based method
outperformed the FFT-based method (LF/HF ratio) regardless of the duration of the HRV data
(1-min, 2-min, and 3-min). Classification results showed that the wavelet-based feature system
obtained an overall accuracy of 95%. Figure 1.3 presents the flowchart of the proposed method
in [42].

Three features, including LF, HF, and LF/HF ratio, were used in [1] to detect the drowsiness
states during a monotonous 80-min length driving experiment performed by 22 subjects. The
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Figure 1.3: Flowchart of the proposed method in [42].
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SVM classifier was employed to classify the driver states, and paired t-test was used to select
the statistically significant features (p < 0.05). Video recording during the driving test was used
as a measure of ground truth, and drowsiness-related events were detected using observation
of facial features such as eye blink duration, facial tone, head nodding, and yawning. Video
observations showed that only 11 out of 22 drivers felt drowsy during the test. When the
video observer detected a drowsy event, the 5-min period before the event and 5-min period
after the event was annotated as alert and drowsy states, respectively. Results showed that
the SVM obtained an overall accuracy of 70% for detecting the drowsy conditions using only
HRV-based features. However, results demonstrated that using both of the ECG and EEG
features increased the classification accuracy to about 81%.

Patel et al. [35] suggested an ANN-based system to detect the early onset of fatigue in
drivers using HRV. This study investigated the relationship between LF and HF components
of HRV and driver drowsiness. To classify the HRV signals, a single-layer neural network using
a combination of bipolar logistic function as an activation function and delta learning rule has
been designed. The spectral image, plotted from the PSD, was the input given to the neural
network that yielded an accuracy of 90%. Figure 1.4 shows the LF/HF ratio of alert and fatigue
states. It shows that this ratio is higher for 11 out of 12 drivers in the alert state than in the
drowsy state.

Figure 1.4: LF/HF ratio of 12 participants in two states: Alert and Drowsy. It shows that this ratio
is higher for 11 out of 12 drivers in alert state, adopted from [35].

Multivariate statistical process control (MSPC) [44] was employed in [38] to detect driver
drowsiness using eight different HRV-based features. EEG-based sleep scoring was conducted
by a sleep specialist and utilized as ground truth for drowsiness detection. In that study, drowsy
driving was considered as an anomaly in driving and MSPC was applied to detect this anomaly.
The performance of the method was evaluated using EEG signals and the results showed that the
proposed method detected 12 out of 13 drowsiness onset and false-positive rate of the anomaly
detection system was about 1.7 times per hour.

Buendia et al. [45] had two objectives in their study. The first goal was the evaluation
of various signal processing methods for removing noisy heartbeats and examine the effects of
spectral transformation of HRV signals on drowsiness detection. The second goal was extracting
the relationship between HRV data and KSS data that were reported by drivers every 5 minutes
during the real-world driving tests. Results showed that the average heart rate decreased with
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Figure 1.5: Proposed method in [54] to classify the driver drowsiness using EEG data and RBF neural
network.

increasing the KSS, whereas variance of the heart rate increased.

• EEG

Brain signals are generally promising biosignals for drowsiness classification. Besides the
effort to measure it, EEG signals are contaminated by various noise sources such as muscle
activities and eye movements. EEG signals are usually decomposed into their sub-bands for
being used in drowsiness classification. Important sub-bands of EEG include Delta (0-4Hz),
Theta (4-8 Hz), Alpha (8-12Hz), Beta (12-30 Hz) and Gamma (30-60 Hz) [46]. Recent studies
showed that the dynamic behaviors of these sub-bands in time and frequency domains have
strong relationships with different levels of drowsiness in drivers [47, 48, 49]. For example,
Taran and Bajaj [50] employed adaptive Hermite decomposition [51, 52] for feature extraction
from EEG signals. They utilized the MIT/BIH Polysomnographic data set [53] which is devel-
oped to study the sleep apnea disorder, and no driving test was conducted while collecting this
data set. In their proposed method, evolutionary optimization algorithms including Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) were
first used to optimize the Hermite decomposition parameters (order of Hermite polynomial and
dilation factor) where ABC provided the minimum reconstruction error of the EEG signals.
Second, the Hermite coefficients were calculated, and their statistical measures were extracted
as output features. Finally, the extracted features were tested with different classifiers such as
extreme learning machine, decision tree, k-nearest neighbor, least-square support vector ma-
chine, artificial neural network, and näıve Bayes algorithms to detect alertness drowsiness using
EEG signals. The extreme learning machine classifier achieved better performance than other
classifiers that obtained 95.45% and 87.92% detection accuracies for alertness and drowsiness
states, respectively.

Two-Level Learning Hierarchy Radial Basis Function (RBF-TLLH) was exploited in [54] to
classify the driver vigilance state into two classes (drowsy and alert) using EEG signals. They
used EEG data were collected from six participants that conducted the driving tests in two
vigilance states: alert and drowsy. In the alert tests, the drivers were asked to have a usual
sleep time (about 8 hours) during the night before the tests. On the other hand, to conduct the
drowsy tests, drivers were required to sleep for only 4 hours during the night before the test.
By considering this approach, no ground truth based on the driving performance was needed.
In this study, first, EEG signals were preprocessed and band-pass filtered (1-45 Hz). Then,
the PCA was employed to reduce the dimensions of the preprocessed EEG signals and extract
features from them. Finally, RBF-TLLH was utilized to classify the driver’s vigilance state.
The results demonstrated that the proposed method achieved the mean accuracy of 92.71% for
drowsiness classification. The flowchart of this method is shown in Figure 1.5.

EEG power spectrum analysis was used in [55] to study the brain activities during a
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monotonous driving test. Nine university students participated in the experiments. Obser-
vation of recorded videos during the driving experiment was exploited as the ground truth. The
PSD of different EEG sub-bands were computed, and results showed that Alpha and Theta
band powers increased significantly during the transition from alert to the drowsy state. This
result was more significant in the occipital and parietal regions [56] than other regions of the
brain.

Time, spectral, and wavelet analysis of EEG signals were used in [4] to detect the drowsiness
state. In that study, the MIT-BIH Polysomnographic Database [53] was used that all subjects
were male and aged between 32 and 56 years old. In the proposed method, first, signals were
band-pass filtered with cut-off frequencies of 0.5-60 Hz, and power-line interference (50 Hz)
was removed by using the cascade of adaptive filters [57]. Second, signals were segmented
into 5 seconds windows. Third, 19 different features were extracted from EEG signals, such as
standard deviation in time analysis, central frequency in spectral analysis, and zero-crossing rate
of wavelet decomposed levels. Fourth, Linear Decomposition Analysis (LDA) was exploited to
select the most informative features to the drowsiness level. Finally, an ANN with one hidden
layer was employed as a binary classifier which was trained using the Levenberg-Marquardt
backpropagation algorithm. The number of neurons in the hidden layer was varied between 10
to 40 to select the optimal architecture of the ANN classifier. The flowchart of the proposed
method in [4] is shown in Figure 1.6. Results demonstrated that this method achieved the
correct detection rates of 87.4% and 83.6% for alertness and drowsiness states, respectively.

EEG records Filtering Time
Segmentation

Feature Extraction:
(1) Time analysis,

(2) Wavelet decom-
position, and (3)
Spectral analysis

Feature
Selection

Classification
Method

Alert or
Drowsy

Figure 1.6: Flowchart of the proposed method in [4] for drowsiness detection using EEG signals.

Kurt et al. [58] used EEG, EMG, and EOG signals to estimate three different vigilance
levels: alert, drowsy, and asleep. EEG signals were decomposed into their sub-bands using
wavelet transformation in their study, while EMG and EOG signals were employed to eliminate
movement artifacts from EEG sub-bands. After preprocessing the EEG signals, left and right
EOG signals, EEG sub-bands (Delta, Theta, Alpha, and Beta), and EMG signal were used
as inputs (seven different input signals) to an ANN classifier with two hidden layers that each
contained ten neurons. Ten subjects participated in their driving tests, and two experts rated
the collected data and classified the driver’s vigilance level into three classes: awake, drowsy,
and sleep. The overall accuracy of the method was 97-98% for driver drowsiness classification.

A real-time wireless brain-computer interface system was designed in [59] for drowsiness
detection. In that study, an embedded drowsiness detection was also implemented based on
Alpha and Theta sub-bands spectra for binary classification of drowsiness. They assumed that
the driver is alert in the first few minutes of his driving tests and used the first 3-min of EEG
data to build the alertness model. This model was built under the assumption that EEG spectra
in Theta and Alpha bands follow a multivariate normal distribution. The deviation from the
alert model was assessed continuously by calculating the Mahalanobis distance [60] between
the current distribution of Alpha and Theta bands and alertness model. Finally, the driver
state was classified as drowsy if the calculated distance was higher than a predefined threshold.
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Figure 1.7: Flowchart of the proposed method in [61] for drowsiness detection using EEG data. Alpha
and Theta powers of the EEG signals are obtained by applying Fast Fourier Transform (FFT) and
extracted features from these sub-bands are exploited to predict the driver drowsiness.

Driver’s reaction-time to the simulated lane deviation onset was employed to define the ground
truth of the driver’s drowsiness. If the reaction time was within 0.2-1 sec, the driver would be
classified as an alert. Results showed that the F1-score of this method was 76.7%.

A generalized EEG-based drowsiness monitoring and prediction system using a self-organizing
neural fuzzy network was proposed in [61]. In that study, simulated lane departures were imple-
mented in the 1-h driving experiments, and drivers were required to correct the lateral position
of the car by inputting the appropriate steering angle. Six drivers participated in the study, and
their reaction times to these events were recorded to be used as ground truth for driver drowsi-
ness, and a drowsiness predictor model was developed to estimate this reaction time (regression
problem). Figure 1.7 illustrates the flowchart of the proposed method in [61]. As this Figure
shows, the method composed of these main parts: (1) Independent Component Analysis (ICA)
[62], (2) power spectral analysis, (3) feature extraction, (4) drowsiness predictor model, and
(5) estimation of drowsiness detection model performance. First, the ICA method was used to
select the occipital components of the EEG signals (Socp) as the region of interest for spectral
analysis and feature extraction. Second, Fast-Fourier Transform (FFT) was applied to derive
the power spectral density of Theta and Alpha bands over frequency. The driver’s reaction time
to the simulated events was also employed as the actual output to evaluate the model perfor-
mance. Third, four different models including (1) Support Vector Regression (SVR) [63], (2)
Multi-Layer Perceptron Neural Network (MLPNN) [64], (3) Radial Basis Function Neural Net-
work (RBFNN) [65], (4) Self-organizing Neural Fuzzy Inference Network (SONFIN) [66] were
utilized to estimate the reaction time of the driver. Finally, the performance of these models was
evaluated using correlation analysis and root mean square error (RMSE) between the estimated
reaction time and the actual one. Results showed that the SONFIN models obtained the lowest
average RMSE (0.076±0.022) and highest average correlation coefficients (97.2%±1.6) among
other proposed models.

A driving drowsiness detection system was designed based on EEG signals using the com-
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Figure 1.8: Structure of the proposed method in [67] for driver drowsiness detection by applying a
combination of principal component analysis (PCA) and deep networks to the EEG data.

bination of principal component analysis (PCA) and a deep learning model called PCANet
in [67]; see Figure 1.8. The dimension of EEG data was reduced using PCA to improve the
feasibility of the final structure of the model. Two classification algorithms, including KNN
and SVM, were exploited to generate the final binary output. Six drivers participated in the
simulated driving tests. Two driving tests were organized for every driver: alert and drowsy.
An observer seated two meters beside the drivers during the experiments and recorded their
vigilance class by observing the drowsiness signs such as head nodding and long eye closure.
Results demonstrated that the developed method obtained robust performance that provided a
classification accuracy of about 95%. Moreover, results showed that parietal and occipital lobes
were strongly associated with driver drowsiness.

Wang et al. [68] designed a real-time fatigue detection based on collected 24 EEG signals
using dry electrodes. Ten subjects (seven males and three females) participated in the simulated
driving tests with the length of 90 min, carried out in the afternoon from 3 to 5 pm. The drives’
reaction time to the brake signals of the leading car was recorded during the experiments. Two
methods were investigated for drowsiness detection: PSD analysis and sample entropy (SE)
analysis. Figure 1.9 presents the flowchart of these methods. As this Figure shows, signal
preprocessing and discrete wavelet transform were first applied to the EEG channels. EEG
signals were bandpass filtered to the frequency band of 0.5 to 100 Hz in the preprocessing
step. The Daubechies-4 (db4) wavelet was used to decompose the EEG signals into six different
levels. In the PSD analysis method, the computed wavelet coefficients were used to provide the
Theta, Alpha, and Beta sub-bands frequency components of EEG signals and subsequently their
spectral powers: pθ, pα and pβ. Two drowsiness indexes were calculated using these powers: (1)
(pθ+pα)/pβ and (2) pθ/pβ. The correlation between calculated drowsiness indexes and reaction
times was computed, and if this correlation was higher than a predefined threshold, that specific
channel was selected to be used for drowsiness detection. This process was performed for each
drowsiness index separately. This step provided the sensitive EEG channels for the detection
of the onset of driver drowsiness. Finally, an integrated drowsiness metrics (IM) was calculated
as the average of both drowsiness indexes presented by Equation (1.1).

IM = 1
2

(
N∑
n=1

pθ(n) + pα(n)
pβ(n) +

M∑
m=1

pθ(m)
pβ(m)

)
(1.1)

where N and M are the number of sensitive EEG channels for the (pθ + pα)/pβ and pθ/pβ,
respectively. In the SE method, the sample entropy [13] was calculated by averaging the sample
entropies of the two EEG channels from the occipital region of the brain: O1h and O2h channels.
The calculated sample entropy was also employed to predict the onset of drowsiness. Results
showed that the IM was increasing during the driving test by increasing the reaction time. On
the other hand, the SE was decreasing by increasing the drivers’ reaction time to the brake
signals.
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Figure 1.9: Flowchart of the proposed method in [68].
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• EMG

EMG is a method to detect the electrical activity of the muscle using connecting the elec-
trodes to the skin surface. Surface EMG (sEMG) was analyzed in [69] to determine the dy-
namical behavior of muscle activity during simulated driving. Electrodes were placed on the
shoulder and neck muscles of the driver.

The vigilance level was estimated in [70] using both EEG and EMG signals to increase the
accuracy of the estimation. Thirty subjects (14 females and 16 males) with a mean age of 33.5
years participated in the tests. No driving test was performed in that study, and participants
laid down on a testbed to collect the data. Every test took about 7 hours for every participant,
and collected data were segmented into 20 min parts. Two experts evaluated the recorded EEG
data, and they reported the three vigilance levels: awake, drowsy, and sleep. EMG signals were
collected using electrodes that were connected to the chin. These signals were used to verify
and remove motion artifacts from EEG signals. An ANN was utilized to investigate the changes
of EEG and EMG from alert to drowsy states. Training and testing data sets of ANN consist
of four EEG sub-bands (Delta, Theta, Alpha, and Beta) and the power spectral density of
EMG signals. The output of the ANN was three levels of vigilance: awake, drowsy, and asleep.
Results show that the accuracy of the method is 98-99%. Figure 1.10 shows the structure of
the used ANN.

Figure 1.10: The method used in [70] to classify driver drowsiness using power spectral densities of
Delta, Theta, Alpha and Beta sub-bands of EEG signals, and power spectral density of EMG data as
inputs to a neural network.

Fu and Wang [71] proposed a method for driver fatigue detection based on sEMG and ECG
data. Eight subjects (five males and three females; age: 24.75±2.76) participated in the driving
tests. The length of every test was between 2 to 2.5 hours and conducted between 12pm to
3pm. Subjects raised their hand when they feel drowsy during the tests, which is used to define
the ground truth for driver drowsiness. Collected data were first preprocessed by applying the
Fast independent component analysis (FastICA) [72]. This algorithm was used to separate the
sEMG and ECG signals by removing the noisy components and reconstructing the clean signals
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by remained components. However, the baseline low-frequency noise was still present in the
outputs of the FastICA. Therefore, band-pass filtering was applied to the signals (sEMG: 10
to 300 Hz and ECG: 0.5 to 50 Hz) to remove the baseline noise. Some features were extracted
from these signals, and results showed that some of them were not informative to the driver’s
drowsiness. Thus, Kolmogorov-Smirnov z-test [73] was employed as the feature selector and
peak factor of sEMG, and the maximum of cross-correlation curve of sEMG and ECG showed
the most significant difference between two alert and drowsy classes, so these two features were
selected for drowsiness detection. Finally, the Mahalanobis distance (MD) was employed as
the discriminator between drowsy and alert states. The MD provided the decision boundary
between two classes when two selected features were utilized as its inputs. Results showed that
this method achieved an accuracy of about 87% to discriminate between drowsy and alert states.

In [74] a similar method based on a combination of EMG and ECG features was proposed for
drowsiness detection. In that study, twelve male participants (20-30 years old) performed the
simulated driving tests with the length of 120 min. Drivers filled the subjective questionnaire of
SOFI-25 (Swedish Occupational Fatigue Inventory) [75] during the tests at 10 min intervals that
were used to define the ground truth for drowsiness. Firstly, EMG and ECG were separated
using FastICA and Empirical Mode Decomposition (EMD) [76] was exploited to denoise the
signals. Then, three features, including the complexity of EMG, the complexity of ECG, and
the sample entropy of the ECG signal, were extracted. Principal component analysis was used
to eliminate the redundant information between extracted features. Finally, a mathematical
model using multiple linear regression theory was established while the principal components
of three features were used as input data, and output was the drowsiness level of the driver.
Results showed that this approach achieves an accuracy of 91% for binary classification of driver
drowsiness.

• Respiration

A drowsiness detection method using analysis of the respiratory signal was proposed in [77].
The respiratory signal was collected using an inductive plethysmography belt [78] from twenty
adult participants (ten males and ten females, aged 20 to 60 years). The subjects performed the
two driving tests on two different days. In one of the tests, drivers had a normal sleep situation
(at least 6 hours of sleep in the night before the test). In another test, drivers had no sleep in the
24 hours before starting the test. To generate the ground truth, trained external observers were
asked to rate the driver’s vigilance levels as drowsy or non-drowsy per minute by observing the
recorded videos. The drowsiness detection method was based on Respiratory Rate Variability
(RRV) analysis to detect the fights against drowsiness and named as Thoracic Effort Derived
Drowsiness index (TEDD). This algorithm is presented in Figure 1.11. A low-pass filter filtered
the collected respiration signals with a cut-off frequency of 0.5 Hz. This low-pass filter was
followed by a high-pass filter with a cut-off frequency of 0.05 Hz. The low-pass and high-pass
filters removed the noise spikes and baseline of the respiration signals, respectively. The quality
of the filtered signal was assessed, and it was excluded from further processing if its quality was
not approved. Characterization block found the reference dynamics of every individual driver
to deal with differences between different subjects. The block searched to find a stable region
used to extract a reference pattern for every driver. In the Breath-to-Breath respiratory rate
estimation block, a quasi-peak detector was applied to estimate the changes in the RRV signal.
Finally, a drowsiness detector was applied to the RRV signal, and its performance was assessed
using different classification metrics. Results showed that this method obtained the specificity
of 96.6% and the sensitivity of 90.3%.

Kiashari et al. [79] presented a non-intrusive method using facial thermal imaging to an-
alyze drivers’ respiration signals. Thirty subjects participated in the driving tests, and they
were assumed to be awake at the beginning of the test and show drowsiness signs during the
experiment. The mean and standard deviation of the respiration rate and the inspiration-to-
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Figure 1.11: Flowchart of the proposed method in [77] for driver drowsiness detection by estimation
of breath-to-breath respiratory rate.
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expiration time ratio were extracted from signals. The ORD was employed as the ground truth
for drowsiness detection obtained by evaluations performed by three expert observers. The
observers reported drowsiness into five levels: not-drowsy, slightly drowsy, moderately drowsy,
very drowsy, and extremely drowsy. The final drowsiness score was provided by averaging the
three levels reported by three observers. The ORD score of three and higher was labeled as
a drowsy class, and the ORD lower than three was considered as the alert class. The SVM
was also employed for drowsiness classification. Results showed that this method obtained the
overall accuracy and precision of 90% and 91%, respectively.

Solaz et al. [80] proposed a driver drowsiness detection system using Kinect cameras that
were installed in the car to be used as a breathing rate sensor. Output images of this sensor were
processed to investigate the movement of the driver’s chest. Five male subjects participated in
the driving tests aged between 22 and 38 years old. The tests were conducted in two different
states: (1) one test with normal sleep, and (2) another one with sleep-deprived drivers (at least
24 hours of being awake). To validate the cameras, the plethysmography band was used as
a gold standard that obtained precise chest and abdomen movements. Results showed that
the breath rate measured with the cameras was correlated with the plethysmographic measure
greater than 90%.

Dosario et al. [81] used different biosignals such as ECG and respiration to discriminate
between three levels of driver’s vigilance states (1) attentive, (2) fatigued, and (3) drowsy.
Twenty subjects participated in driving tests with the length of 1 h 45 min. The combination of
EEG dynamics and PERCLOS data were exploited to define a ground truth for driver’s vigilance
states during the experiment. The respiration signal was measured using a plethysmography
band. Results showed that the respiration amplitude was 5% higher during the fatigue and
drowsy states than during the attentive state.

A respiration monitoring system based on Radio-frequency IDentification (RFID) technology
was proposed in [82]. This system was composed of multiple RFID tags attached to the seat belt,
which were used to estimate the respiration frequency of the driver. In order to mitigate the
influence of random sampling and external noises such as vehicle vibration, tensor completion
[83] and Canonical Polyadic Decomposition (CPD) [84] were applied to the RFID phases. The
results showed that the proposed systems outperformed the Kinect cameras and Ultra-Wide-
Band (UWB) radar. The mean estimation error of Kinect camera, UWB radar, and RFID tags
were 0.79, 0.31, and 0.11 breath per minute, respectively.

1.1.4 Driver Drowsiness Detection using Facial-based Data

Different facial-based drowsiness signs were exploited in recent studies to detect driver drowsi-
ness, such as rapid and constant blinking, head nodding, and yawning. For example, A CCD
camera was used in [85] to recognize and track the driver’s mouth movements for yawning
detection during the driving test. In that study, Gravity-Center template [86], and greyscale
projection were used to detect the driver’s face and his mouth corners, respectively. The Gabor
wavelets [87] were then exploited to extract features from detected left and right corners of the
mouth. Finally, a Linear Discriminate Analysis (LDA) was employed as a classifier to detect
yawning using extracted features. This method is used to detect the yawning in 400 images,
and results showed that this method achieved an accuracy of about 95% for yawning recognition
during driving tests.

A facial-based feature called Eye Aspect Ratio (EAR) was used in [88] for developing a
real-time drowsiness classification system. The first step of this method was eye detection in
the driver’s image. The landmark estimation method described in [89] was applied for this
purpose. After eye detection and for every video frame, the EAR was estimated as the average
of eye’s height divided by eye’s width. Figure 1.12 shows the used eye landmarks to calculate
the EAR. Equation (1.2) also presents how to calculate the EAR. Thus, the EAR is equal to
a small value when eyes are closed and increasing back when the eyes are open. This measure
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can also be used to calculate the blinking rate. In order to classify the driver drowsiness,
fifteen consecutive EARs were used as inputs to three different classifiers, including Multi-
Layer Perceptron (MLP), random forest, and SVM. Every classifier classified the eye blinking
dynamics into three categories: (1) open eye, (2) short blink, and (3) long blink. To validate the
driver drowsiness model, a public database called “DROZY“ [90] was exploited. Results showed
that SVM outperformed other classifiers and achieved the classification accuracy of 94.9% for
drowsiness detection.

EAR = ||p2 − p6||+ ||p3 − p5||
2||p1 − p4||

(1.2)

Figure 1.12: Used eye landmarks to calculate the EAR measure in [88].

Massoz et al. in [91] developed a multi-time scale drowsiness detection system to deal with
the trade-off between accuracy and responsiveness. They explained that the better accuracy is
obtained by longer timescales (long sliding windows) while, the better responsiveness is achieved
by shorter timescales (short sliding windows). Twenty-nine subjects (18 females and 11 males)
participated in the standard Psychomotor Vigilance Tasks (PVT). Their reaction times while
performing the tests were employed to introduce a ground truth of driver drowsiness. Face
images of the subjects were also collected using a camera. The participants were sleep-deprived
for more than 30 hours before performing the PVTs. Participants completed three 10-min
PVTs at different times of the day. Four SVM binary classifiers were trained jointly using four
different time scales. The flowchart of their method is presented in Figure 1.13. This method
is composed of three main modules: (1) the ‘Eye image‘ module that was used to detect the
left and right eyes in the face image. (2) ‘Eyelid distance‘ module that was a spatial CNN with
greyscale eye images and eyelid distance estimation of the left and right eyes (dl and dr) as
input and outputs, respectively. (3) ‘Drowsiness‘ module that was temporal CNN with a 1-min
sequence of eyelid distances of both eyes as inputs and probabilities of drowsiness in different
time scales as outputs. Results showed that the accuracy of the classifiers using different time
scales with the length of 5, 15, 30, and 60 seconds were 70.68%, 85.45%, 89.82%, and 94.22%,
respectively. According to these results, longer sliding windows achieved better drowsiness
detection accuracies; however, longer sliding windows decrease the capability of fast response
and warning in case of a critical level of driver drowsiness.
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Figure 1.13: Overview of the multi-timescale drowsiness detection system developed based on 1-min
sequence of face images in [91].

Deng and Wu [92] proposed a system called DriCare which detected the driver drowsiness
states such as yawning and duration of blinking using recorded videos during driving tests. Ten
subjects participated in the 1 hour long tests to simulate the drowsy and alert driving states.
The flowchart of the DriCare is presented in Figure 1.14. This system is composed of three
main parts: face tracking, feature extraction, and drowsiness evaluation. In the face tracking
part, a combination of convolutional neural networks (CNN) and Kernelized Correlation Filters
(KFC) [93] was used to build the Multiple Convolutional Neural Networks(CNN)-KCF (MC-
KCF) algorithm. Moreover, a preprocessing method based on illumination enhancement and
histogram equalization [94] was proposed to overcome the issue with changes in illumination
intensity during rain or night situations. After preprocessing, the situations of the eyes and
mouth were detected using extracted features by CNN. Finally, three different metrics were
employed to detect the driver’s drowsiness: (1) eye closure duration, (2) blinking rate, and (3)
yawning. Results showed that DriCare achieved an accuracy of about 92%.

Video stream

Human Face
Tracking:
Preprocess

and MC-KFC

Feature
Extraction:

Facial key
regions (eyes
and mouth)

Evaluation:
Eye closure,

Blinking,
and Yawning

Figure 1.14: DriCare workflow, proposed in [92].

Unscented Kalman Filtering (UKF) [95] was employed in [96] to design a driver drowsiness
detection using eye blinking dynamics. Twenty drivers (aged between 25 and 50 years; 15
males, 5 females, 9 with glasses, and 11 without glasses) participated in four different driving
tests: (1) eight hours daytime motorway driving, (2) eight hours daytime rural driving, (3)
six hours night-time motorway driving, and (4) six hours daytime rural driving. Several video
cameras were utilized to capture the subject’s face images. Flowchart of the proposed method
in [96] is presented by Figure 1.15. As this Figure shows, first, the driver’s face was located
by applying the Haar algorithm [97]. Second, eye geometric features and image projection
techniques were used to detect the eye in the driver’s face image. Third, UKF was applied to

19



track the movements of the detected eyes. Finally, PERCLOS was calculated using the UKF
tracking outputs and used to generate the alert sound if the driver was drowsy. Results showed
that the proposed method achieved a tracking accuracy of about 99% in all different driving
conditions.

Driver
image

Common
USB

camera

Locate
face using

Haar
algorithm

Eye
detection

with
projection
technique

UKF
based eye
tracking

Drowsiness
detection

Figure 1.15: flowchart of the UKF-based eye tracking system proposed in [96] for driver drowsiness
detection.

A deep belief network (DBN) [98] was employed in [99] for drowsiness detection using facial
data. Videos of 30 subjects (aged from 20 to 55 years) were recorded during the driving tests,
where drivers simulated different facial behaviors such as talking poses and head rotations.
Drivers were subjected to 6-8 hours of sleep deprivation before starting the test. Figure 1.16
shows the structure of the proposed method. In this method, firstly, the landmarks and facial
textures were extracted from captured videos using Viola-Jones face detection method [100].
A DBN was then built to classify the driver’s drowsiness. Results showed that the average
accuracy of this method was 96.7% for drowsiness detection.

Figure 1.16: Proposed framework in [99] for driver drowsiness expression recognition.

1.2 Objectives of Thesis

Objectives of this thesis are planned in a way to enhance the previous works and address their
issues. These objectives are as follows:

1. This thesis proposes a complete pipeline from data preprocessing to classification for
driver drowsiness classification using machine learning methods. In this pipeline, multiple
features are extracted from different signals, including vehicle-based, ECG, and facial-
based data, and the significance of every feature for drowsiness classification is measured
using feature selection methods. This pipeline finds important features from input data
and reduces the computation burden to design a driver drowsiness detection system.
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2. Previous works mainly focused on drowsiness detection in the manual driving mode. How-
ever, in the SAE level 3, the driver is allowed to perform a secondary task when the
conditional automation system is turned on. Therefore, the driver’s vigilance level should
be monitored during automated driving to provide a safe control transition from the
automated system to the driver when the automated system cannot control the vehicle
anymore. In this thesis, the driver drowsiness in the automated mode is evaluated using
data fusion of facial-based and biosignals. Vehicle-based data cannot be used for driver
state monitoring in the automated mode as the driver inserts no control input to the
vehicle.

3. Traditional machine learning models have been widely used in the previous works to clas-
sify the driver drowsiness. In those models, features need to be extracted either based
on experts’ knowledge or by applying dimensionality reduction techniques such as PCA
to make the problem tractable for a traditional classifier. However, individual differences
between driving styles, lack of experts’ knowledge in the field of driver drowsiness detec-
tion, and also the risk of losing important information by using dimensionality reduction
methods can reduce the classification accuracy of the final system. To remove these limita-
tions, deep convolutional neural networks are employed in this thesis to classify the driver
drowsiness using ECG and eyelid data and their ensemble. Deep networks automatically
extract the significant features from input data and outperform the traditional machine
learning for drowsiness classification.

4. This thesis proposes data fusion frameworks for both of traditional machine learning
methods and deep network models. These frameworks investigate the importance of every
individual data source and present how using two or more data sources together enhances
the performance of the system.

5. This thesis proposes a neural encoder-decoder framework to find significant EEG features
that are informative regarding different levels of drowsiness across different drivers. These
features are used to design a real-time drowsiness detection using EEG features. By
using this framework, the computation load of EEG feature extraction and selection is
significantly reduced.

The rest of this thesis is structured as follows:

• Chapter 2 presents the experimental setup and driving test procedure to collect the data
set. The derivation of the ground truth for driver drowsiness is also described by the video
observation of the driving tests.
In the chapters 3 to 5, three different methodologies are proposed to address the short-
comings of the previous studies: (1) traditional machine learning methods, (2) deep neural
networks, and (3) encoder-decoder framework applied to the EEG features.

• Chapter 3 explains the traditional machine learning methods for driver drowsiness clas-
sification. First, preprocessing methods are utilized to denoise and prepare the raw col-
lected data, especially biosignals. Then, various hand-crafted features are extracted from
different data sources. A feature selection method is applied to improve the system’s per-
formance by removing redundancy and irrelevancy in the feature set. Finally, K-nearest
neighbours and random forest are employed as two broadly used classifiers to classify the
driver drowsiness into three classes: (1) alert, (2) moderately drowsy, and (3) extremely
drowsy.

• Chapter 4 describes the application of different deep neural network architectures for
the classification of driver drowsiness. Scalogram 2-d images are extracted from ECG and
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eyelid signals and are used separately as inputs to deep convolution neural networks. An
ensemble method is exploited to enhance the performance of the individual networks and
increase the balanced accuracy of classification.

• Chapter 5 presents an encoder-decoder dynamical modeling framework applied to the
EEG channels for driver drowsiness detection. The percentage of the eyelid closure (PER-
CLOS) is considered as the ground truth in this framework. Independent Component
Analysis (ICA) is used to preprocess the EEG channels and remove the noisy artifacts
and eyelid movements. Every EEG channel is decomposed into its sub-bands, including
Delta, Theta, Alpha, and Beta waves, and various features are extracted from every sub-
band. The extracted features are used in the encoder-decoder framework, and statistically
significant features that are consistent across different driving tests are investigated.

• Chapter 6 summarizes the thesis and suggests some future steps to enhance the proposed
methods.

1.2.1 Previous published, submitted or under preparation publications of
the thesis

During performing this project, some scientific papers were published or submitted. Some parts
of these papers were used in the structure of this thesis that are presented as follows:

• Arefnezhad, S., Hamet, J., Eichberger, A., Frühwirth, M., Ischebeck, A., Koglbauer, I. V.,
Moser, M., Yousefi, A. (2021). Driver Drowsiness Estimation Using EEG Signals with a
Dynamical Encoder-Decoder Modeling Framework, Submitted to the Scientific Reports in
July 2021 (under review).
The methods and results of this paper are used to write Chapter 5 that explains the driver
drowsiness tracking using EEG data.

• Kaufmann, C., Frühwirth, M., Messerschmidt, D., Moser, M., Eichberger, A., Arefnezhad,
S. (2020). Driving and tiredness: Results of the behaviour observation of a simulator study
with special focus on automated driving. Transactions on Transport Sciences, 11(2), 51-63,
DOI: 10.5507/tots.2020.011 [101].
This paper explains the video-observation process for preparation of the ground truth for
driver drowsiness. Some parts of this paper is used to prepare Chapter 2.

• Arefnezhad, S., Eichberger, A., Frühwirth, M., Kaufmann, C., Moser , M. (2020). Driver
Drowsiness Classification Using Data Fusion of Vehicle-based Measures and ECG Signals,
Proceedings of IEEE International Conference on Systems, Man, and Cybernetics 2020 ,
Virtual Conference, 451-456. DOI: 10.1109/SMC42975.2020.9282867 [102].
This paper explains the feature extraction from ECG and vehicle-based data for drowsiness
classification. The extracted features are used to write the Chapter 3.

• Arefnezhad, S., Samiee, S., Eichberger, A., Frühwirth, M., Kaufmann, C., Klotz, E.
(2020). Applying Deep Neural Networks for Multi-level Classification of Driver Drowsiness
Using Vehicle-based Measures. Expert Systems with Applications, 162 [103].
This paper describes the structure of deep learning methods used for drowsiness classi-
fication. Some parts of this paper are presented in the introductory of Chapter 1, in
subsection 2.2 (Driving Tests’ Procedure) and also in the subsection of 4.1 (Introduction)
and 4.2 (Convolutional Neural Network) in Chapter 4.
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• Arefnezhad, S., Samiee, S., Eichberger, A., Nahvi, A. (2019). Driver Drowsiness Detection
Based on Steering Wheel Data Applying Adaptive Neuro-Fuzzy Feature Selection, Sensors,
19(4), [943]. DOI: 10.3390/s19040943 [104].
This paper describes the extracted features from steering wheel angle data used for drowsi-
ness classification. Some of these features are presented in Chapter 2.
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Chapter 2

Experimental Setup

This chapter describes the experimental setup to collect the used data set in this thesis. The
used apparatus (driving simulator), the procedure of driving tests, collected data set, and used
methodology to define a ground truth for driver drowsiness based on video observation are
explained as follows:

2.1 Apparatus

This thesis is based on a funded project titled WACHsens that was started officially on 01.05.2017
and finished on 31.10.2019. The research was carried out by the consortium composed of Hu-
man Research Institut für Gesundheitstechnologie und Präventionsforschung GmbH, Institute
of Automotive Engineering at Graz University of Technology (FTG), AVL Powertrain UK, and
Factum apptec ventures GmbH and funded by the Austrian Research Promotion Agency (FFG)
via the program of mobility of the future (Grant No. 860875).

The WACHsens aims to develop a big database for driver drowsiness classification using a
large sample of 92 volunteer drivers and a variety of measured data channels. The collected
database is used for the data fusion of vehicle-based, facial-based and physiological signals of
the drivers by considering the different human factors such as age and gender.

The study took place using a fixed-base driving simulator named Automated Driving Sim-
ulator of Graz (ADSG) at the Graz University of Technology (TU Graz), which is based on an
altered production vehicle; see Figure 2.1. The visual cues are simulated by eight LCD panels,
covering 180 degrees field of view and the rear screen, which is observed by the inner mirror.
The side mirrors are also implemented in the LCDs covering the side windows. The system
was designed for autostereoscopic visualization, but this feature was disabled to reduce the
simulator sickness during the driving tests. The acoustic cue is simulated by generating engine
and wind noise applied at the car’s sound system. Moreover, four bass shakers generate the
vibration in the car chassis and the driver and passenger seats. Haptic feedback is provided by
the Sensodrive simulator steering wheel [105], and an active brake pedal simulator, gas pedal,
and gear-shift input are taken from the vehicle unmodified controls. The vehicle dynamics is
calculated by a complete vehicle software AVL-VSM™[106], parametrized with a middle-class
passenger car. The vehicle model calculates dynamics states as well as engine speed and torque
for the acoustic simulation.
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Table 2.1: Distribution of drivers in terms of gender and age groups. Std.: standard deviation

Gender Age range Mean of
age

Std. of age Number

Female 18-39 25.2 5.3 16
Female 40-59 50.4 6.5 16
Female 60+ 65.4 4.3 12
Male 18-39 24.7 3.7 16
Male 40-59 51.9 4.2 16
Male 60+ 69.0 7.3 16

— — 47.0 18.4 Sum: 92

Figure 2.1: The Advanced Driving Simulator of Graz (ADSG) is a modified production car pictured
here without the external housing that separates the whole simulator from the environment during the
tests (left). The test track from the driver’s view simulated a night drive on a highway (right).

2.2 Driving Tests’ Procedure

The WACHSens project collected data from 92 test persons in six groups, balanced based on
gender and age. Three age groups are considered: 18-39, 40-59, and 60+. Table 2.1 shows
the distribution of drivers in terms of gender and age groups. As this Table shows, the lowest
number of participants belongs to the Female-60+ group since more participants in this group
could not be recruited despite considerable effort.

Participants were enrolled either using a contact database of participants in earlier studies
or by recruitment requests in newspapers, local television programs, and hanging posters in
the city and at the university campus. Drivers were required to avoid drinking alcohol or an
unusual amount of caffeine-content drinks before the tests.

The study was conducted according to the ethical guidelines of the Declaration of Helsinki
and the General Data Protection Regulation of the European Union [107]. The study protocol
was approved by the Ethics Committee of the Medical University of Graz in vote 30-409 ex 17/18
dated June 1, 2018. Informed consent was obtained from participants before the experiments,
and they were also compensated by EUR 50 after finishing the sessions.

Each driver performs two different driving modes, including manual driving and automated
driving. In the automated mode, lane-keeping and cruise control systems adjust the vehicle’s
lateral position and longitudinal speed in the test track, respectively. Drivers complete a 30-min
highway track in each of these modes in two states: rested and fatigued. Figure 2.2 shows the
simulated test track used for performing the tests. The data of four driving tests per participant
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Figure 2.2: The simulated test track in the ADSG to perform the driving tests.

was recorded: rested-manual (RE-M), fatigued-manual (FA-M), rested-automated (RE-A), and
fatigued-automated (FA-A). Consequently, for each driving mode, 92 driving tests have been
conducted that resulted in a total of 368 tests with a total length of about 183 hours. For the
rested state test, participants were asked to stick to a full night’s sleep before the test and not
deviate from their usual circadian cycle.

To induce drowsiness in drivers for the fatigued state test, researchers have proposed different
procedures. For instance, Kartsch et al. [108] reported that in their study, drivers were under
sleep deprivation (they slept only three hours the day before the test), and experiments were
also conducted at late night hours. McDonald et al. [23] conducted the fatigued state test after
a minimum of 18 h of wakefulness for their participants. In the study of Braua et al. [109],
three fatigued state tests were run between 22.00 h and 06.15 h, and drivers were instructed to
go to bed no later than 24.00 h and to get up no later than 9.00 h. In the DROZY dataset [90],
subjects completed three (Psychomotor Vigilance Test) PVTs within about 36 hours. They had
a sleep deprivation of 28 to 30 hours for the third PVT and were instructed to stay at the lab
for about 30 hours for conducting the three PVTs. In the PVTs, drivers were instructed to
press a button on a screen when they noticed a red box over the black background. There is
also a counter that measures the reaction time of the drivers to these red boxes [110].

In the WACHSens project, two options were offered to the participants to be prepared for the
fatigued state tests: one option was to stay awake for at least 16 h continuously before starting
the test procedure (resulting in a drive after at least 17 to 18 hours of wakefulness) and to take
the test at their usual bed-time. Another option was a sleep restriction of at least 50% (max. 4
hours of sleep) the night before. This latter option was generally preferred by younger people,
as they were more likely used to late bed-times, whereas elderly participants more often felt
uncomfortable with sleep restrictions and preferred delaying their usual bed-time. In both cases,
the setting was used to increase the probability of a marked contrast of alertness and drowsiness
during the driving tests but was not used for labeling the data. Effective drowsiness labels are
independent of the setting. Levels of drowsiness and corresponding labels change throughout
the drive and are not bound to specific times or the setting. A particular participant might
be classified as falling asleep during the alert test, or he/she might not be classified as drowsy
during the fatigued test at all. Such cases exist but are rare. Derivation of the drowsiness labels
as ground truth for classification is explained in section 2.3.
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Table 2.2: Measured vehicle-based data in each driving test.

Number Measured Signal Symbol Unit
1 Absolute position X x m
2 Absolute position Y y m
3 Absolute position Z z m
4 Roll angle φ rad
5 Pitch angle θ rad
6 Yaw angle ψ rad
7 Longitudinal speed vx m/s
8 Longitudinal acceleration ax m/s2

9 Lateral acceleration ay m/s2

10 Steering wheel angle δ deg
11 Lateral deviation from road center line d m
12 Brake pedal pb –
13 Throttle pedal pt –
14 Engine speed n rpm
15 Current gear ig –

Before starting the tests, subjects fill out a questionnaire form about their demographic
information and driving experiences. Furthermore, experimenters implement biosignal sensors
and prepare the driving scenario in the simulator. These tasks also take about 1 to 1.5 hours.
Before the start of each driving test, the driver’s drowsiness is subjectively evaluated using the
Karolinska Sleepiness Scale (KSS) [111] and objectively by PVT [112].

A monotonous driving test track that simulates a night drive on a highway without traffic
events has been designed to induce drowsiness. The driven track simulates a three-lane motor-
way that has some smooth turns, and participants drive about 50 km during the test. More
details of the driving test procedure are explained in [113].

2.3 Collected Dataset

The collected data in the driving tests are categorized into three groups: (1) vehicle-based
data, (2) facial-based data, and (3) biosignals. The collected signals in each of these groups are
described as follows:

Vehicle-based data: This type of data was collected and verified using the AVL-VSM™vehicle
dynamics simulation software [106]. The sampling frequency for collecting this data is 100 Hz.
Table 2.2 presents the vehicle-based data collected in the driving tests.

Facial-based data: This non-invasive type of data is collected using an eye-tracking sys-
tem called SmartEye™[114]. This device captures the head movements, eyelid movements,
pupil diameter, and gaze vectors. The quality of the gathered signals is also provided to check
the reliability of every sample of these signals. Figure 2.3 shows a snapshot of the Smart-
Eye™output. Two squares on the left-top and right-top of this figure show the recognized
pupils and their diameters. Two curvy blue lines around the eyes are showing the detected eyes
which are used for measuring the distance between eyelids. Two red lines originated in the eyes
are also utilized to collect the gaze vectors. Table 2.3 presents the collected facial-based data
using SmartEye™system. The sampling frequency of this data is also 100 Hz.
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Table 2.3: Measured facial-based data from SmartEye device in each driving test.

Number Measured Signal Unit
1 Time stamp of SmartEye -
2 Frame number of SmartEye -
3 Head position X in coordinate system m
4 Head position Y in coordinate system m
5 Head position Z in coordinate system m
6 Head position quality -
7 Gaze direction X in coordinate system m
8 Gaze direction Y in coordinate system m
9 Gaze direction Z in coordinate system m
10 Gaze direction quality -
11 Eyelid opening of left eye m
12 Quality of eyelid opening of left eye -
13 Eyelid opening of right eye m
14 Quality of eyelid opening of right eye -
15 Mean of eyelid opening m
16 Quality of mean of eyelid opening -
17 Pupil diameter of left eye m
18 Quality of pupil diameter of left eye -
19 Pupil diameter of right eye m
20 Quality of pupil diameter of right eye -
21 Mean of pupil diameter m
22 Quality of mean of pupil diameter -
23 Head rotation X rad
24 Head position Y rad
25 Head position Z rad
26 Gaze origin X in coordinate system m
27 Gaze origin Y in coordinate system m
28 Gaze origin Z in coordinate system m
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Figure 2.3: Performance of the SmartEye™eye tracking system.

Biosignals: The biosignals collected in every driving test include 8 channels of EEG, two
channels of EOG (installed in the vertical direction on the upper and lower parts of the left
eye), respiration signal, electrodermal activity, and two ECG electrodes. The EEG channels
measure brain activity using an g.Nautilus Research ™EEG cap [115] worn by drivers.

Figure 2.4 shows the positions of the collected EEG channels that include Fz, T7, T8, C3,
C4, Cz, PO7, and PO8. To gather ECG signals and heart rate, 5 electrodes are attached to
the chest of the drivers in the locations shown in Figure 2.5. As shown in this Figure, two blue
electrodes are used to measure the heart rate using ChronoCord™(designed by Human Research
Institute) [116] and three red electrodes are utilized for the g.Nautilus device to gather ECG
channels. Electrodermal activity is measured using a system depicted in Figure 2.6. As this
figure shows, the used electrodes are fastened to the left food the drivers (A and B positions
in Figure 2.6) and then are attached to a Galvanic Skin Response (GSR) sensor. The left
foot was chosen since no movements are expected from this foot in the automated gear-shift
vehicle. Figure 2.7 shows the exploited sensor to collect respiration data when the reference
clip is connected to the right ear. Biosignals are gathered with a sampling frequency of 500Hz.
The g.Nautilus data were transferred via Bluetooth and recorded synchronously with vehicle
and facial data. Table 2.4 shows the gathered biosignals in each driving test.

29



Figure 2.4: Locations of the collected EEG channels on EEG cap in the 10-20 system [117].

Figure 2.5: Locations of the attached electrodes to collect heart rate and ECG signals [118].
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Figure 2.6: Used setup to measure electrodermal activity in the driving tests, adopted from [119]

Figure 2.7: Used setup to measure respiration in the driving tests [120].
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Table 2.4: Measured biosignals in each driving test.

Number Measured Signal Unit
1 EEG channel Cz µV
2 EEG channel Fz µV
3 EEG channel T7 µV
4 EEG channel T8 µV
5 EEG channel C3 µV
6 EEG channel C4 µV
7 EEG channel P07 µV
8 EEG channel P08 µV
9 EEG channel Ref. µV
10 ECG lower lead µV
11 ECG upper lead µV
12 EOG lower lead µV
13 EOG upper lead µV
14 Respiration µV
15 Electrodermal activity µV

2.4 Ground Truth of Drowsiness based on Video Observation

To monitor the driving behavior, four cameras are placed inside the vehicle, and each of these
cameras provides information about the actions of the driver from different views, see Figure 2.8.
In literature, various strategies are exploited to obtain a ground truth for driver drowsiness,
including subjective evaluation using questionnaires (e.g., Karolinska Sleepiness Scale), EEG
signal processing, and driving video observation. In this study, video recordings are visually
rated by an expert in driving observation. These drowsiness evaluation rules have been designed
based on the driving video observation strategies proposed in [28] and [121].
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Figure 2.8: Four different views from a driver that are gathered using installed cameras inside the
simulator.

For the drowsiness rating, the position and activities of the arms, hands, upper body, head,
and facial movements are considered. The output of the driving video observation is one of the
considered levels of drowsiness that include alert, moderately drowsy, and extremely drowsy.
The indicators for each of these drowsiness levels are explained as follows.

• Alert: normal facial tone, evident focus on driving, fast eye blinking.

• Moderately drowsy: face or eyes rubbing, restless posture, yawning, rigid look forward,
hardly any movements within a short period, reduction of eye blink duration, and the
degree of eyelid opening.

• Extremely drowsy: a rapid decline in the ability to respond, clear signs that the subject
is struggling to keep awake, change in eyelid movements (faster and heavier), a significant
increase in the duration of eye closure, and keeping the eyes closed for either a micro-sleep
or longer.

Rated vigilance levels of the same driver in four different driving modes are shown in Fig-
ure 2.9. As this Figure presents, micro-sleep events (SL) are also reported by video observers.
However, the SL events are merged with the class of extremely drowsy (ED) since the number
of SL events are too low to be considered as a separate class. This Figure also shows that even
in the rested tests, the driver has shown the signs of moderately drowsy (MD) or extremely
drowsy (ED) states.

Overall, driver drowsiness has been rated in 196 driving tests (out of 368) and for 50 drivers
(out of 92 drivers) by video observation. Table 2.5 shows the distribution of the video-observed
tests per each driving mode. More details of the defined ground truth based on the video
observation have been explained in [101].
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(a)

(b)

Figure 2.9: Drowsiness levels rated using video observation in different driving modes performed by
the same driver: in the rested (a) and in the fatigued (b) tests; AL: Alert, MD: Moderately Drowsy, ED:
Extremely Drowsy, SL: Sleep

Table 2.5: Distribution of the video-observed tests per each driving mode.

Driving mode No. of video-observed driving tests
RE-A 48
RE-M 49
FA-A 49
FA-M 50
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Chapter 3

Driver Drowsiness Classification
using Traditional Machine Learning
Methods

3.1 Introduction

In this chapter, a traditional machine learning workflow is proposed to design a driver drowsiness
classification system where labels of video observation are used as ground truth for drowsiness.
The main processes of the traditional machine learning methods for classification problems are
categorized into four steps: 1) Preprocessing, 2) Feature extraction, 3) Feature selection, and 4)
Adjusting or training the classifier. Figure 3.1 shows the flowchart of the structure of traditional
machine learning methods.

The goal of the preprocessing step is to reduce the influence of noise and artifacts on the raw
input data. This step helps to improve the value of the signal-to-noise ratio. Standardization of
input data is also categorized as a preprocessing method to normalize the effect of input data on
the output results. Feature extraction is the process of extracting significant information from
input data using data mining methods. These features can be extracted either based on expert
knowledge in a specific application or by using data dimensionality reduction methods such as
Independent Component Analysis (ICA) [62] and deep autoencoders [122]. Feature selection
aims to select a subset of features that carry more important information than other features
for mapping the input data to the output class labels.

Feature selection also helps to reduce the computation burden by removing redundant and
irrelative features in classification and regression problems. In supervised learning, both the
input data and class labels are assumed to be available, and classifiers are designed to reduce
the defined error function.

In the rest of this chapter, a methodology based on traditional machine learning is proposed,
and the classification results of this methodology are discussed.

Input Data
Preprocessing

and Syn-
chronization

Feature
Extraction

Feature
SelectionClassificationResult

Evaluation

Figure 3.1: Flowchart of the traditional machine learning process.
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Figure 3.2: Data synchronization using respiration signals collected with two different frequencies of
100 Hz and 500 Hz. In this example, the 500 Hz data is shifted about 21.4 s forward to be synced with
the 100 Hz data.

3.2 Preprocessing and Synchronization

Vehicle-based and ECG signals need to be preprocessed before feature extraction and classifi-
cation of drowsiness. As SmartyEye™[114] provides already preprocessed facial-based informa-
tion, its raw outputs are used as inputs to the feature extraction process. This section explains
the synchronization of the data channels and preprocessing of vehicle-based and ECG signals.

3.2.1 Data Synchronization

Ground truth is defined based on the video observation and it is recorded using the frame
number information of SmartEye data that are collected with a sampling frequency of 100
Hz. However, used ECG and EEG signals are gathered with a sampling frequency of 500 Hz.
Therefore, these two sources of data should be synchronized to classify the driver drowsiness
using ECG signals. To perform this synchronization, the respiration signal that is collected with
two sampling rates of 100 Hz and 500 Hz is utilized. The normalized cross-correlation between
the two respiration signals is calculated at all possible lags. The delay between these two signals
is calculated as the lag that achieves the largest absolute value of normalized cross-correlation.
Figure 3.2 shows an example of data synchronization where 500Hz respiration data is shifted
about 21.4 s forward to be synchronized with the 100Hz respiration data. The exact time shift
is also applied to the ECG signals collected with the sampling frequency of 500 Hz to sync them
with the video observations.

3.2.2 Derivation of Heart Rate Variability Information

ECG signals are collected with a sampling frequency of 500Hz. A second-order Infinite Impulse
Response (IIR) notch filter [123] is used to remove the powerline noise (50 Hz) from ECG
signals. ECG signals are corrupted with baseline wander noise [124] that is a low-frequency
noise. A high pass filter with a passband frequency of 0.5 Hz is employed to remove this low-
frequency noise. Figure 3.3 shows the noisy and denoised ECG signal after preprocessing step.
This Figure shows that this filter has a suitable performance to remove baseline wander noise
from ECG signals.

36



Figure 3.3: The performance of the baseline wander removal filter applied to ECG signals; Red: Noisy
ECG signal and Blue: denoised ECG signals

Heart rate variability signal is extracted from ECG signals by using an R-peak detection
algorithm. First, the Automatic Multiscale-based Peak Detection (AMPD) method that has
been presented in [125] is applied as an ECG R-peak detector, then RR Intervals (RRIs) as
the times passed between two adjacent R-peaks are calculated. Since the RRI series is not a
signal sampled in equal time intervals, a spline interpolator is exploited to generate an equally
sampled RRI signal. Figure 3.4 shows the detected R-peaks in the denoised ECG signal using
the AMPD method. A part of the derived RRI signal is also shown in Figure 3.5.

Figure 3.5: A part of the derived RRI signal after detecting the R-Peaks of the ECG signal in a rested-
automated test. Since the time interval between adjacent R-peaks is different for every peak, spline
interpolation is used to generate a uniformly-sampled signal.
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Figure 3.4: Detected R-peaks of the denoised ECG signal using the AMPD method in a rested-
automated test. The detected R-peaks are used to obtain the heart rate variability signal based on the
time interval between every two adjacent R-peaks.

3.3 Feature Extraction

3.3.1 Extracted Features from Vehicle-based Data

Vehicle-based data include steering wheel angle, steering wheel angular velocity, lateral devi-
ation from road centre-line, lateral acceleration, and yaw rate. The extracted features from
vehicle-based data are divided into two main groups: (1) Features that are extracted from all
of the vehicle-based, and (2) Features that are extracted exclusively from steering wheel angle
and steering angular velocity. These featrues are extracted from every sliding window of the
data.

Features that are extracted from all of the vehicle-based:
Consider X = {x1, x2, ..., xN} to be a sliding window of any of the vehicle-based data where

N is the number of samples in every sliding window. The following features are extracted from
all of the vehicle-based data:

1. Average (avg): The average value of vehicle-based data.

Avg(x) = 1
N

N∑
i=1

xi, (3.1)

2. Standard deviation (Std): Dispersion of the data around average value.

Std(x) =

√√√√ 1
N

N∑
i=1

(xi −Avg(x))2, (3.2)

3. Energy (Ene): Sum of the square of signal magnitude.

Ene(x) =
N∑
i=1

(xi)2 , (3.3)
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4. Zero Crossing Rate (ZCR): This feature explains the rate of the signal sign changes [126].

ZCR(x) = 1
N

N∑
i=1

∣∣s(xi)− s(xi−1)
∣∣, (3.4)

where s(xi) = 1 if the signal x(i) > 0 and s(xi) = 0 if x(i) ≤ 0.

5. First Quartile (Q1): Middle number between the smallest number and the median of the
signal.

6. Second Quartile (Q2): Median of the signal in the sliding window.

7. Third Quartile (Q3): Middle value between the median and the highest value of the signal.

8. Skewness (Skew): This is a measure of the asymmetry of the data probability distribution.

Skew(x) = 1
N

N∑
i=1

(
xi − avg(x)
std(x)

)3
, (3.5)

9. Approximate Entropy (ApEn): This feature describes the complexity and unpredictability
of the the data variations [127]. Larger values of the ApEn indicate the difficulty of
prediction of new samples and more irregularity in the signal. In order to calculate
the ApEn, two inputs are required: (1) m that is a positive integer which presents the
embedded dimension of the vector produced for calculating the ApEn and (2) r that
presents the filter factor. First, m dimensional vectors of Y (1), Y (2), ..., Y (N −m + 1)
are generated from every sliding window that are defined by Y (i) = [x(i), x(i+1), ..., x(i+
m− 1)]; i = 1, 2, ...N −m+ 1. Second, the distance between Y (i) and Y (j) are calculated
as:

d[Y (i), Y (j)] = max
k=0,..,m−1

[|x(i+ k)− x(j + k)|], (3.6)

Third, For each i = 1, .., N −m+ 1 the Cmr (i) are computed as

Cmr (i) = P

N −m+ 1 , (3.7)

where P is the number of times that d[Y (i), Y (j)] is less than or equal to r.
Forth, the quantity of φm(r) is calculated as:

φm(r) = 1
N −m+ 1

N−m+1∑
i=1

lnCmr (i), (3.8)

This process is repeated m+ 1 times. Finally, the ApEn is calculated:

ApEn(m, r,N) = φm(r)− φm+1(r). (3.9)

Here, m is equal to 2 and r is set to be 0.2× Std(x).

10. Shannon Entropy (ShEn): This feature explains the average level of information carried
out by data [128].

ShEn(x) = −
N∑
i=1

p(xi) log2 p(xi), (3.10)
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where p(xi) is the probability of the occurring xi in the X. To calculate this probability,
number of repeats of every samples is saved and normalized in a way that the sum of
probability over the samples is one.

11. Spectral Entropy (SpEn): This feature is the Shannon Entropy of the signal’s normalized
power distribution [129]. To calculate this feature, the discrete Fourier transform of the
signal is first computed. Then, power spectrum of the signal is calculated as the square
magnitude of the computed discrete Fourier transform. This power spectrum is normalized
and treated as the probability input in the Shannon entropy equation. The spectral
entropy is calculated as:

SpEn(x) = −
N∑
i=1

sx(xi) log2 sx(xi), (3.11)

where sx is the normalized power distribution of the signal.

12. Dominant Frequency (DF ): The frequency that has the largest magnitude of the power
spectral density [130].

Features that are extracted exclusively from steering wheel angle and steering
angular velocity:

1. Amplitude duration squared delta (AmpD2Delta) [131]: To calculate this feature in every
sliding window, firstly, the mean of steering angle (δm) should be subtracted from steering
angle data (δ) to have δ−δm. Every two consecutive time points that their corresponding
δ − δm are zero make a block, and the area under each block of the curve of δ − δm is
calculated. Finally, AmpD2Delta is computed as presented in Equation (3.12).

AmpD2Delta = 100
N

J∑
j=1

(Aδj .tδj), (3.12)

where Aδj is the are of the j-th block under the δ − δm curve, tδj is the length of the j-th
block, J is the total number of blocks, and N is the total number of samples in the sliding
window [131]. Figure 3.6 shows the curve of the δ− δm and its corresponding variables to
calculate the AmpD2Delta.
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Figure 3.6: The used variables to calculate AmpD2Delta from steering wheel angle in a rested-manual
test.

2. Ellipse-based features [131]: These types of features are based on the phase plot of the
steering wheel angle and steering wheel angular velocity and a predefined control ellipse.
Figure 3.7 shows the plot of steering wheel angular velocity (δ̇) versus steering wheel angle
(δ). This figure contains the control ellipse that penalizes the steering behavior outside
the ellipse. Steering behavior inside the ellipse is considered normal. Here, the centre of
the control ellipse is located in the origin (0,0) and the major and minor semi-axes are set
as 20 deg/s and 5 deg, respectively.

Figure 3.7: The phase plot of steering wheel angle and steering wheel angular velocity with control
ellipse in a rested-manual test.

Two features are extracted using the control ellipse and the phase plot:

(a) Outside Percentage (Pout) [131]: Outside Percentage is defined as the percentage of

41



(δ, δ̇) points per window outside the control ellipse as presented in Equation (3.13).

Pout = 100 n
N
, (3.13)

where n is the number of points per window outside of the control ellipse, and N is
the total number of points in each window.

(b) Weight Flat Zero (WFZ) [131]: Only points (δi, δ̇i) in the phase space satisfying the
condition |δ| 6 δc with δ̇c = 20 deg/s are included in calculation. All points satisfying
this condition are weighted by the square of the distance from the origin. Equation
(3.14) shows how to calculate the WFZ feature (only if |δ̇i| 6 δc).

WFZ = 100
N

N∑
i=1

((δi − δm)2

a2 + δ̇2
i

b2 ), (3.14)

Where δi is the i-th value of steering angle, δm is the average of steering angle in
the window, a is the half axis length of control ellipse in δ dimension, b is the half
axis length of control ellipse in δ̇ dimension, δ̇i is the i-th value of steering angular
velocity and N is the total number of points in the window.

3. NMRHold: NMRHold is the number of times that the amplitude of steering wheel angle
is held less than 0.5 degrees (|δ| 6 0.5 deg) for longer than 0.04 s [16].

Table 3.1 presents the extracted features from vehicle-based data for driver drowsiness clas-
sification.
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Table 3.1: Extracted features from vehicle-based data

Feature Description
Average Average value of the signal in every sliding window

Standard Deviation Dispersion of the data around mean value
Energy Sum of the square of signal magnitude

Zero-Crossing Rate Number of steering or steering velocity direction changes
per second

First Quartile Middle number between the smallest number and the
median of the signal in sliding window

Second Quartile Median of the signal in the sliding window
Third Quartile Middle value between the median and the highest value of

the signal in sliding window
Skewness A measure for signal similarity

Approximate Entropy Complexity of signal in time domain based on distance in
embedding dimension

Shannon Entropy Complexity of signal in time domain based on probability
function

Spectral Entropy Complexity of signal in frequency domain
Dominant Frequency The frequency that has the maximum value of the PSD
Amplitude duration

squared delta
Described in 3.3.1, see Equation (3.12)

Outside Percentage Described in 3.3.1, see Equation (3.13)
Weight Flat Zero Described in 3.3.1, see Equation (3.14)

NMRHold Described in 3.3.1

3.3.2 Extracted Features from ECG Signals

Literature has proposed some features to be extracted from RR intervals for driver drowsiness
detection [132]. Some of these features are based on a visualization technique called the Poincaré
plot. In this subsection, firstly, this plot is introduced, then commonly extracted features from
RR intervals are explained.

• Poincaré plot: This plot is a type of recurrence plot to investigate the similarity in time
series that can be used to analyze the nonlinear properties of HRV data [133]. Consider
X = [RR1, RR2, ..., RRM ] as a RR interval time series presenting M heartbeats. The
Poincaré plot first plots (RR1, RR2), then plots (RR2, RR3), then plots (RR3, RR4) and
so on. This plot provides information about the short-term and long-term dynamics of
the RR interval. An ellipse is fitted to the plotted data points, and the minor and major
semi-axes of the ellipse are associated with short-term and long-term HRV, respectively.
Figure 3.8 shows the Poincaré plot for RR intervals collected in a rested-automated driving
test. The least-square method has been employed to fit an ellipse on given RR intervals
[134] and geometrical properties of this ellipse are extracted as features to describe the
HRV dynamics.
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Figure 3.8: Poincaré plot and fitted ellipse for RR Intervals during a rested-automated driving test.
Minor and major semi-axes of the fitted ellipse, SD1 and SD2, are calculated as two features to capture
the dynamics of HRV data.

Three features are extracted from this plot:

1. SD1: SD1 is the standard deviation of the Poincaré plot perpendicular to line-of-
identity and semi-minor axis (half of the shortest diameter) of the fitted ellipse, see
Figure 3.8 (green vector). SD1 is an estimation of short-term HRV that describes
parasympathetic activity since it represents the deviation of heart rate from the line-
of-identity (constant heart rate) and shows how the heart rate is indifferent regarding
the present level of drowsiness [135].

2. SD2: SD2 is the standard deviation of the Poincaré plot along the line-of-identity
and semi-major axis (half of the largest diameter) of the fitted ellipse, see Figure 3.8
(red vector). SD2 is an estimation of long-term HRV that describes sympathetic
activity since SD2 is along the line-of-identity and shows how the heart rate changes
with changes in driver drowsiness [135].

3. SD1/SD2: SD1/SD2 is the ratio of SD1 to SD2 that describes the ratio of short-
term to long-term HRV and the ratio between the strength of parasympathetic and
sympathetic activities [135].

Other features that have been proposed by previous studies [38, 136, 137] are also extracted
from RR intervals. These features are:

1. MeanRR: It presents the mean values of the time intervals between every two consecutive
R-peaks [138].

MeanRR = 1
NR − 1

NR−1∑
i=1

RRi+1, (3.15)

where NR is the number of heart beats in the sliding window and RRi+1 is equal to
Ri+1 −Ri.
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2. SDRR: This feature represents the standard deviation of time points that the detected
R-peaks are occurred in them [138].

SDRR =

√√√√ 1
NR

NR∑
i=1

(Ri − R̄)2, (3.16)

where R̄ is the average of the time points corresponding to the R-peaks in every sliding
window [139].

3. SDSD: This feature represents the standard deviation of RR intervals [139].

SDSD =

√√√√ 1
NR − 1

NR∑
i=1

(RRi+1 −MeanRR)2, (3.17)

4. RMSSD: This feature calculates the root mean square of the consecutive RR intervals’
differences [36].

RMSSD =

√√√√ 1
NR − 1

NR−1∑
i=1

(RRi+1 −RRi)2, (3.18)

5. pRR50: This feature measures the ratio of the number of R-peaks that differ more than
50 ms from their next R-peak divided by the total number of R-peaks in every sliding
window [36].

pRR50 = RR50count
NR

, (3.19)

6. VLF: This feature presents the power in the very-low-frequency ranges of 0.003-0.04 Hz
of the RR interval time series [38]. In order to calculate this feature and also the LF and
HF, the PSD of the RR intervals are computed using Lomb-Scargle periodogram method
[140, 141] in every sliding window.

7. LF: This feature presents the power in the low-frequency ranges of 0.04-0.15 Hz of the RR
interval time series [38].

8. HF: This feature presents the power in the high-frequency ranges of 0.15-0.40 Hz of the
RR interval time series [38].

9. LF/HF: This feature is the ratio of LF divided by HF [38].

The extracted features from RR intervals are listed in Table 3.2.

3.3.3 Extracted Features from Facial-based Data

Facial-based data that are employed for driver drowsiness classification are eyelid opening and
pupil diameter signals. These signal are measured for both of right and left eyes and also
for the average values of both eyes with the sampling frequency of 100 Hz. The average and
standard deviation of the measurement quality of these signals over all performed driving tests
are presented in Table 3.3. In this Table, QEL and QER are respectively the average quality of
the left and right eyelid signal. The QPL and QPR are respectively the average quality of the
left and right pupil signal. Finally, QEM and QPM are respectively the quality of the average
eyelids and pupils of the left and right eyes. As this Table presents, QEM and QPM are higher
than the corresponding values for only the left or right eyes. Therefore, the average eyelid
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Table 3.2: Extracted features from RR intervals derived from ECG signals

Feature Description
Mean RR Mean of R-to-R (RR) intervals
SDRR Standard deviation of RR intervals; estimate of overall HRV

SDSD Standard deviation of differences between adjacent RR intervals;
estimate of short-term HRV; describes parasympathetic activity

RMSSD
Square root of the mean of the sum of the squares of differences
between adjacent RR intervals; estimate of short term HRV; de-
scribes parasympathetic activity

pRR50 Number of pairs of adjacent RR intervals differing by more than
50 ms divided by the total number of all RR intervals

SD1
Standard deviation of the Poincaré plot perpendicular to line-of-
identity; semi-minor axis of the fitted ellipse; estimate of short-
term HRV; describes parasympathetic activity

SD2
Standard deviation of the Poincaré plot along the line-of-identity;
semi-major axis of the fitted ellipse; estimate of long-term HRV;
describes sympathetic activity

SD1/SD2
Ratio of SD1 to SD2; describes the ratio of short-term to long-
term HRV; describes the ratio between parasympathetic and sym-
pathetic activity

VLF
Power in the very-low-frequency range (0.003–0.04 Hz); describe
the oscillations from the heart’s intrinsic nervous system and sym-
pathetic nervous system

LF
Power in the low-frequency range (0.04–0.15 Hz); estimate of long-
term HRV; reflects both sympathetic and parasympathetic activ-
ity

HF Power in the high-frequency range (0.15–0.4 Hz); estimate of short-
term HRV; describes parasympathetic activity

LF/HF
Ratio between LF and HF range powers; describes the ratio of
long-term to short-term HRV; describes the ratio between sympa-
thetic and parasympathetic activity
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signal (EM) and the average pupil diameter (PM) are utilized in this thesis to classify driver
drowsiness using facial-based data. Figure 3.9 and Figure 3.10 show parts of the eyelid opening
signal and pupil diameter, respectively.

Table 3.3: The average (Avg.) and standard deviation (Std.) of the measurement quality of the eyelid
and pupil diameters signals during all of the driving tests.

– QEM QEL QER QPM QPL QPR

Avg.
(Std.)

0.78
(0.26)

0.68 (0.32) 0.75 (0.34) 0.55
(0.21)

0.40 (0.20) 0.48 (0.25)

Figure 3.9: A part of the eyelid opening signal (mean value for both eyes) in a rested-automated driving
test. This signal is collected as the raw output of the SmartEye eye-tracker system.

Figure 3.10: A part of the pupil diameter (mean value for both eyes) in a rested-automated driving
test. This signal is collected as the raw output of the SmartEye eye-tracker system.
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Extracted features from facial-based data are listed as follows:

1. PERcentage of eyelid CLOSure (PERCLOS): PERCLOS is defined as the proportion of
the time window that eyes are at least 80% closed in every minute [142]. This feature
is calculated using the eyelid opening signal. Figure 3.11 presents a sample eye blink in
a driving test that is smoothed using a spline smoother. The maximum eyelid opening
signal in this driving test is 17.5 mm; consequently, if the eyelid opening amplitude is less
than 3.5 mm (20% of the maximum value), eyes are at least 80% closed.

Figure 3.11: A sample eye blink that has been smoothed with a spline smoother and defined threshold
(here is 3.5 mm) to calculate the PERCLOS feature.

It has been reported that larger PERCLOS values are associated with the higher levels of
drowsiness [142, 143, 144]. Calculated PERCLOS outputs for four different driving modes
of one driver are shown in Figure 3.12. A sliding window with the length of 20 s and
overlap of 10 s (50%) is used to calculate the PERCLOS. As this Figure shows, PERCLOS
increases up to 0.9 in the fatigued-automated test and up to 0.22 in the fatigued-manual
test and this means that the driver is drowsy in the fatigued mode tests. This Figure
also shows that the PERCLOS is very low (less than 0.05) during the rested-manual test.
PERCLOS is less than 0.1 during the first 24 minutes of the rested-automated test and
it increases to about 0.3 several times in the last six minutes of the test.
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(a)

(b)

Figure 3.12: Calculated PERCLOS in the automated tests (a) and manual tests (b). A sliding window
with a 20 s length and a 10 s overlap has been exploited to calculate PERCLOS from eyelid opening
data.

2. Blinking frequency: Blinking frequency is defined as the number of detected blinks in every
sliding window divided by the length of the window in seconds. Figure 3.13 presents the
detected blinks in a part of the eyelid opening signal.
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Table 3.4: Used signals from every data source and number of extracted features from each data source.

Data source Used Signals No. of
extracted
features

Vehicle-based Lateral acceleration, lateral
deviation form road center line,
steering wheel angle, speed, and

yaw rate

64

ECG signals RR intervals 12
Facial-based Eyelid opening and pupil diameter 6

– Sum 82

Figure 3.13: A part of the eyelid opening signal and detected blinks to calculate the blinking frequency.

3. Mean of pupil diameter

4. Standard deviation of pupil diameter

5. Mean of eyelid opening

6. Standard deviation of eyelid opening

Table 3.4 shows the used signals and the number of the extracted features from all three
sources of the data (vehicle-based data, ECG signals, and facial-based data). As this Table
shows, in overall, 82 features are extracted from the data of every driving test (vehicle-based
features are only extracted in the manual driving tests). Some of these features might be non-
informative or redundant to the driver drowsiness classes. The next section describes the feature
selection process to select a subset of these features that have strong relationship with driver
drowsiness levels.
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3.4 Feature Selection

Feature selection is a process to select a subset of features from the multidimensional data space
to enhance the accuracy of classifiers, decrease the computational burden in the classification
process, and a better understanding of the data set structure in machine learning applications
[145]. The real-world data set may have redundant and dependent features that cannot pro-
vide additional information about the class labels. Moreover, some of the features usually are
not correlated to the class labels and can produce bias noise for the classifiers and reduce its
classification performance [146]. In this thesis, Neighbourhood Component Analysis (NCA) is
employed as a feature selection method that is described in the next subsection.

3.4.1 Neighbourhood Component Analysis for Feature Selection

Neighbourhood component analysis (NCA) is a non-parametric feature selection algorithm that
is applied to maximize classification accuracy. This method helps to learn a linear transforma-
tion of input features to maximize the accuracy of the k-nearest neighbors in the transformed
space. The feature weights are adjusted such that the leave-one-out probability of correct
classification is maximized [147].

Assume that a training set with n samples is given by Equation (3.20).

S = {(xi, yi), i = 1, 2, ..., n}, (3.20)

where xi is p-dimensional feature vector, yi = {1, 2, ...c} are the class labels, and c is the number
of classes. The goal is to build a classifier that maps the input feature vector x to its correct
class label y. In the NCA, a randomized classifier is considered which (1) randomly chooses a
sample from S, ref(x) as the reference point for x and (2) assigns a label to the input sample
x same as the label of ref(x). Since the reference point is selected randomly, all of the training
samples in S have some probability to be selected as the reference point. The probability of
selecting xj as the reference point for x is shown as P(ref(x) = xj |S) which is higher if xj is
closer to the x. In order to select the reference point, the following distance function is used
[148].

dw(xi, xj) =
p∑
r=1

w2
r |xir − xjr|, (3.21)

where wr is the vector of feature weights. In the NCA, it has been assumed that

P (ref(x) = xj |S) ∝ κ (dw(x, xj)) , (3.22)

that means the probability of the selecting xj as the reference point for x is proportional to the
kernelized distance between x and xj where κ(.) is the kernel function and defined as

κ(z) = exp

(−z
σ

)
, σ > 0, (3.23)

where σ is the width of the kernel function [148]. Using different σ changes the probability of
each training sample being picked to be the reference point for x. If σ is very small, only the
nearest samples to the x have a high probability. On the other hand, if σ is very large, all of
the points have approximately the same probability. If all of the input feature set is scaled to
have the same range, it is recommended to set σ equal to 1. As the sum of P(ref(x) = xj |S)
over all samples of S should be equal to 1, the Equation (3.24) can be defined [149].

P (ref(x) = xj |S) = κ (dw(x, xj))∑n
j=1 κ (dw(x, xj))

, (3.24)
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The leave-one-out performance of this classifier is the final output that is predicting the label
of xi using the data in S−i (the S excluding the (xi, yi)). The Equation (3.25) presents the
probability of selecting point xj as the reference point for xi [149].

pij = P (ref(xi) = xj |S−i) = κ(dw(xi, xj))∑n
j=1,j 6=i κ(dw(xi, xj))

, (3.25)

The average leave-one-out probability of correct classification, pi is defined by Equation
(3.26). This Equation shows the probability of correctly classifying the xi using S−i [149].

pi =
n∑

j=1,j 6=i
P (ref(xi) = xj |S−i)I(yi = yj) =

n∑
j=1,j 6=i

pijyij , (3.26)

where yij = I(yi = yj) is {
1 if yi = yj ,

0 otherwise.

Therefore, the average leave-one-out probability of correct classification can be defined as

h(w) = 1
n

n∑
i=1

pi, (3.27)

where the h(w) depends on the weight vector w [149]. The aim of the NCA is to maximize the
h(w) with respect to the w, but to reduce the risk of overfitting in classification, the regularized
objective function is used instead [149]. This function is defined as

F (w) = h(w)− λ
p∑
r=1

w2
r = 1

n

n∑
i=1

Fi(w), (3.28)

where λ is the regularization parameter that makes many of the weight in w equal to 0 and
Fi(w) is

n∑
j=1,j 6=i

pijyij − λ
p∑
r=1

w2
r ,

If the λ is given, the optimal weight vector w is provided by solving the following minimization
problem [149].

ŵ = argmin
w

f(w) = argmin
w

1
n

n∑
i=1

fi(w), (3.29)

where f(w) = −F (w) and fi(w) = −Fi(w). After applying some justification to the Equation
(3.18), it can be rewritten as Equation (3.30) [149].

ŵ = argmin
w

{ 1
n

n∑
i

n∑
j=1,j 6=i

pijl(yi, yj) + λ
p∑
r=1

w2
r

}
, (3.30)

where l(yi, yj) is {
0 if yi = yj ,

1 otherwise.

This optimization problem was solved using a gradient descent optimizer in [150]. A threshold
is set and only feature vectors whose corresponding weights are higher than this threshold are
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Table 3.5: Distribution of the drowsiness levels in the feature set extracted from the data of manual
driving tests. The feature set is imbalanced, and the alert and extremely drowsy classes are its majority
and minority classes, respectively.

Reference
Drowsiness level

Number of samples Percentage of every
level

Alert 12,142 63.88%
Moderately drowsy 4,610 25.94%
Extremely drowsy 1,019 5.73%

Sum 17,771 -

Table 3.6: Distribution of the drowsiness levels in the feature set extracted from the data of automated
driving tests. The feature set is imbalanced data set that alert and extremely drowsy classes are its
majority and minority classes, respectively.

Reference
Drowsiness level

Number of samples Percentage of every
level

Alert 9,476 55.75%
Moderately drowsy 5,274 31.03%
Extremely drowsy 2,248 13.22%

Sum 16998 -

selected since features with small weights are not informative enough to influence the classifi-
cation performance. Moreover, they can be redundant and decrease the classification accuracy,
and increase the computation complexity.

3.5 Classification of Driver Drowsiness

3.5.1 Imbalanced Dataset Issue

To extract features from input data sources, a sliding window with a length of 20 sec and an
overlap of 10 sec between every pair of adjacent windows is exploited. The video observations
are also interpolated to the sampling frequency of 100 Hz with this assumption that driver’s
vigilance is constant until the next change in the video observation is reported. The same sliding
window is also applied to the video observations. The most frequent drowsiness level (mode) in
every sliding window is used as the final label for drowsiness classification. Thus, the driver’s
drowsiness level is being classified every 10 sec (except the first window that needs 20 sec of the
data). The extracted feature set is an imbalanced data set since the number of data samples
that belong to the extremely drowsy class is much less than two other classes. The issue of the
imbalanced dataset is inherent in drowsy driving classification problems since long periods of
extreme drowsiness will lead to accidents. Table 3.5 and Table 3.6 present the distribution of the
observed samples per drowsiness level in the manual and automated driving tests, respectively.
As Table 3.5 shows, in the manual driving test, only 5.73% of the samples belong to the class
of extremely level of drowsiness while 63.55% of the samples are in the alert class. This means
that minority and majority classes are extremely drowsy and alert, respectively. Table 3.6 shows
that the imbalanced data set issue is reduced in the automated driving tests since departing the
lane is avoided by the lane keeping assist function, allowing the vehicle to keep the lane even
for a sleeping driver. This means that the possibility of feeling drowsy in the automated tests
was higher than in manual tests.
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Figure 3.14: Illustration of the k-NN algorithm for a binary classification problem, adapted from [155]

Classification of an imbalanced data set can lead to biased results inclined to the majority
class. To solve this issue, several techniques have been proposed, including resampling the data
set (oversampling the minority class or/and undersampling the majority class) [151, 152] and
class-weighted classification [153]. The following subsection explains the used classifiers and
employed methods to mitigate the issue of the imbalanced data set.

3.5.2 Classifiers

Two commonly used and simple classifiers have been exploited to classify the three observed
drowsiness levels in drivers: K-nearest neighbors and random forest. These classification meth-
ods have been briefly explained as follows.

1. K-nearest neighbors (KNN): KNN that has been firstly introduced in [154] is a non-
parametric method widely used for classification and regression problems. In the classifi-
cation problems, the class of each feature sample is assigned based on the class distribution
of its k samples in its neighborhood. In other words, the new sample will be assigned to
a class that is most common among its k nearest neighbors. Figure 3.14 illustrates the
KNN algorithm for a binary classification problem [155]. As this Figure shows, there are
two classes: (1) Class A (square), and (2) Class B (star), and the new sample (shown
inside the orange circle by a question mark) should be classified as Class A or Class B. If
k = 1, the new sample is classified in class A since its nearest sample is a square (Class
A). If k = 3, the new sample belongs to Class B since there are two samples from Class
A and only one sample from Class B in the neighbourhood of the new sample. If k = 5,
the new sample is classified to Class A since there are more samples from this class in the
neighbourhood of the new sample.
This method has two hyperparameters: the number of neighbors in the feature space
(k) and the distance metric to compute the distance between the feature of interest and
any other samples in the feature space, e.g., Minkowski distance, Manhattan distance,
and Euclidean distance [156]. Moreover, the prior distribution of the training samples is
assumed to be uniform here to reduce the imbalanced dataset issue for driver drowsiness
classification.
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Figure 3.15: Illustration of the random forest algorithm, adapted from [161].

2. Random forest: Random forest is a tree-based classifier or regressor that overcomes the
limitations of the decision trees, including loss of generalization accuracy on unseen data
and suboptimal accuracy on training data [157]. This method combines the output of
multiple decision trees using a majority voting (in classification problems) or averaging
(in regression problems) methodology to produce the final output. Figure 3.15 presents
the random forest classification problem. Here, the Random Under Sampling Boosting
(RUSBoost) algorithm [158] is used in the structure of random forest to handle the issue
of the imbalanced data set. This algorithm employs the combination of Random Under-
Sampling (RUS) [159], and the standard Adaptive Boosting (AdaBoost) [160] to model
the minority samples by random elimination of the majority class samples.

To evaluate the used classifiers, the elements of the confusion matrices of the test dataset are
calculated. These matrices provide four different values that are calculated for every drowsiness
level:

1. True-Negative (TN): Number of samples that do not belong to the specific class (for
example alert) and are also classified in any of the two other classes (moderately drowsy
or extremely drowsy) by the classifier.

2. True-Positive (TP): Number of samples that belong to the specific class (for example
alert) and are also correctly classified in the same class.

3. False-Negative (FN): Number of samples that belong to the specific class (for example
alert) but are wrongly classified in any of the two other classes (moderately drowsy or
extremely drowsy) by the classifier.

4. False-Positive (FP): Number of samples that do not belong to the specific class (for ex-
ample alert) but are wrongly classified in the same class.

These four values are used to calculate the four different metrics for every level of driver
drowsiness:

1. Specificity (true negative rate): specificity is the ratio of TN divided by the sum of TN
and FP.
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2. Sensitivity (true positive rate): Sensitivity is the ratio of TP divided by the sum of TP
and FN.

3. Precision (positive predictive value): Precision is the ratio of TP divided by the sum of
TP and FP.

4. F1-score: F1-score is the harmonic mean of precision and sensitivity. Harmonic mean
(mh) of two scalar variables of x1 and x2 is computed as follows:

mh = 2x1x2
x1 + x2

(3.31)

3.6 Results

This section describes the results of the drowsiness classification when different data sources are
used as input to the classifiers. The performance of the system is reported when the following
feature sets are utilized as input for classifiers:

1. Only vehicle-based features (vehicle-based data are only used for driver drowsiness classi-
fication in the manual driving tests),

2. Only ECG-based features,

3. Only facial-based features,

4. All of the extracted features from different data sources (no feature selection),

5. Only selected features by NCA from all of the extracted features.

This procedure helps to investigate the influence of each data source on the performance of
the driver drowsiness classification system separately. For evaluation of the designed system,
every data set is separated randomly into two sets: training (80% of the samples) and test (20%
of the samples). In order to evaluate the performance of the system to classify different levels
of drowsiness, balanced accuracy is utilized. Balanced accuracy is the average of the accuracies
over three drowsiness levels.

3.6.1 Results of Drowsiness Classification in the Manual Driving Tests

Confusion matrices of the KNN and random forest classifiers applied to the (1) vehicle-based
features, (2) ECG-based features, (3) facial-based features, (4) all of the extracted features
(no feature selection), and (5) only selected features by NCA method in the manual tests are
provided in Figure 3.16 to Figure 3.20, respectively. The grey elements in these matrices repre-
sent the number of the correctly classified input features. Accordingly, the percentage numbers
written in these elements show correct classification accuracy for every specific drowsiness level.

56



(a) (b)

Figure 3.16: Confusion matrices of random forest (a) and KNN (b) classifiers in the manual tests
when only vehicle-based features are used. Gray elements represents the true-positive classified data
samples. AL: Alert, MD: Moderately Drowsy, and ED: Extremely Drowsy.

(a) (b)

Figure 3.17: Confusion matrices of random forest (a) and KNN (b) classifiers in the manual tests
when only ECG-based features are used.

(a) (b)

Figure 3.18: Confusion matrices of random forest (a) and KNN (b) classifiers in the manual tests
when only facial-based features are used.
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(a) (b)

Figure 3.19: Confusion matrices of random forest (a) and KNN (b) classifiers in the manual tests
when all of the extracted features (no feature selection) are used.

(a) (b)

Figure 3.20: Confusion matrices of random forest (a) and KNN (b) classifiers in the manual tests
when only selected features by NCA method are used.

As these figures show, the classification accuracy for classification of moderately drowsy is
lower than the accuracy of the two other classes, regardless of the used feature set and classifier.
This means that the driver drowsiness’s binary classification might help increase the drowsiness
detection accuracy; however, it will not detect the transition from alertness to the extreme level
of drowsiness. The NCA-selected features achieve the highest classification accuracy for all
three classes. The highest classification accuracy for alert, moderately drowsy, and extremely
drowsy are respectively 87.2%, 73.0%, and 89.2%.

Figure 3.21 shows the balanced accuracies of driver drowsiness classification systems designed
using extracted features in the manual tests. This Figure shows that the best-balanced accuracy
occurs when only selected features from the NCA method are used as input features (80.80% by
using random forest and 82.77% using KNN). Therefore, NCA removes redundant or irrelevant
features and improves the performance of the system. If only one source of the data is used,
facial-based features outperform the ECG-based and vehicle-based feature sets. Suppose all of
the extracted features without feature selection are utilized, and the random forest classifier is
applied to the features. In that case, balanced accuracy is higher than when only the facial-based
feature set is exploited.

The accuracy of the KNN classifier trained by only facial-based features is higher than the
accuracy of the KNN classifier trained by all of the extracted features. However, the trained
random forest using all features outperforms the trained random forest by only facial-based
data. These comparisons also show that the random forest classifier is more robust that KNN
classifier for dealing with noisy or irrelevant features. Figure 3.22 shows the distribution of the
NCA feature weights calculated based on the extracted features from manual driving tests. The
weight threshold of the NCA is chosen as 0.2 empirically, and only features with higher weights
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are utilized for the classification.

Figure 3.21: Balanced accuracy of driver drowsiness detection systems in manual tests when different
features sets are utilized.

Figure 3.22: NCA feature weights in the manual driving tests. A weight threshold for the NCA is set
at 0.2 and only features with higher weights are selected to be used in the classification.

For the sake of brevity, classification metrics including specificity, sensitivity, precision, and
F1-score [162] are calculated only for the best classifier (KNN trained by NCA-selected features)
and presented in Table 3.7. As this Table presents, the precision value for the extremely drowsy
level is low. This has occurred because the number of TP is low for the extremely drowsy class.
However, the sensitivity and specificity metrics are 0.89 and 0.93, respectively. This means that
the low precision for the extremely drowsy class is caused by the low number of samples in this
class.

Three features that have the highest features weight in the manual tests are (1) PERCLOS,
from the facial-based feature set, (2) LFrel, from the ECG-based feature set, and (3) Blinking
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frequency, from the facial-based feature set. A box plot of these three features for three classes
of driver drowsiness is presented in Figure 3.23. The PERCLOS is higher in the extremely
drowsy class than in the two other classes. The median of PERCLOS in the extremely drowsy
class is about 9%, and it is smaller than 2% in the alert class. The same relationship is valid for
the blinking frequency feature, where the median of this feature in the extremely drowsy class
and alert class is about 20 and 6 blinks per minute, respectively.

Table 3.7: Classification metrics for the best classifier (KNN trained by NCA-selected features) in the
manual driving tests. Spe.: specificity; Sen.: sensitivity; Pre.: precision; F1S: F1-score.

- Spe. Sen. Pre. F1S.
AL 0.88 0.86 0.95 0.90
MD 0.91 0.73 0.76 0.74
ED 0.93 0.89 0.46 0.61

Table 3.8 presents the selected features by the NCA method in the manual driving tests.
As this Table shows, 38 features out of 82 features are selected by NCA that 27 of them belong
to the vehicle-based, 6 of them belong to the facial-based, and 5 belong to the ECG-based
features. This Table shows that all of the facial-based features and approximate entropies of
vehicle-based data except steering wheel angle are selected by NCA. Five selected features from
ECG signals are also MeanRR, SDRR, pRR50, LF, and HF.

Table 3.8: Selected features by using NCA method in the manual driving tests.

Signal Selected features by NCA in the manual tests No.
Selected
features

Steering wheel
angle

First quartile, third quartile, standard deviation, zero
crossing rate and NMRHOLD

5

Speed Skewness, energy, first quartile, second quartile, third
quartile, standard deviation and approximate entropy

7

Yaw rate Skewness, first quatile, second quartile, third quartile,
standard deviation, zero crossing rate, approximate

entropy

7

Lateral
acceleration

Approximate entropy 1

Lane deviation Skewness, first quartile, third quartile, standard
deviation, zero crossing rate, spectral entropy and

approximate entropy

7

Eyelid opening PERCLOS, blinking frequency, mean of eyelid opening,
mean of pupil diameter, standard deviation of eyelid

opening and standard deviation of pupil diameter

6

ECG MeanRR, SDRR, pRR50, LF and HF 5
- - Sum = 38
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(a)

(b)

(c)

Figure 3.23: Box plot of three features that have the highest weights calculated by NCA in the manual
tests: (a) PERCLOS, (b) LFrel and (c) Blinking frequency; AL= Alert; MD = Moderately drowsy; ED
= Extremely drowsy.
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3.6.2 Results of Drowsiness Classification in the Automated Driving Tests

Confusion matrices of the KNN and random forest classifiers applied to the (1) ECG-based
features, (2) facial-based features, (3) all of the extracted features (no feature selection), and
(4) only selected features by NCA method in the automated tests are provided in Figure 3.24
to Figure 3.27, respectively. As these Figures presents, the maximum accuracy of the alert
class is provided by the random forest classifier trained by NCA-selected features (84.9%).
The maximum classification accuracy of the moderately drowsy class is also provided by the
same classifier and same feature set (69.8%). However, the maximum classification of the
extremely drowsy class is provided by using both ECG-based and facial-based features together
and without applying feature selection (80.7%).

(a) (b)

Figure 3.24: Confusion matrices of random forest (a) and KNN (b) classifiers in the automated tests
when only ECG-based features are used.

(a) (b)

Figure 3.25: Confusion matrices of random forest (a) and KNN (b) classifiers in the automated tests
when only facial-based features are used.
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(a) (b)

Figure 3.26: Confusion matrices of random forest (a) and KNN (b) classifiers in the automated tests
when all of the extracted features (no feature selection) are used.

(a) (b)

Figure 3.27: Confusion matrices of random forest (a) and KNN (b) classifiers in the automated tests
when only selected features by NCA method are used.

Balanced accuracies of the designed systems to classify the drowsiness in the automated
driving tests have been presented in Figure 3.28. Since drivers insert no input to the vehicle
during these tests, vehicle-based data cannot be used to detect the driver drowsiness. As
Figure 3.28 shows, the maximum balanced accuracy is obtained by random forest (77.66%)
when both of the ECG-based and facial-based feature sets(All) are used. Trained classifiers
by only selected features by NCA also return approximately similar accuracies by using fewer
features. Comparing the balanced accuracies in the automated and manual driving tests shows
the influence of vehicle-based data on drowsiness classification; The best-achieved classification
accuracy for the manual tests is 82.77% (see Figure 3.21) while the best accuracy is 77.66% for
the automated tests (5.11% lower).

The same feature weight threshold value (0.2) has been used for selecting the features in
the automated tests. Selected features by NCA in the automated tests have been presented in
Table 3.9. Based on this Table, 12 out of 16 features are selected equally from both feature
sets of ECG-based features and facial-based features. It is worth mentioning that the extracted
facial-based features are also selected for the automated test as they have already been selected
in the manual tests. Therefore, facial-based data are informative to classify driver drowsiness
regardless of the driving mode. Selected ECG-based features are MeanRR, SDRR, SDSD,
RMSSD, pRR50, and HF. Comparison between the NCA-selected ECG-based features in the
manual and automated driving tests shows that the MeanRR, SDRR, pRR50, and HF are
selected in both driving modes. This means that the time domain features extracted from ECG
signals together with the parasympathetic activity of the HRV (HF) are informative for driver
drowsiness classification regardless of the driving mode. The distribution of the feature weights
computed using NCA is shown in Figure 3.29.
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Figure 3.28: Balanced accuracy of driver drowsiness detection systems in automated tests when
different features sets are utilized.

Table 3.9: Selected features by using NCA method in the automated driving tests.

Signal Selected features by NCA in the automated tests No.
Selected
features

Eyelid opening PERCLOS, blinking frequency, mean of eyelid opening,
mean of pupil diameter, standard deviation of eyelid

opening and standard deviation of pupil diameter

6

ECG MeanRR, SDRR, SDSD, RMSSD, pRR50, and HF 6
- - Sum = 12

Four different classification metrics, including specificity, sensitivity, precision, and F1-score,
are provided for the random forest trained by all extracted features from automated driving
tests. These metrics are provided by Table 3.10.

Table 3.10: Classification metrics for the best classifier (random forest trained by all extracted features)
in the automated driving tests. Spe.: specificity; Sen.: sensitivity; Pre.: precision; F1S: F1-score.

- Spe. Sen. Pre. F1S.
AL 0.86 0.85 0.88 0.86
MD 0.87 0.70 0.72 0.71
ED 0.93 0.78 0.64 0.70

3.7 Discussion

This chapter presents a workflow to use traditional machine learning to classify driver drowsiness
levels by data fusion of three different data sources, including vehicle-based data, ECG-based
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Figure 3.29: NCA feature weights in the automated driving tests. Weight threshold on the NCA is
set on 0.2 and only features that their corresponding weights are higher than this threshold are selected
to be used for classification.

data, and facial-based data. Overall, 82 features are extracted from these data sources, and
NCA is employed as a feature selector to distinguish the only informative features and remove
redundant or noisy features. The K-nearest neighbors and random forest are utilized as two
frequently and simple classifiers to classify the level of drive drowsiness into three classes: alert,
moderately drowsy, and extremely drowsy. Results show that, in the manual driving, 38 out of
80 features are informative and relevant to the drowsiness levels are trained K-nearest Neigh-
bors using only selected feature obtains the maximum balanced accuracy, about 83%. In the
automated driving mode, only ECG-based and facial-based features (in overall 16 features) are
used as inputs to the classifier. Feature selector selects 12 out of 16 features, and classification
results show that classification using all features (16 features) achieves approximately similar
accuracy when only selected features (12 features) are utilized. However, the feature selector
reduces the computation complexity of the classification problems.

The main advantages of the proposed methods in this chapter are as follows:

1. Evaluation of the performance of the three various data sources including vehicle-based,
facial-based and ECG-based data and their data fusion through a feature selection method
and classification of driver drowsiness into three different levels.

2. Classification of driver drowsiness in both modes of manual and automated driving. Pre-
vious research mainly concentrated on the driver drowsiness detection only in manual
driving tests.

3. The proposed workflow provides informative features from every data source regarding
driver drowsiness classification. This helps to design a system with optimal computation
power. Results also show that facial-based data are informative for both manual and
automated driving tests. Data fusion of different feature sets outperforms the accuracy of
the classifiers trained on every individual feature set.

To compare the results of the proposed methodology, Table 3.11 provides the results of some
recent similar works. The number of the classified levels of drowsiness in every study is also
provided in this Table. As this Table presents, the highest classification accuracy is provided by
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[163] (94.6%). Samiee et al. [163] employed the data fusion of steering angle, lateral deviation,
and eye blinking using three ANN classifiers, each trained using one of the inputs. The number
of drowsiness classes was 2 (alert or drowsy) in that study. Between studies that classified
drowsiness into three classes Li et al. (b) [164] obtains the highest accuracy (88.0%). In that
study, approximate entropy features of steering wheel angle and yaw angle were used as inputs
to an ANN classifier with two hidden layers (six neurons in each hidden layer). The proposed
method by this chapter (KKN trained by NCA-selected features) provides less accuracy (82.8%);
however, its computational complexity is lower since KNN has a more straightforward structure
than neural networks.

In order to improve the achieved results of this chapter, the following ideas are proposed:

1. Lateral velocity of the vehicle can be estimated using vehicle dynamics model and already
measured vehicle-based data. This velocity can help to increase the results of drowsiness
classification in the manual mode.

2. Extracted features from other biosignals such as respiration and EEG channels can also
be employed for drowsiness classification. However, EEG channels need to be thoroughly
preprocessed; otherwise, muscle noise and movement artifacts might decrease the classifi-
cation performance.

3. Other classification methodologies such as multilayer perceptron neural network and fuzzy
logic-based classification can be utilized. In the fuzzy logic-based method, fuzzy rules help
to investigate the relationships between extracted features and drowsiness levels.

4. In this chapter, RUSBoost is used to mitigate the effect of imbalanced data issues. Over-
sampling or undersampling methods such as adaptive synthetic (ADASYN) sampling [152]
and Synthetic Minority Oversampling Technique (SMOTE) [166] can also be employed to
resample the feature set by increasing the number of minority class’ samples, decreasing
the majority class’ samples or a combination of them.
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Table 3.11: A comparison between proposed method in this chapter and some recent studies. The
classification results of the manual tests are used for this comparison. DL is the drowsiness levels in
classification and Acc. is the accuracy.

Study Method Inputs DL Acc.
McDonald
et al. [27]

Random forest classifier Steering angle 2 79.0%

Samiee et
al. [163]

Weighted output of three ANNs,
each trained on one input

Steering angle, lateral
deviation, and eye

blinking

2 94.6%

Wang and
Xu [22]

Multilevel ordered logit (MOL)
modeling using driver behaviour,

and eye features metrics

Steering angle, lateral
displacement, speed,

eye blinking, and
pupil diameter

3 68.4%

Li et al. (a)
[12]

Warping distance between
linearized approximate entropy

in sliding windows

Steering wheel angle 2 78.0%

Li et al. (b)
[164]

ANN classifier trained by
approximate entropy features of

inputs

Steering wheel angle
and yaw angle

3 88.0%

Barua et al.
[109]

SVM classifier with 10-fold cross
validation trained by extracted

features from input data

EEG, EOG and
contextual

information such as
time of day

3 79.0%

Vicente et
al. [39]

LDA classifier trained by
frequency domain features of

inputs

HRV and respiration
signals

2 78.5%

Awais et al.
[1]

SVM classifier trained by
extracted features from inputs

O2 EEG channel and
HRV

2 80.9%

Moujahid
et al. [165]

SVM classifier trained by
extracted features using

Pyramid-Multi Level (PML)
face representation

Driver’s face images 2 80.0%

Present
study

KNN trained by NCA-selected
features

HRV, eyelid, pupil
diameter, and five
vehicle-based data

3 82.8%
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Chapter 4

Driver Drowsiness Classification
using Deep Neural Networks

4.1 Introduction

Deep networks refer to the networks that utilize multiple layers to extract features and classify
the input data. In these networks, each layer processes the output of its previous layer [167, 168].
In recent years, by improving the computational power of hardware, availability of big data sets
and newly developed training algorithms, the application of deep neural networks is increasing.
In deep networks, feature extraction, feature selection, and model construction are integrated
into one module via end-to-end optimization methods [169]. These networks can outperform
traditional machine learning methods, however, they are prone to get overfitted or stuck in the
local minima during the training process. This issue increases the generalization error which is
measured by using the test dataset. To avoid overfitting, these networks need a huge amount
of data to get trained. Moreover, their hyperparameters should also be optimized to find the
specific combination of them that provides the best performance among others.

Deep neural network techniques in image processing were applied to design a real-time driver
drowsiness detection system using facial-based information [170] and real-time categorization
of driver’s gaze zone [171]. Deep Convolutional Neural Networks (CNNs) were exploited for
automatic sleep stage scoring with single-channel EEG [172]. In [173] the input EEG signals
were transferred into time-frequency domain images by applying short-term-Fourier-transform
(STFT) then decomposed into five EEG sub-bands. These images were used as inputs to deep
neural networks and the extracted features were inserted into a Softmax classifier [174] to detect
drowsiness.

This chapter focuses on two data sources, eyelid movements and ECG signals, to improve
driver drowsiness classification accuracy by applying deep neural networks. To achieve this
goal, two CNNs are employed to be trained on the wavelet scalogram images of ECG and
eyelid movement data separately and an ensemble of deep networks is proposed for manual
and automated driving modes to enhance every individual network. The next section briefly
describes the structure of the CNN and used layers in its architecture.

4.2 Convolutional Neural Network (CNN)

Convolutional neural networks have been frequently used as a method to learn features from raw
input data in various applications including medical image classification [175], human activity
recognition [176] and automatic speech recognition [177]. These networks create models that are
invariant to the transformation of the input data. In the CNN, convolution layers and pooling
operations are stacked to build a feature learning block. Convolution layers employ convolution
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filters to extract features from input data (such as images or time series). The subsequent
pooling layers extract the significant features by using a fixed-length sliding window (pooling
size) over the output of convolution layers by pooling operations. Simple features, such as lines,
edges, and corners of the input images are extracted in the first (initial) convolution layers,
while the more complicated (abstract) features are extracted using deeper layers.

In order to present the processes in a convolution layer, a simple example is provided.
Assume that the input is a 5 × 5 image (5 pixels in width and 5 pixels in height) and the
convolution filter is 3 × 3 square as shown in Figure 4.1. The elements of the convolution
filter are trainable parameters that will be updated during the training. The input image
is zero-padded by adding zero columns (rows) to the left and right (top and bottom) of the
input image. This makes the convolution output that is called activation map have the same
dimension as the input image. The operation of convolution between the filter and input image
is presented in Figure 4.2. In order to this operation, convolution filter starts to move from
the top-left pixel and move to the right with a predefined horizontal stride (here is 1) till it
parses the entire width. Then, it moves down with a predefined vertical stride (hers is 1). This
process repeats till the whole input image is covered. The element-wise multiplication of filter
and its covered pixels in the input image is calculated and all the outputs are added together to
compute elements of the activation map. For example, the three first operations for the given
input image and convolution filter of Figure 4.1 are presented in Figure 4.2.

Figure 4.1: Input image padded by zero columns and rows (left) and used convolution filter (right)
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Figure 4.2: Convolution operation in the convolution layers. The input image is zero-padded to make
the activation map have the same size as input image.

The next step after calculation of the activation map is inserting it to an activation function.
Different activation functions have been used for convolution neural networks such as sigmoid,
tangent hyperbolic, and ReLU. A detailed list of these functions has been provided in [178]. In
this chapter, the ReLU activation function is used. Equation (4.1) presents this function [178].

ReLU(x) = max (0, x) (4.1)

where x is the every element of the calculated activation map. As this Equation shows, ReLU
returns the 0 if the input is negative, otherwise, it returns the same input. Figure 4.3 shows
the completed activation map of the Figure 4.2 and the output of the ReLU function applied
to this activation map.

Figure 4.3: Operation of ReLU activation function on the input activation map.

After applying the ReLU activation function, pooling operation is applied to sub-sample its
output and select the most important information. Frequently used pooling operations consist
of max-pooling and average-pooling. Max-pooling selects the maximum value of the pooling
size over the output of the ReLU function as the most essential features, while average-pooling
provides the average value of the pooling size as the output value [179]. In this study, the
max-pooling is employed as the pooling method. The size of the pooling window is considered
to be 2 × 2 that has stride of 2 for both of the horizontal and vertical direction. Figure 4.4
shows the output of the max-pooling operation.
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Figure 4.4: Max-pooling operation on the output of ReLU activation function.

During the training process of the deep neural networks, one batch of the input data is
used in every iteration to update the parameters of the network. Thus, every activation filter
is applied to the every input sample in the batch. For example, if the batch size is considered
to be 32, every activation filter generates 32 activation maps as output in every iteration. The
distribution of the inputs of every layer changes during the training process since the network
parameters (weights and biases) are being updated. This issue is called internal covariate shift
and can slow down the training process [180]. Batch Normalization (BN) layers are employed
to tackle this issue and reduce the number of necessary iterations to obtain an acceptable
performance. Moreover, these layers help to make the deep network more robust to different
weight initialization methods and train with larger learning rates [180, 181]. The equations of
BN layers are provided in Equation (4.2) to Equation (4.5).

µB = 1
M

M∑
i=1

(xi), (4.2)

σ2
B = 1

M

M∑
i=1

(xi − µB)2, (4.3)

x̂i = xi − µB√
σ2
B + ε

, (4.4)

BN(xi) = γx̂i + β, (4.5)

where M is the batch size (number of activation maps outputted from every convolution filter),
xi is the i-th activation map, µB and σ2

B are respectively mean and variance of the i-th activation
map, ε is a small positive constant (usually 1 × 10−5) to avoid numerical instability. Finally,
γ and β are trainable parameters of the BN layer to shift and scale the standardized input,
respectively. Thus, every convolution filter adds two more trainable parameters to the network
by using the batch normalization layer.

Convolutional neural networks are mostly employed in image processing applications. In the
present application, to generate images from times series signals measured in the driving tests,
the continuous wavelet scalogram [182] is utilized. By applying this method, the one-dimensional
signals are transformed into the two-dimensional images in the time-frequency domain and can
be used as inputs to the CNNs for driver drowsiness classification. The next section explains
the process of calculating the wavelet scalogram and training of the deep CNNs.
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4.3 Driver Drowsiness Classification using CNN Trained by Wavelet
Scalograms of Input Data

4.3.1 Wavelet Scalogram

Wavelet analysis calculates the correlation (similarity) between the input signal and a given
wavelet function ψ(t). Unlike Fourier transform, wavelet analysis provides a multi-resolution
time-frequency output under this assumption that low frequencies last for the whole duration
in the input signal and high frequencies appear in different time points as short events.

A function ψ(t) is considered as a wavelet if the two following conditions are satisfied: (1)
The energy of this function should be finite [183];

E =
∫ ∞
−∞
|ψ(t)|2 dt <∞, (4.6)

(2) If the ψ̂(f) is the Fourier transform of the function ψ(t), the following condition must be
satisfied (known as admissibility condition) [183];

Cψ =
∫ ∞

0

|ψ̂(f)|2
f

df <∞. (4.7)

Therefore, the wavelet should have no zero frequency component (ψ̂(0) = 0) and this implies
that the mean of the wavelet ψ(t) must be zero.

The wavelet function can be scaled and translated by using two real-valued parameters of
s > 0 and u, respectively and generate a wavelet filter-bank of ψu,s [182].

ψu,s(t) = 1√
s
ψ

(
t− u
s

)
. (4.8)

By using the transformed wavelet, Continuous Wavelet Transform (CWT) of input signal x(t)
at time u and scale s can be calculated as

XWT (u, s) =
∫ ∞
−∞

x(t)ψ∗u,s(t) dt, (4.9)

where x(t) is the every sliding window of the eyelid and ECG data, ψ∗(t) is the complex
conjugate of ψ(t) and XWT (u, s) provides the the frequency contents of x(t) corresponding to
the time u and the scale s [183]. By using the two parameters of u and s, it is possible to
investigate the input signal x(t) in two domains of time and frequency simultaneously where
resolution of time and frequency depends on the value of the scale parameter s. Therefore, CWT
provides the time-frequency decomposition of x(t) in the time-frequency plane. This method
can be more useful than other methods such as Short-Time-Fourier-Transform (STFT) when
investigating the non-stationary signals since it provides a higher time resolution in the higher
frequencies (lower scales s) while the time and frequency resolution is constant in STFT. The
scalogram of x(t) in any positive scale is calculated as the norm of XWT (u, s) [184]

S(s) = ||XWT (u, s)|| =
(∫ ∞
−∞
|XWT (u, s)|2 du

) 1
2
. (4.10)

This Equation calculates the energy of XWT at a scale s. Therefore, using scalogram the most
representative and significant scales (frequencies) in the signal can be found.

The wavelet scalogram is used here to transform the time-series ECG and eyelid opening
signals to their time-frequency domains. The Morse wavelet [185] is employed to compute the
wavelet transform for the input signals and is formulated in the frequency domain. The Fourier
transform of this wavelet is [185]
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Ψβ,γ(ω) = U(ω)aβ,γωβe−ω
γ
, (4.11)

where U(ω) is the unit step, β is used as the decay of compactness parameter and γ presents
the symmetry of the Morse wavelet around its centre point. The parameter aβ,γ is also a
normalizing constant. More details about the parameters of Morse wavelet and their effects on
the wavelet shape is explained in [185]. The next subsection explains the application of wavelet
transformation to generate the time-frequency images of ECG and eyelid signals.

4.3.2 Scalogram Calculation of Eyelid and ECG signals

Electrocardiogram and eyelid signals are segmented into sliding time windows with a length of
10 sec and an overlap of 5 sec between every two adjacent windows. Table 4.1 and Table 4.2
provide the number of data samples that belong to every level of driver drowsiness in manual
and automated driving conditions, respectively. The eyelid and ECG signals are respectively
collected with the sampling frequencies of 100 Hz and 500 Hz and are synchronized using the
described method in subsection 3.2.1.

Table 4.1: Number of data samples belonged to each class after applying sliding windows to generate
the scalogrms in the manual driving mode.

Reference
Drowsiness Level

Number of Samples Percentage

Alert 23722 67.38%
Moderately drowsy 9371 26.62%
Extremely drowsy 2111 6.00%

Table 4.2: Number of data samples belonged to each class after applying sliding windows to generate
the scalogrms in the automated driving mode.

Reference
Drowsiness Level

Number of Samples Percentage

Alert 19508 56.33%
Moderately drowsy 10699 30.89%
Extremely drowsy 4427 12.78%

To calculate the scalograms images of the ECG and eyelid signals Morse wavelet (γ = 3, β =
20) is employed. Figure 4.5 and Figure 4.6 show examples of ECG and eyelid signals and their
corresponding scalogram images for every level of driver drowsiness in a fatigued-automated
test, respectively.

The generated RGB scalogram images are resized to 224 × 224 pixels and transformed to
the grayscale images to reduce the computational complexity of the deep network training.
Figure 4.7 shows a sample of the grayscale resized ECG and eyelid scalogram images. A deep
CNN is trained for driver drowsiness classification using each of ECG and eyelid scalogram
images separately and finally, an ensemble voting strategy has been applied to the output
of every deep CNN to outperform every individual network. The next subsection explains the
architecture of the used CNN, optimization of its hyperparameters and ensemble voting method.
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(a)

(b)

(c)

Figure 4.5: Samples of ECG signal and their corresponding scalograms for the alert (a), moderately
drowsy (b), and extremely drowsy (c) classes in a fatigued-automated test.
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(a)

(b)

(c)

Figure 4.6: Samples of eyelid signal and their corresponding scalograms for the Alert (a), Moderately
drowsy (b), and Extremely drowsy (c) classes in a fatigued-automated test.
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(a)

(b)

Figure 4.7: Samples of grayscale resized images (224 × 224) of the ECG (a) and eyelid (b) scalogram
image.

4.3.3 Architecture of Deep CNNs and Optimization of their Hyperparame-
ters

To prepare the image data set for training the deep CNN, first, the input images are normalized
to have zero-mean and unit variance. Then, the entire dataset is split randomly into the training
set, validation set, and test set, with 80% of the observations in the training set, 10% in the
validation set, and 10% in the test set. The input images are split into these data sets in a way
that distribution of the images is the same for three data sets and the percentage of the classes
is approximately the same as Table 4.1 for manual tests and Table 4.2 for automated tests.

The utilized deep CNN is composed of five convolutional blocks and one fully connected
block in its hidden layer. Convolution and fully connected blocks are presented in Figure 4.8,
where Conv, BN, ReLU, Max Pool, and FC are convolution layers, batch normalization layer,
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ReLU activation function, max-pooling layer and fully connected layer, respectively. The hidden
layer is followed by the output layer that is constructed using an FC layer, soft-max layer, and
weighted classification layer (Weight). The number of neurons in the fully connected layer of the
output layer is equal to the number of classes (here three). The Weight layer is also employed to
mitigate the data imbalance issue. Figure 4.9 presents the architecture of the deep CNN, where
five convolution blocks are followed by one fully connected block. Moreover, one Dropout layer
is also added after convolution blocks to reduce the possibility of overfitting or getting stuck in
the local minima during the training process. The dropout layer temporarily eliminates some
neurons with a predefined probability, along with all of their input and output connections [186].

(a)

(b)

Figure 4.8: Convolution (a) and fully connected (b) blocks that are used to construct the deep CNN.

Figure 4.9: The architecture of the deep CNN to classify ECG and eyelid scalogram images into three
classes of drowsiness.

The weight of every class is calculated by using Equation (4.12).

Wi = Nc

Ci
∑Nc
i=1

1
Ci

, (4.12)

where Nc is the number of classes (here three), Ci is the number of data samples that belong
to the i-th class, and finally, Wi is the calculated weight for i-th class. By applying the Equa-
tion 4.12 to the data samples that belong to the drowsiness classes in the manual and automated
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modes (presented in Table 4.1 and Table 4.2), the corresponding weights for every class are com-
puted. Table 4.3 provides these weights. As this Table shows, the class weights of the extremely
drowsy class are higher in both manual and automated mode tests. By using these weights,
the misclassification error of the drowsiness classes increases in comparison to the alert class.
Therefore, if the network classifies a drowsy sample in the alert class wrongly, it results in a
large misclassification error that would have a significant influence on the optimization process
and reduce the occurrence possibility of this classification error.

Table 4.3: Class weights of the different drowsiness classes used in the deep CNNs to alleviate the
imbalanced data set issue. (AL: alert; MD: moderately drowsy; ED: extremely drowsy)

- Manual Automated
AL 0.203 0.415
MD 0.514 0.757
ED 2.283 1.828

Deep neural networks have multiple hyperparameters such as learning rate, regularization,
and number of neurons that can influence on the network performance. Finding a proper
combination of these hyperparamters is a major task in the field of deep learning [187].

Here, in order to optimize the hyperparameters of the designed network, the Bayesian op-
timization method [188] is applied. This method has the capability of reasoning about the
iterations’ performance before they are carried out. Therefore, less number of iterations is
needed to provide the optimal hyperparameter combination in comparison to other hyperpa-
rameter optimization methods. Moreover, previous works show that this method achieves better
performance on the test data set than other methods such as grid search and random search
[189]. Four different hyperparameters have been considered to be optimized using Bayesian
optimization method including:

• Initial learning rate: This hyperparameter is used in the structure of the optimization
method to update the learnable parameters of the network (such as weights in fully con-
nected layers and elements in convolution filters). In order to avoid overfitting, the initial
learning rate is usually decreased during performing the last epochs [190].

• L2 regularization: During the training process, weights will become larger to handle
the feature extraction from input data and provide better performance. However, large
weights can destabilize the network. In this case, only a small variation in the input data
will make large differences in the output results while the small variations can be origi-
nated from statistical noise in the training data. Consequently, the deep network will be
overfitted to the training data if its parameters are too large. The L2 regularization is a
method to penalize the large weights by adding a penalization term to the loss function.
Here, the cross-entropy loss is employed for performing the drowsiness classification and
the L2 regularization term is added to this function [191].

• Dropout probability: The more dropout probability value means that it is more probable
to turn off a specific neuron and its all input and output connections. This helps to reduce
the network complexity and consequently avoid the overfitting issue.

• Number of filters in convolution layers: This hyperparameter determines the network
complexity and its capability to solve the classification problem. A too large number of
neurons will lead to a huge computational load and increase the possibility of overfitting.
On the other hand, if the number of neurons is too small the network will be stuck in the
local minima and it will cause the underfitting issue. Here, it has been assumed that the
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number of filters in Conv1 to Conv5 and the number of neurons in FC1 are equal and
only one hyperparameter is defined to find their optimal values.

Table 4.4 presents the specified search space for each of these hyperparamters that have been
optimized using Bayesian optimization method.

Table 4.4: Defined hyperparameters of Deep CNN to be optimized using Bayesian optimizer.

Index Hyperparameter Search space
H1 Initial learning rate [5× 10−5 − 0.001]
H2 Dropout probability [0.2− 0.4]
H3 L2 regularization [10−8 − 10−2]
H4 Number of filters in convolution layers (Conv1 to

Conv5) and neurons in fully connected layer
(FC1) [Integer value]

[30− 60]

ADAptive Moment estimation (ADAM) optimizer [192] is employed to train the parameters
of the designed deep CNNs. Maximum number of epochs is empirically considered to be 15
and a schedule for learning rate is utilized that multiples the initial learning rate by 0.1 after
12 epochs to alleviate the overfitting issue in the last training epochs. Literature proposed
that small min-batches with the size of 4 to 32 input images provide better performance on
the test data set and more stable training process. In [193] was proposed that the mini-batch
size of 16 provides better performance than other sizes. Here, the size of the mini-batch is also
defined to be constant and equal to 16. The training process is conducted on a system with
CPU and GPU types of Intel Core™i7-782HQ and NVIDIA™Quadro M2200, respectively. One
deep CNN is trained for each of the ECG and eyelid scalograms in the manual and automated
driving modes separately. Finally, an methodology is employed to classify the level of driver
drowsiness based on the ensemble of the trained networks to improve the performance of every
individual network. The next subsection explains the ensemble method used here.

4.3.4 Ensemble Learning of Deep CNNs

In order to implement ensemble learning, the soft voting method [194] is exploited here. Fig-
ure 4.10 shows the pipeline of the ensemble learning. This method predicts the output class
by using the calculated prediction probability of every class label obtained by two individual
networks. The final output of the ensemble assigned to the class that has the highest posterior
probability sum. By using this approach, every CNN that can provides a better discrimination
between drowsiness classes will be more significant than another CNN for estimating the final
drowsiness class to the input image. Equation 4.13 presents the soft voting ensemble method
formula [195].
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Figure 4.10: Ensemble learning applied on the trained deep CNNs.

Ĉi = argmax
k

M∑
j=1

pji,k (4.13)

where pji,k, and M presents the posterior probability of the j-th network for predicting the
i-th data sample in k-th class calculated using Softmax classifier and number of networks,
respectively. For example, assume that the trained CNN by eyelid data and trained CNN by
ECG data provides the following probabilities PEyelid and PECG, respectively.

PEyelid = (0.3, 0.3, 0.4) ;PECG = (0.3, 0.5, 0.2) , (4.14)

In these vectors the first, second and third elements show the probability that the input image
belong to the alert, moderately drowsy, and extremely drowsy, respectively. Based on these
probabilities, trained CNNs by eyelid and ECG classify the input image into the extremely
drowsy and moderately drowsy classes, respectively. By using the Equation (4.13), the two
vectors of Equation (4.14) are added and the result is (0.6, 0.8, 0.6). Therefore, the input image
is classified into the moderately drowsy class.

4.4 Results

This section first explains the results of Bayesian hyperparameter optimization of deep CNNs
for each driving mode and the used input scalogrm image types. Then, it describes results of
the driver drowsiness classification using deep CNNs. The results are provided separately for
the two driving modes, manual and automated driving. For each of these modes, the results
of the classifiers are presented when either ECG scalograms or eyelid scalogram are utilized as
input images, along with their ensemble classification results using soft majority voting.

4.4.1 Results of Bayesian Hyperparameter Optimization of Deep CNNs

As presented in Table 4.4, four hyperparameters are considered to be optimized in the structure
of the deep CNNs. Table 4.5 provides the optimized values of the hyperparameter of deep
CNNs in different driving modes and by inputting different types of scalogram images (ECG
and eyelid) to the deep CNNs. As this Table shows, number of filters in the convolution layers
and neurons in the fully connected layer (presents by the hyperparameter H4) is higher in the
automated driving mode for both ECG and eyelid scalogram images. Therefore, computational
cost is higher in the automated tests to classify driver drowsiness using the proposed deep CNNs.
The L2 regularization value (presents by the hyperparameter H3) is much higher in the manual
tests than in automated tests. Thus, deep CNN needs larger parameters to classify the driver
drowsiness in the manual tests. The dropout probability (presented by the hyperparameter
H2) of the trained deep CNN for the ECG signals in the automated tests is higher than other
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designed deep CNNs for the manual tests and for the eyelid data in the automated tests. The
number of neurons is also higher for the deep CNN trained by the ECG signals for automated
driving. Therefore, its network is wider than other networks and the dropout probability of the
networks should also be higher to turn off more neurons and avoid overfitting.

Table 4.5: Optimized values of hyperparameters in different driving modes and by inputting different
scalogram types to the deep CNNs. Hyperparameters H1 to H4 are defined in Table 4.4.

Driving
mode

Input
scalogram

type

H1 H2 H3 H4

Manual ECG 0.0001 0.202 0.0015 42
Manual Eyelid 0.0003 0.287 0.008 49

Automated ECG 0.0002 0.321 2.74×10−8 60
Automated Eyelid 0.0005 0.251 4.81×10−6 56

4.4.2 Results of Driver Drowsiness Classification in the Manual Driving
Tests

In order to provide a performance comparison for each of the trained CNNs and their ensemble in
the manual driving tests, the confusion matrices of the test data sets are presented in Figure 4.11.
In this Figure, the diagonal elements (in gray) provide the number and percentage of the
input images that are correctly classified in different classes of drowsiness, according to the
ground truth classification from the video observations. While, non-diagonal cell presents the
number of samples that are misclassified. This Figure shows that all of the diagonal cells of
ensemble model’s confusion matrix are higher than the same values in the two individual deep
CNNs. Therefore, the ensemble method provides better accuracies for all drowsiness classes in
comparison to the individual models. However, the differences are rather small which indicates
that in case of loss of one signal the misclassification error is still small. This an important
result since the quality of eyelid data depends on the light conditions and the quality of ECG
signals can also be degraded because of the driver’s body motions.
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(a)

(b)

(c)

Figure 4.11: Confusion matrices of deep CNNs for driver drowsiness classification in the manual
driving tests using only ECG scalograms (a), only eyelid scalograms (b), and ensemble of ECG and
eyelid scalograms (c).

Sensitivity, specificity, precision, and F1-score of the test data set are presented in Table 4.6
as classification performance metrics. The sensitivity metrics measure the proportion of the
actual observations in each class that has been classified correctly. Based on this Table, the
sensitivity value for all of the drowsiness classes are the same and equal to 0.81. The specificity
explains the proportion of the data samples that does not belong to an specific class and are
correctly classified into two other classes. As Table 4.6 presents, the moderately drowsy class
and extremely drowsy class provide the lowest and highest values for specificity metric in the
manual driving tests, respectively. Therefore, the moderately drowsy class is the most difficult
class of drowsiness to be classified correctly using the developed classification method.

The specific accuracy for every individual drowsiness class and their balanced accuracy are
presented in Table 4.7. As this Table presents, the ensemble method outperforms the classifi-
cation accuracy of every individual deep CNN for classification of every drowsiness class and
their corresponding balanced accuracy. Moreover, comparison between results of the deep CNN
classification method with the results of the traditional machine learning classifiers (presented
in Figure 3.21) shows that the proposed deep CNNs significantly outperform the traditional
machine learning methods for both facial-based and ECG-based data in the manual driving
tests (see section 4.5).
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Table 4.6: Classification metrics for the applied ensemble learning on deep CNNs trained by ECG and
eyelid scalogram images in the manual driving tests. Spe.: specificity; Sen.: sensitivity; Pre.: precision;
F1S: F1-score.

- Spe. Sen. Pre. F1S.
AL 0.91 0.81 0.95 0.87
MD 0.84 0.81 0.64 0.71
ED 0.96 0.81 0.55 0.65

Table 4.7: Accuracy of different classes of drowsiness by using different scalogram images as input to
the deep CNN and their ensemble in the manual driving tests. AL Acc.: Accuracy of the Alert class;
MD Acc.: Accuracy of the Moderately Drowsy class; ED Acc.: Accuracy of the Extremely Drowsy class;
Bal. Acc.: Balanced Accuracy.

- ECG Eyelid Ensemble
AL Acc. % 81.2 80.9 81.3
MD Acc. % 78.6 80.1 80.5
ED Acc. % 79.1 80.5 81.5
Bal. Acc. % 79.6 80.5 81.1

4.4.3 Results of Driver Drowsiness Classification in the Automated Driving
Tests

Confusion matrices of the deep CNNs trained by ECG and eyelid scalogram images generated in
the automated driving tests and their ensemble are presented in Figure 4.12. The gray diagonal
cells of the matrices present the correctly classified data samples of the test data set. According
to this Table, all of these gray cells are higher in the confusion matrix of the ensemble method.
Thus, the ensembling method returns a better performance than two deep CNNs. However,
their difference is also small for the automated tests.

Table 4.8 provides the classification metrics of the deep ensemble method in the automated
driving tests. Based on this Table, the specificity and sensitivity metrics of the moderately
drowsy class are lower than the two other classes. Extremely drowsy class also has the highest
sensitivity and specificity metrics. Table 4.9 also presents the classification accuracies of the
different classes and their balanced accuracy. Based on this Table, the moderately drowsy level
has the lowest accuracy therefore, it is the most difficult level to be classified correctly using
the deep CNN models.

Comparison between the classification results of the two driving modes also shows that
the proposed method performs better in the manual driving mode since the accuracy of the
moderately drowsy class in the manual driving tests is about 5.5% higher than in the automated
ones (see Table 4.7). This is a significant result since higher classification accuracy of the
moderately drowsy class is crucial to warn the driver before the transition to the extreme level
of drowsiness or even micro-sleeps. According to this result, detection of moderately drowsy
level is harder in the automated driving. This can be caused by two major reasons: (1) lower
eyelid quality in the automated tests since the participants insert no input to the vehicle and
it can be monotonous for them to only look toward the test track for the whole time of test (30
min). Therefore, they look to the other directions and it will reduce the quality of the collected
eyelid, (2) in the automated mode, participants have no obligation or stress to keep the vehicle
in the right lane during the test. This makes the participants more relaxed therefore the heart
rate stays more stable in the test and it will be harder to distinguish the transition between

83



Table 4.8: Classification metrics for the applied ensemble learning on deep CNNs trained by ECG
and eyelid scalogram images in the automated driving tests. Spe.: specificity; Sen.: sensitivity; Pre.:
precision; F1S: F1-score.

- Spe. Sen. Pre. F1S.
AL 0.90 0.82 0.91 0.86
MD 0.86 0.75 0.70 0.72
ED 0.93 0.83 0.65 0.73

alertness and extremely drowsy level.

(a)

(b)

(c)

Figure 4.12: Confusion matrices of deep CNNs for driver drowsiness classification in the automated
driving tests using only ECG scalograms (a), only eyelid scalograms (b), and ensemble of ECG and eyelid
scalograms (c).
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Table 4.9: Accuracy of different classes of drowsiness by using different scalogram images as input to
the deep CNN and their ensemble in the automated driving tests. AL Acc.: Accuracy of the Alert
class; MD Acc.: Accuracy of the Moderately Drowsy class; ED Acc.: Accuracy of the Extremely Drowsy
class; Bal. Acc.: Balanced Accuracy.

- ECG Eyelid Ensemble
AL Acc. % 82.2 82.0 82.3
MD Acc. % 73.8 74.3 74.9
ED Acc. % 82.0 83.1 83.5
Bal. Acc. % 79.3 79.8 80.2

4.5 Discussion

This chapter proposed a deep learning strategy to classify driver drowsiness in two driving
modes of manual and automated. First, ECG and eyelid data are segmented by using a sliding
time window. Then, wavelet scalogram images of every window of the data are generated and
images are transformed into grayscale images and resized to 224×224. One deep CNN is trained
for every type of scalogram image (EEG and eyelid). The Bayesian optimization method is also
utilized to select the optimal hyperparameter set for every deep CNN. Finally, an ensemble
method based on a soft voting strategy is employed to outperform every individual trained
network.

A comparison between the proposed deep CNNs in this chapter with traditional machine
learning methodologies used in Chapter 3 is provided by Table 4.10. As this Table shows,
the deep CNNs could significantly outperform the traditional classifiers in all of the drowsiness
classes and consequently in the balanced accuracy of classification. For example, the balanced
accuracy of the random forest applied to the ECG-based features (RF-ECG) is 55.1% while the
same accuracy for the deep CNN applied to the ECG signal is 79.6% (improvement by about
24.5%). Deep CNN considers the frequency contents of the entire ECG sub-waves, whereas
the traditional classifiers are trained only based on the heart rate variability data derived from
the R-peaks in the ECG signal. This Table also represents that the differences between every
individual Deep CNNs and their ensemble are rather small, which indicates that in case of
signal loss of eyelid or ECG data, the classification error would be small. This is a significant
result since eyelid data depends on face detection performance and light condition. On the
other hand, contactless precise ECG measurement requires innovative but also low-cost sensors
whose robustness and accuracy are still unknown.
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Table 4.10: Comparison between the accuracies of the traditional classifiers (Chapter 3) and deep CNNs
applied to the ECG and facial-based data in the manual driving tests. For the KNN and random forest
(RF) classifiers extracted features from ECG and facial-based data (eyelid opening and pupil diameter
signals) are used as input features.

- AL. Acc. MD. Acc. ED. Acc. Bal. Acc.
RF-ECG 55.6 50.6 59.2 55.1
RF-facial 80.1 61.6 76.9 72.8

KNN-ECG 53.4 48.6 59.2 53.7
KNN-facial 71.4 60.0 77.4 69.6
CNN-ECG 81.2 78.6 79.1 79.6
CNN-facial 80.9 80.1 80.5 80.5

CNN-ensemble 81.3 80.5 81.5 81.1

The following tasks can be investigated to improve the results of the proposed method in
this chapter:

1. The transition between drowsiness classes (alert, moderately drowsy, and extremely drowsy)
has tricky dynamics when relying on the ground truth derived based on the video obser-
vations. These observations depend on the expert knowledge and significance level of
drowsiness signs shown by individual drivers. This limitation might be alleviated by us-
ing other ground truths methods such as labelling the drowsiness-related sub-waves in the
EEG signals.

2. The combination of CNN and Recurrent Neural Network (RNN) such as Long-Short Term
Memory (LSTM) and Gated Recurrent Units (GRU) might also improve the performance
of the proposed method. Recent studies show that this combination leads to outperform
the individual CNN in image classification [196, 197].

3. The proposed methods in this Chapter and Chapter 3 develop generic driver drowsiness
classification systems that consider no driver-specific differences. Only two hours of data
is available for every driver that might not be sufficient to train a driver-specific deep
network. In order to build driver-specific system, the transfer learning methodology [198]
can be employed. Using this method, deep CNNs can be trained using a training set
that contains the entire data set except the data of the one specific driver. By using
this method, the amount of data collected from each driver that is required to build a
driver-specific system can be reduced.
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Chapter 5

Driver Drowsiness Estimation using
EEG Signals with a Dynamical
Encoder-Decoder Modeling
Framework

5.1 Introduction

Neural activities collected using EEG electrodes are widely exploited to classify and predict the
different levels of driver drowsiness. For example, in designing a driver drowsiness detection
system, Chaotic features including Higuchi and Petrosian fractal dimensions and the logarithm
of energy were extracted from EEG signals in [199] and results showed that the neural network
classifier trained by these features obtains the accuracy of about 84% for detection of driver
drowsiness. Extracted features from a single-channel EEG signal using wavelet packet transform
were used in [200] and results showed that this method obtained an accuracy of about 85% for
driver drowsiness detection. Budak et al. [201] also proposed the ensemble majority voting
of three deep networks that were trained using different EEG features to classify the vigilance
state into two classes: awake and drowsy. On the contrary, a support vector machine-based
posterior probabilistic model was proposed in [202] that used the power of Theta, Alpha, and
Beta sub-bands of EEG data and transformed the drowsiness level to any value between 0 and
1.

Previous studies mainly concentrated on designing a classification method to construct a
decision boundary that discriminates the levels of driver’s vigilance e.g., alert or drowsy in
binary classification. In this chapter, a new generative framework is proposed to track the
driver drowsiness in real-time. The PERcentage of Eyelid CLOSure (PERCLOS) variable is
assumed to define the actual level of drowsiness where PERCLOS can represents the driver
drowsiness in a real-time manner and it is independent of video observations performed by
expert raters. Previous studies have shown that the higher PERCLOS values strongly correlate
with drowsiness signs in drivers where drowsiness was also associated with lane deviation in the
road [203, 204].

The first goal of this chapter is to design a user-specific interpretable framework to estimate
driver drowsiness in real-time based on EEG features. Finding the specific EEG features that
are statistically significant and consistent across different drivers is the second goal of this chap-
ter. An encoding-decoding framework is employed to accomplish these goals by estimating the
PERCLOS using extracted features from EEG signals. This framework is used since it has been
successfully exploited in different applications such as extracting multi-dimensional auditory
and visual stimulus-response correlations [205], reconstructing natural images using Bayesian
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decoder [206], and decoding hidden cognitive states [207]. Here, the proposed encoding-decoding
framework consists of three key steps: 1) a model that characterizes the dynamics of PERCLOS,
2) the encoder model that characterizes how neural features encode the PERCLOS, and 3) the
decoder model that estimates the PERCLOS using selected EEG features by the encoder model.
In the next sections, the preprocessing of EEG signals and the structure of the encoder-decoder
modeling framework is explained.

5.2 Preprocessing of EEG signals

The data of 18 driving sessions from 13 drivers (5 females and 8 males; age 44.5±18.8 years)
that represent a wide range of PERCLOS and also acceptable quality for eyelid data are used
to estimate the level of drowsiness in drivers. EEG signals are collected using a g.Nautilus®
(research version) [115] device with gel electrodes, and the sampling frequency of 500 Hz. Eight
electrodes are used to collect EEG signals including Cz, Fz, T7, T8, C3, C4, PO7, and PO8.
Two EOG channels are also connected vertically to the lower and upper areas of the right eye.
The EOG signal is calculated as the difference between the two EOG electrodes to measure
the eye movement activities. This represents redundant information to confirm the SmartEye
eyelid opening measurement. Positions of these electrodes in the 10-20 system are marked by
red circles in Figure 2.4.

EEG signals are contaminated by various noise sources including eye movement, eye blink-
ing, and high-frequency muscle activities (originated from head movement, yawning, etc.). To
eliminate these artifacts, Independent Component Analysis (ICA) technique is employed [208].
ICA decomposes the raw EEG signals into independent components, where the source of each
component can be identified using its scalp topography. The denoised EEG signals are recon-
structed by eliminating those components that are not originated from brain lobes. More details
about the theory of the ICA method is presented in [209].

Here, EEGLAB Matlab toolbox [210] is used to preprocess the EEG raw data. EEG channels
are first decomposed to their independent components, then the ICLabel tool [211] implemented
in the EEGLAB is used to check which component is originated by brain. ICLabel provides
a probability for every component that shows where it is originated from. This probability is
calculated based on the spectral analysis and scalp topography map of every component. For
example, Figure 5.1 presents the map topography and assigned label to independent components
of the EEG raw data in a rested-automated driving test. Based on this Figure, independent
components of number 1 to number 3 are generated by eye movement activities and must be
removed to preprocess the EEG channels. Figure 5.2 shows a part of the raw and preprocessed
Fz channel in the same rested-automated test. As this Figure shows, large EEG amplitudes
that are generated by eye movements or blinks are removed in the preprocessed signal while
other samples of the signals are barely influenced by the applied ICA.

5.3 PERCLOS Neural Encoder Model

PERCLOS is assumed as a stochastic process characterized by a positive random variable, with
a range of 0 to 1. The PERCLOS temporal dynamic over-time is defined by the following state
transition process presented in Equation (5.1).

xk = 0.5(1 + tanh(axk−1 + b+ εk−1)), (5.1)

where xk is the PERCLOS value at k-th time interval, {a, b} ∈ R are free parameters and
ε ∈ R is a zero-mean Gaussian noise with the variance of σ2

ε ; εk ∼ N (0, σ2
ε ). It is assumed that

Yk = [y1
k, y

1
k, ..., y

C
k ] is a C × N matrix of EEG features at k-th time interval where C is the

number of EEG features, N is the number of samples from each feature and yik (i = 1, 2, ..., )
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Figure 5.1: Scalp topography maps and assigned labels to every independent component of the EEG
signals in a rested-automated test.

Figure 5.2: A part of the Raw and preprocessed Fz channel after removing eye movement components
in a rested-automated test.
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is a 1 × N vector represents the extracted features from i-th EEG channel. Moreover, It is
assumed that all EEG features are independent of each other for a given PERCLOS xk. The
conditional distribution of each feature is presented by Equation (5.2).

yik|xk ∼ f(xk; θi); i = 1, 2, ..., C (5.2)

where f(.) defined the conditional distribution and θi is the set of parameters for each i-th EEG
channel. Equation (5.1) and Equation (5.2) define the dynamical encoder model, characterizing
how changes in EEG features over time encode the PERCLOS progression. In the modeling of
the EEG features, it is assumed that the conditional distribution of each feature given PERCLOS
follows a normal distribution. The mean of the distribution is defined as a linear function of
the PERCLOS and the distribution variance is constant over time. This distribution is defined
by Equation (5.3).

yik|xk ∼ N (αixk + βi, σ2
vi), (5.3)

where αi, βi and σ2
vi are slope parameter, intercept parameter, and the variance of observed

noise.

5.3.1 PERCLOS Decoder Model

Bayesian filtering [212] is employed here to estimate PERCLOS from neural data. The Bayesian
filter is a recursive technique that can be performed by calculating two equations per time index:
one-step perdition and update. The goal of this method is to estimate the PERCLOS values
using EEG-based features, therefore Equation (5.1) and Equation (5.3) are used as state process
and observation equations of the Bayesian filtering, respectively. Figure 5.3 shows the structure
of the Bayesian filtering that has three main steps: 1) using Chapman-Kolmogorov equation
[213] to calculate the one-step prediction of the state, 2) using the relationship between every
EEG feature given PERCLOS data to compute the likelihood function, and 3) applying the
Bayes’ rule to update the one-step prediction using the calculated likelihood.

Figure 5.3: Three main steps of the Bayesian filtering that is used as the decoder to estimate the
PERCLOS using EEG features [214].

5.3.2 Model Identification

This subsection explains how to identify the unknown parameters of the encoder model presented
in Equation (5.1) and Equation (5.3).
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Estimation of state transition process’ parameters: The state transition process defined
in Equation (5.1) can be rewritten by Equation (5.4). Now, the equation becomes a linear
function of a and b when PERCLOS values are known:

axk−1 + b+ εk−1 = arctanh(2xk − 1); k = 1, 2, ...,K (5.4)

where K is the total number of PERCLOS sample calculated in all of the driving tests, a, b,
and noise variance σ2

ε are also estimated using the Least Square (LS) technique.
In the LS, it is assumed that zk = arctanh(2xk − 1) is the input for the regression problem:

axk−1 + b+ εk−1 = zk; k = 1, 2, ...,K (5.5)

In the LS, the Residual Sum of Square (RSS) error, as presented in Equation (5.6), is minimized
to obtain the parameters of a and b:

RSSx =
K∑
k=1

ε2k−1 =
K∑
k=1

(zk − axk−1 − b)2 , (5.6)

In order to minimize RSSx, the derivatives of the RSSx w.r.t two parameters of a and b are set
to be zero:

∂RSSx
∂a

= 0; ∂RSSx
∂b

= 0 (5.7)

After applying the Equation (5.7) and simplification of the results, the parameters of a and b
are calculated as presented in Equation (5.8) [215].

a =
∑K
k=1

(
xk−1 − µxk−1

)
(zk − µz)∑K

k=1

(
xk−1 − µxk−1

)2 ; b = µz − aµxk−1, (5.8)

where µxk−1 = 1
K−1

∑K−1
k=1 xk and µz = 1

K

∑K
k=1 zk are the PERCLOS mean and input mean,

respectively. The noise variance is also calculated as the variance of εk−1 = zk − axk−1 − b
(k = 1, 2, ...,K).
Estimation of observation equation’s parameters: Linear regression is also used to iden-
tify the parameters of the observation equation per EEG feature (αi, βi and σ2

vi). The Equation
(5.3) can be rewritten as Equation (5.9).

yik = αixk + βi + νik; νik ∼ N (0, σ2
νi) (5.9)

The RSS error (RSSy) is calculated for each EEG features by using the Equation (5.10).

RSSy =
K∑
k=1

(
yik − αixk − βi

)2
, (5.10)

After minimization of RSSy for every EEG feature, the unknown parameters of αi and βi are
determined using Equation (5.11) [215].

αi =
∑K
k=1 (xk − µxk)

(
yik − µiy

)
∑K
k=1

(
xk−1 − µxk

)2 ;βi = µiy − αµxk, (5.11)

where µxk = 1
K

∑K
k=1 xk and µiy = 1

K

∑K
k=1 y

i
k.
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5.3.3 Model Selection for the Observation Model

This subsection describes the procedure used to select the observation model for EEG features.
Though all the neural features can be used in the decoding step, it is more practical to pick a
subset of features that shows strong encoding properties. This process helps to build a more
robust decoder model by excluding those features which lack reliable and consistent predictive
power. With the independence assumption of the neural features, the statistical significance of
encoding power of each feature is investigated by checking the distribution of νik in Equation
(5.9) by using the one-sample t-test. The null hypothesis is that νik comes from a normal
distribution with zero-mean and unknown variance. Therefore, a t-test per each neural feature
has been applied and checked whether the null hypothesis is rejected or not. The p-value of
0.05 has is set as the significance level and only those features that their corresponding p-value
is higher than this level are selected. This subset of features is then used in the decoding
step. Therefore, in the decoding step, only a subset of neural features has been picked, whose
statistical significance is in a favour of being included in the encoder model feature set.

5.4 Application of the Proposed Methodology

This section firstly describes how neural features are extracted from EEG signals then it explains
use of the encoder-decoder pipeline to build the PERCLOS predictor model. According to the
literature, the preprocessed EEG data of each channel is decomposed into four sub-bands using
band-pass filtering including delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-30
Hz) [50]. For instance, the sub-bands of the Cz channel along with the original EEG signal are
presented in Figure 5.4. Statistical features of these sub-bands have been employed in different
applications to reduce the dimensionality of the EEG data while significant information is
retained during feature extraction [216].

Figure 5.4: Cz channel and its subbands

Extracted features from EEG channels are presented in Table 5.1. Overall, 50 features are
extracted from each of the eight EEG channels and one EOG channel that results in 450 EEG
features for each driving test. The same sliding time window that is used to calculate the
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Figure 5.5: The performance of the LS method to estimate the dynamics of the actual PERCLOS
data.

PERCLOS (1-minute length with a 30-second overlap) has also been exploited for EEG feature
extraction.

To find the state transition process parameters, PERCLOS data across all users are concate-
nated (resulted in approximately 540 minutes of driving) and the LS method is used to estimate
a, b, and σ2

ε parameters. It is assumed that all users have a reasonably similar state transition
process. Table 5.2 represents the estimated parameters for PERCLOS dynamical model defined
by Equation (5.1). Figure 5.5 shows the PERCLOS residual error of the outputted result from
the LS method using the estimated parameters of the state transition equation. As Figure 5
shows, the absolute value of the residual error in some parts is about two to three times larger
than other parts. After checking the actual PERCLOS values, it is realized that these parts are
either associated with very high (approximately one) or very low (approximately zero) actual
PERCLOS values that show the states of completely alert and extremely drowsy situations,
respectively. However, it is aimed to model the dynamic transition between these two states
(completely alert and extremely drowsy). The root mean squares error (RMSE) between actual
PERCLOS and modeled PERCLOS is 0.061. This result suggests that the proposed state tran-
sition process can reasonably capture the PERCLOS dynamics with acceptable performance.

In the encoder model, a subset of EEG features has been selected using the model selection
approach. Note that the decoder model combines two sources of information at different tem-
poral scales in the prediction of PERCLOS: (1) long-term information that is carried by the
state process and (2) instantaneous information carried by neural activity about PERCLOS.
These two sources of information are combined through Bayesian Filtering in the estimation of
PERCLOS.

Using the proposed modeling framework, a user-specific encoder and decoder model of PER-
CLOS is built. It is only assumed that PERCLOS temporal dynamics across users share the
same characteristics. Given this model, it is possible that a neural feature might be positively
correlated with PERCLOS in one participant and negatively correlated in another one. Whilst
this might provide a more accurate prediction given the specificity of the model to a specific
user, it is possible to search for possible neural biomarkers which are showing consistent encod-
ing properties across participants. Therefore, encoding step helps to find possible biomarkers

93



Table 5.1: Extracted features from EEG channels; Std.: standard deviation, Min.: minimum, Max.:
maximum, Mean En.: mean energy, Log. En. Ent.: log energy entropy, Sh. Ent.: Shannon entropy,
Hjorth Mob.: Hjorth mobility.

Index Feature Index Feature
1 Mean of Delta 26 Skewness of Theta
2 Mean of Theta 27 Skewness of Alpha
3 Mean of Alpha 28 Skewness of Beta
4 Mean of Beta 29 Kurtosis of Delta
5 Std. of Delta 30 Kurtosis of Theta
6 Std. of Theta 31 Kurtosis of Alpha
7 Std. of Alpha 32 Kurtosis of Beta
8 Std. of Beta 33 Log En. Ent. of Delta
9 Min. of Delta 34 Log En. Ent. of Theta
10 Min. of Theta 35 Log En. Ent. of Alpha
11 Min. of Alpha 36 Log En. Ent. of Beta
12 Min. of Beta 37 Sh. Ent. of Delta
13 Max. of Delta 38 Sh. Ent. of Theta
14 Max. of Theta 39 Sh. Ent. of Alpha
15 Max. of Alpha 40 Sh. Ent. of Beta
16 Max. of Beta 41 Hjorth Mob. Delta
17 Median of Delta 42 Hjorth Mob. Theta
18 Median of Theta 43 Hjorth Mob. Alpha
19 Median of Alpha 44 Hjorth Mob. Beta
20 Median of Beta 45 Power of Delta (Pδ)
21 Mean En. of Delta 46 Power of Theta (Pθ)
22 Mean En. of Theta 47 Power of Alpha (Pα)
23 Mean En. of Alpha 48 Power of Beta (Pβ)
24 Mean En. of Beta 49 Pβ/Pα

25 Skewness of Delta 50 Pβ/(Pα + Pθ)

Table 5.2: State transition process model parameters

Parameter Meaning Value
σ2
ε Noise variance of state transition process model 0.03
a The slope of the linear regression in Equation 5.4 3.93
b The intercept of the linear regression in

Equation 5.4
-1.79
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that are representing PERCLOS changes consistently across users.

5.5 Results

In this section, the modeling results of the proposed encoder-decoder framework in the estima-
tion of PERCLOS is discussed and the two following questions are answered:

1. How accurate is the estimated PERCLOS in different driving tests?

2. Are there any neural biomarkers representing PERCLOS independent of the driving test?
If yes, how are these biomarkers correlated with PERCLOS?

The data set has been randomly separated into two data sets: train and test. The training
set contains 15 tests where three driving tests with ID = 6, 9, and 15 have been selected to
make a test dataset. The test dataset has not been involved for selecting the biomarkers. Neural
biomarkers are found using training dataset and are employed to estimate the PERCLOS in the
test dataset. Figure 5.6 shows the decoding results of the test dataset. These results suggest
that the proposed framework reasonably traces the drowsiness level presented by the actual
PERCLOS data. Figure 5.6 also presents the upper and lower bounds of the 95% confidence
interval of the Bayesian estimation. These bounds are utilized to calculate the High Probability
Density (HPD) percentage [217]. The HPD presents the percentage of the data samples per
driving test where the actual PERCLOS falls in the 95% confidence interval of the estimated
one.

Figure 5.7 shows the RMSE and HPD percentage performance metrics of our proposed
method for PERCLOS estimation. It shows that the average RMSE and average HPD percent-
age are 0.117 and 62.5%, respectively. To investigate the performance of the proposed method
in the different levels of driver drowsiness, PERCLOS has been separated into four intervals:
0-0.25, 0.25-0.5, 0.5-0.75, and 0.75-1. The average RMSE and HPD percentage of each one of
these intervals during all of the driving tests are presented in Figure 5.8. According to this
Figure, this average HPD percentage and RMSE are increasing and decreasing as PERCLOS
grows, respectively. Therefore, this model obtains better performance in the higher actual PER-
CLOS (moderate and extreme levels of driver drowsiness), which in practice is more important
to detect the driver drowsiness than states with low PERCLOS values.

To find consistent features that can be neural biomarkers, the EEG features that present
a strong correlation to PERCLOS based on their corresponding p-values are investigated. Ac-
cording to the results of the encoder model, 28 EEG features are presented in the selected
feature sets for all of the 18 driving tests. Therefore, they can be used as biomarkers to study
drowsiness independent of drivers. These biomarkers are presented in Table 5.3 that include
skewness of Alpha (for all EEG channels), Delta power (for all EEG channels), Theta power
(for all EEG channels except Cz and P08), Hjorth mobility of Delta (for T8, P08, and EOG
channels).

Figure 5.9 also shows the average correlation coefficient between every biomarker and PER-
CLOS in all driving tests. As this Figure shows, the consistent Delta powers and Theta powers
are positively correlated with PERCLOS in all EEG channels. This result is in accordance with
the established studies that report increases in the Theta and Delta powers as indicators of
drowsiness [218, 219]. The skewness of Alpha in all EEG channels except T8 and P07 is also
positively correlated with PERCLOS while Hjorth Mobility of the Delta in T8 and P08 are
negatively and in EOG channel positively correlated with PERCLOS. Therefore, the proposed
framework establishes biomarkers that have consistent relationships with PERCLOS and these
neural biomarkers should be extracted from EEG signals to estimate the drowsiness indepen-
dently of the drivers and driving conditions.
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(a)

(b)

(c)

Figure 5.6: Decoding results in three driving tests with ID=6 (a), ID=9 (b), and ID=15 (c) for
estimation of PERCLOS using selected EEG features. Light blue shaded areas show the 95% confidence
interval of the estimated PERCLOS. The result suggests a strong correspondence between measured
PERCLOS and estimated one.
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Figure 5.7: RMSE and HPD% metrics to evaluate the performance of the proposed encoding-decoding
framework. The average RMSE and average HPD percentage across different driving tests are 0.117 and
62.5%, respectively.

Figure 5.8: The average RMSE and HPD percentage in different PERCLOS intervals. This Figure
shows that the proposed method is performing better in higher values of PERCLOS that are more
important to detect the moderate and extreme levels of driver drowsiness.
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Table 5.3: EEG features that are consistently significant (p − value < 0.05) across all the 18 studied
driving tests. Overall, 28 features are selected by the encoder regardless of driving tests to encode the
PERCLOS dynamics. These features include skewness of Alpha (all EEG channels), Delta power (all
EEG channels), Theta power (all EEG channels except Cz and P08), Hjorth mobility of Delta (T8, P08,
and EOG channels).

Feature Channel Number
Skewness of Alpha Cz, Fz, T7, T8, C3, C4, P07, P08, EOG 9

Delta power Cz, Fz, T7, T8, C3, C4, P07, P08, EOG 9
Theta power Fz, T7, T8, C3, C4, P07, EOG 7

Hjorth Mobility of Delta T8, P08, EOG 3
– Sum 28

Figure 5.9: The average slope of the biomarkers in the driving tests. Delta and Theta powers of EEG
channels are positively correlated with PERCLOS in all of the driving tests.
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Figure 5.10 shows the relationships between biomarkers and PERCLOS in the driving tests.
According to this Figure, about 73% and 66% of the consistent Theta and Delta powers in
the driving tests are positively correlated with PERCLOS, respectively. On the other hand,
only 48.8% and 44.4% of the consistent skewness of Alpha and Hjorth mobility of are positively
correlated with PERCLOS. Therefore, discovered biomarkers makes a “push-pull mechanism”
to estimate the driver drowsiness. In this mechanism, one group of biomarkers that includes
Theta and Delta powers are increasing with increasing the level of drowsiness (pushing part of
the mechanism), whereas another group of biomarkers that consists of skewness of Alpha and
Hjorth mobility of Delta are decreasing with increasing the drowsiness level (pulling part of the
mechanism). The interactions between these two parts of the mechanism obtains a satisfying
estimation of driver drowsiness associated with the PERCLOS data.

5.6 Discussion

In this research, a new modeling framework using neural activities is developed to provide an
instantaneous estimation of the PERCLOS as a widely used estimation of driver drowsiness.
The PERCLOS is being considered as a robust correlate of driver drowsiness which is widely
studied to assess driver’s performance in the different vigilance states [220]. The proposed
framework is derived from extensive work in the neuroscience domain where the question was
finding the relationship between cognitive state and neural correlates [221]. The framework has
two steps: encoder and decoder. When each of these steps is built through a sequential process,
the dynamical estimation of PERCLOS is achieved as a function of the selected number of neural
features. One of the advantages of this method compared to previously developed methods is
that a posterior distribution of PERCLOS at every time point is provided which is a fairly
complete measure of PERCLOS. Through this measure, other metrics can be provided to assess
the progression of a driver’s drowsiness and anticipate the time that the driver can be in a
dangerous level of driver drowsiness or even decide about whether the driver drowsiness level
is higher above one specific predefined level or not (a predefined threshold might be used to
trigger appropriate action or warning). Another advantage of this model is real-time estimation
of driver drowsiness that can reduce the risk of accidents caused by drowsy driving.

The principal output of this approach is finding the neural biomarkers for driver drowsiness
which has not been extensively studied in the previous works as those works were classifying
driver drowsiness as a black-box model [222, 223, 224].

Despite promising results of this method, more research should be conducted to enhance the
performance of this method. Some of the challenges that need to be addressed are as follows:

1. Producing a personalized model is possible by including more EEG channels but there
is a trade-off between the utility of the device and the number of EEG channels. More
physiological information such as ECG and heart rate variability data [38, 39] can be
utilized to enhance the model performance rather than increasing the number of the EEG
channels.

2. Although the proposed method provides a solution to find neural biomarkers, only the
fluctuation of nodal frames are studied while more advanced techniques are studying net-
work global dynamics [225]. Employing other features that are presenting the network
global dynamics of brain activities like coherence, correlation and mutual information
between different EEG channels [226, 227, 228] might improve the performance of the
framework. It should be noted that the proposed framework is flexible enough to incorpo-
rate those features into our model but the question is which one of them are informative
to estimate the driver drowsiness. The proposed framework can also be helpful to select
the informative features.

99



(a)

(b)

(c)

(d)

Figure 5.10: Slope signs of the biomarkers in different driving tests that are statistically significant.
According to these results, discovered biomarkers make a ‘push-pull mechanism’ to estimate the driver
drowsiness. 100



3. This chapter discussed the estimation or decoding capability of the proposed framework
but another important application of this method is its prediction capability where the
level of drowsiness can be predicted based on the current and previous neural activities.
This capability requires to use of a more accurate state transition process that is tuned
for every individual driver.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, the problem of driver drowsiness estimation and classification using data fusion of
three different data sources was addressed. Three data sources were (1) vehicle-based data, (2)
facial-based data, and (3) biosignals. The used data set was collected during the WACHSens
project from 92 participants that each one of them performed 4 different driving experiments:
rested-automated, rested-manual, fatigued-automated, and fatigued-manual. The ground truth
of drowsiness classification was obtained based on the video observations of the drowsiness signs
in the simulated driving tests.

One of the main contribution of this work was proposing a methodology using traditional
machine learning methods for data fusion that was explained in Chapter 3. Unlike the previous
works that mostly classified the drowsiness in two classes of alert and drowsy, the drowsiness
was classified here in three classes: alert, moderately drowsy, and extremely drowsy. These
three classes provided a better resolution for the progression in driver drowsiness and can help
to decrease the false alarm and detect the critical level of drowsiness in a proper time to prevent
drowsiness-related crashes. Different statistical features were extracted from every source of
the data and neighbourhood component analysis was employed to remove the redundant or
irrelevant features. Two different broadly used classifiers including K-nearest neighbours and
random forest were used to classify the drowsiness. Results showed that this method achieved
the balanced accuracy of about 83% and 75% for drowsiness classification in the manual and
automated driving modes, respectively. However, this method did not obtain satisfying perfor-
mance for classification using only ECG signals because the ECG-based features were extracted
from heart rate variability data based on the R-peak detection algorithm however the ECG
signals have more sub-waves such as P and T waves that can carry important information
regarding the driver drowsiness that was ignored in Chapter 3.

In order to improve the drowsiness classification based on the ECG signal, a deep learning
method was proposed in Chapter 4. In this Chapter, two deep convolutional neural networks
were built where the Bayesian optimization method was employed to achieve the optimal hy-
perparameter combination that provides the best performance among others. The input data
of these networks were the grayscale wavelet scalogram images extracted from ECG and eye-
lid signals using the Morse wavelet. Therefore, two types of scalogram images were obtained:
eyelid-based and ECG-based. Each one of these types was separately used as input data to the
one deep neural network. The weight regularization and dropout layers were used to avoid the
overfitting issue during the training process. The batch normalization layers were also placed
in the architecture of the deep network to speed up the training process. An ensemble learning
method based on the soft voting algorithm was also applied to the outputs of the deep networks
on the test data set. Results showed that the deep learning method can significantly outper-
form the traditional machine learning methods trained by the ECG-based features. According
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to the results, the balanced accuracy of the deep convolutional neural network trained by ECG
scalogram images was about 81% and 80% in the manual and automated modes, respectively.
While these accuracies were about 54% in both of the manual and automated modes for the
traditional machine learning methods used in Chapter 3.

In Chapter 5, a neural encoder-decoder modeling framework was proposed to estimate the
driver drowsiness using EEG and EOG channels. In this Chapter, the PERCLOS was used as
the ground truth for driver drowsiness and the Bayesian filter was estimate PERCLOS using
selected EEG features. In the encoder part of the framework, the EEG features that showed
significant correlation to the PERCLOS were selected to be used as the input to the Bayesian
filter that estimated the actual PERCLOS values. Moreover, this framework could obtain a set
of neural features that were significant in all of the driving tests. These EEG features can be
helpful to decrease the computational load of the EEG processing methods for driver drowsiness
detection.

6.2 Future Work

In order to improve the performance and reliability of the proposed methods in this thesis, the
following tasks are suggested:

1. In the driving tests performed in the WACHSens project, drivers were aware of the mode
of the driving test (manual or automated) before starting the test. In future research,
different test procedures that are more similar to real-world automated driving situations
can be investigated. Some control transition from an automated system to the driver can
be implemented in the test procedure to study the value of the reaction time in the drivers
in different levels of drowsiness of sleep deprivation.

2. An alert system can be designed in future research to warn the driver based on the
proposed classification methods in this thesis. The acceptability of this system should be
investigated during the simulated driving tests.

3. Deep transfer learning can be used to design a personalized driver drowsiness detection
system based on the proposed generic model in this thesis. This method will help to
reduce the amount of data needed to design a personalized system.
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W. T. McNicholas, M. Partinen, J. Téran-Santos, P. Peigneux, L. Grote, and National
Representatives as Study Collaborators, “Sleepiness at the wheel across europe: a survey
of 19 countries,” Journal of Sleep Research, vol. 24, no. 3, pp. 242–253, 2015. [Online].
Available: https://onlinelibrary.wiley.com/doi/full/10.1111/jsr.12267

[8] T. Inagaki and T. B. Sheridan, “A critique of the sae conditional driving automation
definition, and analyses of options for improvement,” Cognition, Technology & Work,
vol. 21, no. 4, pp. 569–578, 2019. [Online]. Available: https://link.springer.com/article/10.
1007/s10111-018-0471-5

[9] A. Shahid, K. Wilkinson, S. Marcu, and C. M. Shapiro, “Karolinska sleepiness scale
(kss),” in STOP, THAT and one hundred other sleep scales, A. Shahid, Ed. New York:
Springer, 2012, pp. 209–210. [Online]. Available: https://link.springer.com/chapter/10.
1007/978-1-4419-9893-4 47

104

https://doi.org/10.3390/s17091991
https://aaafoundation.org/2019-traffic-safety-culture-index/
https://aaafoundation.org/2019-traffic-safety-culture-index/
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812603
http://www.sciencedirect.com/science/article/pii/S1350453313001690
http://www.sciencedirect.com/science/article/pii/S1350453313001690
https://www.fraunhofer.de/en/press/research-news/2010/10/eye-tracker-driver-drowsiness.html
https://www.fraunhofer.de/en/press/research-news/2010/10/eye-tracker-driver-drowsiness.html
https://onlinelibrary.wiley.com/doi/full/10.1111/jsr.12267
https://link.springer.com/article/10.1007/s10111-018-0471-5
https://link.springer.com/article/10.1007/s10111-018-0471-5
https://link.springer.com/chapter/10.1007/978-1-4419-9893-4_47
https://link.springer.com/chapter/10.1007/978-1-4419-9893-4_47


[10] G. R. Poudel, C. R. H. Innes, and R. D. Jones, “Distinct neural correlates
of time-on-task and transient errors during a visuomotor tracking task after
sleep restriction,” NeuroImage, vol. 77, pp. 105–113, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1053811913003042?via%3Dihub

[11] K. Kaida, M. Takahashi, T. Akerstedt, A. Nakata, Y. Otsuka, T. Haratani, and
K. Fukasawa, “Validation of the karolinska sleepiness scale against performance and
eeg variables,” Clinical neurophysiology : official journal of the International Federation
of Clinical Neurophysiology, vol. 117, no. 7, pp. 1574–1581, 2006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1388245706001428

[12] Z. Li, S. E. Li, R. Li, B. Cheng, and J. Shi, “Online detection of driver fatigue using
steering wheel angles for real driving conditions,” Sensors (Basel, Switzerland), vol. 17,
no. 3, 2017. [Online]. Available: https://www.mdpi.com/1424-8220/17/3/495

[13] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using
approximate entropy and sample entropy,” American journal of physiology. Heart
and circulatory physiology, vol. 278, no. 6, pp. H2039–49, 2000. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/10843903/

[14] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time
series,” in Proceedings of the 3rd International Conference on Knowledge Discovery and
Data Mining, ser. AAAIWS’94. AAAI Press, 1994, pp. 359–370. [Online]. Available:
https://dl.acm.org/doi/10.5555/3000850.3000887

[15] Meng Chai, shi-wu Li, wen-cai Sun, meng-zhu Guo, and meng-yuan Huang,
“Drowsiness monitoring based on steering wheel status,” Transportation Research
Part D: Transport and Environment, vol. 66, pp. 95–103, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1361920917306582

[16] F. Friedrichs and B. Yang, “Drowsiness monitoring by steering and lane data based features
under real driving conditions,” in 2010 18th European Signal Processing Conference, 2010,
pp. 209–213. [Online]. Available: https://ieeexplore.ieee.org/document/7096521

[17] J. C. Bezdek, S. K. Chuah, and D. Leep, “Generalized k-nearest neighbor rules,”
Fuzzy Sets and Systems, vol. 18, no. 3, pp. 237–256, 1986. [Online]. Available:
https://doi.org/10.1016/0165-0114(86)90004-7

[18] D. Reynolds, “Gaussian mixture models,” in Encyclopedia of biometrics, S. Z. Li and
A. K. Jain, Eds. New York and London: Springer, 2009, pp. 659–663. [Online]. Available:
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-73003-5 196

[19] A. J. Izenman, “Linear discriminant analysis,” in Modern multivariate statistical techniques,
ser. Springer Texts in Statistics, A. J. Izenman, Ed. New York: Springer, 2008, pp. 237–280.
[Online]. Available: https://link.springer.com/chapter/10.1007%2F978-0-387-78189-1 8

[20] Daniel Berrar, Bayes’ theorem and naive Bayes classifier. Amsterdam, Netherlands:
Elsevier, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780128096338204731?via%3Dihub

105

https://www.sciencedirect.com/science/article/pii/S1053811913003042?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1388245706001428
https://www.mdpi.com/1424-8220/17/3/495
https://pubmed.ncbi.nlm.nih.gov/10843903/
https://dl.acm.org/doi/10.5555/3000850.3000887
http://www.sciencedirect.com/science/article/pii/S1361920917306582
https://ieeexplore.ieee.org/document/7096521
https://doi.org/10.1016/0165-0114(86)90004-7
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-73003-5_196
https://link.springer.com/chapter/10.1007%2F978-0-387-78189-1_8
https://www.sciencedirect.com/science/article/pii/B9780128096338204731?via%3Dihub
https://www.sciencedirect.com/science/article/pii/B9780128096338204731?via%3Dihub


[21] D. Ververidis and C. Kotropoulos, Eds., Emotional Speech Classification Using Gaussian
Mixture Models and the Sequential Floating Forward Selection Algorithm. IEEE, 2005.
[Online]. Available: https://ieeexplore.ieee.org/document/1521717

[22] Xuesong Wang and Chuan Xu, “Driver drowsiness detection based on non-intrusive metrics
considering individual specifics,” Accident Analysis & Prevention, vol. 95, pp. 350–357, 2016.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0001457515300609

[23] Anthony D. McDonald, John D. Lee, Chris Schwarz, and Timothy L. Brown,
“A contextual and temporal algorithm for driver drowsiness detection,” Accident
Analysis & Prevention, vol. 113, pp. 25–37, 2018. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0001457518300058

[24] Z. Ghahramani, “Learning dynamic bayesian networks,” in Adaptive processing of
sequences and data structures, ser. Lecture notes in computer science, Lecture
notes in artificial intelligence 0302-9743, C. L. Giles and M. Gori, Eds. Berlin
and London: Springer, 1998, vol. 1387, pp. 168–197. [Online]. Available: https:
//link.springer.com/chapter/10.1007/BFb0053999

[25] G. Biau and E. Scornet, “A random forest guided tour,” TEST, vol. 25, no. 2, pp. 197–227,
2016. [Online]. Available: https://doi.org/10.1007/s11749-016-0481-7

[26] Y. Sun, J. Li, J. Liu, B. Sun, and C. Chow, “An improvement of symbolic
aggregate approximation distance measure for time series,” Neurocomputing, vol. 138,
pp. 189–198, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231214002872

[27] Anthony D. McDonald, John D. Lee, Chris Schwarz, and Timothy L. Brown,
“Steering in a random forest: Ensemble learning for detecting drowsiness-related lane
departures,” Human Factors, vol. 56, no. 5, pp. 986–998, 2014. [Online]. Available:
https://doi.org/10.1177/0018720813515272

[28] Walter W. Wierwille and Lynne A. Ellsworth, “Evaluation of driver drowsiness by trained
raters,” Accident Analysis & Prevention, vol. 26, no. 5, pp. 571–581, 1994. [Online].
Available: https://doi.org/10.1016/0001-4575(94)90019-1

[29] J. Krajewski, D. Sommer, U. Trutschel, D. Edwards, and M. Golz, “Steering wheel
behavior based estimation of fatigue,” in Proceedings of the 5th International Driving
Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design :
Driving Assessment 2009. Iowa City, Iowa: University of Iowa, 2009, pp. 118–124.
[Online]. Available: https://ir.uiowa.edu/drivingassessment/2009/papers/18/

[30] M. Ingre, T. Akerstedt, B. Peters, A. Anund, and G. Kecklund, “Subjective sleepiness,
simulated driving performance and blink duration: examining individual differences,”
Journal of Sleep Research, vol. 15, no. 1, pp. 47–53, 2006. [Online]. Available:
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2869.2006.00504.x
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[40] N. Rodŕıgue-Ibáñez, M. A. Garćıa-González, M. Fernández-Chimeno, and J. Ramos-Castro,
“Drowsiness detection by thoracic effort signal analysis in real driving environments,” An-
nual International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society. Annual International Conference, vol.
2011, pp. 6055–6058, 2011.

[41] S.-J. Jung, H.-S. Shin, and W.-Y. Chung, “Driver fatigue and drowsiness monitoring sys-
tem with embedded electrocardiogram sensor on steering wheel,” IET Intelligent Transport
Systems, vol. 8, no. 1, pp. 43–50, 2014.

107

https://www.sciencedirect.com/science/article/pii/S104727971730515X?via%3Dihub
https://www.aging-us.com/article/101386/text
https://ieeexplore.ieee.org/document/4749240
http://www.sciencedirect.com/science/article/pii/S0957417410013916
http://www.sciencedirect.com/science/article/pii/S0957417410013916
https://iopscience.iop.org/article/10.1088/1742-6596/1153/1/012047
https://link.springer.com/chapter/10.1007%2F978-981-10-5122-7_38
https://ieeexplore.ieee.org/document/8520803


[42] G. Li and W.-Y. Chung, “Detection of driver drowsiness using wavelet analysis
of heart rate variability and a support vector machine classifier,” Sensors (Basel,
Switzerland), vol. 13, no. 12, pp. 16 494–16 511, 2013. [Online]. Available: https:
//www.mdpi.com/1424-8220/13/12/16494

[43] M. H. Zweig and G. Campbell, “Receiver-operating characteristic (roc) plots: a fundamental
evaluation tool in clinical medicine,” Clinical Chemistry, vol. 39, no. 4, pp. 561–577, 1993.

[44] S. Bersimis, S. Psarakis, and J. Panaretos, “Multivariate statistical process control charts:
an overview,” Quality and Reliability Engineering International, vol. 23, no. 5, pp. 517–543,
2007.

[45] Ruben Buendia, Fabio Forcolin, Johan Karlsson, Bengt Arne Sjöqvist, Anna Anund, and
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[172] Arnaud Sors, Stéphane Bonnet, Sébastien Mirek, Laurent Vercueil, and Jean-François
Payen, “A convolutional neural network for sleep stage scoring from raw single-channel
eeg,” Biomedical Signal Processing and Control, vol. 42, pp. 107–114, 2018. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1746809417302847

[173] Muammer Turkoglu, Omer F. Alcin, Muzaffer Aslan, Adel Al-Zebari, and Abdulkadir
Sengur, “Deep rhythm and long short term memory-based drowsiness detection,”
Biomedical Signal Processing and Control, vol. 65, p. 102364, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1746809420304729

[174] M. Jogin, Mohana, M. S. Madhulika, G. D. Divya, R. K. Meghana, and S. Apoorva, “Fea-
ture extraction using convolution neural networks (cnn) and deep learning,” in 2018 3rd
IEEE International Conference on Recent Trends in Electronics, Information & Commu-
nication Technology (RTEICT). [Piscataway, NJ]: IEEE, 2018, pp. 2319–2323.

[175] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classifica-
tion with convolutional neural network,” in 2014 13th International Conference on Control
Automation Robotics Vision (ICARCV), 2014, pp. 844–848.

[176] M. Mario, “Human activity recognition based on single sensor square hv acceleration
images and convolutional neural networks,” IEEE Sensors Journal, vol. 19, no. 4, pp.
1487–1498, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8543606

[177] S. Park, Y. Jeong, and H. S. Kim, “Multiresolution cnn for reverberant speech recogni-
tion,” in 2017 20th Conference of the Oriental Chapter of the International Coordinating
Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA),
2017, pp. 1–4.

[178] Y. Wang, Y. Li, Y. Song, and X. Rong, “The influence of the activation function in a con-
volution neural network model of facial expression recognition,” Applied Sciences, vol. 10,
no. 5, p. 1897, 2020.

[179] Jinjiang Wang, Yulin Ma, Laibin Zhang, Robert X. Gao, and Dazhong Wu,
“Deep learning for smart manufacturing: Methods and applications,” Journal of
Manufacturing Systems, vol. 48, pp. 144–156, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0278612518300037

[180] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, F. Bach and
D. Blei, Eds., vol. 37. Lille, France: PMLR, 2015, pp. 448–456. [Online]. Available:
http://proceedings.mlr.press/v37/ioffe15.html

[181] Y. Huang and Y. Yu, Eds., An Internal Covariate Shift Bounding Algorithm
for Deep Neural Networks by Unitizing Layers’ Outputs, 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9156986

118

https://www.sciencedirect.com/science/article/pii/S1746809417302847
https://www.sciencedirect.com/science/article/pii/S1746809420304729
https://ieeexplore.ieee.org/document/8543606
https://www.sciencedirect.com/science/article/pii/S0278612518300037
https://www.sciencedirect.com/science/article/pii/S0278612518300037
http://proceedings.mlr.press/v37/ioffe15.html
https://ieeexplore.ieee.org/document/9156986
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