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Abstract: This study aims to reflect on a list of libraries providing decision support to AI models. The
goal is to assist in finding suitable libraries that support visual explainability and interpretability of
the output of their AI model. Especially in sensitive application areas, such as medicine, this is crucial
for understanding the decision-making process and for a safe application. Therefore, we use a glioma
classification model’s reasoning as an underlying case. We present a comparison of 11 identified
Python libraries that provide an addition to the better known SHAP and LIME libraries for visualizing
explainability. The libraries are selected based on certain attributes, such as being implemented in
Python, supporting visual analysis, thorough documentation, and active maintenance. We showcase
and compare four libraries for global interpretations (ELI5, Dalex, InterpretML, and SHAP) and
three libraries for local interpretations (Lime, Dalex, and InterpretML). As use case, we process a
combination of openly available data sets on glioma for the task of studying feature importance when
classifying the grade II, III, and IV brain tumor subtypes glioblastoma multiforme (GBM), anaplastic
astrocytoma (AASTR), and oligodendroglioma (ODG), out of 1276 samples and 252 attributes. The
exemplified model confirms known variations and studying local explainability contributes to
revealing less known variations as putative biomarkers. The full comparison spreadsheet and
implementation examples can be found in the appendix.

Keywords: explainable artificial intelligence; visualisation; SHAP; feature importance; Python; glioma

1. Introduction

In recent years, extensive benefits to different application areas have been offered due
to successfully applying machine learning (ML) algorithms. In particular, the success of
deep learning (DL) approaches are transforming the way we approach real-world tasks
performed by humans. ML and DL establish artificial intelligence (AI) models which can be
applied in many different fields of research such as healthcare [1], cancer classification [2–4],
autonomous robots and vehicles [5], image processing [6], manufacturing, and many
more [7–10], thus enhancing and providing various benefits in the corresponding fields.
Moreover, these models resulting from ML are suitable for performing different tasks, such
as recommendation, ranking, forecasting, classification, or clustering. The variety and
the nature of these approaches make them complex to understand and interpret. In the
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literature, AI models are generally known as black-box, particularly if they result from ML
or DL [11]. The opaqueness of such models has negative effects on user acceptance [12].
It also limits the application in sensitive cases such as medicine, finance, or law, where
explanations are crucial for users to understand and interpret results in order to effectively
manage and use the underlying algorithms [11,13]. From the legal perspective, most
applications of AI in medicine are defined as high-risk use cases of AI according to the legal
framework for regulating the use of AI proposed by the European Commission (European
Commission, 2021). In case of a high-risk application it is required to provide transparency
and clear and comprehensible information about the system and its decisions to the user.
Such explanations are also dictated by the European General Data Protection Regulation,
but also by Californian law (Title 1.81.8. Automated Decision Systems Accountability
Act of 2020). Traditionally, software validation or IT auditing is applied in order to fulfill
the legal and, in many cases, compliance requirements. However, due to the black-box
characteristic resulting from ML and DL, traditional approaches are no longer sufficient,
and new guidelines and approaches are needed [14]. In this regard, Explainable Artificial
Intelligence (xAI) is proposed as a technical solution, and the first successful validations are
already performed in sensitive areas such as pharmaceutical production [15]. In addition,
xAI can also increase user acceptance, and the application rate of these models [12]. Thus,
xAI approaches seem promising to handle this challenge from a technical perspective.

xAI approaches aim to extract knowledge of what the AI algorithm learned during
training and how the decision for particular or new instances are generated during the
prediction process. xAI mainly focuses on two methods to provide an explanation at a
different level of detail: local and global explainability. Local explainability aims to explain
particular prediction output, e.g., prediction of single instances. We find many different
techniques focusing on local explainability in the xAI literature [16,17]. On the other hand,
the goal of global explainability is to explain the overall model behavior, rather than a
particular instance. Global methods are extensively applied in different domains, such as
health care [18,19], manufacturing [20], administration of justice [21], or biomedical sci-
ence [22]. These methods mainly rely on dimension reduction and visualization techniques
to provide an intuitive explanation to humans. Visualizing a process helps us understand
ML models and decision-making processes in a more intuitive way [23]. Moreover, visual
inspection is considered as an easy and fast way to recognize new knowledge while analyz-
ing complex processes [24]. As a result, visualization in the context of xAI is widely applied,
thus facilitating the interpretation process of black-box models [11,25,26]. Users benefit
from visual analytic (VA) systems for xAI [27]. Many of these methods are implemented
in Python or R and are openly available [17,28,29]. This helps researchers and, in general,
the data-driven community to use and enhance further state-of-the-art solutions. Some
existing methods have already been summarized [30–32]. However, a comparison of ease
of use regarding implementation, as well as details on visualization features, is missing.

In this paper, we report on a structured review to investigate the state of the art of
mature xAI libraries incorporating VA features. We analyzed the characteristics of xAI
libraries with respect to ease of installation and documentation. The comparison is use-case
driven: we compare and rank selected libraries regarding their VA capabilities for global
and local explainability in general. In particular, we explore different implementations of
lime and SHAP approaches and apply selected libraries for the use case of investigating
glioma classification based on several clinical and genetic variables. We thereby showcase
the applicability of xAI on and supporting the biomedical knowledge creation process.

1.1. Classification of Diffuse Glioma

Classification of glioma subtypes is important for therapy decisions and is based on
gene variations [33]. This list of central nervous system tumors has been introduced by the
World Health Organization and has been updated recently [34]. The community-driven
cancer classification platform Oncotree has been developed as clinical decision support
system for oncology research and precision medicine and allows for dynamic granular-
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ity [35]. For example, grading of diffuse gliomas (DIFG) is still an ongoing discussion and
momentarily defined by tumor nomenclature [36]. The process involves molecular and
histological features in order to revise risk stratification. Common molecular biomarkers
used for clinical classification of glioma include α-thalassemia/mental retardation syn-
drome X-linked (ATRX), isocitrate dehydrogenase 1 (IDH1), tumor protein p53 (TP53),
telomerase reverse transcriptase (TERT), and phosphatase and tensin homolog (PTEN) or
the epidermal growth factor receptor (EGFR) among others [34,37]. We have recently high-
lighted age-based differences in brain tumor diseases using an explainable classification
approach [22]. We now extend our studies to include several xAI methods for classifying
DIFGs.

1.2. Theoretical Background on xAI

xAI is defined for the first time in 2004 by Can Lent et al. [38] as a research field that
explains the behavior AI models in a more understandable way. However, focus on the
topic of xAI has been recently increasing [32] due to increased attention and improvements
around the topic of AI/ML across different fields. However, along with the high accuracy
results, a more human-centric explanation of the decision-making process of these models
is required. This leads the focus toward xAI in the current age. Furthermore, the increase in
complexity of ML models has lead to the requirement for developing algorithmic decision-
making such as fairness, accountability, and transparency (FAT) principles [39] which are
especially evident in highly regulated and mission-critical scenarios.

There are several perspectives on the explainability of an AI model (e.g., scope, stage,
problem type, etc.). The scope perspective regards the global and local view on model
explanations. AI models can be explained either at the global level or local level. Global
level interpretation is known as global interpretability in the literature [32], where the
entire model behavior is analyzed e.g., feature importance. Global level interpretability
summarizes the impact of input features on the model, as well as the model as a whole,
while the local interpretation is defined as local interpretability, and it aims to understand
the behavior of single predictions and decisions made by the model.

Another perspective on the explainability of an AI model is associated with the type
of AI model itself. Overall, two types of models exist, white-box and black-box models.
White-box models are made to be explainable by design, resulting in no requirement of
additional xAI methods for the model to be explainable. Contrarily, black-box models are
not explainable by design, so other techniques have to be applied to extract reasoning for
certain decisions and predictions.

In regard to xAI methods, a recent study [32] reviewed more than 200 scientific articles
that aimed to develop new methods for explainability. However, discussing these methods
and other xAI concepts falls outside of the scope of this paper. We encourage the reader to
consult the work discussed in [30–32] for more details about these concepts.

2. Materials and Methods
2.1. Dataset

Data on glioma samples were downloaded from cbioportal [40,41] with filtering
the 6 studies gbm_mayo_pdx_sarkaria_2019, gbm_tcga_pub2013, glioma_mskcc_2019,
lgg_tcga, lgg_ucsf_2014, and odg_msk_2017. Only data with the 7 attributes “Oncotree
Code”, “Mutation Count”, “Overall Survival (Months)”, “Overall Survival Status”, “Sex”,
“Somatic Status”, and “Diagnosis Age” were used. Sample rows without complete data
have been removed. Data were extended with gene mutation data of the top 246 mutated
genes within selected studies.

The top three diffuse glioma (DIFG) subtypes (Glioblastoma multiforme (GBM), Anaplas-
tic Astrocytoma (AASTR), and Oligodendroglioma (ODG)) were further selected and analyzed
within this work. We filtered and further processed data for model building comprising of
1276 sample rows with 253 columns out of the 5 studies gbm_mayo_pdx_sarkaria_2019,
gbm_tcga_pub2013, glioma_mskcc_2019, lgg_tcga, and lgg_ucsf_2014. The Oncotree Code
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was selected as the target and the other 252 data columns were selected as features, with
872 GBM sample rows, 234 AASTR sample rows, and 170 ODG sample rows. The data pre-
processing and model building can be found on https://github.com/mathabaws/SOTA_
xAI_Visual_analytics/blob/main/notebooks/diffuseglioma-dataset-processing.ipynb (ac-
cessed on 12 January 2022).

2.2. Implementation

We conducted a structured review with the goal of investigating current developments
and the state of the art xAI libraries focusing on model interpretation and visualization
techniques. State of the art means most up to date, publicly available, implemented
consistently with the requirement of current software technology, and following common
Python patterns. Moreover, this review aims to investigate various relevant aspects of
xAI libraries such as maturity level, documentation, supported programming languages,
models and different machine learning tasks, support for data types, etc. The structured
review closely follows the methodology for Structured Literature Review (SLR) from
Webster and Watson [42]. Additionally, we take necessary attributes for a software selection
process into account.

The initial set of available libraries was acquired through a search in GitHub. Key-
words and the type of the results are the two key limiting factors to guide the initial set of
results. For the first limiting factor, the keywords “explainable AI” and “interpretability”
were used. The second limiting factor was the type of results and this was set to “repository”
which excluded all the results with these keywords in, e.g., the code itself or discussions,
issues, commits, etc. Applying these limiting factors resulted in 57 results. To further
narrow down the results, three rules were developed for the initial scan of the libraries as
shown below:

1. Result has to be a repository of a Python library or a software package;
2. Result has to implement at least one xAI method;
3. Result has to be an overview repository (repository that provides an overview of

xAI libaries).

Supplementary source code together with the overview of library versions and de-
scriptions to recreate an exact development environment used for these experiments can
be found on GitHub at the following URL: https://github.com/mathabaws/SOTA_xAI_
Visual_analytics (accessed on 12 January 2022).

3. Results
3.1. Library Comparison on Glioma Subtype Classification

By using the processed data from the combined studies described in the materials
section, we trained a model to classify cancer subtypes by distinguishing between the
Oncotree codes GBM, AASTR, and ODG. These are the top three most frequent diffuse
glioma subtypes samples.

In general, 1020 training instances were used for training, and 256 for testing. Testing
data remained unbalanced representing a realistic scenario. Ten-fold cross-validation scored
a mean accuracy of 0.87 with a standard deviation of 0.02. The results of the trained model
are shown in Table 1.

Table 1. Predictive results using RF classifier.

Random Forest Classifier
Oncotree Code Precision Recall F1-Score Support

GBM 0.85 0.96 0.90 177
ODG 0.70 0.42 0.53 45

AASTR 0.90 0.79 0.84 34
macro avg 0.82 0.73 0.76 256

https://github.com/mathabaws/SOTA_xAI_Visual_analytics/blob/main/notebooks/diffuseglioma-dataset-processing.ipynb
https://github.com/mathabaws/SOTA_xAI_Visual_analytics/blob/main/notebooks/diffuseglioma-dataset-processing.ipynb
https://github.com/mathabaws/SOTA_xAI_Visual_analytics
https://github.com/mathabaws/SOTA_xAI_Visual_analytics
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In the next subsections, the Python libraries suitable for xAI and VA selected for in-
depth analysis are presented, including results from tests with the above described model.

3.2. Python Libraries for Explainability

Applying the method described in the previous section, 52 relevant repositories
were identified. Moreover, several overview repositories in the topic of xAI have been
identified. These overview repositories provided information on the libraries other than
ones identified through initial scan and were further used for backward and forward search.
Next, a process resembling abstract and conclusion scan was conducted to filter out the
libraries not focused on xAI and/or VA. In other words, documentation from repositories
and implementation of the libraries were scrutinized to identify their focus and scope. As
a result, 48 libraries were selected as relevant. These libraries were analyzed, interpreted,
and summarized in a concept-centric way [42]. Through an in-depth analysis, metadata
was collected, and core libraries and frameworks were identified for further exploration.
Figure 1 provides an overview of the process.

Figure 1. Overview of the review process.

As a first step, we drill down initial results described in the previous section to the most
important libraries aiming for xAI using visualization tools. The complete comparison table
can be found in Appendix A.1. We then defined structured rules that help us to identify
relevant libraries, which will be further analyzed and experimented. Firstly, we select
only those libraries that are implemented in Python and integrate visualization features to
communicate xAI results. Furthermore, chosen libraries are able to explain classification
models. Last but not least, these libraries are open source, provide good documentation,
and support tabular data.

After filtering, we identified 11 relevant libraries. Selected libraries based on the
aforementioned rules are listed in Table 2. We excluded 6 of the 11 identified libraries as
missing criteria were revealed during the in-depth inspection. The remaining relevant
libraries were grouped into three different groups: libraries aiming for global explainability
in general, libraries focusing on local explanation, and, in particular, libraries which support
Lime and SHAP approaches. In the first group, the following libraries are selected: ELI5 [43],
Dalex [29], InterpretML [28], and SHAP [17]. In the second group, i.e., local explainability,
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Lime and SHAP approaches are explored in more detail. Three different libraries focusing
on Lime are analyzed: Lime [16], Dalex [29], and InterpretML. Finally, three different
libraries focusing on SHAP approaches are analyzed in detail: InterpretML, Dalex, and
SHAP. The selected libraries are analyzed and compared within the groups and the results
are shown in the sections below. The complete overview table can be found on the GitHub
repository (Appendix A.2). All experiments concerning the analyzed libraries in depth are
conducted using a notebook with the following characteristics: Lenovo ThinkPad L470,
Intel(R) Core(TM) 2.70GHz - 2.90GHz, 16 GB RAM, Windows 10.

Table 2. Summary containing library names and analyzed properties.

Library Name Type of Explanation Regression Text Images Distributed Licence

AI Explainability
360 (AIX360) Local and Global No No Yes No Apache 2.0

Alibi Global explanation Yes No No No Apache 2.0

Captum Local and Global Yes Yes Yes Yes BSD 3-Clause

Dalex Local and Global Yes No No No GPL v3.0

Eli5 Local and Global Yes Yes Yes No MIT License

explainX Local and Global Yes No No No MIT License

LIME Local and Global No Yes Yes - BSD 2-Clause “Simplified” License

InterpretML Local and Global Yes No No - MIT License

SHAP Local and Global Yes Yes Yes - MIT License

TensorWatch Local explanation Yes Yes Yes - MIT License

tf-explain Local explanation Yes Yes Yes - MIT License

3.3. Global Explainability

Several libraries were identified with implementation of different feature importance
methods. These are methods that rely on assigning a score to input features based on the
predictive performance they add to the model. We are starting this overview with the focus
on (1) methods for global explainability of the model and (2) methods that use visualization
to communicate the explainability results. During the in-depth analysis, four libraries were
identified to contain feature importance visualizations, namely ELI5, Dalex, InterpretML,
and SHAP.

ELI5 focuses on feature selection with the implementation of permutation importance.
It enables extraction and visualization of feature weights and their contribution from
the model as a form of global explanations. Visualizations are based on the list view
of the features and their weights in a tabular form. The gradient of green and red color
indicates the positive or negative impact on the model decisions, and there are no interactive
options. Figure 2 depicts feature importance visualization implemented in the ELI5 library.
Furthermore, model inspection on the prediction level is supported, which uses similar
visualization with weights adding up to either probability of a class in classification models
or predicted value in case of regression models.

Dalex implements a method called variable importance which provides global ex-
planations of a model based on Permutational Variable Importance [44]. Each variable is
randomly shuffled in this method, and the model is inspected for its predictive performance.
Intuitively, more important features impact the model performance more than the less
important features. Finally, after 10 permutation rounds for each feature, visualization is
created, showing the impact of each feature on the model. Such visualization provided by
the Dalex library is depicted in Figure 3. Furthermore, the Dalex library provides a simple
interactive overview during the mouse hovering over the visualization. This interactive
window quantifies their influence on the model and provides additional information. The
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Dalex library also provides the option to tune the hyperparameters, such as a number of
permutation rounds and various thresholds, and enables grouping of the features.

Figure 2. Visualization of feature weights and their impact to the model in the ELI5 library.

Figure 3. Visualization of permutational variable importance in the Dalex library.

The SHAP library provides the opportunity to analyze the model at the global level.
This method helps to interpret the model by estimating feature importance altogether
with feature effects on prediction with respect to raw data (as shown in Figure 4). The
importance of features is shown along the x-axis, with important features listed at the
top. For each feature, the contribution towards the specific classes is shown using the
corresponding color, as shown in Figure 4a. Furthermore, SHAP provides the opportunity
to conduct global interpretation for specific classes as shown in Figure 4b. In this case, the
contribution of specific features is shown along x-Axis, where the contribution can be either
positive (contributed toward prediction of this class) or negative. Each data point stacked
vertically within this visualization represents the contribution for a specific instance. The
color gradient encodes the raw values, blue representing the lowest and red the highest
value.
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Figure 4. (a) Visualization of the impact of different variables in the global model performance in the
SHAP library (b) Visualization (summary ploy) that combines feature importance with feature effects
for a specific class (class “GBM” in this case).

As mentioned in Section 3.1, InterpretML is focused on navigation through different
views and interactive application of different methods. One of the methods that is provided
by the library is the overall importance. Overall importance presents the global feature
importance of the model. InterpretML makes the distinction of algorithms that are applied
in two different model types. These are glassbox models and black-box explainers. To be
able to apply and extract global feature importance, a glassbox model needs to be trained.
These models are structured for direct interpretability, contrary to the black-box models that
provide approximations of explanations. This introduces additional overhead in utilizing
InterpretML for model explainability, as an additional model had to be trained to extract
important features of the model. An example of such feature importance visualization
provided by InterpretML is depicted in Figure 5. Based on the popular visualization library
Plotly [45], InterpretML allows simple interaction with the visualization (e.g., zoom-in,
selection, export to image format, etc.).

Summarizing libraries for global explanation analysis, in terms of computational load,
ELI5 provides the most lightweight solution for feature inspection. A simple and unified
application programming interface enables a virtually instant overview of the features.
On the contrary, all other remaining libraries require some degree of further processing to
provide global explainability information. In the context of tabular data, the only supported
visualization in ELI5 is a table overview with a gradient of green and red color encoding
to indicate the importance of a feature in model predictions. The SHAP library provides
more variety in terms of visualization with the implementation of bar chart and summary
plot, which combines feature importance with feature effects. In regard to interactivity,
visualizations provided by SHAP in the context of global importance are static and do
not provide any further interactive features. Furthermore, in comparison to ELI5, SHAP
requires an additional computational load that comes with the calculation of shap values.
The Dalex library implements additional interactivity features in the model-level variable
importance calculation. Visualization implemented in Dalex contains a list of features and
their impact on predictions, with additional information provided upon the selection of
a feature, which proved particularly useful when inspecting models with large numbers
of features. However, this interactivity comes with additional computational load, which
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was significant in comparison with other libraries. Calculation of the feature importance
for the previously developed model took from 1.5 to 5 min, depending on the number of
permutation rounds for each feature. Finally, InterpretML provided the most interactivity
out of all previously described libraries. Invoking global explanation functions provided
a menu system alongside visualizations to investigate feature importance and their inter-
action. Each visualization enabled extensive inspection through zoom, select, lasso, and
export functionality. Despite this interactivity, limitations of InterpretML library are due to
the requirement of using built-in GlassBox models such as ExplainableBoostingClassifier.
Although showing comparable performance, this restriction to built-in models is quite
significant. Furthermore, the additional computation overhead of training an additional
model should not be overlooked. Overall, from the perspective of global explainability,
all identified libraries provide useful insight into the model behavior, and each comes
with its merits and limits from the perspective of visualization options, interactivity, and
computational overhead.

Figure 5. Visualization of overview of feature importance provided by InterpretML.

3.4. Local Explainability

Models that produce accurate predictions and, at the same time, can explain such
predictions are crucial. Researchers often generate global explanations, which try to explain
predictions of black-box learning algorithms. However, such a global explanation cannot
clarify the prediction of every single instance in the model. Local explainability focuses on
gaining the user’s trust for individual predictions and then trusting the model as a whole.
Interpretation should make sense from the point of view of individual prediction. Globally
important features may not be important locally and vice versa. In this case, the aim is to
understand model decisions with respect to local context rather than the global behavior of
the model.

There are several solutions mentioned in this paper and in this section; we will focus
on the local explanations and two most relevant Python libraries, SHAP (SHapley Additive
exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations) [16], identified
by the selection rule mentioned in the previous section.
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3.4.1. Local Explainability with SHAP

We identified three different libraries that fit to the selection rule of the most relevant
libraries which are implementations of the SHAP approach: InterpretML [28], Dalex [29],
and SHAP [17]. Consequently, we compared and analyzed these libraries showing the state-
of-the-art in the topic of SHAP values aiming for the interpretation of black-box models.

Dalex (shown in Figure 6) offers basic interaction such as hovering over the visual-
ization. This provides an opportunity to navigate through the results easily. Moreover, it
provides the option to download the chart directly from generated visualization.

SHAP offers various visualization such as waterfall graphs for global analysis and
force plots for local analysis. We specifically compared local interpretation based on the
force plot shown in Figures 7 and 8. SHAP provides many alternatives to interpret black-
box behaviors, such as the force plot of a single prediction shown in Figure 7, which
is a static visualization. Additionally, in Figure 8 a grouped analysis of all predicted
instances is shown, where the single instances are stacked over the x-axis. This interactive
visualization provides the opportunity to select a method (e.g., ordered by similarity) to
order the instances over the x-axis group the results using the drop-down menu on the
top of the chart over the x-axis. Moreover, on the y-axis, the drop-down menu offers the
option to select the feature which the user wants to analyze. Moreover, hovering over the
chart highlights different details, thus increasing the level of information provided from
this approach.

Figure 6. Visual explanation of black-box prediction results using the Dalex library. In this case, an
exemplary local view of class GBM is detailed.

Figure 7. Local visual explanation of black-box prediction results (exemplary instance of class GBM)
using the SHAP library.

In contrast, InterpretML provides an opportunity to navigate through different in-
stances using a drop-down menu, presented in Figure 9. The estimated SHAP results
for the specific instance are shown automatically by selecting a particular instance. This
provides an opportunity to navigate through different instances, having a better overview
of the results and the possibility to compare the output of different instances faster. In
particular, information such as the predicted class, actual class, and residual error for each
instance is shown in the drop-down menu, as well as in the main window. This provides
an opportunity to compare similar instances based on predicted class, actual class, or the
residual error, thus showing an opportunity to understand a model’s class prediction more
comprehensively. Moreover, interactions such as zoom in, zoom out, pan, select, and
download are supported. However, InterpretML supports only KernelSHAP methods.
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Figure 8. Grouped based analysis of instance prediction. Local visual explanation of black-box
prediction results using the SHAP library. In the x-axis, the local explanation results of every instance
are stacked. The y-axis shows the contribution to prediction and the option to select the feature that
will be explored for every instance in terms of SHAP contribution.

Figure 9. Black-box model interpretation using InterpretML. In this case, an exemplary local view of
class GBM is explored in detail.

Although InterpretML provides multiple interaction possibilities to explore the black-box
model, it still presents the highest computation overload. InterpretML takes approximately
95.4 s modeling time per instance and 0.73 s visualization time per instance. SHAP requires
21.2 s modeling time and approximately 0.15 s visualization time for single instances charts
and 1.03 s for grouped instances plots. Finally, Dalex needs fewer computation resources with
around 0.143 s modeling time and 1 m and 49 s visualization time.

3.4.2. Local Explainability with LIME

LIME (Local Interpretable Model-Agnostic Explanations) is a popular technique that
tries to explain the predictions of any classifier by learning an interpretable model locally
around the prediction. The key idea behind LIME is that it is easier to approximate a
black-box model by a simple model locally. The Lime library can explain any black-box
classifier with two or more classes. The visualization output of the LIME library is a
list of explanations, reflecting the contribution of each feature to the instance prediction
(Figure 10a). Visualization provides local explainability and helps to investigate which
feature changes will have the most impact on the instance prediction.
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Figure 10. Local visual explanation of black-box prediction results using LIME library—exemplary
instance prediction of class (a) GBM and (b) ODG.

Figure 10a,b show instance explanations of LIME. These figures provide explanations
for an instance prediction on the class of GBM or ODG, respectively. There are three parts
of LIME visualization: a class description with an accurate prediction for each class, a
plot showing the impact of features, and a table with actual values in the instance. The
left-most section displays prediction probabilities. For the multi-class classification task,
we have three colors, blue (GBM), orange (AASTR), and green (ODG). The middle section
returns the most important features. The impact of features helps the user to understand
which features values are supporting class prediction positively (right side) and which
features values are not supporting prediction (left side). If we take Figure 10a as an example,
features are represented in two colors: blue and light sea-green. The blue bars indicate
supporting (positive) scores towards an instance being predicted as GBM, while the light
sea-green bar indicates contradicting (negative) scores towards its prediction. Float point
numbers on the horizontal bars represent the relative importance of these features. We can
see in Figure 10a that the highest positive influence have genes CIC, BCL6, PKD1L1, and
ATRX.

Similar to the SHAP approach, besides LIME, InterpretML and Dalex are the most rele-
vant libraries that implement the LIME approach, based on our selection rule. The libraries
Dalex and InterpretML were already mentioned and explained in previous sections. The
resulting plot for Dalex is shown in Figure 11. The Figure shows an explanation for instance
predicted as class GBM. The length of the bar indicates the magnitude, while the color
indicates the sign (red for negative, green for positive) of the estimated coefficient. In the
previous examples, Dalex offered basic interaction such as hovering over the visualization,
as well as the ability to navigate through the results easily. Unfortunately, the resulting
plots for the LIME method do not provide any of these features.
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Figure 11. Visual explanation of black-box prediction results using the Dalex library (class GBM)—
LIME approach.

InterpretML using the LIME approach is shown in Figure 12. As in previous examples
(see Figure 9), InterpretML provides an opportunity to navigate through different instances
using a drop-down menu. By selecting a specific instance, we can navigate through different
instances having a better overview of the results.

Figure 12. Visual interpretability of black-box model using the InterpretML library with the LIME
approach. In this case, the local view of class GBM is explored in detail. Colors are encoded as
follows: blue = negative contribution, orange = positive contribution, and gray = intercept.

Regarding computation time, as can be seen in Table 3, InterpretML presents the
highest computation overload. InterpretML takes approximately 7.28 s modeling time
per instance and 0.72 s visualization time. LIME requires 3.63 s modeling time and 0.4 s
visualization time. Finally, Dalex needs little bit more computation resources, with around
3.97 s modeling time and 0.78 s visualization time.
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Table 3. Library comparison with respect to global and local explainability.

Library Computation
Overload—Modeling

Computation
Overload—Visualization Interactivity

Global Explainability

ELI5 - 0.19 s not interactive (5)

Dalex 1 m 20.07 s 0.33 s slightly interactive (4)

SHAP 13.21 s 0.32 s not interactive (5)

InterpretML 7.91 s 9.37 s very interactive (1)

Local Explainability—SHAP

SHAP 21.2 s 0.15 s very interactive (1)

InterpretML 95.4 s 0.73 s very interactive (1)

Dalex 0.143 s 1 m and 49 s interactive (3)

Local Explainability—LIME

Lime 3.63 s 0.4 s not interactive (5)

InterpretML 7.28 s 0.72 s very interactive (1)

Dalex 3.97 s 0.78 s not interactive (5)

3.5. Biomedical Implication of Features

The evaluation of features affecting the classification between the diffuse glioma
(DIFG) of Glioblastoma multiforme (GBM), Anaplastic Astrocytoma (AASTR), and Oligo-
dendroglioma (ODG) highlights various mutated genes and clinical variables depending on
the underlying xAI method. Diagnosis age and survival are among the most important pre-
dictors all of the methods, followed by varying gene mutations. Capicua (CIC) depicts an
important feature in all approaches and is the most valuable gene feature in Dalex, second
in SHAP and InterpretML, and fourth in ELI5. Mutated IDH1 is among the top features and,
from a clinical point of view, commonly used for survival prognosis in patients suffering
from glioma [34]. Further important variables highlighted by the different xAI methods
in different order also include other biomarkers used for clinical classification of glioma,
such as ATRX, TP53, TERT, PTEN, or EGFR. Local explanations show a partly different
picture and detail decisions of the algorithms on local examples. We present Figures on
local instances on the class of GBM (Figures 7, 9–11) and (b) ODG (Figure 10). Variables
changed place in the hierarchy of importance, while there is additional information on a
particular variable’s prediction impact shown as negative or positive factor towards the
particular class of the local view.

3.6. Overview of xAI Approaches

The comparison overview and ranking is shown in Table 3. As a result, the table
shows the overview concerning the global and local explainability comparison results of
SHAP and LIME.

In the context of global explainability, similar criteria can be used for the selection of
libraries, i.e., computational overhead, implemented visualizations, and interactivity. From
the perspective of the computational overhead, ELI5 provides the most lightweight solution
both in terms of computational overhead and implemented visualizations and interactivity.
The simple interface provides a good basis for a quick inspection of the existing model and
overall model debugging. Feature importance alongside other implemented functionality
(e.g., feature selection) of ELI5 can be convenient during the model development process.
Increased interactivity and visualization options come with the additional computational
overhead in SHAP, Dalex, and InterpretML libraries. From the perspective of interactivity
in global explainability, InterpretML provides the most interactive solution. The addition
of menu components to select different model components makes it easy to switch between
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analysis perspectives and extensive visualization features (zoom, lasso, select, and others).
This provides excellent analytical insights. However, these functionalities come with
limitations in terms of the limited scope of built-in Glassbox models that can be used and
additional computation overhead caused by model retraining. In terms of visualization,
SHAP and Dalex are in between ELI5 and InterpretML. Compared to ELI5, Dalex requires
more computational overhead but provides additional interactivity and visualizations. On
the other hand, SHAP requires even more computational overhead but provides excellent
visualization options that enable a complex analysis of the interplay between feature
importance and feature effect. From the perspective of the stage of the development of
the predictive model, ELI5 and Dalex seem to be focused on the model analysis, while
SHAP and InterpretML put focus on the underlying data and how this data impacts the
model decisions.

Regarding local explainability using the SHAP approach, we identified different
outcomes. In general, to explain a black-box in the big data context, it is important to find
the trade-off between computation resources and explainable results. In the context of local
explainability, SHAP outperformed other libraries in terms of computational resources
and providing an interactive way to explore the different model predictions. In terms of
interactivity, both SHAP and InterpretML outperform Dalex and provide many options to
analyze explainable results of multiple instances interactively. However, if the goal is to
find a trade-off between computational overhead and interactivity, then Dalex seems as the
optimal solution in this context. Finally, if the focus is on exploring the features, the SHAP
force plot grouping methods provide many advantages. However, InterpretML offers
the option to compare different instances in terms of feature contribution, predicted class,
actual class, and residual error. This provides a huge advantage over other methods for
analyzing the behavior of block box models in terms of predicted/actual class. Compared
to SHAP, LIME has advantages in terms of speed as it builds the model around individual
predictions. In the case of large datasets, using SHAP might not be feasible due to the large
computational overhead caused by the calculation of all global permutations. Despite the
performance overhead, SHAP provides a unified solution, which, once computed, offers
more refined explainability and analytical experience.

LIME provides an intuitive instance explanation. The LIME library builds the model
around individual predictions (neighborhood), thus it does not take additional time to
compute the model for all instances. On the other hand, the resulting plots do not provide
any interactivity. Using Dalex for the LIME approach does not offer any interaction as for
the other libraries. InterpretML is the only library providing interactivity while using the
LIME approach. In comparison with the LIME plot, InterpretML’s resulting plot does not
offer an extensive summary of features.

The main advantage of SHAP for local explanation is that it is the only xAI method
based on solid theory (Shapely value) [46]. Moreover, SHAP guarantees that the prediction
is fairly distributed among all feature values. On the other hand, LIME for local explanation
is faster than SHAP concerning computation time. In particular, if the aim is to analyze huge
data sets, then LIME will provide a suitable alternative to the time-consuming computation
of Shapely values. The SHAP approach considers this challenge by using approximation
and optimization; however, not all model types are supported yet. In particular, LIME
supports tabular data, text, and images. In other xAI methods, it is rare that all these types
of data are supported.

4. Discussion

The output of any ML model should be comparable and interpretable. This is of partic-
ular interest to researchers in the medical domain as for cancer, where model performance
may be compared with the one of clinicians [47]. Some experts from the medical domain
argue that transparency for black boxes is not of primary interest to AI applications in their
domain, as doctors make diagnoses based on their experience, and complete information
on the causality of medical issues are rare [48,49]. However, xAI methods can help to
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gain new insights and forward biomedical knowledge to better understand interrelated
characteristics and signaling components in pathologies.

As a modeling approach, classifying glioma sub-types is exemplified: As the chosen
dataset combining data from different brain tumor studies comprises sample data primarily
from the glioma subtypes GBM, AASTR, and ODG, these three disease types were chosen to
be classified to apply VA methods for interpreting global as well as local feature importance.
The dataset provides Oncotreecode as identifier. GBM, AASTR, and ODG are all DIFG
subtypes. Even combining data from six different studies resulted in a lack of samples for
specific subtypes, therefore only the top three were chosen. Open data resources are still set
to develop further and to be extended [50]. The chosen dataset is unbalanced and fits this
use case insofar as it represents an often-found challenge in molecular sciences. This study
aims to describe xAI tools rather than to provide a highly performing classifier solution;
still, classifying glioma subtypes is a challenging task, which makes it an ideal example for
comparing VA features in xAI. Cross-validation of xAI is not applicable to date, as a matter
of ongoing research.

From a biomedical point of view, many of the important variables highlighted by the
various xAI methods are already known to be involved in cancer signaling and represent
common biomarkers in glioma. Generally, such insights into the model can be used
for validation. The transcriptional repressor CIC is part of the tyrosine kinase signaling
pathway which is known to be involved in tumorigenesis, especially in GBM [51]. Other
gene features impacting the classification include mutated IDH1, ATRX, TP53, PTEN, TERT,
NF1, and EGFR, all of which are known to be involved in DIFG [22,52]. Among important
variables are also the mucin protein family (MUC16 and MUC17) which are involved in
epithelial barrier formation and potential biomarkers for favorable prognosis in DIFG, or
lysine methyl transferase (KMT2B) also shown to be a player in gliomagenesis [53,54]. One
example given, the type I transmembrane protein Notch 1 receptor (Notch1), is involved in
the NF-κB signaling pathway effecting cancer development and progression, especially in
GBM [55]. Notch 1 is listed in the global top 20 variables listed by SHAP, but not by Dalex.
Still, in SHAP it distinguishes primarily between ODG and GBM. Some gene mutations
are not primarily common for one class of sub disease, but can increase or mitigate cancer
malignancy as given by the example of IDH1. Mutated IDH1 will lead to a favorable
outcome, but a complete genetic profile could tell more of cases not concordant with
standard prognoses [56]. In the case of local explanations as given in Figure 10b, IDH1 is
selected in favor of the ODG class. Local explanations can thereby support further insight
on individual cases instead of presenting the big picture of global classes.

The local explanation in Figure 12 shows that the low mutation count has been used
to select for the class of GBM for this instance. A high mutational burden is indicative
for an unfavorable prognosis as given by GBM, which would contradict the observation
in this local view. This could be seen as a limitation of model accuracy or be used for
future investigations on individual cases and underlying experimental constraints. In
Figure 10, we can see another local explanation for GBM classification which is supported
by low numbers of mutation count. This could be due to the fact that a high number of
samples originate from GBM biopsies, so that samples with low mutation count can also
be frequently found. This unbalanced data source can be seen as a certain limitation to
the represented model; however, combining local explanations in Figure 10 with global
explanations in Figure 4, we can see that even if the mutation count is among the top
rated features, there are also other important features that should be taken into account
for further analysis. Diagnosis age and overall survival are preferably incorporated by
the different algorithms on a global basis. Further local instances by InterpretML and
Dalex are presented in Figures 9 and 11. For example, gene mutations With-No-Lysine
Kinase 1 (WNK1) are ranked among the top important features, highlighting a possible
role of WNK1 in glioma, which has yet to be shown for WNK3 [57]. One local instance
presented by Lime in Figure 10a ranks AT-Rich Interaction Domain 1B (ARID1B), shown
as putative driver gene in glioma [58], among the most important variables for classifying
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GBM. The feature is followed by others such as Protein Kinase DNA-Activated Catalytic
Subunit (PRKDC), a component of the autophagy-regulating signaling cascades to be
alterated also in glioma [59], and the Anaplastic Lymphoma Receptor Tyrosine Kinase
(ALK), whose variation has been implicated with pediatric glioma [60]. Another local
instance by InterpretML, shown in Figure 9 includes Polycystic Kidney And Hepatic
Disease 1 Protein (PKHD1), shown as variant in GBM [61], in the top feature list, followed by
Insulin Receptor Substrate 2 (IRS2) [62] and Dynein Axonemal Heavy Chain 11 (DNAH11),
which has been recently linked to immune cell infiltration in glioma [63].

Applying xAI methods further facilitates the refinement process of the model’s un-
derlying data and thereby helps to understand and enhance a model. By studying the
results of local explainability methods, we found an error in the algorithm for computing
the different gene’s mutations. The value “NA” had been counted as 1 rather than 0, due
to the fact that different gene mutations from the processed data are handled as strings,
separated by empty spaces. After evaluating and comparing the results, we corrected the
model and revisited the comparison, leading to better results, both in reproducibility of
already known markers and better quality, as well as model performance.

The comparison of xAI libraries can be used for gaining biomedical insights, but also
to detail advantages and challenges using these tools appropriate for certain application
scenarios. Figures 8 and 11 show two diverging examples in VA feature range such as
interactivity or details on demand regarding xAI quality and quantity. After all, which
library and approach to choose depends on the use case, such as finding novel biomarkers in
analyzing classification feature importance or investigating survival prediction. Therefore,
we compared libraries regarding their global xAI features separately from those with local
ones. By making use of the detailed descriptions above, we try to support the decision-
making process of choosing a suitable library. F.i. ELI5 is optimal regarding computational
load, while InterpretML offers most interactivity at the expense of computation time.

5. Conclusions

We present a comparison of the ease of use of current xAI libraries and exemplify
how to support understanding of a black-box model’s results in glioma classification to
find novel biomarkers. Thereby, we describe possibilities how to integrate VA features
for xAI. We only scratch the surface when it comes to going beyond xAI. The process of
understanding can be supported by interactivity and other features to assess the quality of
explanations [64]. Future work may also include taking the type of mutation into account
by incorporating various types of mutations as different features—for now, the model
differentiates between wild-type/mutated and number of mutation if there is more than
one mutation for the same gene. Additionally, data could be integrated from miscellaneous
sources and cover further subclasses or clinical features, while adding use cases of survival
prediction or clustering approaches for signaling insights. Performance experiments for
further information on requirements and recommendations could be also part of future
work. Finally, we believe that the presented approach, using open data, providing open
source implementation, and focusing on ease of use, as well as showcasing the application
of xAI to real scientific problems, can contribute to the research fields of cancer science and
beyond.
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ODG Oligodendroglioma
SHAP SHapley Additive exPlanations
VA Visual Analytics
xAI explainable Artificial Intelligence

Appendix A

Appendix A.1. Complete Table of All Identified xAI Libraries

The full table listing all search results and filter criteria for comparing explainable
libraries can be found via https://github.com/mathabaws/SOTA_xAI_Visual_analytics/
tree/main/data (accessed on 12 January 2022).

Appendix A.2. Implementation Details

The repository containing code and experiments can be found via https://github.
com/mathabaws/SOTA_xAI_Visual_analytics (accessed on 12 January 2022).
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