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Abstract Registration of dynamic CT image se-
quences is a necessary preprocessing step for accu-
rate assessment of multiple (patho)physiological 
determinants in the heart such as myocardial perfu-
sion. In this work we present a recursive-cascade-
network approach for deformable image registration 
using data from myocardial perfusion CT studies. A 
contrast-agent dependent loss function was intro-
duced which enabled us to further improve the 
accuracy of sequence registration. In addition, 
different network configurations were evaluated, 
showing a good trade-off between spatial registra-
tion accuracy and image quality. 
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Introduction 

Deformable image registration (DIR) is essential 
for clinical applications where spatial alignment of 
anatomical structures is required. Such applica-
tions include image-guided procedures in diagnos-
tics and therapy [1]. In cardiac image analysis, DIR 
is used in image-guided interventions, perfusion 
studies and procedures that requires myocardial 
motion tracking [2]–[4] 
Cardiac perfusion studies in dynamic computed 
tomography (CT) are performed to qualitatively or 
quantitatively assess myocardial perfusion after 
contrast agent administration. Such studies evalu-
ate the distribution of contrast agent in the heart 
and aim to identify and detect ischemic areas in 
the ventricle characterized by hypo attenuation 
(reduced CT values) in the image [5]. During a 
patient examination, an image sequence of the 
heart is obtained by using an ECG-gated protocol 
that usually acquires image data at the end-
systolic phase. However, due to cardiac stressing, 
respiratory- and patient motion, spatial misalign-
ment can be present. Hence, the registration of the 
whole ventricle or a selected ROI over the whole 
2D/3D sequence is necessary for an accurate 
measurement of the time-attenuation curves. Such 
task has some unique challenges because of the 
non-rigid dynamic nature of the heart, the motion 

of the thorax and the lack of anatomical landmarks.  
Moreover, the dynamic information of the changing 
contrast agent introduces another degree of com-
plexity to the problem. 
Recent advances in image registration have 
demonstrated the potential of deep learning tech-
niques in applications for multi-modal and inter-
patient registration, and motion tracking [1], [6]. 
Furthermore, approaches using supervised and 
unsupervised learning have been introduced, how-
ever, supervised methods are hardly to be imple-
mented due to the need of ground-truth flow-fields. 
In contrast, unsupervised methods do not require 
flow-field labels and perform image registration 
using a similarity measure between the fixed and 
the warped moving image [6]. Current state-of-the-
art methods on DIR, however, use an unsuper-
vised approach [7], [8], [9].  
In this work, we further developed and evaluated 
the performance of a so-called Recursive-
Cascade-Network [9], an established method for 
DIR using datasets of myocardial perfusion  CT 
sequences. Here, we introduced a contrast-agent 
dependent loss function to improve the accuracy of 
sequence registration and evaluated the results 
using different network configurations. Finally, we 
evaluated the effects of the number of selected 
cascades and modified the loss function in terms 
of optimizing spatial alignment and image quality.    
 
Methods 

Recursive Cascade Network. Let   

denote a sequence of images, where  
and let   denote a fixed image. We want to 
predict a flow field  that aligns the se-
quence  The Recursive Cascade Network [9] 
generates a flow prediction function F which takes 
a fixed image  a moving image  and predicts  
This field is by the composition of flows (see Eq. 1) 
 

n  21     (1) 
 
where  for  is predicted by the k-th 
cascade which is a base subnetwork such as [7], [8]. 
The motivation of using a cascade-based-registration 
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concept is to decompose large displacements per-
formed by  into progressively small displacements 
generated by the flows  The final image 
is obtained by successively warping of the moving 
image along all cascades (see Eq. 2).  

mnm II  )( 21     (2) 
  
Loss function.  As suggested in [8], the loss function 
in image registration often consist of a similarity loss 

 for the fixed and warped image, and a regulari-
zation loss  to smooth the terms of the field as 
presented in Eq. 3. 
 

)(),(),,(  regmfsimmfnc LIILIIL    (3) 
 
However, for this application, we found that consider-
ing the loss as denoted in Eq. 3, affects negatively to 
regions of high contrast agent concentrations 
(right/left atrium or ventricle) in the image se-
quence. Specifically, for cases in which the con-
trast regions from the fixed image differ from the 
moving image. In these cases, contrast regions are 
introduced or removed from the moving image to 
make the warped image more similar to the fixed 
one. Therefore, to address this problem, we added 
a loss term that penalizes such changes and for-
mulated the loss as presented in Eq. 4: 
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The term Lsim is used to reduce the misalignment 
between Im and If, and the introduced term Lcont is 
used to penalize the changes of the contrast regions 
in the warped image. Here, we included the parame-
ters α1 and α2 to weight the losses. We experimental-
ly found that α1 has to be lower than 0.5 to reduce the 
changes in contrast regions. If Ci  Imi is a contrast 
region in the i-th moving image of the sequence S, 
we want to preserve as much information about Ci 
in the warped image, therefore, we want φ to modi-
fy this region only the necessary to reduce the misa-
lignment. For this purpose, masks of the contrast 
agent were used and the regions generated as 
shown in Eq. 5 
 

  (5) 
 
where M is the mask. Hence, the Lcont loss is defined 
as denoted in Eq. 6 
 

    (6) 

 
 
The first term penalizes the loss of contrast from 
the moving image in the warped image, and the 

second term penalizes the introduction of contrast 
regions into the warped image. Both cases are 
equally relevant for this application, therefore, we 
used the same weight factor, α2, for both terms. 
Moreover the operator  is the Hadamard product 
and d is a similarity metric such as correlation coef-
ficient, mutual information or mean squares. For 
this application we used the Pearson correlation 
coefficient. We ran several experiments with differ-
ent configurations for Lcont, to determine the pa-
rameters α1 and α2 . 
 
Dataset. We used a dataset comprising 247 CT 
sequences of 2D myocardial perfusion images. The 
data was acquired from 19 patients undergoing regu-
lar CT examination with a Philips-iCT 256 scanner. 
All patients gave informed consent. The sequences 
where obtained from a 13 slices volume stack of slice 
thickness of 5 mm and matrix size of  512x512, con-
taining 23 – 45 frames over time. However, from 
each volume stack only 4 to 5 slices representing the 
ventricular chambers were considered. For each of 
the frames, masks of the contrast agent (regions with 
high contrast agent concentrations) were obtained 
using a CT window of W:450 L:130. For training and 
validation, we used the default CT window W:750 
L:90. Subsequently, we split the data on subject lev-
el, 17 for training and 2 for validation.  of each 
sequence was set to the frame with the maximum 
amount of contrast-agent. 
 
Implementation. Our proposed configuration was 
implemented in PyTorch using a modified 2D ver-
sion of the original implementation (for 3D vol-
umes) as published in [9]. We also used the same 
hyper parameters and selected a VTN [7] for the 
base subnetworks. Our model was trained using a 
batch size of 32 on 2 TITAN RTX 25GB. 
 
Experiments. The registration of the sequence was 
performed using different numbers of cascades and 
loss functions. The aim was to assess how the net-
work configuration influences the image alignment 
and quality. Hence, we implemented several net-
works using 3, 5, 7, 10, 15 and 20 cascades, and 
trained them based on the loss function according to 
Eq. 3 and Eq. 4, respectively. The Pearson correla-
tion coefficient was used as the similarity metric for 
Lsim and Lcont, Lreg is the total variation loss as used in 
[7] and the parameters α1 and α2 were set to 0.4 and 
0.3, respectively. Finally, we assessed the registra-
tion performed by the networks by calculating the 
evaluation measures. 
 
Evaluation Metrics. The performance of the regis-
tration was evaluated based on the accuracy of spa-
tial alignment and the image quality. The spatial 
alignment was quantified using the Dice score [10] 
which measures the overlap between two regions 
and ranges between 0 and 1, where 1 means perfect 
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matching.  In particular, we calculate the Dice score 
between the segmentations obtained from of the 
whole heart. Furthermore, the image similarity before 
and after registration was measured to assess the 
loss of information during the process, i.e. changes in 
contrast agent concentration over time. Next the 
Mutual Information (MI)[11] between the moving and 
the warped image is estimated.  In addition, we in-
cluded the Structural Similarity Index Measure 
(SSIM)[12] as an additional measure for estimating 
image quality, this was calculated between the mov-
ing and the warped image. The SSIM quantifies the 
quality between two images and ranges between 0 
and 1, where 1 represents the highest quality.  
 
Results 

To demonstrate the effectiveness of the proposed 
model configurations, a qualitative and quantitative 
evaluation was performed. For qualitative evalua-
tions we registered sequences and visualized them 
frame by frame by generating cines using the 
Graphic Interchange Format (GIF). Figure 1 shows 
the results of a CT perfusion sequence obtained 
from a 10-cascade model trained with Lnc (see 
Eq.3) and Lc (see Eq.4), respectively. The fixed 
(reference) image shows a good contrast between 
the LV cavity and myocardium, while the selected 
“moving” image represents a frame of the se-
quence before the contrast agent occurs in the LV 
(see first line: Fixed image shows perfect contrast 
between cavities and tissue. Moving image: no 
contrast agent appeared in the heart. Second line: 
Fixed image reveals perfect contrast. Moving im-
age: agent already occurred in the right atrium and 
ventricle).   

 

Figure 1: Results of sequence registration using a 10 
cascade model with  and , respectively. 

We also visualized the generated flow fields to 
assess the deformations performed by the models. 
Figure 2 shows the warped image and 10th flow 
field applied to the frames in the first row of Fig. 1. 
Here the norm of the vectors in the flow field is 
shown in a color scale, where red and blue repre-
sent large and small displacements, respectively. 
As expected, in the first column, Lnc, large dis-
placements can be observed in the contrast re-

gions while in the second column, Lc,, more uni-
form displacements can be seen in the contours. 
 The quantitative analysis was carried out using the 
evaluation metrics described above. We assessed 
the registration of the sequence by estimating the 
Dice score at frame level. Moreover, to investigate 
changes in the image quality, we calculated the MI 
between the moving and the warped image. The 
aim was to examine possible quality loss due to 
deformations. Figure 3 shows the mean Dice score 
and mean MI of one full CT perfusion sequence 
using a 10 cascade model trained with Lnc and Lc, 
respectively. The peak values are obtained at the 
frame selected as fixed. 

 
Figure 2: Warped images and flow field of two 
frames using a 10 cascade model. 
 
Finally, to identify the optimal configuration in 
terms of the number of selected cascades we per-
formed a quantitative analysis for all model config-
urations. Table 1 presents the means of the Dice 
score, MI and SSIM for the 3, 5, 7, 10, 15 and 20 
cascade configurations obtained from the se-
quences in the validation set. 

 
Figure 3: Evaluation metrics for one patient se-

quence using a 10 cascade-model 
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Table 1: Evaluation metrics for different model 
configurations for the validation set. 
 

N 
Dice MI SSIM 

Lnc Lc Lnc Lc Lnc Lc 

3 0.998 0.998 1.35 1.95 0.846 0.984 
5 0.998 0.996 1.44 1.93 0.874 0.992 
7 0.998 0.998 1.21 1.90 0.8 0.982 
10 0.998 0.998 1.20 1.87 0.8 0.979 
15 0.998 0.998 1.17 1.84 0.79 0.979 
20 0.998 0.998 1.16 1.70 0.79 0.965 

 

Discussion 

In this work different model configurations of the 
Recursive-Cascade-Network were implemented 
and tested with the aim to identify the optimal con-
figuration for the registration of myocardial perfu-
sion CT sequences. Firstly, we evaluated the effect 
of the loss function at different cascade numbers. 
The results showed that training the model based 
on a loss function that does not penalizes the 
changes in the contrast regions negatively affects 
the quality of the warped image. Figure 1 shows an 
example of quality degradation of the warped im-
age when the fixed and moving image have differ-
ent contrast regions. It can be noted that the model 
deforms and introduces artifacts in these regions 
(see Fig 1 and Fig 2) that were observed for all 
investigated cascade configurations. Moreover, the 
models’ performance was quantitatively assessed 
as shown in Fig 3 for a 10 cascade model as an 
example. Here, the quality metrics between the 
moving and the warped image were considerably 
lower in the Lnc model. Interestingly, the Dice score 
was higher than for the Lc model. However, con-
sidering only this measure as evaluation metric 
does not fully reflect the overall performance of the 
model. The latter can also be observed in Table 1, 
where despite achieving a high Dice score, all 
remaining quality measures (MI and SSMI) are 
lower. Finally, according to Table 1 and based on 
visual inspection, the best trade-off between spa-
tial alignment and image quality can be achieved 
with a n=7 cascade model trained using the Lc loss 
function. 
In summary, in this work we introduced a powerful 
loss function for optimizing the registration problem 
in cardiac CT perfusion imaging. Moreover, the 
effects of different model configurations were eval-
uated and they showed that considering the Dice 
score only as an evaluation metric does not fully 
represent the model performance of this approach 
in terms of spatial registration accuracy and image 
quality. In our future work we will investigate the 
effect of using other similarity metrics for the loss 
function and will evaluate the impact of feeding 
more contrast information into the network. 
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