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Abstract: The mathematical modeling of ion channel kinetics is an important tool for studying the
electrophysiological mechanisms of the nerves, heart, or cancer, from a single cell to an organ. Com-
mon approaches use either a Hodgkin–Huxley (HH) or a hidden Markov model (HMM) description,
depending on the level of detail of the functionality and structural changes of the underlying channel
gating, and taking into account the computational effort for model simulations. Here, we introduce
for the first time a novel system theory-based approach for ion channel modeling based on the concept
of transfer function characterization, without a priori knowledge of the biological system, using patch
clamp measurements. Using the shaker-related voltage-gated potassium channel Kv1.1 (KCNA1)
as an example, we compare the established approaches, HH and HMM, with the system theory-
based concept in terms of model accuracy, computational effort, the degree of electrophysiological
interpretability, and methodological limitations. This highly data-driven modeling concept offers a
new opportunity for the phenomenological kinetic modeling of ion channels, exhibiting exceptional
accuracy and computational efficiency compared to the conventional methods. The method has a
high potential to further improve the quality and computational performance of complex cell and
organ model simulations, and could provide a valuable new tool in the field of next-generation in
silico electrophysiology.

Keywords: ion channels; electrophysiology; computational model; Hodgkin–Huxley; hidden Markov
model; system and control theory

1. Introduction

Mathematical models of individual ion channels form the building blocks of electro-
physiological in silico approaches, allowing the investigation of biophysical mechanisms
and the bioelectric activity of excitable and non-excitable cells [1,2]. A variety of whole-cell
models of different levels of complexity and abstraction have been introduced for the
simulation of ion current kinetics and action potential alterations in neural and cardiac
cells, facilitating the prediction of disease processes and the development of therapeutic
interventions, which have become an integral part in neuroscience and cardiac electrophys-
iology [1,3–7]. Furthermore, single-channel models predicting emergent ion channel drug
effects on both cellular and tissue levels are increasingly under consideration in pharmaco-
logical research, in conjunction with experimental investigations, opening up an innovative
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and efficient way of early preclinical drug screenings [4]. Hence, a maximum possible
degree of biophysical detail with a simultaneously acceptable computational burden is
fundamental and represents a main challenge for the reliable and successful integration
and application of ion channel models in biomedical research.

The mathematical modeling of channel kinetics is commonly based on either a
Hodgkin–Huxley (HH) or a hidden Markov model (HMM) description [1,8–11]. The
HH model offers a basic paradigm in which the channel can be either open or closed
depending on a set of gates, controlled by a number of gating particles, representing the
activation, deactivation, and inactivation characteristics of the ion channel type. The kinetic
behavior of each gating particle between a permissive and non-permissive state is described
as a first-order process, independent of all states of the other gates, and, thus, does not
consider the possible dependences between the activation and inactivation of the chan-
nel [9,10,12]. However, although these models lack the underlying electrophysiological
processes of channel gating, HH models closely reproduce the macroscopic currents with
a small number of variables and a low computational burden and are, hence, still widely
used in computational electrophysiology [1,11].

Hidden Markov models, by comparison, specify channel states according to the protein
conformation and, thus, take into account the channel-specific gating behavior, enabling a
highly accurate and veritable modeling of the channel kinetics [10–13]. Since the opening of
individual ion channels is a stochastic process that can be described as a series of dependent
transitions between distinct conformational states, the Markov schemes offer an optimal
framework for modeling the microscopic current of single ion channels [10,11]. In particular,
the investigation of channelopathies or drug-specific effects on the gating behavior through
targeted changes in certain conformational states requires the use of such a probabilistic
method, where, ideally, each state would correspond to one protein conformation [11,14].
In practice, however, even complex Markov models are only approximations to the actual
channel dynamics [11]. Nevertheless, the high level of detail results in a huge number of
parameters, increasing the computational cost for both the parametrization and simulation,
while also increasing the risk of overfitting. Hence, various simplifications and models
with reduced numbers of states are proposed in order to keep the computational burden as
low as possible, while sufficiently depicting the complex protein structure and modeling
the measured ion current. Such simplified models are phenomenological rather than
representing the actual conformational states and are generally used in a way, similar to
HH models, to simulate the measured macroscopic currents from whole-cell measurements
deterministically [1,11].

In this work, using the shaker-related voltage-gated potassium channel Kv1.1 (KCNA1)
as an example, a novel system theory-based (STB) approach for ion channel modeling is
presented based on the concept of transfer function characterization using experimental
data from patch clamp experiments, with voltage protocols for channel stimulation and
measured macroscopic currents as input- and output information of the system. The
developed system theory-based concept is compared with the two established approaches,
the HH model and HMM, in terms of (i) the accuracy of model simulations, (ii) the
computational effort of building models and running simulations, (iii) the degree and level
of electrophysiological interpretability, and (iv) the methodological limitations. For the
evaluation and verification of the models, data from patch clamp measurements of CHO
cells are used, stably expressing rat Kv1.1 channels at a physiological temperature, obtained
from the ion channel knowledge base Channelpedia [15].

This strongly data-driven modeling concept provides a new method for the phe-
nomenological kinetic modeling of ion channels without a priori knowledge of the biologi-
cal system, with an exceptional model accuracy and computational efficiency compared
to the state-of-the-art methods, which is urgently needed in view of the development of
increasingly complex cell and organ models.
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2. Methods and Results
2.1. Electrophysiological Experiments and Datasets

Comprehensive experimental data on Kv1.1 channels were provided via the ion chan-
nel knowledge base Channelpedia (https://channelpedia.epfl.ch, accessed on 16 Novem-
ber 2021) [15]. Data used for model evaluation were based on the CHO_FT Rat KV1.1
35 ◦C dataset containing 66 individual cell measurements for activation protocols and
54 individual cell measurements for deactivation, inactivation, and ramp protocols (see
Figure 1). CHO cells (Chinese hamster ovarian cells), stably expressing rat Kv1.1 channels
without Kvβ1 and Kvβ2 subunit expression, were used for measurement of the Kv1.1
macroscopic currents. Electrophysiological recordings were performed with the automated
patch clamp system Nanion NPC-16 Patchliner Quattro (Nanion Technologies, Munich,
Germany), equipped with EPC-10 HEKA Quadro amplifiers (HEKA Elektronik, Reutlingen,
Germany), PatchControlHT software (Nanion Technologies, Munich, Germany), and tem-
perature control in whole-cell configuration. Basic quality criteria for measurements were
met, showing an offset voltage of Voffset < 45 mV, seal resistance of Rseal > 200 MΩ (after
whole-cell configuration), series resistance of Rseries < 15.5 MΩ, and membrane capacitance
of Cslow < 35 pF. Data were further processed based on calculated activation index (AI),
maximum currents, and a subsequent manual exclusion of measurements [15].
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Figure 1. Voltage step and ramp protocols. (a) Activation protocol, (b) deactivation protocol,
(c) inactivation protocol, and (d) ramp protocol.

Macroscopic currents were recorded to activation protocols consisting of a 100 ms long
initial- and re-pulse at −80 mV and pulses starting from −90 mV to 80 mV (in increments
of 10 mV) of 500 ms duration (Figure 1a). The deactivation protocol applied consisted of an
initial- and re-pulse of −80 mV for 100 ms, a depolarization pulse at 70 mV over 300 ms
for activation, followed by 300 ms long deactivation pulses from −80 mV to +30 mV in
10 mV steps (Figure 1b). Inactivation characteristics were measured according to a voltage
protocol of an initial- and re-pulse of −80 mV for 100 ms, depolarization pulses from
−40 mV to 70 mV (increment 10 mV) of 1500 ms duration, followed by an activation pulse
of 30 mV for 100 ms (Figure 1c). The ramp protocols considered comprised four intervals
of de- and hyperpolarization ranging from −90 mV to 50 mV with varying pulse duration

https://channelpedia.epfl.ch
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(400 ms, 200 ms, 100 ms, 50 ms) and 400 ms pulse breaks to allow the channels to recover
(Figure 1d).

2.2. Data and Data Pre-Processing Considered for HMM and STB Model Parameterization

Model parameterization was based on pre-processed data, excluding cell measure-
ments with seal resistance Rseal < 300 MΩ and cell measurements exhibiting a high noise
level or seal instabilities, resulting in a sample size of n = 60 cells for the activation curves,
n = 37 cells for the deactivation curves, n = 45 cells for inactivation curves, and n = 54 cells
for the ramp curves. The measured voltage steps considered for parametrization of the
HMM model were limited from −50 mV to 70 mV for the activation protocol and from
−80 mV to −30 mV for the deactivation protocol, representing voltage levels at which
deactivation occurs after channel activation.

2.3. Available HH Model and HMM of the Ion Channel Kv1.1

Several HH models [15,16] and HMM-based approaches were developed for the Kv1.1
ion channel family, modeling their native gating behavior as well as specific ion channel–
drug interactions, such as the effect of fluoxetine or syntaxin on channel activation [17–22].
The channels were reported as non- or slowly inactivating at room temperature, but
exhibited a fast inactivation when co-expressed with Kvβ1 or Kvβ3 subunits [23–26]. A
comparably strong inactivation was similarly observed near physiological temperature
even in the absence of β subunits [15].

As current HMMs only reflect the activation behavior of these channels at room
temperature, while a possible inactivation is not or only insufficiently considered in the
proposed Markov schemes, the currently available HMM approaches can, as a consequence,
scarcely be adopted and applied for the simulation of other datasets, in particular at higher
or physiological temperature levels. Hence, in order to subsequently provide a reliable
juxtaposition of the different modeling approaches, here, we further developed an HMM
for simulating the macroscopic current of Kv1.1, that also takes into account the slow and
fast inactivation at physiological temperature.

2.4. Mathematical Concepts of Ion Channel Modelling
2.4.1. The System Theory-Based Modeling Approach for the Kv1.1 Channel

In contrast to traditional modeling concepts in computational electrophysiology such
as Hodgkin–Huxley or hidden Markov-based models, system identification, a methodology
known from the field of control engineering and system theory, deals with the character-
ization of linear or non-linear systems based on observed input and output data. This
approach involves specification of the model structure, estimation of the unknown model
parameters, and validation of the resulting model. As the kinetics of an ion channel can
be considered as a non-linear system in which the output information is not proportional
to the change in the input information, we pursued a non-linear system identification ap-
proach for modeling. After a detailed analysis of the measured Kv1.1 macroscopic currents
to the given input voltage protocol, the Hammerstein–Wiener (HW) model, which is a
block-structured system model, was selected. The HW model consists of a linear dynamic
subsystem G(s) between two static nonlinear elements, as shown in Figure 2 [27,28].
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Considering the common patch clamp recordings with voltage step and ramp protocols
as system input functions and the measured macroscopic current as the system output
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function, the Kv1.1 channel model, according to the Hammerstein–Wiener model structure,
is shown in Figure 3, with the measured activation curves from a voltage step protocol as
an example.
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The Kv1.1 model with input v(t) and output i(t) nonlinearities of the HW-based Kv1.1
ion channel model was structured as piecewise linear (v′(t) and i′(t)) with two breakpoints
between input and output nonlinearities. Note that input and output nonlinearities can
also be defined as a sigmoid network, piecewise linear with more breakpoints, saturation,
dead zone, wavelet network, one-dimensional polynomial, or other elements known from
control engineering. Here, we considered different input and output nonlinearities and
adopted a model with the same type of input and output nonlinearities.

In general, the HW-based Kv1.1 ion channel model can be described as:

output(t) =


k1·input(t), input(t)ε(0, t1)
k2·input(t), input(t)ε(t1, t2)
k3·input(t), input(t)ε(t2, t3)

(1)

For Kv1.1, the system input is defined as v(t), i.e., the voltage signal according to
the applied protocol, and system output is i(t), i.e., the measured macroscopic current.
According to the definition of the block-structured HW model, it is necessary to define
intermediate input functions, vi(t), and intermediate output functions ii(t). The intermediate
input is the output of the input nonlinear element and the input to the linear element G(s).
Analogously, the intermediate output is the output of the linear element G(s) and the input
of the output nonlinear element. The intermediate input and the output functions are
defined in Equation (2) and Equation (3), respectively.

v′(t) =


k1·v(t),
k2·v(t),
k3·v(t)

(2)

i(t) =


l1·i′(t),
l2·i′(t),
l3·i′(t)

(3)

The linear element G(s) is the transfer function (TF), which represents the differential
equation of the dynamic behavior of the system. The TF is a mathematical representation
between an intermediate input and an intermediate output function of the system. Hence,
the TF of a linear system is defined as the ratio of the Laplace transform of the output to
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the Laplace transform of the input, where all initial conditions are assumed to be equal to
zero (see Equation (4)) [29,30].

G(s) =
L{output(t)}
L{input(t)} =

Output(s)
Input(s)

(4)

According to Figure 3, the system output is represented by the measured Kv1.1
macroscopic current i(t) in the time domain, with its equivalent in the s- or Laplace-domain,
the function I(s), where I(s) is the Laplace transform of i(t), I(s) = L{i(t)}. The system input
function is an arbitrary function in the time domain according to the applied voltage step
protocol used for stimulation of the Kv1.1 channel, and is defined as v(t) in Laplace domain
as V(s) = L{v(t)}.

For channel activation, deactivation, and inactivation, the linear part of the Kv1.1. ion
channel model G(s) with three poles and two zeros is given by Equation (5), representing
the TF in Laplace domain.

G(s) =
L{ii(t)}
L{vi(t)}

=
b2s2 + b1s + b0

a3s3 + a2s2 + a1s + a0
(5)

Mathematical transformations can now be used to determine the differential equation
of the system in the time domain, i.e., a third-order differential equation that describes the
kinetic characteristics of the ion channel, representing the opening behavior of the channel
at different voltage levels.

The transfer function TF in the time domain, thus, represents the so-called behavioral
differential equation (BDE) and can be denoted as:

a3
...
i′(t) + a2

..
i′(t) + a1

.
i′(t) + a0i′(t) = b0v′(t) + b1

.
v′(t) + b2

..
v′(t) (6)

where ak, k ∈ (0, 3) and bk, k ∈ (0, 2) are coefficients of TF and BDE, when all initial
conditions are equal to zero. It is important to emphasize that all ak coefficients are positive,
which can be explained by the transient response of the system, but also results from
system identification. In terms of the former, we can conclude that the obtained ion channel
model is “stable” according to the stability criteria in control theory. The model was
obtained in MATLAB using the System Identification toolbox, [31] and estimated using
PEM (prediction error minimization). Fitting results were determined by using RMSE
values. Figure 4 shows the results of the Kv1.1 STB model parameterization.
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Figure 4. Results of the Kv1.1. STB model identification: (a) input voltage data using the ramp
protocol in mV, output current data in nA representing the measured Kv1.1 macroscopic current;
(b) optimization result of the STB model. Black: measured current data; green: simulated current
data (RMSEramp_STB = 0.0364).

If we look at the whole system, having the theoretical considerations in mind, the
final Kv1.1 model is described by a nonlinear system with regularly coupled subsystems.
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Equation (7) represents the final model equation in continuous time description for simula-
tion of the Kv1.1 current according to different voltage protocols.

v′(t) =


1.2·v(t),
0.2·v(t),
0.1·v(t),

...
i′(t) + 4321

..
i′(t) + 4.104 · 108

.
i′(t) + 1.596 · 109 i′(t)

= −6.268 · 108v′(t) +−1.754 · 108 .
v′(t) +−1.269 · 104 ..

v′(t)
(7)

i(t) =


−0.3·i′(t),
−0.1·i′(t),
−0.01·i′(t),

One of the first and most important steps in system identification is the selection
of the input based on prior knowledge and experiment design [27]. In comparison to
voltage step protocols commonly used to determine the specific activation, deactivation,
and inactivation properties of the ion channel, ramp protocols in turn provide a continuous
recording of the overall dynamic behavior over a large voltage range, which is essential for
reliable system identification. Based on the available experiments, the voltage data of the
ramp protocol was, thus, used as the input function for system identification of the Kv1.1
STB model. Figure 4 shows the corresponding results of the estimation of the STB model.
Detailed information on model parameterization can be found in Appendix A.

2.4.2. The HMM-Based Kv1.1 Model

In order to represent the possible conformational states and structural changes under-
lying channel gating adequately and sufficiently, kinetic schemes of HMMs are derived
based on the specific protein structure and known functional properties of the ion channel
are additionally considered. The specific structure and investigated kinetic characteristics
of the Kv1.1 channel that form the basis for model derivation are briefly summarized below.

The conductivity of voltage-gated potassium (Kv) channels depends on protein con-
formational changes in response to membrane depolarization [32]. The Kv pore-forming
protein consists of 4 α-subunits, where each subunit is composed of six transmembrane
segments (S1–S6) and intracellular N- and C-terminal domains, responsible for inactivation
of the channel. The first four segments comprise the voltage sensor domain (VSD), seg-
ment S5, and S6 form the ion-conducting pore (PD) of the channel, as shown in Figure 5.
Positively charged amino acids within the S4 segment trigger movements of the sensor in
response to changes in membrane potential, which are transmitted to the pore via the S4–S5
linker for controlling the opening and closing of the channel [32–34]. Inactivation occurs
by both a rapid N-type inactivation caused by the cytoplasmatic N-terminal sequence
occluding the channel pore in the open state and by C-type inactivation, which is a slower
time-dependent conformational change, leading to a narrowing of the outer mouth of the
channel pore [34]. The α-subunits of Kv1.1 channel of mammalian cells lack the N-terminal
sequence, but the proteins, however, exhibit a fast inactivation when complexed with
subunits or auxiliary proteins that contain this domain and substitute the functionality,
such as Kv1.4 or Kvβ1 and Kvβ3 [35–38]. In vivo, the channels are typically assembled
with peripheral β-subunits, which modify the surface expression of these channels in addi-
tion to the gating behavior [36,37]. As recently demonstrated, physiological temperature
equally provokes a fast inactivation in Kv1.1 channels, even in the absence of Kvβ1 and
Kvβ3 subunits, emphasizing the important role of temperature on channel kinetics and
function [15].
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Figure 5. Alpha-subunit of the shaker-related voltage-gated potassium channel Kv1.1; VSD: voltage
sensor domain; PD: pore domain. Created with BioRender.

Taking the knowledge of the protein structure and kinetic characteristics of the channel
into consideration, a hidden Markov model with 8 states was defined (see Figure 6), consist-
ing of 4 closed states (C), representing the 4 alpha subunits, all of which have to be in the
open state before ions can pass; one open state (O); two inactivated states (IC) representing
the slow inactivation that can occur from the closed and open state; one state accounting for
the fast inactivation (IN), coupled to the open state. As found in several optimization runs,
a better fit of the data was obtained when assuming a transition possibility between the
fast and slow inactivation, suggesting a linkage of the two inactivation modes. Therefore, a
direct transition path between IC2 and IN was considered in the final model approach [39].
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Forward transition rates α, λ, σ and backward transitions β, η, ε are voltage-dependent
and described by first-order exponential functions:

α(V) = α1.exp
(

V
α2

)
(8)

β(V) = β1.exp
(
−V
β2

)
(9)

where αi and βi represent specific gating parameters and V the applied voltage. c, d, m, k, x,
and y denote rate constants without voltage-dependence. Defining PSi (t) as the probability
of being in a specific state Si at time t leads to the equation for the time evolution of the
channels’ open probability PO(t) [2,40]:

dPO
dt

= PC4(t)·c + PIC2(t)·y + PIN (t)·η − PO(t)·(d + λ + 2x) (10)

where the first three terms represent transitions entering the open state O and the term
furthest to the right transitions leaving the open state O.

Since HMMs model the current through a single ion channel, optimization based on
measured whole-cell currents requires estimating the number of ion channels in addition
to the model parameters for simulating the macroscopic current. For sufficiently large
numbers of the same channel, the fluctuations in the stochastic opening of individual
ion channels average out and the quantities in Equation (10) can be replaced by their
macroscopic interpretation. Moreover, the probability of being in state Si can be interpreted
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as the fraction of channels in Si. The transition probabilities become rate constants, ri,j,
which describe the number of channels that change from Si to Sj in a given time period [2,40].
The macroscopic current IKv1.1 is given by the open probability PO, the ion channel number
Nc, the single channel conductance gKv1.1, and the reversal potential EK:

IKv1.1 = gKv1.1.Nc.PO.(V − EK) (11)

The rate constants were parameterized using a particle swarm optimization (PSO)
algorithm from the Global Optimization Toolbox (MathWorks Inc., Natick, MA, USA)
based on averaged activation and deactivation measurements. The number of sample cells
considered for the activation and deactivation currents differed, and since the magnitude
of the macroscopic current varied considerably from cell to cell, the magnitude of the
macroscopic currents at similar voltage levels also showed considerable deviations between
patch clamp experiments assessing the activation and deactivation characteristics. To
account for these variations, the number of ion channels Nc was individually optimized for
each measurement protocol [41]. For the given dataset, the channel number was determined
as Nc_act = 3088 for the measured activation and Nc_deact = 2588 for the deactivation currents.
The final model parameters are summarized in Table 1.

Table 1. Parameters of the Kv1.1 hidden Markov model.

Rate Constants and Parameters

α1 951.2464 s−1 λ1 14.1140 s−1 σ1 3.8031 s−1

α2 0.03 V λ2 20.2499 V σ2 11.8850 V
β1 395.7896 s−1 η1 49.9528 s−1 ε1 58.364 s−1

β2 0.0501 V η2 5 V ε2 55.3568 V
c 799,720 s−1 k 370.9594 s−1 x 1.6056 s−1

d 38,916 s−1 m 1199.6 s−1 y 0.0822 s−1

EK −0.065 V gKv1.1 8.7 pS
Nc_act 3088 Nc_deact 2588

Figure 7 shows the corresponding simulation results of model parametrization
(RMSEact_HMM = 0.0714, RMSEdeact_HMM = 0.1098). For detailed information on model
parametrization and simulations, see Appendix A.

The basic idea of HMMs is to model the specific changes in the conformational states
of the protein represented by the different states in the model. To determine whether
the transitions and the occupancy of states in the HMM in response to a stimulus corre-
sponded to the underlying kinetics of the channel, we simulated the model stochastically
by generating a random sequence of states using the hmmgenerate function in MATLAB
(MathWorks Inc.).

Figure 8 illustrates the corresponding fractional occupancy plots based on the simula-
tion of 2000 individual Kv1.1 channels for both voltage protocols used for parametrization.
Consistent with the kinetics, the simulations revealed that the inactivation occurred through
transitions from the open state to states representing the fast and slow inactivation. Deacti-
vation, in turn, occurred mainly through transitions from the open and inactivated states to
the closed states in the model. The fractional occupancy plots, thus, impressively demon-
strated the reliable modeling of the actual channel kinetics and confirmed and verified the
developed Kv1.1 hidden Markov model.
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2.4.3. The HH-Based Kv1.1 Model

To model the specific Kv1.1 channel conductance, Ranjan et al. [15] adapted the original
model of Hodgkin and Huxley [42] (see Appendix D) describing the non-linear potassium
conductance in the squid giant axon and added an additional gate h to account for channel
inactivation, with single gates for activation and inactivation (see Equation (12)).

IKv1.1 = gKv1.1mphq(V − EK) p = q = 1 (12)

with
dm
dt

=
m∞ −m

τm

dh
dt

=
h∞ − h

τh

The process of model adaption and fitting of the Kv1.1 HH model can be briefly sum-
marized as follows: the steady state variables m∞ and h∞ were fitted to single Boltzmann
functions:

m∞ =
1

1 + e
V−V1/2
−k

(13)

h∞ = (1− A) +
A

1 + e
V−V1/2

k

(14)



Cells 2022, 11, 239 11 of 27

where V1/2 denotes the half activation and inactivation voltage, k the slope factor, and A the
starting point. The time constant for activation τm was fitted by two Boltzmann equations,
and a single Boltzmann equation was again used for τh:

τm =

(
A1 +

B− A1

1 + e
V−c

d

)
+

(
A2 +

B− A2

1 + e
V−c

d

)
(15)

τh =

(
A +

B

1 + e
V−c

d

)
(16)
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respective voltage step protocols.

Normalized conductivities of measured current traces from activation voltage step
protocols between−40 mV and 50 mV were fitted for each cell and temperature level (15 ◦C,
25 ◦C, and 35 ◦C). Single-cell models that had a residual sum of squares (RSS) less than 0.36
were considered, and the median values for each gating parameter and temperature level
were used for the final model [15].

To account for the temperature-dependent conductivity of the Kv1.1 channel, the me-
dian gating parameters of h∞, τm and τh obtained at each temperature were further fitted
with Q10 functions. In comparison, m∞ was considered to be temperature-independent,
despite different values of gating parameters in the revised HH model. The model
equations and gating values of the proposed model by Ranjan et al. [15] are given in
Equations (17)–(23).

m∞ =
1

1 + e
V−(−14.16)
−10.15

(17)

h∞ = (1− h∞Q10) +
h∞Q10

1 + e
V−(−31.0)

5.256

with h∞Q10 = (0.032 · ◦C)− 0.365 (18)
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τm =
mτ_Func(V)

mτQ10
with mτQ10 =

(
7.54 · e

−V
379.7 · e

−◦C
35.66

) ◦C−25
10.0 (19)

τh =

86.86 + 408.78

1+e
V−(−13.6)

7.46

hτQ10
with hτQ10 = 2.7

◦C−25
10.0 (20)

mτ_Func(V) = sig1 + sig2 sigswitch =
1

1 + e
V−(−46.7)

3

(21)

sig1 = sigswitch
amp1

1 + e
V−V11/2
−slope1

(22)

amp1 = 52.7, V11/2 = −49.87, slope1 = 5.0

sig2 = (1− sigswitch) · o f f set +
amp2− o f f set

1 + e
V−V21/2

slope2

(23)

amp2 = 15.98, V21/2 = −41.64, slope2 = 24.99, o f f set = 0.9

Table 2 summarizes the key features of the HH, HMM, and STB models, including the
number of unknown parameters to be optimized, the extent of the mathematical description
of the models, and the data used for model parameterization. Detailed information on
model parameterization is provided in Appendix A.

Table 2. Model characteristics and data involved in model parameterization.

HH HMM STB

unknown
parameters 22 20 7

mathematical
description of the

model

2 first-order
differential equations

8 first-order
differential equations

1 third-order
differential equations

parameterization
data

activation
single-cell

measurements

activation and
deactivation

average

ramp
average

number of cells 56 60 (activation) 37
(deactivation) 54

voltage range −40 to +50 mV

−90 to +70 mV
(activation)
−80 to −30 mV
(deactivation)

−80 to +70 mV

total sweep number
considered 10

13: −50 to +70 mV
(activation)

6: −80 to −30 mV
(deactivation)

1

time for parameteri-
zation/system
identification

data not available 30 h 5–10 min

2.5. Evaluation, Verification, and Comparison of the Three Model Approaches

For the model evaluation and verification, different voltage protocols performed to
determine the channel kinetics (see Figure 1) were simulated using each of the three model
approaches and compared accordingly. Corresponding simulation results of the Hodgkin–
Huxley formalism, the developed hidden Markov model, and the system theory-based
approach for the activation, deactivation, inactivation, and ramp protocols are shown in
Figure 9.
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Figure 9. Model simulations of (a–c) activation protocols (−90 to 70 mV, ∆V = 10 mV), (d–f) deacti-
vation protocols with zoomed deactivation pulses (−80 to −30 mV, ∆V = 10 mV), (g–i) inactivation
protocols (−80 to −70 mV, ∆V = 10 mV), and (j–l) ramp protocols by the HH, HMM, and system
theory-based approaches, respectively. Ion channel numbers Nc used for simulation of the macro-
scopic current with the HMM model are (b) Nc_act = 3088, (e) Nc_deact = 2588, (h) Nc_inact = 2588, and
(k) Nc_ramp = 2388. Voltage step and ramp protocols for simulations are shown in Figure 1.

Since, in contrast to the developed approaches, the HH model was parametrized to
fit the normalized currents and, thus, defined only for them, the simulated currents of the
activation, deactivation, and inactivation protocols were each normalized to the maximum
measured current at 70 mV for comparison. For the ramp currents, the maximum value of
the entire trace was used for normalization.
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The goodness of fit of the simulated current curves was evaluated directly using the
root mean square error (RMSE) and averaged over all voltage levels for both the normalized
(RMSEnorm) and absolute (RMSEabs) currents (Equation (24)).

RMSE =
√

∑ (IKv1.1_model(t)− Imeasured(t))
2/N (24)

The developed hidden Markov model and the system theory-based model outper-
formed the HH model in terms of data fitting and reproduced the specific activation,
deactivation, and especially the recorded ramp currents very accurately. Remarkably, the
activation currents simulated with the STB model were almost identical to the measured
current, as shown by the obtained RMSE value, summarized in Table 3.

Table 3. Electrophysiological parameters.

Temp 35 ◦C Experimental
Data

Simulated Data
HH HMM STA

activation

V1/2_act (mV) −22.45 −14.94 −22.64 −18.39

kact (mV) 10.81 9.913 11.82 14.97

τact_mean (ms) 0.5493 0.5766 2.2449 0.2706

τact_70mV (ms) 0.09283 0.3036 0.1391 0.01875

τact_60mV (ms) 0.1135 0.2949 0.2125 0.02084

τact_50mV (ms) 0.1403 0.2865 0.3157 0.02339

τact_40mV (ms) 0.1791 0.2783 0.4613 0.02634

τact_30mV (ms) 0.2351 0.2703 0.668 0.02994

τact_20mV (ms) 0.3148 0.2629 0.9654 0.03359

τact_10mV (ms) 0.4343 0.2567 1.401 0.06175

τact_0mV (ms) 0.6244 0.2524 2.052 0.1491

τact_−10mV (ms) 0.9504 0.2486 3.033 0.3984

τact_−20mV (ms) 1.476 0.2430 4.437 0.8607

τact_−30mV (ms) 2.02 0.2374 6.077 1.613

RMSEnorm
RMSEabs

0.0326
-

0.0213
0.0714 *

0.0138
0.0381

deactivation

τdeact_mean (ms) 13.3627 18.5689 5.0230 10.76

τdeact_−30mV (ms) 23.42 0.1704 3.236 14.86

τdeact_−40mV (ms) 16.75 3.433 5.282 -

τdeact_−50mV (ms) 11.49 31.03 6.491 -

τdeact_−60mV (ms) 10.79 26.07 6.058 4.793

τdeact_−70mV (ms) 7.306 25.68 5.019 4.564

τdeact_−80mV (ms) 10.42 25.03 4.052 18.82

RMSEnorm
RMSEabs

0.0429
-

0.0627
0.1098 *

0.0283
0.0985
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Table 3. Cont.

Temp 35 ◦C Experimental
Data

Simulated Data
HH HMM STA

inactivation

V1/2_inact (mV) −26.46 −29.12 −28.95 −27.37

kinact (mV) 4.755 3.882 5.04 4.074

τinact_mean (ms) 102.1077 71.9092 96.4150 99.1621

τinact_70mV (ms) 53.22 32.14 68.15 53.2

τinact_60mV (ms) 63.13 32.14 68.45 60.65

τinact_50mV (ms) 69.17 32.17 68.85 68.74

τinact_40mV (ms) 72.65 32.25 69.41 71.38

τinact_30mV (ms) 77.25 32.57 70.25 77.26

τinact_20mV (ms) 80.26 33.79 71.6 85.05

τinact_10mV (ms) 85.9 38.27 73.89 83.26

τinact_0mV (ms) 104.3 53.18 78.19 101.5

τinact_−10mV (ms) 147.1 89.9 87.19 143.1

τinact_−20mV (ms) 208.7 138.4 107.7 192.4

τinact_−30mV (ms) 263.1 168.4 153.8 252.6

τinact_−40mV (ms) 0.5125 179.7 239.5 0.8051

RMSEnorm
RMSEabs

0.0257
-

0.0548
0.1297 *

0.0146
0.0463

ramp

Vmax_cond (mV) 69.6 67.0 69.2 69.6

RMSEnorm
RMSEabs

0.1098
-

0.0396
0.0317 *

0.0262
0.0364

* Ion channel numbers Nc used for simulation of the macroscopic current with the HMM model and calculation of
RMSEabs values were for activation Nc_act = 3088, deactivation Nc_deact = 2588, inactivation Nc_inact = 2588, and
ramp Nc_ramp = 2388.

The deviations of the HMM in the obtained deactivation curve at −30 mV, showing
an increase in the current after the corresponding deactivation, could be explained by the
high-voltage level, which naturally led to an activation of the channels (see Figure 9e). In
turn, the disturbances in the STB model resulted from the capacitive spikes that were not
filtered out and removed from the measured current traces. Because of these spikes, the
model did not reproduce the raw output data more accurately (Figure 9f).

Similarly, the fast inactivation could be modelled with high precision by the newly
developed STB compared to the HH approach, that revealed a too strong and prolonged
inactivation. A slightly higher RMSE, in turn, was obtained for the simulation of the
inactivation curves by the HMM due to moderate deviations of the absolute currents. In
general, however, the kinetics correlated well with the measured current dynamics, which
was also an acceptable modeling result for the developed HMM. Thus, both models, which
were parametrized on a few single-current curves only (see Table 2), were suitable for
different input functions and were able to simulate the specific Kv1.1 current, which serves
as the first step in verifying and proving the validity of the model. Additional simulations
using the HMM and STB approaches performed with action potential (AP) and recovery
protocols can be found in Appendix B, Figure A1, which also shows useful simulation
results and confirms the potential of the new STB-based modeling approach.
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For a thorough evaluation of the accuracy of the models, basic electrophysiological pa-
rameters describing the activation, deactivation, and inactivation properties were extracted
and compared.

Activation characteristics were evaluated using the conductance voltage relation and
the time constant for activation, measured by the activation protocols performed. For this
purpose, the normalized conductivities calculated from the peak currents at each voltage
step (Equation (25)) were plotted as a function of the test pulse voltages and fitted to a
Boltzmann function (Equation (26)):

G =
Ipeak

(V − EK)
(25)

G
Gmax

=
1

exp
V−V1/2_act

kact

(26)

where Gmax is the maximal conductance measured at a voltage step of 70 mV, V1/2_act
the hemi-activation voltage, and kact the slope factor. The activation time constant was
determined by fitting a single exponential function to each individual current curve from
the start of the stimulus to the peak current:

y = 1− exp
−t

τact (27)

Tail currents evoked by hyperpolarization pulses following a depolarization step of
300 ms duration were measured and analyzed to determine the deactivation properties.
Each individual tail current obtained by the deactivation protocol was fitted to a single
exponential function to estimate the time constant of deactivation:

y = A1 · exp
−t

τdeact/inact + A2 (28)

with τ as the time constant of deactivation and A1 and A2 the initial and final values,
respectively.

Inactivation characteristics were determined based on the steady-state availability
protocols performed that included conditioning pulses of longer duration at different
voltage steps to establish a steady-state inactivation after channel activation, followed by a
depolarizing voltage step (to activate channels still in an activatable state). The inactivation
time constants were calculated based on the activation pulse by fitting a single exponential
function from peak to steady state for each current trace according to Equation (28). The
half-inactivation voltage V1/2_inact and the slope factor of inactivation kinact were, again,
calculated by fitting the normalized peak currents of the depolarizing voltage step to a
Boltzmann function according to Equation (29):

I
Imax

= A1 +
A2 − A1

1 + exp
V−V1/2_inact

kinact

(29)

Slow voltage ramps were used to determine the voltage at which the channels had
maximum conductance Vmax_cond. Following Ranjan et al. [15], the peak value during the
rising phase of the first ramp was used as the parameter Vmax_cond.

The calculated and extracted electrophysiological parameters are shown in Figure 10
and summarized in Table 3.
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Figure 10. Measured (black) and simulated electrophysiological parameters by the HH (red), HMM
(blue), and STB (green) models. (a) Conductance plot of activation, (b) conductance plot of inac-
tivation, (c) time constant of activation, (d) time constant of deactivation, and (e) time constant of
inactivation.

The measured activation characteristics with a half activation voltage of
V1/2_act_measured = −22.45 mV and slope factor kact_measured = 10.81 mV were best repro-
duced by simulations with the HMM (V1/2_act_HMM = −22.64, kact_HMM = 11.82 mV). For
the STB model, the curve and, thus, the half activation voltage were slightly shifted towards
a more depolarized value, but comparable results to the HH model could be obtained with
V1/2_act_STB = −18.39 and kact_STB = 14.97 mV relative to V1/2_Act_HH = −14.94 and kact_HH
= 9.913 mV. With respect to the activation time constant, both the HMM and the STB model
better reflected the actual voltage-dependent dynamics of activation by showing a faster
activation time at higher clamp voltages and a slower activation as the voltage decreased,
compared to the HH model with the same time constant over the entire voltage range.
However, the activation in the STB model was instantaneous and, thus, somewhat too fast,
while the activation in the HMM, especially at lower voltages, was too slow compared to
the measured values. The simulation results for the deactivation of the HMM and STB
models revealed a slower deactivation, but they, again, better reflected the measured deac-
tivation behavior compared to the HH model, as shown by the determined deactivation
time constants (see Figure 10 and Table 3).

The model simulations of the inactivation curves showed a slightly better, but compa-
rable half inactivation voltage compared to the HH model with respect to the measured
parameters for the HMM model (Figure 10b). In contrast, the STB approach again outper-
formed the accuracy of the HMM and HH models, and showed a nearly perfect fit of the
measured inactivation time constants; see Figure 10e and Table 3.

Taking all the results obtained into consideration, both the newly developed HMM
and the STB approach provided an accurate modeling of the channel kinetics that better
reflected the underlying dynamics of the channel in response to various input functions
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than the established HH model used here as benchmark or state-of-the-art model. In
particular, the HMM and the STB models provided two valuable new approaches for ion
channel modeling and the simulation of the Kv1.1 current at a physiological temperature.

3. Discussion

Single-channel modeling is a central component of computational electrophysiology.
Today, extensive experimental investigations and a steadily growing body of knowledge
about ion channels enable the development of highly detailed models that simulate the
specific gating behavior and the bioelectric properties of ion channels. The increasing
biophysical detail, however, also inevitably leads to high computational costs, which, to
some extent, limit both the construction and the application of complex whole-cell models,
especially for simulations on the tissue and organ level. Hence, while detailed HMMs that
map the protein structure and better address the processes behind channel gating are mainly
considered in biomolecular and pharmacological research, HH models, for example, are still
the golden standard in neuroscience, since they provide a low computational cost method
and, thus, a high integrability into complex models to represent the electrophysiological
activities of cells, tissue layers, and up to whole organs.

Beyond conventional methods, following the phenomenological approach of Hodgkin
and Huxley, we proposed for the first time a new system theory-based concept of de-
terministic ion channel modeling and the simulation of ion currents, which provide an
easy-to-use method with remarkable performance and accuracy, especially with respect to
the structurally comparable HH models. Using the example of Kv1.1 (KCNA1) delayed
rectifier channels, which are strongly expressed in the central and peripheral nervous
system and “regulate” neuronal subthreshold excitability and spike initiation [20–22,24],
the newly introduced method was compared with the concepts of the HH model and HHM,
and evaluated on several parameters relevant in the computational modeling of cellular
electrophysiology.

3.1. Model Accuracy

The introduced STB model, parametrized on the ramp data only, allows the accurate
simulations of the specific kinetics of the Kv1.1 channel and fits almost perfectly with the
measured currents for the different voltage protocols performed (see Figure 9 and also
Figure A1), even in a currently highly simplified and well-interpretable form where only
two breakpoints were used to approximate the nonlinear input and output function. The
accuracy could be further improved by considering additional breakpoints. Figure A2 in
Appendix C shows an example simulation of the ramp data using 10 breakpoints in the
STB model with an almost perfect fit. However, a higher number of breakpoints resulted
in a more complex system description, represented by an even higher order and a less
interpretable differential equation in the time domain.

As shown by a direct comparison with a recently published HH model of the Kv1.1
and the new HMM model developed here based on the same experimental data, the STB
model outperformed the established models in accuracy and better reproduced the specific
activation, deactivation, and inactivation properties of Kv1.1 channels at a physiological
temperature. It is important to note that the HH model, used as a benchmark for compari-
son and model validation, also accounted for the temperature-dependent modulation of
the channel kinetics and was parameterized based on the activation curves of different
temperature levels, i.e., 15 ◦C, 25 ◦C, and 35 ◦C. For this reason, the HH model represented
an average best model for simulating the Kv1.1 current within this temperature range, but
did not perfectly match the measured currents at a single temperature. However, simula-
tion results that were within the deviations of the HH model were considered sufficiently
reasonable and valid.

Comparable results were obtained for the newly developed HMM in terms of fitting
the experimental data to the HH model. The optimization of the HMM to the activation data
only allowed an almost perfect simulation of the activation curves, while the deactivation
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and inactivation characteristics were not represented at all. Furthermore, parametrization
based on the ramp curves, as performed for the STB approach, did not lead to a satisfying
modeling result. The HMM model was, thus, finally parametrized based on the activation
and deactivation curves, which also allowed the inactivation to be adequately represented
by the model approach and acceptable model simulations of all voltage-protocols (see
Figures 9 and A1). However, the model showed a lower accuracy with regard to the
inactivation characteristics. Therefore, in a next step, more attention should be paid to
the inactivation path, e.g., by considering additional inactivation protocols in the model
parameterization, experimental investigations, and an appropriate redefinition of the
number of states, representing the slow and fast inactivation, in order to improve the
validity of this newly introduced hidden Markov-based Kv1.1 model.

3.2. Model Complexity, Explainability, and Adaptability

Compared to the HMM, but similar to Hodgkin and Huxley, the STB approach is
entirely data-driven and does not take into account any electrophysiological knowledge,
which, currently, does not allow for inference or insights into the inherent channel gating
mechanisms by the model approach. By contrast, even at a highly simplified level, the
kinetic schemes of HMM, which map the transitions between different conformational
states, offer better explainability compared to the HH and STB models, and the study of
specific modifications in the opening and closing behavior of channels, as particularly
needed, for example, in pharmacological studies. Moreover, since HMMs describe the
dynamics of single channels, they provide a high degree of flexibility and allow its applica-
tion to different datasets with varying dynamics or current amplitudes by adjusting the
rate constants or number of ion channels. HH models, as well as the newly introduced
STB approach, always represent the measured macroscopic currents and are valid only
for a specific dataset. Therefore, a direct adoption to other experimental data, sample
populations, or cells with varying ion channel compositions, is usually not possible without
an appropriate and comprehensive reparameterization.

However, the proposed HMM represents a simplified kinetic scheme derived solely on
the basis of macroscopic currents and does not take into account further electrophysiological
studies such as single-channel recordings or structural studies of protein conformation,
which limits the degree of the explainability and adjustability of this first HMM of the Kv1.1
channel. Furthermore, with respect to the inactivation characteristics, no characterization
of the slow and fast inactivation was performed, e.g., an assessment of the respective
proportion using specific blockers. Additionally, the assumption of a possible transition
between and, thus, an interaction of the slow and fast inactivation implemented by a
cross-link between the IC2 and IN1 states was based only on achieving a better modeling
result as shown in several optimization runs, but without experimental validation. Thus,
the states in the model do not correspond to the actual protein conformational states and
microscopic conformational changes of the protein, but can be viewed as aggregates of
molecular configurations grouped into a set of distinct functional states separated by large
energy barriers [1].

Despite the aforementioned simplifications, the HMM model allowed an accurate and
reliable simulation of the different measured kinetics, as shown by the occupancy diagrams.
The occupancy of states was consistent with the measured and known kinetics, which
confirmed the validity of the proposed kinetic scheme and parameterization for modeling
the kinetics of the Kv1.1 channel.

3.3. Computational Burden

Together with the complexity and level of detail, the high computational cost is one of
the major drawbacks limiting the application of HMM. Even simplified kinetic schemes,
such as the one developed in this work, include a great number of parameters and states
that are implemented in the model by a set of first-order differential equations, implying the
need for a very a high computational effort not only in terms of simulation runtime, but also
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for parametrization. In contrast to the HMM and HH methods, the system theory-based
approach significantly reduced the typically huge set of differential equations in the HMM
approach to one single higher-order differential equation that describes the current-voltage
relation of the ion channels as a nonlinear system with regularly coupled subsystems. This
enormously reduces the computational cost for parameterization and model simulation.
Together with the remarkable model accuracy, this represents the main advantage of
the newly developed STB model compared to the traditional modeling approaches in
electrophysiology.

For HMM in particular, the large number of parameters relative to the comparatively
few data also increases the risk of overfitting and, thus, limits the predictive power and
reliable simulation of additional data. Therefore, it makes sense to keep the HMM as simple
as possible by involving different measurement protocols in model optimization. However,
if more data were included in the model optimization, the time for parameterization would
increase again. For the developed HMM parametrized on the activation and deactivation
curves, each optimization run took about 30 h on a high- performance computer with
12 cores working in parallel for model parametrization. By contrast, the parameterization of
the STB model function based solely on the ramp curves was, for example, performed in less
than 10 min using the same computer infrastructure with MATLAB (System Identification
toolbox, MathWorks Inc.).

Compared to the HH models, HMM also had, on average, a higher computation time,
even with a smaller number of states, as shown, for example, in a study by Andreozzi et al. [1],
which yielded a 5% higher runtime of a simplified HMM compared to the corresponding
HH model. However, given the simulation results obtained, which showed excellent accu-
racy compared to the HH approach, the increased computation time was considered to be
acceptable. For our Kv1.1 simulations, the runtime of an example cell with 3500 individual
Kv1.1 channels was about 20 times higher for the HMM than for the HH and the STB
model, with the latter requiring less than 1 s.

3.4. Experimental Data for Model Parameterization

It is important to note that electrophysiological studies are generally time-consuming,
and obtaining representative, quality-assured results usually requires a high experimental
effort. The experimental data used in this study are publicly available and include measured
whole-cell currents from transfected cells, stably expressing Kv1.1 channels recorded with
different voltage protocols. For phenomenological modeling, the data required for model
parametrization were rather small and comparable for all modeling approaches examined
in this work. They included measured macroscopic currents from patch clamp recordings
with standard voltage step protocols to characterize the activation, deactivation, and
inactivation characteristics. In order to fully characterize the kinetic properties and improve
the validity of HMMs, however, extensive experimental investigations are required, such
as single-channel patch clamp measurements, determination of fast and slow inactivation
and possible cross links, or structural studies to gain a deeper understanding about the
protein conformational states. All these together increase the experimental effort required
for HMM development and validation in general enormously compared to the HH model
or, in particular, to the newly proposed system theory-based modeling approach.

3.5. Which Method Should Now Be Chosen? When, How, and Why?

The three different modeling approaches presented in this work all have both strong
advantages and disadvantages, and should always be selected with respect to the particular
application. Table 4 summarizes the three modeling approaches by qualitatively comparing
the key parameters in computational electrophysiology.
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Table 4. Qualitative comparison of the HH, HMM and STB approaches.

HH HMM STB

explainability of channel gating + +++ n.a.
flexibility and adaptability + +++ +

model complexity + +++ +
model accuracy (<<) + ++ (>>) +++

comp. burden optimization ++ +++ +
comp. burden simulation + ++ +

experimental data for model
parameterization +++ +++ (>>) +

Assessment of methods: n.a.: not represented by the model approach; low (+) to high (+++) scores; (<<) tends to
be lower; (>>) tends to be higher.

The system theory has been an established tool for modeling physical or biological
processes for decades, and it is used traditionally in the field of control engineering. In this
work, we introduced the concept of a transfer function for the kinetic characterization of
single ion channels for the first time. We investigated the extent to which its properties
could be used to simulate the activation, deactivation, and inactivation of channels without
knowing the intrinsic biological and physical mechanisms, but only using the data charac-
teristics of the input and output function of the “system”, which is presented by only the
one third-order differential equation, taking the input and output nonlinearities into ac-
count. Today, available software tools, such as MATLAB, allow for an easy and automated
characterization of the transfer function of the biological system, enabling simple and fast
model parameterization compared to the conventional methods such as the HH model and
HMM. With this easy to use parameterization strategy, this strongly data-driven modeling
approach can be adapted simply to different datasets of sample populations with varying
ion channel composition, and could make the system theory-based modeling approach the
method of choice for high-performance simulations at the tissue and organ level. Further
investigations could show whether and to what extent this concept can also be applied to
other ion channel types with divergent kinetics, such as channels with a slow inactivation
(e.g., Kv3.1) or constant activation (e.g., Kv7.1), after an appropriate system identification.

In contrast, by embedding knowledge from biophysical and structural studies, the
HMM allows a detailed modeling of the specific functionality and structural changes un-
derlying channel gating, representing possible dependencies of activation and inactivation,
transitions from closed to inactivated states, or multistep activation processes. In particular,
ligand- or second messenger-dependent changes as well as drug-induced effects on specific
conformational states and, thus, on the functionality and kinetics of the channel can be
investigated at the microscopic and macroscopic level by appropriate kinetic schemes, as
ultimately required in pharmacological or molecular–biological investigations. For these
applications, the Markov models, which take into account the inherent gating properties
and better address the stochastic gating behavior, represent a perfectly suitable method
despite the higher experimental effort and computational load [1,11]. Moreover, the HMM
with a sufficient complexity and low computational cost used in whole-cell applications can
overcome the limitations of the currently most widely used HH approaches, for example, by
better accounting for the complex interplay of ion channels, calcium dynamics, or specific
responses to changing environmental conditions such as the temperature, pH, or ionic com-
position. To this end, HMMs are increasingly considered for detailed modeling approaches
to further improve the reliability and validity of complex single-cell applications. However,
we can expect that if extensive experimental data-representing mechanisms such as drug-
induced effects, changes to environmental conditions, or intracellular ionic compositions
are available, appropriate STB models, because of their simple parameterization, could also
be introduced.

In summary, the system theory-based modeling approach combines the positive fea-
tures and properties of both the HH model and HMM. The proposed concept outperformed
the HH model and HMM in accuracy, although it strongly abstracted the underlying elec-
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trophysiological mechanisms, while overcoming the current computational limitations of
the HMM. In particular, for applications requiring high computational power, this newly
introduced modeling approach offers a promising new possibility that could be used along-
side or even instead of HH-based ion channel models in computational electrophysiology,
while further improving the simulation accuracy and runtime. Thus, beyond single-cell
applications, STB models have high potential to further improve the simulation perfor-
mance of complex cell and organ models and may represent a valuable tool in the field of
next-generation in silico electrophysiology.
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Appendix A. Computational Modeling and Parameterization

The different modeling approaches were implemented in the simulation environment
MATLAB (R2019b, MathWorks Inc.).

HH model. For the HH model, differential equations of activation and inactivation
gates were solved numerically by the Forward Euler method according to Ranjan et al. [15],
using a step size of ∆t = 1.10−4 s.

HMM model. The parametrization of the HMM was based on the averaged activation
(n = 60) and deactivation (n = 37) data by a particle swarm optimization (PSO) algorithm
(swarm size: 600; number of iterations: 10,000; function tolerance: 1 × 10−6) using the
Global Optimization Toolbox (MathWorks Inc.). Defining PSi ,k as the fraction of channels in
a specific state Si at time-step k, the time evolution of the system could be described by the
following set of autonomous difference equations:

PC1,k+1
PC2,k+1
PC3,k+1
PC4,k+1
PO,k+1

PIC1,k+1
PIC2,k+1
PIN,k+1

 =


1− 3α·dt β·dt 0 0 0 0 0 0

3α·dt 1− (2α + β)·dt 2β·dt 0 0 0 0 0
0 2α·dt 1− (α + 2β)·dt 3β·dt 0 0 0 0
0 0 α·dt 1− (c + 3β + x)·dt d·dt y·dt 0 0
0 0 0 c·dt 1− (d + λ + 2x)·dt 0 y·dt η·dt
0 0 0 x·dt 0 1− (y + σ)·dt ε·dt 0
0 0 0 0 2x·dt σ·dt 1− (y + ε + k)·dt m·dt
0 0 0 0 λ·dt 0 k·dt 1− (η −m)·dt m·dt

·


PC1,k
PC2,k
PC3,k
PC4,k
PO,k

PIC1,k
PIC2,k
PIN,k


The system was simulated with the MATLAB lsim function (MathWorks Inc.) over

the entire simulation protocol, with a step size of dt = 5 × 10−7. The output vector was
defined as cT =

[
0 0 0 0 1 0 0 0

]
, to obtain the fraction of channels in the

open state PO,k for each time-step k. The optimization defined the best choice for the
voltage-dependent forward (α, λ, σ) and backward state transition rates (β, η, ε) and the
constant state transition rates c, d, m, k, x, and y as well as the number of ion channels
(NCKv1.1) by fitting the resulting macroscopic (Imodel) current to the measured whole-cell
current (Idata):

RMSE = ∑ (Imodel,k − Idata,k)
2 (A1)

https://www.tugraz.at/en/institutes/hce/research-working-groups/research-data/kv1-1-model/
https://www.tugraz.at/en/institutes/hce/research-working-groups/research-data/kv1-1-model/
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with Imodel,k = NCKv1.1 ·PO,k·gKv1.1·(V − EK).
Measured activation curves between 10.4 ms and 601.7 ms were considered for param-

eterization. For the deactivation curves, again, only the test pulses starting from 401.2 ms
to 598.2 ms were used, excluding the depolarization pulse. In addition, to account for the
lower number of voltage-levels of the deactivation protocol used, the deactivation curves
were weighted for adequate consideration by a factor of 3.5.

To stochastically model the opening and closing of the single Kv1.1 ion channels for
model validation, the hmmgenerate function (MathWorks Inc.) was used to generate a
random sequence of states. The transition probability matrix T was defined as follows:

T =


C1 C2 C3 C4 O IC1 IC2 IN

C1 1− 3α·dt 3α·dt 0 0 0 0 0 0
C2 β·dt 1− (2α + β)·dt 2α·dt 0 0 0 0 0
C3 0 2β·dt 1− (α + 2β)·dt α·dt 0 0 0 0
C4 0 0 3β·dt 1− (3β + c + x)·dt c·dt x·dt 0 0
O1 0 0 0 d·dt 1− (d + 2x + λ)·dt 0 2x·dt λ·dt
IC1 0 0 0 y·dt 0 1− (y + σ)·dt σ·dt 0
IC2 0 0 0 0 y·dt ε·dt 1− (ε + y + k)·dt k·dt
IN 0 0 0 0 η·dt 0 m·dt 1− (η + m)·dt


Occupancy was summarized for closed, open, and inactivated states at each time step

for corresponding fractional occupancy plots.
STB model. The main advantage of this approach is that the model equations (see

Equation (7)) do not have to be solved numerically. Instead, the identified model can
be exported into the workspace of MATLAB where the obtained model can be further
analyzed, linearized, or inserted into Simulink for a further application and simulation.
The dynamic behavior of the ion channel is finally characterized by the transfer function
and input/output nonlinearities.

In detail, we used the MATLAB Control System toolbox and the System Identification
App. Note that a general system identification methodology contains key elements such
as the experiment design, experiment, data preprocessing, fitting model to data, model
validation, and audit [42].

For the STB model development, we assumed that a ramp stimulus protocol was a
proper stimulus for the system identification. Using the System Identification App, we
imported the time domain data and performed some data operations, including filtering,
removing means, or transforming the data. Finally, we were able to define a mathematical
model of the system represented as a nonlinear polynomial transfer function in state
space. After analyzing different model concepts, we decided to use a nonlinear HW model
because this model best fit the experimental data. After the model was validated, it could
be exported to the MATLAB workspace and inserted into Simulink.

It should be noted that the HW model obtained with the System Identification App
was represented in discrete—Z-domain—, which we then converted to the continuous
domain since the opening/closing of ion channels is a continuous-time process. Finally, the
HW model developed in MATLAB was fully functional for a further analysis, synthesis,
and simulations of the Kv1.1 dynamics.

Appendix B. Simulation of AP and Recovery Voltage Protocols with the HMM and
STB Models

AP: Action potential protocol consisted of a 1.8 s long regular spiking action poten-
tial at a 30 mV voltage and frequency of 18 Hz, mimicking the physiological stimuli of
pyramidal neurons.

Recovery: Recovery characteristics from inactivation were measured with 16 recovery
pulses of a 200 ms duration at 50 mV after channel inactivation by 1.5 s long pre-pulses at
50 mV, and the recovery of the cells by holding them at −80 mV for variable times between
50 ms and 3.2 s in steps of 150 ms.
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Appendix D. Original Hodgkin–Huxley Formalism of the Potassium Current

The ionic current of an ion channel is given by the conductance gx and driving force
(V − Ex) of the ion:

Ix = gx(V − Ex) (A2)
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with gx = gxyz.
In the Hodgkin–Huxley formalism, the macroscopic ion conductance gx is described by

various gates, controlling the flow of ions through the membrane. Each gate contains several
independent gating particles z, which change between the open and closed positions,
depending on the membrane potential. The gating variable y represents the probability of
a single gating particle being in the open state. For several independent gating particles z,
the probability of the entire gate being open, is given by yz.

The movement of gating particles between the closed and open state can be expressed
as a reversible reaction with forward and backward rates α(V) and β(V):
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Assuming a large number of ion channels, the probability y of individual gating
particles being in the open state can be interpreted as the fraction of gating particles in
the open position. Correspondingly, the fraction of gating particles in the closed state is
1 − y. Thus, the time evolution of the gating variable y can be described by a first-order
differential equation:

dy
dt

= αy(1− y)− βyy (A3)

or
dy
dt

=
y∞ − y

τy
(A4)

The general form of the time evolution for y(t) to a voltage step is:

y(t) = y∞(V)− (y∞(V)− y0) · e
−t

τy(V) (A5)

where y0 is the starting point at time zero, y∞ the steady state value, and τy the time
constant. Both, y∞ and τy are related to the voltage dependent rate coefficients α(V) and
β(V), which can further be modeled by fitting empirical functions of the membrane potential
to experimental data:

y∞ =
αy

αy + βy
(A6)

τy =
1

αy + βy
(A7)

As proposed by Hodgkin and Huxley [42], the best fit for the non-linear potassium
conductance in the squid giant axon was achieved by assuming four independent gat-
ing particles for the activation gate n, leading to the following model equations for the
potassium current IK:

IK = gKn4(V − EK) (A8)

dn
dt

= αn(1− n)− βnn (A9)

with αn = 0.01 V+55

1−exp
−(V+55)

10

and βn = 0.125 · exp
−(V+65)

80 .
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