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Welcome Note 

 

 

Dear conference participants! 
 

We would like to welcome you to this year's Annual Meeting of the Austrian Society for 
Biomedical Engineering (ÖGBMT) at Graz University of Technology. Together with the 
Institute of Health Care Engineering with European Testing Center of Medical Devices and 
the Institute of Neurotechnology, we have organized this two-day event for you, which also 
appropriately honors "50 years of Biomedical Engineering in Graz". The scientific sessions 
will focus on biomedical imaging and signal processing, biomechanics, functional electrost-
imulation and neurorehabilitation, biomedical modeling and simulation, among others. 
PD Dr. Rüdiger Rupp will give a keynote lecture on "Rehabilitation technology for people 
with spinal cord injury - hypes and hopes" and report on current developments in this field. 
 
A total of 26 papers were finally accepted and are published "open access" in these “Pro-
ceedings Annual Meeting of the Austrian Society for Biomedical Engineering 2021” by the 
Verlag of Graz University of Technology. 
 
In addition, prizes for the best master's theses and dissertations will be awarded by 
ÖGBMT, Graz University of Technology and industry in recognition of the outstanding 
achievements and high quality of the scientific work of our young researchers. 
 
In particular, we would like to thank the Department for Computer Science and Biomedical 
Engineering, the HTS Cluster Styria, the Standortagentur Tirol and the City of Graz for 
their financial support of this annual conference. On behalf of the ÖGBMT and Graz Uni-
versity of Technology we wish you an exciting and inspiring stay at the ÖGBMT Annual 
Meeting 2021! 
 

Gernot Müller-Putz 
Christian Baumgartner 
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Abstract⎯ A previously developed numerical model 
of the cardiovascular system was applied to develop 
and compare two strategies for closed-loop heart rate 
control using vagus nerve stimulation in complete va-
gal-cardiac denervation. The strategies were also 
tested in a first pilot experiment in an anesthetized rab-
bit that underwent bilateral vagotomy. In-silico and ex-
vivo experiment results were compared to evaluate 
the performance of the control strategies concerning 
accuracy and settling time. For both control strategies, 
the simulations led to performance indicators within 
the pre-defined requirements (10 bpm mean-squared 
error, 10% percentual overshoot, and 15 s settling 
time). In the in-vivo experiment, however, only one of 
the two control strategies could meet the require-
ments. 
 
Keywords⎯ numerical model, cardiac denervation, 
cardiovascular system, vagus nerve stimulation, 
closed-loop heart rate control. 
 

Introduction 

In the past years, numerical models have gained in-
creasing importance in the field of biomedical engi-
neering. These models do not only help to better un-
derstand underlying mechanisms of human physiol-
ogy and pathophysiology but also to develop novel 
treatment strategies and medical devices.  Many suc-
cessful examples of such computer simulations can 
be found in cardiovascular- [1],[2] and neural engi-
neering [3],[4]. Although for long time models of both 
fields were typically separated representations of iso-
lated physiological systems, in recent years, the inter-
play of the autonomic nervous- and the cardiovascular 
system is increasingly becoming a focus of interest, 
leading to integrated neuro-cardiovascular system 
models. Such models can not only improve our under-
standing of the autonomic control of the cardiovascu-
lar system in healthy individuals but also elucidate the 
hemodynamic and neurological changes associated 
with pathological conditions such as cardiac denerva-
tion resulting from e.g., diabetes mellitus or cardiac 
transplantation. From an engineering perspective, 
these models are of preeminent importance for the de-
velopment of novel neuro-modulation-based treat-
ment strategies for the conditions associated with car-
diac denervation. Therefore, we applied a previously 

developed integrated numerical model [5],[6] that al-
lows us to simulate the provoked acute cardiovascular 
effects of vagus nerve stimulation (VNS). This model 
was tuned and validated to reproduce the acute chro-
notropic response to VNS in rabbits that underwent bi-
lateral vagotomy. The model was employed to de-
velop two control strategies for closed-loop heart rate 
control using VNS in case of complete vagal-cardiac 
denervation. The model-based control strategies were 
evaluated in one pilot animal experiment.  
 

Methods 

Model overview: The developed model integrates a 
lumped-parameter representation of the cardiovascu-
lar system with its autonomic and intrinsic cardiac con-
trol and a model of cervical vagus nerve stimulation. In 
brief, the hemodynamic system model consists of 
modified Windkessel models representing the arterial 
and venous compartments of the systemic and pulmo-
nary circulation. The atria and ventricles are realized 
as time-varying elastance models. The autonomic car-
diac control is governed by the arterial baroreflex and 
the pulmonary stretch reflex. The intrinsic cardiac con-
trol is realized through a single-cell Hodgkin-Huxley-
type sinoatrial node cell modeld. To simulate the acute 
cardiac effects of VNS, a multi-axon multi-compart-
ment Chiu-Ritchie-Rogart-Stagg-Sweeney model [8] 
of an efferent vagal-cardiac nerve fiber population was 
implemented. Extracellular stimulation was realized by 
introducing an activation function as described by Rat-
tay [9]. That model was coupled to a multi-compart-
ment model of the ACh kinetics within the vagal-car-
diac neuroeffector junctions [10]. The so-obtained 
ACh concentrations were then used to modulate the 
heart rate through changes in sinoatrial ion-channel 
gating behavior. The influence on atrioventricular con-
duction and ventricular contractility was implemented 
as a time-delay and first-order low-pass filter dynam-
ics. An overview of the model can be found in Figure1. 

 
Control Strategies: Two closed-loop heart rate con-
trol strategies were implemented using the previously 
described in-silico model: (a) unsynchronized VNS, 
and (b) cardiac-synchronized VNS. Briefly, in both 
control strategies, charge-balanced cathodic-anodic 
biphasic current pulses are delivered to the vagus 
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nerve. In the unsynchronized control strategy, the 
stimulation is applied continuously without respect to 
the cardiac cycle. The shape of the pulses is deter-
mined by three main parameters: current amplitude 
(C), pulse width (PW), and frequency (F). In the syn-
chronized strategy, a defined number of pulses (NP) 
is delivered with a specific delay (D) to the onset of left 
ventricular isovolumic contraction identified from the 
R-peaks in the electrocardiogram (ECG). A summary 
of the stimulation parameter values used is given in 
Table 1.  
 

Table 1: Stimulation parameter values used in unsyn-
chronized (U) and cardiac-synchronized (S) stimula-
tion strategies. 

Type C (mA) PW (µs) F (Hz) NP D (ms) 

U 0 – 2 200  30  - - 
S 0 – 2 200 30  8 0 

 
The closed-loop control was implemented using a pro-
portional-integral (PI) controller that minimizes the er-
ror between the measured instantaneous heart rate 
and a given reference heart rate. A previously per-
formed sensitivity analysis highlighted the preeminent 
influence of the current amplitude on the provoked 
chronotropic responses [6], thus it was chosen as the 
control variable. The controller tries to minimize the 
perceived error by applying a correcting proportional 
and integrating term that are added to the current am-
plitude. The final form of the PI controller is given by 
Equation 1, where Pc(t), is the controller output (cur-
rent amplitude respectively), Kp is the proportional 
gain, Ki is the integral term, e(t) = HRref – HR(t) is the 
error between the reference and the measured instan-
taneous heart rate.  
 

𝑃𝑐(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡                 (1) 

 
Controller Gain Identification: The goal was to opti-
mize the controller gains (Kp, Ki) concerning the accu-
racy and speed of convergence of the controller. 
Therefore, similar to the work of Ugalde et al. [11], the 
gains were optimized with regards to three perfor-
mance indicators: (a) mean squared error (MSE) cal-
culated from the last 10 s of the stimulation period, (b) 

percentual overshoot (%OS) corresponding to the 
overshoot amplitude expressed as a percentage of the 
final reference heart rate, and (c) the settling time (Ts) 
defined as the time that is required for the heart rate to 
go from baseline to 90% of the final value. Therefore, 
the cost function of the form:  
 

𝐹 =
1

3
(

𝑀𝑆𝐸

𝑀𝑆�̂�
+

%𝑂𝑆

%𝑂�̂�
+

𝑇𝑠

𝑇�̂�
)                    (2) 

 
was minimized using Bayesian optimization with 
100 evaluations of the cost function. The cost func-
tion is defined as the arithmetic mean of the three 
performance indicators. The performance indicators 
were normalized to the respective requirements for 

the individual markers (MSÊ, %OŜ, Tŝ). The prede-
fined requirements were a maximum rise time of 15 
s, a maximum relative overshoot of 10%, and a 
mean squared error below 10 bpm. For each opti-
mization iteration, a step-response simulation was 
performed consisting of an initial phase of 100 sec-
onds in which the controller is turned off to establish 
a baseline, followed by a phase of 100 seconds in 
which the controller is turned on, trying to reduce the 
heart rate by 35 bpm from baseline. 

The optimization was carried out to meet the de-
mands regarding the accuracy and settling time of 
the control strategy.  

 

Hardware-in-the-loop implementation: Both con-
trol strategies were implemented using hardware-in-
the-loop tools. The loop comprises an instrumenta-
tional amplifier (Warner DP-304A) to acquire the 
electrocardiogram (ECG) of the animal, a real-time 
prototyping system (DSPACE MicroLabBox) on 
which a binary of the control strategy is executed, a 
linear isolated stimulator (Biopac STMISOLA), and 
a bipolar cuff electrode used to deliver the stimuli to 
the animal’s vagus nerve. A schematic overview of 
the hardware-in-the-loop chain is presented in Fig-
ure 2. 

 

Figure 2: Schematic overview of the hardware-in-the-
loop implementation of the control strategy. 

 

Animal Preparation: One adult New Zealand white 
rabbit was used for initial evaluation of the control 
strategy under the approval of the Institutional Animal 
Care and Use Committee of the city of Vienna 
(BMBWF 2020-0.016.858 – GZ 2020-0.016.858).  
The animal was premedicated with 0.1-0.2ml/kg keta-
mine (100mg/ml Ketasol®) and 0.2-0.3ml/kg dexme-

  

Figure 1: Overview of the integrated model (PR, atri-
oventricular conduction time; Elv, left ventricular elas-
tance, ACh, acetylcholine, Ve, extracellular potential). 
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detomidine (Dexdomitor®, 1mg/ml) injected intramus-
cularly, followed by intravenous induction of the same 
mixture via the auricular vein 15-20 minutes after pre-
medication was given. The animal then was endotra-
cheally intubated allowing anesthesia to be main-
tained with sevoflurane vaporized in a 40:60 mixture 
of oxygen and medical air. 
For electrode implantation, the carotid sheath on the 
left and the right were opened and the trio consisting 
of the cervical vagus nerve (CVN), the internal jugular 
vein, and the common carotid artery were dissected, 
followed by gentle isolation of the CVN. Once both, the 
right and left CVN were exposed, a bipolar cuff-elec-
trode (Microprobes NC-3.5-2-250P-5-6-sut-300-TP) 
with a diameter of 0.75 mm and contact spacing of 3 
mm was wrapped around the right CVN with the an-
ode positioned cephalad. After electrode implantation, 
both vagus nerves were dissected cephalad to the 
stimulation cuff electrode using surgical clippers. 
The ECG was acquired using needle electrodes with 
anode and cathode placed on right and left upper limb 
respectively, and the reference electrode on the right 
hindlimb. Arterial pressure was monitored from the 
right femoral artery and mean arterial pressure was 
maintained in a range of 60 to 80 mmHg.  
 
Control Test Procedure: To evaluate the perfor-
mance of the control strategies using the controller 
gains identified from the in-silico model, a step-re-
sponse test was performed. The protocol consisted of 
a single step from baseline, reducing the heart rate by 
35 bpm. For the in-vivo experiment results, the perfor-
mance indicators were calculated and compared to 
the predictions of the computer simulation.  
 

Results 

The gains of the PI controller were automatically tuned 
concerning accuracy and settling time using the in-sil-
ico model. After optimization, for both control strate-
gies, all three performance indicators were well below 
the pre-defined requirements of 10 bpm, 10% and 15 
s for MSE, %OS and Ts, respectively (Table 2).  

Table 2: Optimal PI gains found by automatic optimi-
zation for unsynchronized (U) and cardiac-synchro-
nized (S) stimulation strategies. 

Type Kp Ki MSE %OS Ts 

U 0.001 0.005 2.7 bpm 3.5% 5.8 s 
S 0.01 0.05 0.7 bpm 0.2% 3.8 s 

 
Using the identified values for the controller gains, both 
control strategies were tested in one acute pilot exper-
iment in an anesthetized rabbit that underwent bilat-
eral vagotomy. Therefore, a step response protocol 
consisting of a single step was performed, decreasing 
the heart rate, starting from baseline by 35 bpm. The 
results of the step response protocol in the in-vivo ex-
periments and that of the in-silico model are presented 

in Figure 3 and Figure 4 for the synchronized and the 
unsynchronized control strategy, respectively.  

 

Figure 3: Step response using the unsynchronized 
control strategy in the in-silico model (top) and the in-

vivo experiment (bottom). 

 
Figure 4: Step response using the cardiac-synchro-
nized control strategy in the in-silico model (top) and 

the in-vivo experiment (bottom). 

The three performance indicators (MSE, %OS, Ts) 
were also calculated for the in-vivo data. The results 
for the unsynchronized and the synchronized strate-
gies are presented in Table 3. Both control strategies 
showed worse performance in the in-vivo experiments 
than predicted by the computer simulations. The syn-
chronized control strategy however met all the pre-de-
fined requirements while the unsynchronized type 
substantially exceeded the limits for the MSE. 
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Table 3: Performance indicators for in-vivo step re-
sponse protocol using unsynchronized (U) and syn-
chronized (S) stimulation strategies. 

Type MSE %OS Ts 

U 22.9 bpm 2.3% 6.2 s 
S 8.5 bpm 6.2% 4.3 s 

 

Discussion 

Numerical models have been proven to be viable tools 
to aid the development of medical devices and respec-
tive control strategies. In our work, we applied a previ-
ously developed numerical model that integrates the 
cardiovascular system and its autonomic control with 
a model of a vagal-cardiac nerve fiber population to 
develop two different control strategies for closed-loop 
heart rate control using VNS. These control strategies 
were then tested in a first pilot animal experiment.  

The PI control was chosen over more sophisticated 
concepts as e.g., model predictive control due to its 
simplicity and straight-forward implementation. Alt-
hough often a derivative term is added to the PI con-
troller, it was omitted since previous studies suggest 
this leads to worse accuracy in closed-loop heart rate 
control [11].  

The performance indicators calculated from the model 
predictions and the pilot in-vivo experiment for both 
control strategies lead to inconsistent results. Overall, 
the control strategies showed a substantially better 
performance in the computer simulations as com-
pared to the pilot experiment. The discrepancies may 
be related to uncertain factors not considered in the 
numerical model such as anesthesia-related changes 
in dynamics of autonomic cardiovascular control. 
Thus, further investigations are needed to refine the 
computer model based on experimental results.  

Although the performance of both control strategies 
was worse in the in-vivo experiment, the synchronized 
control strategy was markedly superior to the unsyn-
chronized stimulation in terms of accuracy. Even 
though the performance was lower than predicted by 
the computer simulation, the synchronized control par-
adigm could meet all defined performance criteria sug-
gesting it as a viable strategy for closed-loop heart rate 
control that should be pursued in future work. 

Finally, we need to acknowledge limitations in our 
work. First, the baseline heart rate in the model was 
substantially different than that in the in-vivo experi-
ments. This is because the intrinsic cardiac control of 
the model was realized as a human SA node model. 
We cannot exclude that using a sinoatrial node cell 
model of the rabbit would have improved the overall 
outcomes of the work. Moreover, the control strategy 
was only evaluated in a single animal. Therefore, we 
cannot draw any conclusions on the preservation of 
the control strategy performance for changed physio-
logical conditions. Current work is focused on a refined 

tuning of the model for rabbit physiology and the eval-
uation of the control strategy in a virtual study popula-
tion and later in a larger series of in-vivo experiments. 

Overall, this work serves as a proof of concept of the 
capabilities of our model to aid the development and 
evaluation of novel VNS paradigms for the treatment 
of cardiovascular conditions associated with vagal-
cardiac denervation.  
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Abstract Electrical double-layer formation 
attracted significant interest more than a century ago 
and remains fundamentally involved in capacitive 
external stimulation of biological tissue. This work 
focuses on the study of the double layer 
characteristics at the interface formed between an 
electrolyte and polymer structures of organic 
photocapacitors for minimally invasive 
neurostimulation.  Based on a combination of the 
Helmholtz and Gouy-Chapman methods, the Stern 
model is applied in COMSOL Multiphysics to 
investigate this electrical double layer formation. 
Simulations nicely highlight the importance of the 
electrolyte concentration and good cell adhesion. 
 
Keywords EDL, Stern model, photocap, organic 
photocapacitor, OEPC  
 
Introduction 

Organic Photocapacitors (OEPCs) 
Wireless light-sensitive semiconductors named 
organic electrolytic photocapacitor (OEPC) for 
cellular and tissue stimulation are currently attracting 
significant interest in the field of biomedicine [1][2]. 
This minimally invasive stimulation technique could 
be utilized to improve connectivity and tissue 
regeneration after peripheral or central nervous 
system injuries, such as cerebral injury. In using 
OEPCs for external stimulation of excitable cells, 
surpassing the threshold potential remains a major 
challenge, mainly due to an insufficient interface 
between the attached cell membrane and the 
electrode surface, which is caused by a small gap. 
This can electronically be described by an ideal 
capacitor acting in the intermediate layer [3]. The 
characteristic behavior within this cleft is essential to 
generate the required magnitude of stimulus to 
surpass the cells’ threshold potential and can be 
described using models for the electrical double 
layer.  
 
 

Double Layer Models 

Many general studies have been published on the 
behavior of the electrolytic double layer (EDL). 
Helmholtz  described the behavior of the electrolytic 
double layer for the first time in his seminal work in 
1879 [4]. The model describes the linear potential 
curve across the “Helmholtz double layer”, formed by 
ideally opposite charges between a metal electrode 
and the electrolyte. The double layer is bounded by 
the hydrate shells of the ions sitting on the electrode 
surface. The so-called outer Helmholtz plane (OHP) 
passes through the center of these ions. A major 
advance in the early 20th century was described by 
Louis Georges Gouy and David Leonard Chapman 
with the Gouy-Chapman double layer [5][6]. Their 
approach was an extended description of the 
Helmholtz theory, but Gouy and Chapman also 
considered the thermal motion and the ions forming a 
diffuse layer. Further findings from Otto Stern 
revealed that the electrolytic double layer can be 
described by a combination of the two previous 
models [7]. A rigid ion layer is assumed on the metal 
surface and an adjacent diffuse layer reaching deep 
into the electrolyte. Fig. 1 represents the double layer 
formed between the OEPC’s surface and the 
electrolyte, where the OHP is limited by half of the K+-
hydrated shell size, shown in the inset of this picture. 
A diffusive layer is adjacent to the Helmholtz layer, 
where the potential decreases against zero. 
Limitations are partially given by the Poisson-
Boltzmann equation, where ions are treated as point 
charges and their physical size is ignored. 
Assumptions of point charges are mainly applicable 
for low ion concentrations and low electric potential 
changes. In other words, modeling EDL is often 
limited due to the simplification of the ionic structure. 
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Figure 1: An electrochemical double layer schematic 
representing the OEPC-electrolyte interface 
illuminated with 660 nm light pulses. The initial 
surface potential φ0 of the OEPC (ITO and PN layer) 
decreases against zero across the OHP and the 
diffusion layer. The OHP is limited by half of the K+-
hydrated shell size, shown in the inset of this figure. 
   
Methods 

Double layer model 
In order to describe the bilayer characteristics and 
subsequently evaluate whether optoelectronic 
neurostimulation is successful, it is necessary to take 
a detailed look at the mathematical descriptions of 
the double layer characteristics [8]-[13]. Focus is on 
the potential curve that arises between the electrode 
surface and the cell membrane. In this section, 
factors are pointed out essentially involved in the 
EDL formation. First, the linear Helmholtz potential 
distribution is described by Poisson’s equation, 
shown in Eq. 1. 
 

d2φ

dx2
 =  -

ρ(x)

εr ∙ ε0

  (1)  

  
φ0 … potential 
ρ(x) … charge density 

εr … relative permittivity 
ε0 … electric field constant 

 
Since there is a charge-free region between the 
metal surface and the ions, it follows for the Poisson 
equation that ρ = 0 at this point. The Helmholtz 
double layer capacity can be further calculated as 
shown in Eq. 2, where d equals the OHP distance. 
 

CH =  
εr ∙ ε0

d
 (2)  

 
To explain the process in the diffusion layer, the 
Gouy-Chapman description is used. In addition, the 
Boltzmann distribution is considered in the Poisson 
equation for the potential field, see Eq. 3.  
 

ρ(x) =  ∑ zii ∙e∙ci∙exp (-
zi∙e∙φ(x)

k∙T
)  (3)  

 
zi … ion charge number k … Boltzmann constant 
ci … ion bulk concentration [M] t … temperature [K] 
e … electron charge   

 
For the calculation of the potential distribution, the 
linearized approach for solving the Poisson-
Boltzmann equation is assumed as shown in Eq. 4, 
considering the Debye length κ-1. 
 

φ(x) =  φ0∙ exp (-
x

κ
 )  (4)  

  
Hence, combining Eq. 1 and Eq. 3 yields the 
following expression, see Eq. 5: 
 

ρ(x) = -εr∙ ε0

d2φ(x)

dx2
 = -

εr ∙ ε0 ∙ φ0

κ²
∙exp (-

x

κ
 ) (5)  

 
To describe the electrostatic ion interactions in 
electrolytes, the Debye-Hückel theory can be applied 
[14]. The thickness of the diffuse double layer, the so-
called Debye length, can further be calculated 
considering the Avogadro constant (NA) and the ionic 
strength Istr see Eq. 6 and Eq. 7. 
 

xD =  κ-1 =  √
2∙NA∙e2∙Istr

εr∙ε0∙k∙T 
 

 

(6)  
 

Istr = 
1

2
 (∑ zi

2 ∙ ci

i

) (7)  

 
The Gouy-Chapman bilayer capacitance is again 
related to the Debye length and is calculated as 
shown in Eq. 8, with σ representing the charge 
density. 
 

CGdiff= 
dσ

dϕ0

= 
εr ∙ ε0

xD

cosh (
z∙F∙φ0

2∙R∙T
) 

 
(8)  

Finally, the Stern model combines both theories and 
can be described electrically by the sum of the 
Helmholtz capacity together with the Gouy-Chapman 
capacity, as shown in Eq. 9.  
 

1

Cstern

= 
1

CH

+ 
1

CGdiff(φ0)

 (9)  

 
Organic Photocaps 
In this paper, an organic photocapacitor with the 
polymer layers H2Pc(p):PTCDI(n) is used. The 
OEPCs photo response is measured in a KCl 
electrolyte bath.  For light stimulation, a 10 W LED 
with 660 nm is used. 
 

Results 

Analytical calculations were performed in MATLAB. 
Subsequently, both 1D and 2D models were set up in 
COMSOL Multiphysics using the AC/DC module.  
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Figure 2: A. Electrical photo response measurement 
of an OEPC illuminated with a 5 ms light pulse,  
B. Model geometry with marked layer distances:  
x = 0, outer Helmholtz plane (OHP), Debye  
length (xD) and the total length of 100 nm 

The geometric model in COMSOL Multiphysics was 
set up as shown in Fig. 2 B, by inserting various 
layers with different thicknesses and distances, such 
as polymer-surface thickness, OHP, xD and the total 
length. 
A potential of -159 mV was set at the OEPC surface. 
The relative permittivity for the electrolyte was 
assumed with 78.4, the temperature with  
293.15 K. The OHP is limited by the hydrated ion size 
of K+ cations and was assumed with 0.315 nm [15]. 
The Debye length xD was calculated with 3.01 nm for  
0.01 M KCl and 0.95 nm for 0.1 M KCl. The total 
length was limited to 100 nm. 
 
Fig. 2 A represents the measured photo response 
when illuminating the photocap for 5 ms. The inset 
part in Fig. 2 A represents the measurement setup for 
observing the photovoltage obtained from OEPCs 
using a KCl electrolyte. In the model, the potential 
decays to a steady-state starting from the polymer 
surface to a depth of about 100 nm into the 
electrolyte. Based on these assumptions and the 
equations listed in the methods section, the potential 
curves shown in Fig. 3 A are obtained for a 
temperature of 293.15 K. Furthermore, potentials 
maintained at prominent points within the double 
layer are represented in Tab. 1. 

Table 1: Electrical potentials calculated within the 
double layer for different KCl concentrations. 

distance x  

potential φ(x) [mV] 

0.01 [M] 0.1 [M] 

0 -159.00 -159.00 
OHP -122.19 -90.62 
xD -58.06 -50.72 

 
Figure 3: A. Electrical potential distribution for 
different electrolyte concentrations. The first dotted 
line represents the OHP distance, the second one 
the Debye length for 0.1 M KCl and the third one the 
Debye distance for 0.01 M KCl, B. Electrical potential 
distribution across the total length for 0.01 M KCl 

The rapid potential drop between the OEPC surface 
and the OHP layer can be nicely seen in Fig. 3 B. In 
addition, the calculated capacities for various 
electrolyte concentrations are listed in Tab. 2. 

Table 2: Calculated capacities for different 
electrolyte concentrations 

 
capacities [µF/cm²] 

0.01 [M]  0.1 [M]  

CH 220.37  220.37  
CGdiff 39.98 112.70 
Cstern 33.84  74.56  

 

Discussion 

There are significant advantages associated with the 
use of EDL models, especially since experimental 
methods are complex and often difficult to implement. 
They can be used to effectively investigate the 
double layer characterization, which reveals the 
interaction between the stimulation electrode and the 
cell behavior. Key parameters such as ion 
concentration, ion size, electrical potential, 
geometries, and many other factors pertaining to 
double layer characteristics can be quickly 
investigated and indicate the best way to improve cell 
measurements. 
The simulation results presented in this paper show 
the rapid potential decrease within the outer 
Helmholtz layer. Furthermore, a strong dependence 
on the electrolyte can be observed. Thus, both the 
conductive medium and coating of the stimulating 
device intended to enhance cell attachment and thus 
essential for successful neurostimulation should be 
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taken into account. The distance between the cell 
membrane and the OEPC surface is of enormous 
significance. Variations in temperature are not a 
major factor here. 
Beside the constant assumptions in the Stern model 
mentioned at the beginning, the model limitations are 
given by the linearization of the Poisson-Boltzmann-
equation. This approximation fits well for Δφ

kT
≤ 1. 

Even though constraints arise with the linearized 
approach yielding the Debye-Hückel approximation, 
still good assumptions can be made with respect to a 
considerable number of cases. However, even in the 
case presented in this work, the approximation 
provides good assumptions despite small deviations. 
For larger potential changes improvements may be 
achieved by extending the Poisson-Boltzmann 
approach which can become complex quickly.  
In conclusion, the model presented in this paper 
yields reasonable assumptions on parameters 
required to be adjusted to ensure successful external 
cell stimulation. 
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Abstract⎯ Astrocytes, a type of glial cells in the 
brain, are actively involved in neuronal information 
processing and memory formation. An astrocyte 
participates in neuronal activity by receiving neuro-
transmitters, e.g., glutamate, from an adjacent pre-
synapse. This leads to the propagation of astrocytic 
intra- and intercellular calcium waves. In this study, 
we extend the computational model presented by 
Oschmann et al. (2017) to a finite element model of 
single astrocytes, including a realistic 2D geometry 
and inositol 1,4,5-trisphosphate (IP3) and ion diffu-
sion. Here, we conduct a parameter exploration of 
the sodium-calcium exchanger (NCX) and sodium-
potassium-ATPase (NKA) rate constants. The cal-
cium concentration directly depends on the amplitude 
of the glutamate stimulus. However, the sodium con-
centration instead relates only to the sodium-
potassium pump activity. 
 
Keywords⎯ Astrocyte, simulation, sodium, calcium, 
diffusion 
 

Introduction 

Astrocytes are a glial cell type that plays a major role 
in the ion and energy homeostasis of the brain. As-
trocytes and neurons are in a ratio of 1:2 in rodents 
and even 1:1 in humans. A single astrocyte can con-
nect between 270 000 and 2 million neuronal synap-
ses [1]. Thus, astrocytes can functionally modulate 
neuronal activity and complex mammalian behavior. 
In a landmark paper [2], mice with transplanted hu-
man astrocytes showed improved long-term potentia-
tion and performance in learning tasks, emphasizing 
the importance of human astrocytes for the unique 
human cognitive abilities. Experimental findings 
strongly indicate that astrocytes might be involved in 
various pathologies such as epilepsy, depression, 
Alzheimer's, and Huntington's disease [3], [4]. 
Computational modeling can aid experimental work 
by forming a theoretical framework to characterize 
the anatomy and function of neurons and astrocytes 
[5]. Thus, a well-planned theoretical study can guide 
experimentalists towards the most relevant experi-
ments, and in this way, save time and resources. In 
our review paper [5], we summarized astrocyte mod-
els from subcellular to network level that have started 
to emerge.  
Oschmann et al. [6] introduced an astrocyte model 
including two glutamate pathways which both induce 
calcium (Ca2+) elevations (Fig. 1): activation of (1) the 
metabotropic glutamate receptors (mGluRs) and (2) 

the glutamate transporters (mGluT) at the plasma 
membrane. The mGluR pathway includes the uptake 
of glutamate from the extracellular space. Subse-
quently, inositol 1,4,5-trisphosphate (IP3) followed 
by a Ca2+ release from the endoplasmic reticulum 
(ER) into the cytosol through IP3 receptor channels. 
The increasing Ca2+ levels lead to an opening of 
further IP3 channels and a Ca2+-induced Ca2+ release 
(CICR). The second pathway includes the mGluTs, 
which transports potassium (K+) out and sodium 
(Na+) and glutamate into the cell. Furthermore, the 
sodium-calcium exchanger (NCX) exchanges Na+ 
and Ca2+ ions. The Na+-K+-ATPase (NKA) trans-
ports Na+ ions out and K+ ions into the cell. Addi-
tionally, leak currents for Na+ and K+ are modeled. 
The novelty of the model is the combination of those 
two pathways and their dependence on the surface-
to-volume ratio (SVR) and ER amount in the respec-
tive cell section. The SVR is large in perisynaptic 
astrocytic processes that connect to the neurons and 
small in the soma of the astrocyte. The ER ratio be-
haves the opposite. 

 

Figure 1: Scheme of the calcium dynamics within an 
astrocyte, including the mGluR- and the GluT-

dependent pathway (adapted from [6]). 

In this study, we combined the model by Oschmann 
et al. with a whole-cell astrocyte morphology [7]. 
Based on the width of a cell section, we automatically 
calculated the SVR. Furthermore, we added IP3 and 
ion (Ca2+, K+, and Na+) diffusion to the model. 
 

Methods 

We used the model and its parameters as de-
scribed in Oschmann et al. [7] with the following 
additions: diffusion of IP3, Ca2+, K+, and Na+ with 
coefficients 300, 13, 1 960, and 1 330 µm2/s, re-
spectively. Our model was implemented as a finite-
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element method with a realistic geometry (Fig. 2 
top) in COMSOL Multiphysics version 5.6. The 
geometry is implemented in 2D as a tridomain 
model (i.e., ER, cytosol, and extracellular space). 
The SVR in the geometry required by the model 
was based on the width of the processes. 

 

 

Figure 2: Top: Geometry of a single astrocyte with 
an indication of the stimulus sides (blue) and the 

locations of the two measurement probes (red cross-
es). Bottom: Random (uniform distribution) stimuli 
from 10 to 40 s with either 0.5 µM or 5 µM mean 

glutamate concentration. 

We conducted a parameter exploration for the maxi-
mum pump current of NCX, INCXmax, with the val-
ues10-6, 10-5, 10-4, 10-3, 0.01, and 0.1 pA/µm2, and for 
the maximal pump activity of NKA, INKAmax, with the 
values 10-6, 0.1, 0.5, 1, 1.52, and 5 pA/µm2. Similar 
parameter ranges have also been explored in Osch-
mann et al. [6]. Furthermore, we applied two different 
random glutamate stimuli with a mean of around 0.5 
and 5 µM (Fig. 2 bottom) to two processes (Fig. 2 
top).  
For the different INCXmax and INKAmax values and the 
two glutamate input values, we measured the Ca2+ 
and Na+ concentrations in one of the stimulated pro-
cesses (Probe 1) and the soma of the astrocyte 
(Probe 2). Moreover, we counted the number of Ca2+ 
events (i.e., Ca2+ spikes with a full width at half max-
imum of maximally five seconds). We also deter-
mined the maximum values of the Na+ concentra-
tion during the stimulation time as a function of the 
pump currents and the glutamate stimulus. 
 

Results 

Fig. 3 shows the Ca2+ concentrations in Probe 1 
and 2 for the two applied glutamate concentrations. 
The higher stimulus led to more distinct Ca2+ spikes. 

 

Figure 3: Ca2+ concentrations after stimulating the 
astrocyte with a glutamate concentration of 0.5 or 

5 µM and applying INCXmax = 0.1 pA/µm2 and INKAmax = 
1 pA/µm2. Rows: Glutamate stimulus of 0.5 (top) or 

5 µM (bottom). Columns: Ca2+ concentrations in 
Probe 1 (left) or 2 (right) during the stimulation time. 
The arrows indicate the Ca2+ peaks. The x-axis de-

picts the time in seconds. 

The maximum number of Ca2+ events was yielded 
with a glutamate stimulus of 5 µM and INCXmax = 
0.1 pA/µm2 and INKAmax = 1 pA/µm2 (Fig. 4). As ex-
pected, the number of spikes was higher for a higher 
glutamate stimulus. For smaller INKAmax values and 
higher INCXmax values, the most number of Ca2+ oscil-
lations were detectable.  

 

Figure 4: Number of Ca2+ events after stimulating the 
astrocyte with a glutamate concentration of 0.5 or 
5 µM and different values for INCXmax and INKAmax. 

Rows: Glutamate stimulus of 0.5 (top) or 5 µM (bot-
tom). Columns: Number of Ca2+ events (color bar) in 
Probe 1 (left) or 2 (right) during the stimulation time. 

The maximum Na+ concentration was clearly de-
pendent on the values of INKAmax rather than on the 
values of INCXmax and the glutamate concentration 
(Fig. 5). The lower the values of INKAmax was the high-
er the Na+ concentration. 
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Figure 5: Na+ concentrations after stimulating the 
astrocyte with a glutamate concentration of 0.5 or 
5 µM and different values for INCXmax and INKAmax. 

Rows: Glutamate stimulus of 0.5 (top) or 5 µM (bot-
tom). Columns: maximum Na+ concentrations (color 
bar) in Probe 1 (left) or 2 (right) during the stimulation 

time. 

 

Discussion 

Our computational model investigates the intracel-
lular calcium and sodium concentrations in de-
pendence on the glutamate stimulus as well as the 
sodium-calcium exchanger, NCX, and the sodium-
potassium-ATPase, NKA, pump rates. Therefore, 
we have extended the model by Oschmann et al. 
[7] by a realistic geometry and IP3 and ion diffu-
sion. 
There is a complex interplay between the calcium 
and sodium dynamics in the astrocyte. Calcium 
signals and oscillations may be triggered by acti-
vated mGluRs [8], [9] as well as by the NCX in 
reverse mode [10] and the inhibition of NKA [11]. 
In a study by Ziemens et al. [12], the authors used 
the equation of the NCX model as also used in [7]. 
They found that after glutamate-induced stimula-
tion, the NCX switches from an inward mode to an 
outward/ reverse mode, which is connected to a 
calcium influx to the astrocyte. Furthermore, the 
model suggests that the calcium increase only 
weakly antagonizes the NCX in the processes but 
not in the soma. 
Our study suggests that the intracellular sodium con-
centration is mainly driven by the NKA. A blockage of 
the NKA transporter by ouabain led to an increase of 
cytosolic sodium concentrations and thus seems to 
be the primary cause for sodium elevations in the 
astrocyte [10]. 
To conclude, our simulations showed that the calci-
um levels depend on the given glutamate concentra-
tions and a balance of the sodium-calcium exchanger 
and the sodium-potassium-ATPase pump rates. 

The sodium levels rather relate only to the sodium-
potassium pump activity. 
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Abstract Mathematical models of individual ion 
channels form the building blocks of complex in-silico 
tools, enabling the investigation of biophysical mecha-
nisms and simulation of disease processes. We here 
propose a first simplified hidden Markov Model (HMM) 
for the voltage-gated potassium channel Kv1.1, taking 
into account the channels’ specific activation and inac-
tivation characteristics close to physiological tempera-
ture. The modeling approach and simulation results 
were compared with an existing Hodgkin Huxley 
model based on the same experimental data. The 
newly developed HMM shows a higher accuracy with 
regard to the activation and inactivation behavior com-
pared to the Hodgkin Huxley approach. 
 
Keywords computational electrophysiology, Hodg-
kin-Huxley model, hidden Markov model 
 
Introduction 

Single channel models constitute the basis of in-silico 
tools for simulation of ion current kinetics and action 
potential alterations in excitable cells. A variety of 
whole-cell models of different levels of complexity and 
abstraction have been introduced and have become 
an integral part in neuroscience and cardiac electro-
physiology, enabling the investigation of biophysical 
mechanisms, simulation of disease processes as well 
as prediction of therapeutic interventions.[1–4] A high 
degree of biophysical detail considering the specific 
gating properties with, at the same time, low computa-
tional burden are the fundamental requirements and 
challenges for a successful integration and application 
of ion channel models in biomedical research.  
Modeling of ion channel kinetics is commonly based 
on Hodgkin-Huxley (HH) or hidden Markov Model 
(HMM) descriptions.[4–7] The HH model offers a 
basic paradigm in which the channel can be either 
open or closed depending on a set of gates, controlled 
by a number of gating particles. The kinetic behavior 
of each gating particle between a permissive and non-
permissive state is described as a first order process 
independent from the states of the other gates. Thus, 
a possible dependences between activation and inac-
tivation of the channel is not considered.[4,6,8] How-
ever, although these models lack the underlying elec-
trophysiological processes of channel gating, HH 
models closely reproduce the macroscopic currents 
with a small number of variables and low 

computational burden, and hence are still widely used 
in computational electrophysiology.[1,7]  
In comparison, Markov Models specify channel states 
according to the protein conformation and thus take 
into account the channel-specific gating behavior, 
which enables a highly accurate and veritable model-
ing of the channel kinetics.[4,7–9] In particular the in-
vestigation of channelopathies or drug-specific effects 
on the gating behavior through targeted changes in 
certain conformational states requires the use of such 
a probabilistic method, where ideally each state would 
correspond to one protein conformation.[7,10] In prac-
tice, however, even complex Markov models are only 
approximations to the actual channel dynamics with 
reduced numbers of states in order to keep the com-
putational burden as low as possible.[7]  
In this work we present a newly developed hidden 
Markov based approach for modeling the macro-
scopic current of Kv1.1 channels, considering for the 
first time the slow and fast inactivation close to physi-
ological temperature.[11] Kv1.1 (KCNA1) delayed rec-
tifier channels are strongly expressed in the central 
and peripheral nervous system “regulating” neuronal 
subthreshold excitability and spike initiation. Mutations 
of the KCNA1 gene are primarily associated with neu-
rological disorders such as epilepsy and cardiac dys-
functions, but also implicated in tumor development 
and progression.[12–16] For model parametrization 
experimental data from patch clamp measurements 
were used and the model results quantitatively evalu-
ated and compared with an existing HH approach, 
based on the same experimental data. In addition, a 
qualitative comparison with regard to the ad-
vantages, disadvantages and limitations of the two 
methods was carried out. 
 
Methods 

Electrophysiological data: Comprehensive experi-
mental data on Kv1.1 channels is provided via the ion 
channel knowledge base Channelpedia (https://chan-
nelpedia.epfl.ch).[11] Data used for model evaluation 
is based on the CHO_FT Rat KV1.1 35°C activation 
dataset (n = 66 individual cell measurements). Patch-
clamp measurements were performed with the auto-
mated patch clamp system Nanion NPC-16 Patchliner 
Quattro (Nanion Technologies, Munich Germany) in 
whole-cell configuration.[11] Macroscopic currents 
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were recorded with activation protocols consisting of a 
100 ms long initial- and re-pulse at -80 mV and test 
pulses starting at -90 mV to 80 mV (increment 10 mV) 
of 500 ms duration. The applied deactivation protocol 
consisted of an initial- and re-pulse of -80 mV for 100 
ms, a depolarization pulse at 70 mV over 300 ms for 
activation, followed by 300 ms long deactivation 
pulses from -80 mV to +30 mV in 10 mV steps. 
 
Hodgkin Huxley model: The Kv1.1 HH model by 
Ranjan et al. [11] for direct comparison comprises a 
single activation gate m and inactivation gate h. The 
macroscopic current is given by:   
 

    𝐼௄௩ଵ.ଵ = 𝑔௄௩ଵ.ଵതതതതതതതത𝑚௣ℎ௤(𝑉 − 𝐸௄)     p = q = 1       (1) 
 
with  

    
ௗ௠

ௗ௧
=

௠ಮି௠

ఛ೘
    and     

ௗ௛

ௗ௧
=

௛ಮି௛

ఛ೓
           (2,3) 

 

The model was implemented in the simulation envi-
ronment MATLAB and differential equations for acti-
vation and inactivation gates solved numerically by 
the Forward Euler method. All model parameters 
and equations of gating variables can be found in 
Ranjan et al. [11]. 
 
Hidden Markov Model: Considering the specific 
knowledge on the protein structure and gating of Kv1.1 
ion channels, demonstrating a fast activation in re-
sponse to membrane depolarization and inactivation 
by both, a slow C and fast N-type inactivation [11,17], 
a 12-state HMM was defined and parametrized based 
on the activation curves. Fig. 1 illustrates the final 
HMM kinetic scheme consisting of 4 closed (C), 1 
open (O), 4 inactivated states (IC), representing the 
slow inactivation, which can only occur from a closed 
state, and 3 states depicting the fast inactivation path 
(IN). 

 
Figure 1: Kv1.1 hidden Markov Model, C: closed, O: 
open, IC: slow inactivation, IN: fast inactivation 

Forward transition rates α, λ, σ and backward tran-
sitions β, η, ε are voltage-dependent and described 
by first order differential equations: 
 

             𝛼(𝑉) = 𝛼ଵ. 𝑒𝑥𝑝 ቀ
௏

ఈమ
ቁ                        (4) 

 

             𝛽(𝑉) = 𝛽ଵ. 𝑒𝑥𝑝 ቀ
ି௏

ఉమ
ቁ                        (5) 

 

where αi and βi represent specific gating parameters 
and V the applied voltage. c, d, m, k and x, y and u 
denote constants without voltage-dependence. As Po 
defines the probability of a channel being in the open 

state, the time evolution of the open probability is given 
by equation 6: 
 
          

ௗ௉ೀ

ௗ௧
= 𝑃େర

(𝑡). 𝑐 + 𝑃
ಿయ

(𝑡). 𝜂 − 𝑃୓(𝑡). (𝑑 + 𝜆) (6) 

 
where the first two terms represent all transitions 
entering the open state and the rightmost term all 
transitions leaving the open state. 
The open probability Po, the ion channel number Nc, 
the single channel conductance gKv1.1 and reversal po-
tential EK allow the calculation of the channels’ macro-
scopic current:  
 

        𝐼௄௩ .ଵ = 𝑔௄௩ଵ.ଵ𝑁௖𝑃ை(𝑉 − 𝐸௄)               (7) 
 

Parameterization of the rate constants is based on the 
averaged activation data (n = 66 single cell measure-
ments) using a particle swarm optimization approach 
(MATLAB, Global Optimization Toolbox). Since the 
HMM approach models the current through a single 
ion channel, the number of ion channels has to be es-
timated for simulation of the macroscopic current. For 
the given dataset the channel number was determined 
to be Nc = 8987. The final model parameters are listed 
in Tab. 1.  

Table 1: Parameters of the Kv1.1 HMM 

Rate constants and parameters 
α1 900 s-1 λ1 49.83 s-1 σ1 1049.7 s-1 
α2 0.02 V λ2 2.94 V σ2 522.68 V 
β1 77.35 s-1 η1 51.18 s-1 ε1 1 s-1 
β2  0.0441 V η2 1.1024 V ε2 944.2 V 
c 108840 s-1 k 3685 s-1 x 78.04 s-1 
d 37851 s-1 m 42310 s-1 gKv1.1 10 pS 
u 1*10-8 s-1 y 181.39 EK 0.065 V 

 
Model evaluation: Accuracy of fitting results was 
quantified using the averaged root mean square error 
values (RMSE) over all voltage steps for both ap-
proaches, see Eq. 8. 
 
   𝑅𝑀𝑆𝐸 =  ඥ∑(𝐼୏୴ଵ.ଵ_୫୭ୢୣ୪(𝑡) − 𝐼୫ୣୟୱ୳୰ୣୢ(𝑡))ଶ/𝑁   (8) 
 
Results 

Model simulation of activation protocols: Fig. 2a 
and 2b illustrate the simulated activation curves with 
the HMM and HH approach over all voltage-levels. 
Note that the figures represent the normalized cur-
rents, since the original HH model was derived from 
the normalized activation curves only. The newly de-
veloped HMM simulates the measured whole-cell cur-
rents with high accuracy. In particular, the fast inacti-
vation can be modeled with high precision compared 
to the HH approach which demonstrates a too strong 
and prolonged inactivation (RMSEHMM_act = 0.017 vs 
RMSEHH_act = 0.0355). A comparison of both models 
is shown in Fig. 2c, revealing the normalized current 
at 50 mV with different fitting results (RMSEHMM_act = 
0.0145 vs RMSEHH_act = 0.0287).  
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Figure 2: Normalized currents of the HHM and HH model over all voltage levels for a,b) activation RMSEHMM_act = 
0.017, RMSEHH_act = 0.0355) and d,e) deactivation RMSEHMM_deact = 0.0423, RMSEHH_deact = 0.0425) measurements. 
Comparison of the normalized macroscopic current between HH and HMM for activation at +50 mV c) and for 
deactivation measurements at -30 mV f). 
 
Model simulation of deactivation protocols: In ad-
dition, the measured deactivation curves were simu-
lated and compared for model evaluation (see Fig. 2d-
e). In contrast to the activation data, the deactivation 
currents cannot be simulated as precisely, showing 
greater deviations and an overestimation of the cur-
rent especially at higher voltage levels (0 to 30 mV). 
However, fitting results of the HMM are comparable to 
the HH model with RMSEHMM_deact = 0.0423 vs 
RMSEHH_deact = 0.0425. Fig. 2f shows a comparison at 
-30 mV of both approaches (RMSEHMM_deact = 0.0416 
vs RMSEHH_deact = 0.0423).  
 
Qualitative comparison between the HH and HMM 
approach: The models represent completely different 
approaches in terms of model derivation, optimization 
and simulation. Tab. 2 outlines important modeling pa-
rameters and features that were taken into account 
and rated qualitatively, such as computational burden, 
model complexity or experimental data required for 
model parametrization.   

Table 2: Comparison of the HH and HMM approach 

 HH HMM 
model accuracy (<<) + + (>>) 
explainability of channel 
gating 

+ +++ 

flexibility and adaptability + +++ 
model complexity 
comp. burden optimization 

+ 
++ 

+++ 
+++ 

comp. burden simulation + ++ 
experimental data for mo-
del parametrization 

+++ +++ (>>) 

   Assessment of methods: low (+) to high (+++) scores 

Discussion 

Single channel modeling constitutes a central part in 
computational electrophysiology. Extensive experi-
mental investigations and the growing body of 
knowledge on ion channels enable the development 
of detailed models, simulating the specific gating be-
havior and bioelectric properties of ion channels.  
We here proposed a new, simplified hidden Markov 
model of the voltage-gated potassium channel Kv1.1 
close to physiological temperature (35°C) and com-
pared the simulation results with a previously devel-
oped HH model. The developed HMM exceeds the ac-
curacy of the HH model for the activation, inactivation 
and deactivation kinetics in terms of fitting the experi-
mental data. However, the model showed less accu-
racy with regard to the deactivation characteristics. 
Thus, in a next step more focus should be taken on 
the deactivation path e.g. by consideration of deacti-
vation protocols in model parametrization in order to 
further improve the validity of this initial model. 
In general, by considering the protein structure and un-
derlying gating mechanisms, HMMs provide a more 
accurate and reliable approach compared to HH. The 
kinetic schemes, depicting the transitions between dif-
ferent conformational states offer a better explainabil-
ity and enable the investigation of specific modifica-
tions in the opening and closing behavior of the chan-
nel. Moreover, since HMM model the single channel 
dynamics they also offer a high degree of flexibility, al-
lowing the application to different datasets with varying 
current amplitudes by adapting the number of ion 
channels. In contrast, HH models represent the mac-
roscopic current and are only valid for a specific da-
taset. Hence, the adoption to other experimental data, 
sample populations or cells with varying ion channel 
composition, in particular without appropriate repa-
rameterization is almost not possible.  
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Nevertheless, the high level of detail and complexity of 
HMM results in a huge number of parameters and a 
set of differential equations which increases the com-
putational cost for both parametrization and simula-
tion, and thus represents the major limitation of HMMs. 
Hence, various simplifications by reducing the number 
of states are proposed in order to keep the computa-
tional burden as low as possible, while maintaining the 
complex protein structure and accurately estimating 
the measured ion current. Such simplified models, as 
the one proposed, are rather phenomenological than 
representing the actual conformational states and are 
used, similar to HH models, to deterministically simu-
late the measured macroscopic currents from whole-
cell measurements.[1,7]  
In case of phenomenological modeling the experi-
mental data required for model parametrization is 
comparable to that of HH models. However, in order 
to fully characterize the kinetic properties and improve 
the validity of HMMs, extensive experimental investi-
gations are necessary including, for example, single 
channel patch clamp measurements, determination of 
fast and slow inactivation as well as possible cross 
links, or structural studies to gain a deeper knowledge 
on the actual protein conformation. All this together in-
creases the experimental effort for HMM validation 
enormously compared to HH approaches.     

We can summarize that both modeling approaches 
have strong advantages as well as disadvantages, 
and should always be selected with regard to the re-
spective application. While HH models still represent 
the golden standard in neuroscience, offering a simple 
to use method with low computational burden and high 
integrability into complex cell models, HMMs are 
mainly considered in biomolecular and pharmacologi-
cal research, better addressing the random nature of 
channel gating as the transitions of a channel between 
the different conformational states is represented by a 
stochastic process. Thus, HMMs implemented in 
whole cell applications with sufficient complexity and 
lower computational load have the potential to further 
improve the reliability and validity of such cell models 
and provide a valuable tool in the field of next genera-
tion in-silico electrophysiology. 
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Abstract⎯ A human inner ear model was extended 
to include a synthetic cochlea model for analyzing 
unintended stimulation of the auditory nerve by a 
vestibular implant. Stimulation amplitudes for activa-
tion of the auditory nerve during monopolar vestibular 
stimulation were simulated as well as alterations in 
neural activation of other nerve branches due to the 
insertion of the synthetic cochlea. Only small devia-
tions were found for stimulus amplitudes and neural 
activation in neighboring nerve branches, indicating a 
negligible effect on the overall stimulation result when 
including the synthetic cochlea model. A more com-
plete picture of the stimulation outcome can be ob-
tained by considering the synthetic cochlea instead of 
incomplete segmentations of the auditory nerve. 
 
Keywords⎯ Vestibular implant, virtual model, syn-
thetic cochlea, human anatomy, nerve stimulation 
 

Introduction 

Vestibular implants offer a potential treatment option 
for patients suffering from bilateral vestibular dysfunc-
tion to improve their sense of balance and spatial 
orientation. Human clinical studies and experimental 
evaluations considering animal models have been 
performed focusing on the improvement of vestibular 
implants and applied stimulation scenarios (e.g., [1]). 
In addition, also computer models have been used to 
analyze the effects of vestibular stimulation scenarios 
taking into account realistic inner ear anatomies of 
animals [2, 3] as well as human inner ear anatomies 
based on simplified synthetic models [4]. In our stud-
ies computer models based on µCT-scans of excised 
human specimen have been used to optimize selec-
tive vestibular nerve stimulation and minimize stimu-
lation of nearby non-targeted nerves [5, 6]. For the 
evaluation of selective nerve stimulation and for con-
sidering anisotropic electrical properties in the com-
puter models, 400 neurons were defined for each 
nerve branch in the models by paths starting from the 
most peripheral regions of the nerves and growing 
towards the central part of the inner auditory canal 
(IAC). For a detailed description of the nerve fiber 
generation algorithm, the reader is referred to [5, 6]. 
Neurons of the auditory nerve could not be consid-
ered in these computer simulations, because the 
domain of the auditory nerve could not be properly 
labeled due to insufficient spatial resolution and in-

complete uptake of staining agent. However, the 
consideration of cochlear neurons in the simulations 
would allow for evaluating possible unintended stimu-
lation of the auditory nerve caused by current 
spreads of a vestibular implant – a potential limiting 
factor for the selection of electrode and stimulation 
configurations. 
In this work, a synthetic cochlear model was integrat-
ed in an existing human inner ear model to allow for 
the analysis of unintended stimulation of the auditory 
nerve by vestibular implants. A workflow is described 
for model preparation, replacement of the incom-
pletely labeled cochlea by the synthetic model and 
nerve fiber generation. Finally, resulting nerve fiber 
activations after stimulation by monopolar electrode 
configurations are evaluated and compared between 
models with the originally labeled incomplete cochlea 
and the extended model. 
 

Methods 

The human inner ear model used in this study is 
based on a µCT-scan of a vestibular specimen of a 
donated body of a 78-year-old male. This model 
corresponds to Model 3 in [5]. For further details re-
garding the specimen preparation and segmentation, 
the reader is referred to our previous work [5]. Fig. 1 
depicts the inner ear model focusing on the seg-
mented structure of the auditory nerve. Due to the 
disconnected regions in the segmentation, nerve 
fibers could not be generated by our previously de-
scribed algorithm [5] for this and similar models. 
A CAD-model of a human auditory nerve and the 
combined scala tympani, scala vestibuli and scala 
media was created based on a human inner ear 
model. This model was used as synthetic cochlea to 
replace the incomplete structure of the originally la-
beled auditory nerve and cochlear scalas. In an initial 
registration step, a landmark-based registration ap-
proach was performed. Surface models of both the 
originally segmented auditory nerve and combined 
cochlear scalas were created. The surface models of 
the CAD geometry of the auditory nerve were regis-
tered to the originally segmented geometry by a 
landmark warping approach using ITK [7]. For both 
the original and synthetic cochlea model, 34 corre-
sponding landmarks were defined manually on the 
most peripheral sections close to the organ of Corti 
and along the auditory nerve within the peripheral 
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section of the IAC as these structures could be identi-
fied best in the incomplete segmented data. 
Additionally, six corresponding landmarks were de-
fined manually on the surfaces of the cochlear scalas 
for both the original and synthetic cochlear model and 
a similarity transformation was performed in 3D Slicer 
[8]. After performing the registration based on manual 
landmarks, the preliminary result was improved by 
applying an automatic registration step using the 
BRAINSFit library [9] in 3D Slicer [8]. The result of the 
registration of the auditory nerve of the synthetic CAD 
model to the originally labeled auditory nerve is 
shown in Fig. 2. 
 

 
Figure 1: Human inner ear model with incompletely 
segmented auditory nerve, making the generation of 
an anisotropy field and virtual nerve fibers for the 
auditory nerve impossible for the algorithms de-
scribed in our previous work [5]. 
 

 
Figure 2: Original segmentation of auditory nerve 
(red) superimposed by the registered CAD model of 
the auditory nerve (green).  
 
Next, the original segmentation result was smoothed 
to improve the quality of the meshing result in a later 
step. The segmented cochlea, all vestibular nerves 
and the facial nerve were removed from the model by 
replacing the corresponding labels in the segmenta-
tion by the label of the closest surrounding voxel. The 
registered cochlea was then inserted into the model 
by replacing the labels of the corresponding voxels 
by the registration result. After the insertion of the 
synthetic cochlea, the previously removed vestibular 
nerves and the facial nerve were also inserted again 

into the model. These additional steps for the vestibu-
lar nerves and the facial nerve were necessary to 
preserve their shapes in the model as the removal of 
the cochlea causes all neighboring structures to grow 
into the regions previously occupied by the original 
cochlea. 
Two tetrahedra meshes were created for the original 
model with incomplete auditory nerve and the model 
considering the synthetic cochlea. The segmented 
components were surrounded by a spherical bone 
domain (diameter 5 cm) with low electric conductivity 
representing the temporal bone in the model, and the 
bone sphere was surrounded by a conductive layer 
of 1 cm thickness, similar to the work described in [4]. 
The model creation workflow is described in more 
detail in our previous work [5, 6]. Vector fields defin-
ing the fiber orientation for all nerves were created as 
explained in this previously described model creation 
workflow to consider anisotropic electrical conductivi-
ty tensors in the finite element model and to generate 
virtual nerve fibers for the evaluation of neural activa-
tion. For the auditory nerve of the model including the 
synthetic cochlea, a surface close to the organ of 
Corti was defined as the starting surface for the virtu-
al nerve fibers, which grow from this starting surface 
towards the IAC. 
Spherically shaped electrode contacts with a diame-
ter of 300 µm were inserted in the ampullae of the 
anterior, lateral and posterior semicircular canals 
(SCCs) in both models to test for differences in the 
stimulation outcome between the models and for 
unintended neural activation of the auditory nerve 
caused by electrical stimulation of a vestibular im-
plant. A biphasic stimulus current waveform (a 
200 µs cathodic phase followed by a 200 µs anodic 
phase separated by a 30 µs interphase gap) was 
applied for each electrode contact separately at in-
creasing amplitudes to evaluate active percentages 
of the different nerve branches in the model. The 
reference voltage and current sink electrode contact 
was considered at the outer boundary of the model. 
Fig. 3 depicts the model considering the registered 
synthetic cochlea, nerve fibers and electrode con-
tacts in the ampullae. 
 

Results 

Fig. 4 shows the voltage distribution for the model 
considering the synthetic cochlea when applying a 
unit current (1 mA) via the electrode contact within 
the ampulla of the anterior SCC together with the 
voltage difference relative to the original model with 
incomplete auditory nerve. While the voltage distribu-
tion in the vestibular system is nearly unaffected by 
the insertion of the synthetic cochlea, slightly higher 
potentials are found at the auditory nerve and the 
IAC. 
Fig. 5 depicts the fiber activation for every nerve 
branch in both models during stimulation by the elec-
trode contact in the ampulla of the anterior SCC. First 
fibers of the auditory nerve (Cochlea) are activated 
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only at higher stimulus amplitudes of approximately 
900 µA with an almost linear increase of activated 
fibers up to 3 mA, where more than 40 % of the 
nerve fibers of the cochlea are activated. A similar 
activation profile for the auditory nerve was also 
simulated when stimulating with the electrode con-
tacts in the ampullae of the lateral and posterior 
SCCs (not shown). 
Only minimal differences in the nerve fiber activation 
profiles were found for the other nerve branches 
when comparing the original model with the model 
considering the synthetic cochlea.  
 
 

 
Figure 3: Human inner ear model with generated 
nerve fibers and inserted electrodes. The registered 
synthetic cochlea allowed for generating virtual audi-
tory nerve fibers (red lines) for evaluation of unin-
tended stimulation by electrode contacts of a vestibu-
lar implant (red spheres). 
 

 
 
Figure 4: Voltage distribution at applied unit current 
(1 mA) via the electrode contact in the ampulla of the 
anterior SCC for the model with synthetic cochlea 
(Vsynth) (left) and corresponding voltage difference 
(Vsynth – Vorig) compared to the original model with 
incomplete auditory nerve (Vorig) (right). 

 
 
 

 

 
Figure 5: Comparison of neural activation for every 
nerve branch in the original model with incomplete 
auditory nerve (dashed lines) and the model with 
synthetic cochlea (solid lines) during stimulation by 
the electrode in the ampulla of the anterior SCC.  
 

Discussion 

In this work, previously described models of the inner 
ear were extended by a synthetic CAD model of the 
cochlea to allow for additionally evaluating unintend-
ed neural activation of the auditory nerve during tar-
geted stimulation of vestibular nerve branches. A 
particular interest was in analyzing the effects of the 
replacement of the originally labeled cochlea by the 
synthetic model on the simulated stimulation out-
come, as parts of the model were altered by the re-
placement procedure and also electrical properties 
were changed in the domain of the cochlea due to 
the consideration of anisotropic electrical conductivity 
for the auditory nerve instead of the previously con-
sidered isotropic conductivity. 
In the described workflow, a CAD model of the coch-
lea based on a segmented µCT scan of a human 
inner ear was considered. To apply this model to 
specific segmented datasets, the CAD model of the 
cochlea needs to be deformed to match the shape of 
the auditory nerve and the combined cochlear scalas. 
Adapted CAD models of the cochlea are planned to 
consider significant variations in human cochlear 
anatomy in datasets we want to use in future simula-
tion studies. 
In the current implementation, the activation of the 
auditory nerve fibers is simulated by the same neural 
model as that for the vestibular nerve fibers consider-
ing adapted fiber diameters (2 µm) and without taking 
into account synaptic noise and afterhyperpolariza-
tion. For a detailed description of the neuron models 
and considered parameters see [6]. In future simula-
tions it is planned to consider more accurate neural 
models (e.g., as summarized in [10]) for the auditory 
nerve to obtain a more reliable stimulation outcome. 
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The comparison of the voltage distributions during 
applied unit currents in the analyzed models showed 
that higher voltages are present in the IAC and the 
auditory nerve in the model considering the synthetic 
cochlea. This indicates that stimuli from the vestibular 
system result in higher voltage amplitudes for the 
model after the synthetic cochlea was applied, con-
sequently leading to a higher chance of stimulation in 
these areas. 
The resulting nerve fiber activation curves indicate 
that the stimulation outcome for vestibular nerve 
branches is not significantly influenced by replacing 
the incomplete cochlea model in the datasets by the 
registered CAD model of the cochlea. The small 
deviations in the results of the models depicted in Fig. 
5 are mainly caused by differences in nerve fiber 
distributions within the corresponding nerve branch-
es. On the one hand, these alterations in nerve fiber 
pathways derive from altered mesh resolutions 
caused by the replacement of the original cochlea by 
the synthetic cochlea. On the other hand, also differ-
ent random seed distributions in both models for the 
nerve fiber generation slightly influence the computed 
nerve fiber pathways. 
Additional analysis of unintended stimulation of audi-
tory nerve fibers is possible by considering the syn-
thetic cochlea in the human inner ear model during 
simulation of vestibular implant stimulation scenarios. 
In a next step it is planned to take into account ana-
tomically more accurate surroundings of the inner ear 
in the simulations. Realistic human head models 
would allow for considering realistic reference elec-
trode positions (e.g., below the scalp behind the auri-
cle) and regions with heterogeneous electrical prop-
erties between stimulation and reference electrode 
contacts. Consequently, more realistic voltage distri-
butions and stimulation outcomes can be simulated, 
leading to an improved reliability of answers to scien-
tific questions provided by the performed in-silico 
experiments. 
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Abstract. Knowledge of the interaction between the 
constituents of loaded aortic tissues is crucial to ex-
pand our understanding of load-bearing mechanisms 
in the aorta. We have therefore developed a proce-
dure that enables simultaneous multi-photon micros-
copy imaging of collagen and elastin in human aortic 
tissue during the biaxial extension test. The micros-
copy images obtained were verified with the results of 
the histological staining. The mechanical response 
was also compared with findings from previously 
performed biaxial extension tests. The proposed 
pipeline has shown successful and has great poten-
tial for structural analysis of human aortic tissue. 
 
Keywords: Human aorta, collagen, elastin, biaxial 
extension test, multi-photon microscopy 
 

Introduction 

The healthy aortic wall consists of three layers, 
namely the intima, media and adventitia [1]. Each of 
the layers is characterized by its own structure and 
function. From a mechanical point of view, the main 
role is played by the media responsible for the aortic 
response to loading and the adventitia, which pre-
vents the aorta from overstretching and possible 
rupture. Both media and adventitia owe their passive 
mechanical properties mainly to two proteins, namely 
collagen and elastin. Although the arrangement of 
these proteins in the aortic layers in the unloaded 
state has already been described [1,2], little is known 
about the changes caused by the load. Therefore, 
this study proposes a method for the efficient visuali-
zation of collagen and elastin in loaded aortic tissue. 
 

Methods 

The developed procedure was applied to one medial 
and one adventitial specimen from a non-atheroscle-
rotic and non-aneurysmatic human abdominal aorta 
(52 yrs old, female). The aorta was received within 
24 h of death and frozen at -20°C. 
Sample preparation. The aortic tube was thawed at 
4°C prior to preparation for testing and imaging. Dur-
ing preparation, all steps were carried out at room 
temperature and the samples were kept moist with 
phosphate buffered saline (PBS) at pH 7.4. Loose 

connective tissue was removed, and the intact aortic 
tube was cut open in the longitudinal direction. The 
intimal and adventitial layers were then carefully dis-
sected from the media [3], and square samples 
measuring 20×20 mm were cut in order to obtain 
medial and adventitial patches. In addition, adjacent 
rectangular patches of dimensions of about 4×10 mm 
were cut for histological examinations. Particular care 
was taken to ensure that the edges of squares and 
rectangles match the anatomical longitudinal and 
circumferential directions of the aorta. The mean 
thickness of each sample was measured optically [3]. 
Each square sample was then pierced by four sets of 
hooks connected by sutures. A set of five hooks was 
used on each side [4].  
Histology. Aortic specimens were embedded in 
paraffin and cut at 4 µm with the microtome Microm 
HM 335 (Microm, Walldorf/Baden, Germany). Next, 
the sections were stained with Picrosirius Red (PSR) 
to highlight fibrillar collagen and Elastica van Gieson 
(EvG) to highlight elastin fibers [5] to verify multi-
photon microscopy images. 
Multi-photon microscopy. The imaging took place 
at the IMB-Graz Optical Imaging Resource with a 
tunable picosecond laser (picoEmerald; APE, Berlin, 
Germany), which was integrated into a Leica SP5 
confocal microscope (Leica Microsystems, Mann-
heim, Germany). The laser was tuned to 880 nm to 
induce both the second harmonic generation (SHG) 
signal from collagen and the two-photon excited 
(TPE) autofluorescence signal from elastin. A two-
channel, non-descanned detector (NDD) in epi-mode 
was used to detect SHG and TPE signals simultane-
ously (SP 680 nm barrier filter, i.e., excitation light 

filter; BP 460/50 nm for SHG signal; BP 525/50 nm 

for TPE signal; beamsplitter RSP 495 for two-channel 
separation of SHG and TPE signals). Z-stacks were 
acquired with the HCX IRAPO L 25× NA 0.95 water 
immersion objective with a large working distance of 
1.5 mm for imaging the deep tissue and a sampling 
interval of 0.6×0.6×5.0 µm.  
As a compromise between image quality and acquisi-
tion time, four-fold line averaging was used to reduce 
image noise. A coverglass and water as the immer-
sion medium could not be used with samples mount-
ed on the biaxial test device, since the coverglass 
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could not be fixed horizontally and the sample quickly 
soaked up water. Alternatively, an aqueous eye gel 
Lac®-Ophtal® Gel (Dr. Winzer Pharma, Berlin, Ger-
many) was used [6], and the lens was dipped directly 
into the gel. 
Biaxial extension test. In order to carry out the pla-
nar biaxial extension test and the multi-photon imag-
ing simultaneously, a biaxial testing device was con-
structed, which could be placed on the microscope 
stage, based on the design described in [7], but lim-
ited by the geometrical and environmental require-
ments of the microscope. The device integrates four 
high precision linear positioners SLC-2640 (SmarAct, 
Oldenburg, Germany) with the maximum travel range 
of 35 mm and 1 nm resolution while the maximum 
velocity is limited to 20 mm/s and the maximum 
blocking force to 3.5 N. Each positioner carries a 
bracket with an assembled load cell KM10z 25N 
(ME-Meßsysteme, Hennigsdorf, Germany) character-
ized by a maximum permissible force of 25 N and 1% 
accuracy class. The design of the device allows dis-
placement and force measurements in two perpen-
dicular directions (Fig. 1) with one set of sensors on 
each side.  
The stretch-driven testing protocol was implemented 
with the LabView software (National Instruments, 
Austin, USA). All samples were loaded equibiaxially 
and quasi-statically at a speed of 3 mm/min. First, a 
sample was subjected to the pre-load of 10 mN, 
which was defined as the reference configuration at a 
stretch of 1. The pre-load was followed by cycles of 
preconditioning to obtain a reproducible response. 
The z-stack series of images was then taken in the 
center of the sample. After imaging was completed, 
the sample was stretched to 1.02 and imaged again. 
The experiment was repeated with 0.02 stretch in-
crements until the stretch of 1.40 was reached. 

 

 

Figure 1: Biaxial testing device with a hooked specimen 
placed on the microscope stage.  

Results 

Histology. For the media, the histological staining 
showed crimpy collagen fibers embedded in a net-
work-like arrangement of elastin fibers (Fig. 2). In 
contrast, the adventitia showed smooth, wavy colla-
gen bundles accompanied by separate, either curly 
or straight, elastin fibers. 

 

Figure 2: Histological staining of the aortic layers; scale 
bars denote 50 µm. 

Multi-photon microscopy. The emission signal 
transmitted through the BP 460/50 nm and 
BP 525/50 nm filters was color-coded in green and 
red, respectively (Fig. 3). The red-colored channel, 
which was expected to reflect elastin, captured the 
network-like fibrillary structure in the media and indi-
vidual fibers in the adventitia.  

 

Figure 3: Multi-photon microscopy images of aortic layers at 
the reference and deformed (max stretch achieved) config-
urations; scale bars denote 50 µm. 

Both images resembled the elastin shown by the 
EvG staining (Fig. 2). For the media, however, the 
green-colored channel contained not only the curly 
fibers corresponding to the histological analysis, but 
also the network-like structure of elastin. The spectral 
crosstalk of SHG signal from medial collagen and the 
TPE signal from elastin was observed as a yellow 
color in the merged images (Fig. 3). For adventitia, 
the green-colored channel contained fiber bundles 
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that were comparable to adventitial collagen as 
stained by EvG and PSR. 
Biaxial extension test. The experiment was suc-
cessfully carried out up to a stretch of 1.40 for the 
media, but has to be stopped at a stretch of 1.28 for 
the adventitia (Fig. 4) due to the overload of the linear 
positioners. In addition, tissue relaxation was ob-
served as a decrease in Cauchy stress during imag-
ing. Nevertheless, the characteristic mechanical re-
sponse of both layers was recorded. Adventitia 
showed a stiffer response and more pronounced 
anisotropy than the media. In addition, a stiffer longi-
tudinal response was observed for the adventitia 
while it was observed in the circumferential direction 
for the media. 
 

 

Figure 4: Cauchy stress vs stretch behavior obtained 
from equibiaxial mechanical tests. 

 

Discussion 

Multi-photon microscopy. In the course of this 
study, the importance of the correct setting of multi-
photon microscopy and its validation was demon-
strated. Although filters with an equivalent transmis-
sion range were used for divergent collagen exami-
nations [8-11], this turned out to be unsuitable for 
imaging the untreated human aortic media without 
further processing, e.g., image subtraction. 
The SHG signal from collagen can be observed to be 
induced by the laser excitation wavelength in the 
range from 730 to 940 nm [12,13]. The excitation 
wavelength commonly used is around 800 nm 
[10,14,15] as described by Zoumi et al. [12] or around 
880 nm [8,9,11,16], which corresponds to near 
900 nm, as reported by Chen et al. [17]. For this 
study, the emission wavelength 880 nm was chosen 
based on our previous studies on the human ab-
dominal aorta [8,9], as the signal was observed to be 
optimal for this tissue in terms of the intensity of the 
emission. Differences in optimal values of the excita-
tion and emission wavelengths can be caused by the 
sensitivity of the collagen SHG signal to the biochem-
ical properties of the solution in which the fibrils are 
located. Although it proved to be insensitive to the pH 

value within the physiological range, it changes dra-
matically with the ionic strength of the solution [18]. 
The spectral crosstalk of medial collagen and elastin 
identified during this study was also observed for the 
human thoracic aortic media imaged by Koch et al. 
[19], who excited the tissue with a laser wavelength 
of 830 nm and used 400±50 nm and 525±25 nm 
bandpass filters to capture collagen and elastin, re-
spectively. Interestingly, no prominent spectral cross-
talk was reported by Phillippi et al. [20] when examin-
ing the human aortic media with the same settings. 
This discrepancy can be caused by using different 
gains for the distinct channels. In addition, van Zan-
dvoort et al. [21] observed a spectral crosstalk of 
elastin TPE in the carotid arteries of mice using 410-
490 nm bandpass emission filter. The presence of a 
TPE signal for elastin in this shorter wavelength 
range (410-490 nm) can be caused by a relatively 
higher intensity of this TPE signal compared to the 
SHG signal of collagen [22]. 
Biaxial extension test. During the test it was not 
possible to provide a physiologically similar environ-
ment (immersion with PBS at 37°C), resulting in no-
ticeable drying of the tissue borders, which can affect 
the mechanical response. In addition, the Cauchy 
stress-stretch curves are affected by relaxation phe-
nomena during imaging. Despite these limitations, 
our results are comparable with other studies.  
Similar to our study, Niestrawska et al. [8] reported 
higher mean values of the Cauchy stresses in the 
circumferential than in the longitudinal direction for 
the medial layer of the human abdominal aorta. For 
the adventitia, too, a stiffer response in the longitudi-
nal direction compared to the circumferential direction 
was reported in previous studies [8,23]. 
Further implications. The presented novel combi-
nation of multi-photon microscopy and biaxial exten-
sion tests provides an insight into the microstructure 
of the human aortic layers, which are exposed to 
increased equibiaxial stretch. The visualized collagen 
and elastin can be further analyzed and quantified in 
order to obtain important structural parameters such 
as orientation, dispersion, thickness and waviness of 
the fibers. Available material models are not yet able 
to take into account all of the structural parameters 
mentioned above. Therefore, combined microstruc-
tural and biomechanical data, as provided in the 
study, are essential to develop and calibrate novel 
material models to better reproduce and predict the 
mechanical behavior of aortic tissues in health and 
disease. 
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Abstract ⎯ The present study uses finite element 
(FE) simulations to investigate a three-stage theory on 
the pathogenesis of abdominal aortic aneurysms 
(AAAs). The effect of collagen growth and remodeling 
(G&R) on mechanical wall stresses during disease 
evolution is investigated. The results show that im-
paired remodeling during AAA growth leads to an in-
crease in wall stress, indicating a more vulnerable ves-
sel. Conversely, successful G&R of the collagen net-
work results in less stress, suggesting a possible heal-
ing process promoted by vascular cells that sense the 
mechanical changes associated with AAA formation 
and growth. Overall, the results presented provide val-
uable insights into the pathogenesis of AAAs. 

Keywords ⎯ Abdominal aortic aneurysm, finite ele-
ment method, growth and remodeling 

Introduction 

Abdominal aortic aneurysms (AAAs) are abnormal 
dilatations of the infrarenal aorta that are usually di-
agnosed when their diameter is greater than 30mm 
[1, 2]. If left untreated, AAAs can protrude to the 
point of rupture, an event that leads to death in up 
to 90% of cases [3, 4]. Elective surgery usually re-
duces the likelihood of rupture [1, 5]; however, the 
risk associated with the surgical procedure must 
also be considered. Even if other parameters such 
as growth rate or life expectancy are sometimes 
taken into account in this context [6], the decision 
for surgical intervention is usually made on the basis 
of the size of the AAA: patients are operated when 
the aneurysm diameter reaches 5.0cm (in females) 
or 5.5cm (in males) [6, 7]. 

However, reports of ruptured aneurysms smaller 
than these thresholds as well as stable larger aneu-
rysms have raised questions about the suitability of 
this empirical standard [8]. Therefore, better criteria 
for aneurysm risk assessment are needed. To 
achieve this, a clearer understanding of the material 
behavior of the aortic tissue along the course of the 
disease is crucial. In this direction, Niestrawska et 
al. [9] proposed a three-stage biomechanical theory 
of AAA progression, in which aneurysm develop-
ment is associated with intense G&R of the collagen 
fiber network. In short, stage 1 involves passive re-
modeling of the collagen fibers to the circumferential 
direction. This change is probably perceived by  
mechanotransduction mechanisms; hence cells re-
act accordingly and remodel the collagen network, 

which leads to an increased compliance and the for-
mation of a neo-adventitia on the abluminal side, 
which characterizes stage 2. As the disease pro-
gresses, this remodeling increases with considera-
ble tissue stiffening and the build-up of the neo-ad-
ventitia (stage 3), which is characterized by a high 
degree of in-plane collagen isotropy. 

The present work examines this newly developed 
mechanopathogenic model using FE simulations. 
For this purpose, the mechanical and histological 
constitutive parameters presented by Niestrawska 
et al. [9] are used for each stage to simulate four 
AAAs. The aim is to evaluate how the mechanical 
wall stresses change in the course of the disease 
and thus to shed light on biomechanical phenomena 
that are involved in the AAA pathogenesis. 

Methods 

Since Niestrawska et al. [9] found no correlation be-
tween aneurysm size and disease stage, 4 different 
AAA geometries, with diameters from 40 to 70mm, 
were examined. For each geometry, circumferential 
and axial wall stresses were calculated for stages 1 to 
3, which resulted in a total of 12 simulations that were 
carried out in Abaqus 2017. 

Geometry: The shape of the aneurysm is assumed to 
be axisymmetric (fusiform), described by the paramet-
ric equation [10, 11] 

R(Z) = Ra + (Ran − Ra − c3

Z2

Ra

) exp (−c2 |
Z

Ra

|
c1

) , 

(1) 

where R(Z) is the radius of the aneurysm in relation 

to the axial position Z, Ran denotes the maximum ra-

dius of the aneurysm, located at Z = 0, and Ra rep-
resents the radius of the non-aneurysmatic region, 
taken as 15mm [1, 2]. The parameter 𝑐1 is set to 5 

and the geometric parameters 𝑐2 and 𝑐3 are given 
by Eqs. (2) and (3) [12], i.e. 

c2 =
4.605

(0.5 Lan Ra⁄ )c1
 , (2) 

c3 =
Ran − Ra

Ra(0.8 Lan Ra⁄ )2
 . (3) 

The ratio FL = Lan Ran⁄  has a value of 2.8 and deter-

mines the length of the aneurysmatic part 𝐿an [13]. 
The length of the non-aneurysmatic part is chosen 
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to be 30% of 𝐿an. Table 1 gives an overview of the 
values described above for the four AAA geometries. 

Table 1: Overview of geometric parameters. 

AAA  
radius  

𝑅an (mm) 

AAA 
length 

𝐿an (mm) 

Healthy 
length  
(mm) 

Total 
length 
(mm) 

20 56 16.8 98.6 
25 70 21.0 112.0 
30 84 25.2 134.4 
35 98 29.4 156.8 

The wall is modeled with a constant thickness of 
1.5mm, which is a reasonable assumption for non-pa-
tient-specific geometries [12]. 

Material: The constitutive model of Gasser-Ogden-
Holzapfel (GOH) [14] was used to characterize the 
material behavior of the AAA. It describes the tissue 
as an anisotropic hyperelastic material with a trans-
versely isotropic fiber dispersion. While experimental 
evidence [15, 16] suggests that the amount of collagen 
dispersion in the circumferential-axial plane is usually 
higher than out-of-plane, the transversely isotropic 
GOH model has been used for simplicity, as it is read-
ily available in Abaqus. 

Niestrawska et al. [9] identified constitutive parameters 
for stages 1 to 3 by fitting the non-rotationally symmet-
ric fiber dispersion model by Holzapfel et al. [15] to me-
chanical and histological data. In order to use these 
parameters with the GOH model, the transversely iso-
tropic dispersion parameter was calculated by the re-
lationship κ = 1 − 2κop [13], where κop describes the 

out-of-plane dispersion [9]. The mean fiber angle 𝛼 

and the mechanical parameters 𝑐, 𝑘1 and 𝑘2, were 
taken directly from [9]. Table 2 summarizes the consti-
tutive GOH parameters [14] for the three disease 
stages. 

Table 2: Overview of constitutive parameters [9]. 

 Stage 1 Stage 2 Stage 3 

𝑐 [kPa] 0.95 1.83 3.78 

𝑘1 [kPa] 1.30 0.46 8.96 

𝑘2 [-] 98.6 112.0 156.8 

𝜅 [-] 0.134 0.090 0.196 

𝛼 [°] 6.55 33.11 22.90 

Mesh: Because of the axisymmetric nature of the 
problem, only one eighth of the aneurysm was mod-
eled. For all four AAA geometries, the mesh consists 
of approximately 1100 C3D8H hybrid elements to take 
into account the assumption of incompressible behav-
ior; the element size was selected after mesh conver-
gence analyses (not shown here). Since there is no 
information about how the material parameters 
change in the radial direction, the mesh thickness con-
sisted of a single element. 

Boundary conditions: The displacements of the cir-
cumferential surfaces and the lower outlet surface 
were restricted according to (axi)symmetry. To the 

best of the authors' knowledge, there are no experi-
mental data on pre-stretches in AAAs. In this study, an 
axial pre-stretching of 7% was applied to the upper 
outlet surface – a reasonable (healthy) value for an av-
erage patient age of 71 years [17] – while there was 
no pre-stretching in the circumferential direction. Fi-
nally, a pressure of 16kPa (120mmHg) was applied to 
the luminal surface, which resembled a (non-hyper-
tensive) blood pressure load. 

Results 

Figure 1 shows the distribution of the circumferential 
Cauchy stresses 𝜎circ for all four AAA sizes and 
three disease stages. The simulation of the 70mm 
aneurysm did not converge for stage 1; however, 
we point out that such a large aneurysm is most 
likely not at the beginning of the disease and, 
therefore, the lack of this result should not affect the 
analysis. 

 

Figure 1: Distribution of the circumferential stress σcirc on 
the luminal side of AAAs. Black stars identify the points 
used for plotting the stress-stretch curves of Fig. 4. 

In Fig. 1, the maximum circumferential stress is 
always on the luminal side. In addition, the evolution 
of the circumferential stresses as the disease 
progression is similar for all aneurysm sizes: in 
stage 1 the maximum circumferential stress is in the 
sac (i.e. in the area of the maximum diameter); in 
stage 2 the stress value in the sac decreases 
slightly, but the maximum stress is now located in 
the neck area. In stage 3, the stresses decrease in 
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the entire domain, but the peak stress is still in the 
neck region. 

Figure 2 shows the distribution of the axial Cauchy 
stresses σaxial for all simulations. The maximum 
axial stress for all disease stages and all aneurysm 
sizes is always on the abluminal side of the sac. In 
general, the results of Figs. 1 and 2  agree well with  
earlier AAA simulations from the literature [12, 13], 
as well as with more recent in vivo measurements 
that identified, e.g., higher circumferential peak 
strain values on the neck of AAAs compared to the 
sac [18]. 

 

Figure 2: Distribution of the axial stress σaxial on the 
abluminal side of the AAAs. 

The maximum values of the stresses σcirc and σaxial 
for all simulations in Figs. 1 and 2 are summarized in 
Fig. 3, whereby it can be seen that the larger the an-
eurysm, the higher the stress values (in both direc-
tions), as expected. With regard to the development 
of the disease, the maximum stress values increase 
slightly from stage 1 to stage 2 (circumferential 
stress also changes location, see Fig. 1), while from 
stage 2 to stage 3 the maximum stresses in both 
directions decrease, which leads to stress values 
lower than stage 1. Interestingly, the percentage in-
crease in the maximum circumferential stress (for 
the same stage) decreases with increasing size: for 
stage 2, e.g., the difference in maximum stress be-
tween the 40 and 50 mm AAAs is about 20%, while 
this increase is less than 10% between the 60 and 
70mm AAAs. Although an idealized geometry is 
considered, this interesting result could in some way 
be related to the 5.5cm (empirical) threshold. 

 

Figure 3: Maximum circumferential (squares) and axial 
stresses (circles) for different stages and aneurysm sizes. 

Figure 4 shows circumferential stress-stretch curves 
for the three stages of the 60mm AAA, obtained from 
the same integration point located at the maximum 
AAA diameter (marked with black stars in Fig. 1). As 
expected, all curves are characterized by a linear 
slope (dominated by elastin) followed by a rapid in-
crease in stress after collagen recruitment.  

 

Figure 4: Circumferential stress-stretch curves for the 
three stages of the 60mm AAA. 

The curves of Fig. 4 correspond to the definition of the 
disease stages by Niestrawska et al. [9], namely: the 
inflection point of stage 1 is between 1.1 and 1.15; 
stage 2 shows a more compliant behavior with an in-
flection point at λ ≥     ; and stage 3 shows a stiff be-
havior with an inflection point at λ < 1,1. These 
changes in the material stiffness of the tissue are also 
visible in Figs. 1 and 2, where the (compliant) stage 
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2 leads to the largest AAA diameter after pressuriza-
tion, while the (stiff) stage 3 results in the smallest di-
ameter. While the curves for the other AAA sizes are 
not shown here, the same behavior was observed. 

Discussion 

The clinical history of aortic aneurysms can be 
traced back to early descriptions by Roman and 
Greek doctors [19]; however, the pathogenesis of 
the disease has not yet been fully elucidated and 
decision-making criteria for assessing the risk of 
rupture are still predominantly empirical, based on 
diameter size [6, 7]. In this context, computer mod-
els such as the one presented here could contribute 
to a better understanding of the disease. 

Numerical simulations of AAAs are not uncommon 
[12, 13]; in the present work, however, we have 
combined FE models with a more recent mechano-
pathogenic theory of development of aortic aneu-
rysms, which was proposed by Niestrawska et al. 
[9]. Briefly, the authors identified three stages of the 
disease in which aneurysm development is associated 
with intense G&R of the collagen fiber network. It is 
believed that this G&R process consists of a reac-
tion of mechanosensing vascular cells – particularly 
smooth muscle cells and fibroblasts – to (bio)me-
chanical changes related to the AAA pathogenesis 
in order to adapt the wall to the new configuration. 

The results presented in Figs. 1 to 4 seem to sup-
port this hypothesis. First, by comparing stresses 
from the same column in Figs. 1 and 2, it can be seen 
that stopping the collagen remodeling process leads 
to increasing wall stresses, which, as expected, indi-
cates an increasing risk of rupture in connection with 
aneurysm growth. 

In the course of stage 1, on the abluminal side of the 
wall, Niewstrawska et al. [9] identified a passive reori-
entation of the mean fiber angle from the axial direc-
tion – characteristic of the healthy adventitia – to the 
circumferential direction, which is probably sensed by 
mechanotransducting cells (e.g., fibroblasts), which 
react accordingly and remodel the collagen network. 

The associated changes (stage 2) lead to a slight de-
crease in the circumferential stresses on the aneu-
rysm sac (Fig. 1), which is more pronounced in larger 
aneurysms. However, in this stage, axial stresses 
(Fig. 2) increase as well as the maximum circumfer-
ential stresses (Fig. 1), whose position is shifted from 
the sac to the AAA neck area. As the tissue also be-
comes more compliant (Fig. 4), greater dilatation due 
to blood pressure is clearly visible (Figs. 1, 2) and is 
likely to be perceived by the vascular cells. 

Since the smooth muscle cells have largely disap-
peared at this stage [9], the further remodeling of the 
collagen network is promoted by fibroblasts, which in-
creases the isotropy on the abluminal side of the wall 
(stage 3) [9]. Given the fusiform shape of most AAAs, 
it is worth noting that the shift towards a more isotropic 

(in-plane) fiber dispersion makes sense from a me-
chanical point of view. As a result, a considerable re-
duction in the stresses in both directions can be seen 
(Fig. 3). The decrease is more pronounced in the cir-
cumferential direction, where the maximum stress 
drops about 42% compared to stage 2 and by about 
36% compared to stage 1. This is a direct result of the 
lower deformation (Figs. 1, 2) of the AAA resulting 
from the higher stiffness of the tissue (Fig. 4). 

Disease progression (horizontal direction in Figs. 1, 2) 
and aneurysm growth (vertical direction in Figs. 1, 2) 
are simultaneous processes. Hence, a natural course 
of the disease would likely involve both. In this context, 
it is interesting to evaluate different stages combined 
with different diameters. The example of the circum-
ferential stress (Fig. 1) shows that the maximum value 
initially rises from 566kPa (40mm, stage 1) to 756kPa 
(50mm, stage 2), but then drops to 490kPa (60mm, 
stage 3), i.e., below the initial value, which in turn sug-
gests that collagen G&R could take place in an attemp 
to restore homeostasis. 

It must be said, however, that these values are still 
much higher than those estimated for the healthy wall 
(~150kPa for the circumferential direction [13]), sug-
gesting that if a healing process was actually in pro-
gress, either wall remodeling would persist or a new 
homeostatic state would have been established. 

Conclusions and future work 

There is a pressing need for better criteria for rupture 
risk assessment of AAAs that would enable the 
(bio)medical community to move forward from current 
empirical standards [8]. Using FE simulations to eval-
uate a recent three-stage theory for the development 
of AAAs [9], this study contributes to a better under-
standing of the pathogenesis of this disease.  

The observed decrease in circumferential and axial 
stresses along disease progression (stages 1 to 3) ap-
pears to indicate an intentional healing process asso-
ciated with collagen G&R promoted by vascular cells. 
As shown by Figs. 1 and 2, a lack of collagen remod-
eling leads to higher stresses during aneurysm 
growth, which indicates an increasing vulnerability of 
the vessel. Conversely, successful remodeling leads 
to significantly less stresses in the aortic wall (Fig. 3). 

Future studies should use an appropriate non-rotation-
ally symmetric fiber dispersion model [15] to validate 
these results, since arteries (both healthy and aneu-
rysmatic) are known to be characterized by different 
amounts of in- and out-of-plane collagen fiber disper-
sion [16]. Furthermore, the effect of hypertension over 
the stability of the wall could be investigated by apply-
ing a pressure above 120 mmHg to the AAA. 

Based on the histological state of the wall, Niestraw-
ska et al. [9] identified two different stage 3 AAAs: vul-
nerable and potentially stable. Therefore, future work 
could also focus on differentiating these cases in order 
to gain better insights into a possible healing process 
in connection with the collagen remodeling. 
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Abstract 

Simulations of the ventricular flow patterns during left 
ventricular assist device (LVAD) support are mainly 
performed with straight inflow condition, neglecting 
the influence of the atrial vortex. In this study, the 
influence of the atrial inflow conditions – including 
rotation and asymmetric flow profiles – on the platelet 
behavior were investigated via Computational Fluid 
Dynamics (CFD) simulations.  

Keywords 

Left ventricular assist device, ventricular flow pat-
terns, atrial inflow, computational fluid dynamics 

Introduction 

The use of LVADs as a treatment method for heart 
failure patients has been steadily increasing [1]. De-
spite the success of this treatment, there is still a high 
risk of thrombosis and consequently a high mortality 
rate from stroke [2], [3]. Therefore, there is an urgent 
need for intraventricular flow field investigation during 
LVAD support for a better understanding of the rea-
sons for the high prevalence of thrombosis in these 
patients. Numerical simulations can be a useful tool 
for flow field analysis and for evaluation of the critical 
parameters at the location of depositions. However, 
the accuracy of the simulated flow fields is highly 
dependent on the defined inflow conditions [4].  
Simulations of the ventricular flow patterns during 
LVAD support are mainly performed with perpendicu-
lar inflow conditions from the left atrium neglecting 
asymmetries arising due to uneven flow contribution 
of the pulmonary veins [5]–[7] as well as the atrial 
vortex. In this study, the influence of the atrial inflow 
conditions – including rotation and asymmetric flow 
profiles – on the flow patterns and the platelet behav-
ior were investigated via numerical simulations. 

Methods 

The left ventricle (LV) and the pump of an LVAD 
patient were segmented from computed tomography 
(CT) images and used in this study. 
The Navier-Stokes equations were solved using the 
finite-volume CFD solver (FLUENT, Ansys 19.1, 
Pennsylvania, USA). The blood was modeled as a 
non-Newtonian fluid with a density of 1060 kg/m3 

and a dynamic viscosity of 0.0035 Pa·s. using Lami-
nar model [8]. 
Three different inflow boundary conditions were con-
sidered to investigate the importance of the atrial 
inflow conditions; first, a simulation was performed 
with perpendicular velocity to the inflow (Straight, flow 
rate: 3.5 lit/min) to replicate the typical approach of 
intraventricular flow simulation. For the second simu-
lation an additional rotational component at the inflow 
(Rotation: 35 rpm) was applied as a representative of 
the atrial vortex and a third simulation was performed 
with asymmetric inflow conditions (Asymmetric: 
60%/40% left/right flow ratio to replicate physiologic 
uneven flow distribution of the pulmonary veins). The 
overview of boundary conditions can be seen in Fig1. 

 

 

Figure 1: Patient specific LV geometry with atrial 
inflow conditions. 

A Lagrangian approach was used to track 10 000 
particles with a diameter of three micrometers. Parti-
cles were injected at the beginning of the simulation 
at the mitral annulus and tracked over 7s within the 
LV. The risk of platelet activation and aggregation 
was evaluated by analysis of particle trajectories 
inside of the LV. The Shear Stress Histories (SSH), 
(Eq. 1), and the Residence Times (RT) of the parti-
cles, (Eq. 2), were used as indicators for thrombo-
genicity [9] 

 
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t

t

SSH X t t dt      (1) 
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Results 

Atrial inflow conditions affect the intraventricular flow 
patterns as well as particle trajectories significantly 
(Fig. 2).  
 

 
Figure 2: Top row: mean blood flow patterns at 
coronal plane; bottom row: Particle trajectories for 
straight, rotation, asymmetric inflow conditions 
colored with particle velocity magnitude. 

Also stagnation regions was increased with rotational 
inflow (Straight: 13.62, Rotation: 15.83, Asymmetric: 
7.33 cm2) which can be seen in Fig. 3. 
 

 
 Figure 3: Iso-volume of stagnation volume defined 
by mean velocity magnitude < 0.5 cm/s. 

The distribution of the particles in terms of RT and 
SSH is visualized by using box plots (Fig. 4 & Fig. 5).  

 

 
Figure 4: Box plots of particle residence time. 

 
Figure 5: Box plots of shear stress history. 

The percentage of the particles remaining within the 
LV after 7s of simulation was comparable for simula-
tions with straight and rotation inflow, while it de-
creased significantly for asymmetric inflow. Moreover, 
particles experienced higher accumulative shear 
stresses with the asymmetric inflow (Table 1). 

Table 1: Median and outlier information for RT and 
SH. 

  Straight Rotation Asymmetric 

R
T

 (
s
) Median 3.82 1.92 2.18 

Outliers 
(Max, %) 6.99, 19 6.99, 18 6.99, 13 

S
S

H
 (

P
a
-s

) 

Median 0.25 0.26 0.29 

Outliers 
(Max, %) 50.78, 2 63.48, 3 49.46, 6 
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Discussion 

The previously validated numerical simulation [8] was 
used in this study to investigate the effect of atrial 
boundary conditions on the ventricular flow pattern 
during LVAD support. 
Consideration of the rotational boundary condition at 
the mitral annulus creates lower washout and conse-
quently larger stagnation volume, mainly at the apex 
around the LVAD inflow cannula, compared to the 
conventional straight boundary conditions. While 
stagnation volume was associated with thrombus 
formation by previous studies [10], it was shown that 
inaccurate simulation of the blood stasis region could 
result in misprediction of these aforementioned re-
gions of stagnation. 
Further, inclusion of the asymmetric boundary condi-
tions resulted in an overall significant increase in SSH 
values and a larger proportion of particles that expe-
rienced exposure to high RT, indicating elevated risk 
of platelet activation and thrombus formation [9]. 
Neglecting the atrial flow conditions could lead to 
inaccurate simulation of ventricular blood flow. There-
fore reliable prediction of blood component’s behavior 
and the evaluation of the risk of thrombosis demand 
careful consideration of the atrial inflow conditions. 
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Abstract The goal of this work was to design im-
proved Chemical Exchange Saturation Transfer MRI 
RF pulses applicable to whole-body clinical scanners. 
Conventionally, CEST imaging requires a long contin-
uous wave saturation pulse, however, due to hard-
ware limitations, only pulsed saturation is practicable 
for in vivo scanners. Consequently, RF pulses with a 
duty cycle of 90% are designed by optimal control. The 
simulation results were compared to a 100% duty cy-
cle Continuous-Wave pulse and a 90% Gaussian 
standard pulse. The optimal control pulse showed su-
perior efficiency to the Gaussian pulse and compara-
ble performance to the Continuous-Wave pulse, while 
transmitting less energy to the patient. 
 
Keywords CEST, Pulsed CEST MRI, Optimal Con-
trol, Optimization, Pulse Design 
 

Introduction 

Chemical Exchange Saturation Transfer (CEST)-MRI 
is a specific imaging method that can efficiently detect 
various metabolites in the human body undetectable 
by conventional MRI [1]. This can be realized by ap-
plying a long, off-resonant Continuous Wave (CW) 
saturation radio frequency (RF) pulse. However, such 
pulses are not always feasible due to hardware limita-
tions and Specific Absorption Rate (SAR) restrictions, 
especially on clinical scanners which require pulsed 
RF excitation which typically provide much lower sat-
uration, [1]. Optimal Control (OC) is emerging as a 
promising tool to find Duty Cycled (DC) pulses that 
achieve high CEST-effects while accounting for hard-
ware limitations of clinical scanners.  OC CEST pulses 
with a DC of up to 90% are designed to challenge CW 
pulses and exceed state of the art pulses used on clin-
ical scanners.  
 

Theory and Methods 

Bloch-McConnell equations are the basis for describ-
ing chemical exchange phenomena in MRI. Explicitly, 
they describe a six-dimensional inhomogeneous sys-
tem of ODEs giving us the temporal evaluation of the 
magnetization vector 𝑀(𝑧, 𝑡): 
 

𝑑𝑀

𝑑𝑡
= 𝐴 ∙ 𝑀 + 𝑏,               

𝑑�̃�

𝑑𝑡
= �̃� ∙ �̃� + 𝑏,  

 

𝑠. 𝑡.    𝑀(𝑡 = 0) = 𝑀0, �̃�(𝑡 = 0) = �̃�0. 
 

The Bloch-McConnell equations in this case include 
two proton pools, one pool for bulk water and one pool 
for the solute, which are connected via chemical ex-
change with exchange rate 𝑘𝑠𝑤 from solute pool to 

bulk water pool and exchange rate 𝑘𝑤𝑠 from the bulk 
water pool to the solute pool. Therein, 𝑀 and 𝐴 de-

scribe the system with chemical exchange and M̃ and 

�̃� describe the system without chemical exchange. 
Each of the pools are defined individually by relaxation 
times 𝑇1𝑤 and 𝑇2𝑤 for bulk water and 𝑇1𝑠 and 𝑇2𝑠 for 
the solute pool.  
 
The optimization problem is given as 

min
𝐵1

 𝐽(𝐵1, 𝑀𝑧, �̃�𝑧) = 
𝛼

2
∫ (𝐵1)2

𝑇

0

𝑑𝑡 − 

−𝛽|𝑀𝑧(𝑧1) −�̃�𝑧(𝑧1)|  −  𝛾 ∫ Mz(𝑧)

 

Ω

𝑑𝑧.   

The first integral of Eq. 2 corresponds to the transmit-
ted energy in the 𝐵1 field with the regularization param-

eter 𝛼. The second term maximizes the difference be-
tween the magnetization 𝑀𝑧 with CEST and the mag-

netization �̃�𝑧 without CEST at the saturation offset 𝑧1, 
i.e. maximization of the corresponding CEST peak 
weighted with parameter 𝛽. The third term ensures the 
maximization of the area under the z-spectrum by in-
tegrating over the whole frequency space Ω weighted 
by the parameter 𝛾. The design of this cost function 
was inspired by [2]. 
 
For OC, the DC of the RF-pulse is fixed to a value of 
90% with an on time of  𝑡𝑝 = 100 ms and subsequent 

off times of 𝑡𝑑 = 12.5 ms (see Tab. 2). 90% DC is cho-
sen to maximize the on time and therefore the depend-
ent CEST effect as well as ensure the feasibility of 
measurements on clinical MRI scanners. For perfor-
mance review, the simulation is also conducted for a 
CW pulse with a DC of 100% and a Gaussian stand-
ard pulse with the same 𝑡𝑝 and 𝑡𝑑 times as the OC 

pulse. The Gaussian standard pulse is a Gaussian 
function filtered with a cosine window which is directly 
taken from [3]. The amplitude of the CW pulse as well 
as the Gaussian standard pulse is optimized to yield a 
maximum CEST effect for this model, thus the best 
CW pulse and Gaussian standard pulse for a given 
saturation time are used within the following compari-
son.  
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The simulation and optimization process is demon-
strated using the example of a creatine pool with a fre-
quency offset of 𝛿 = 1.9 ppm in chemical exchange 
with a bulk water pool with no offset (see Tab. 1). The 
simulation parameters are taken from [4]. 
 
Table 1: Simulation parameters for the creatine CEST 
model including a water pool and a solute pool. 

Simulation Parameter Value 

Offset, δ [ppm] 1.9 
Exchange rate solid-water , 𝑘𝑠𝑤 [Hz] 50 

Exchange rate water-solid , 𝑘𝑤𝑠 [Hz] 1 

𝐵0 [T] 3 

Relaxation, 𝑇1𝑤 [s] 1.08 

Relaxation, 𝑇2𝑤 [ms] 0.069 

Relaxation, 𝑇1𝑠  [s] 1.00 

Relaxation, 𝑇2𝑠  [ms] 0.160 

Time discretization, 𝛥𝑡 [ms] 0.1 

Frequency discretization, 𝛥𝑧 [ppm] 0.05 

 
The RF pulse is optimized with a hybrid semis-
mooth quasi-Newton method [5] which also allows 
the implementation of constraints prescribed by the 
clinical scanner (Amplitude: 𝐵1𝑚𝑎𝑥 ≤ 2.5 µ𝑇 and 
Phase: 0 ≤ 𝜑 ≤ 2𝜋). The underlying Bloch-
McConnell equations and their corresponding ad-
joint equations are solved numerically by symmet-
ric operator splitting [6]. 

 

Results and Discussion 

The optimized pulse can be seen in Fig. 2 on the top 
right and the corresponding spectrum underneath. 

There, the saturated spectrum without exchange �̃�(𝑧) 

is shown in blue, the one with chemical exchange 
𝑀𝑧(𝑧) in red, and the CEST effect is seen as differ-

ence |𝑀𝑧(𝑧) −�̃�𝑧(𝑧)|. To compare the performance of 

the OC results the same model is tested with a CW 
pulse and a Gaussian standard pulse. CW pulses are 
broadly known as the most efficient pulses for gener-
ating high contrast CEST images, mainly used for 
NMR spectroscopic measurements. However these 
pulses are not applicable on clinical scanners due to 

Figure 2: Comparison of the CW- , OC- and Gaussian-pulses and the corresponding z-spectra. 

Figure 1 : Direct comparison of the CEST-Peaks for 
the CW- , OC- and Gaussian-pulse. 
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hardware limitations and SAR restrictions. That is why 
pulsed Gaussian standard pulses or pulsed truncated 
sinc pulses (not included in this work) are currently 
used as most efficient RF pulses for CEST imaging.   
 
By comparing the spectra that are generated with the 
OC, CW and Gaussian pulses we can get an under-
standing of how efficient the pulses generate contrast 
in CEST images. Smooth and slim spectra potentially 
generate easy to distinguish CEST peaks for meas-
urements. Therefore, minimizing the negative integral 
is a priority for the optimization process, as this on the 
one hand limits the energy that is put into the RF pulse, 
and on the other hand restrains broadening of the 
CEST peak and truncates artefacts in the resulting 
spectra. All pulses exhibit a comparatively small area 
as can be seen in Tab. 2. The CEST peaks of all 
pulses can be seen in greater detail in Fig. 1. The 
CEST peak maximum of the OC pulse reaches the 
CEST peak maximum of the CW within approximately 
1.7 % and beats the maximum of the Gaussian pulse 
by about 30.5 %. 
 
Furthermore, a restriction to a MRI RF pulse is the en-
ergy transferred to the human’s body. The Integral of 

(𝐵1(𝑡))2 over the pulse duration is proportional to said 
energy, hence proportional to the SAR [7]. In Tab. 2 
we observe that the Gaussian RF pulse train exhibits 
the highest energy, followed by the CW with OC show-
ing the lowest energy among those three. This under-
lines that OC addresses those limitations successfully. 
 
The presented RF pulse designed by means of opti-
mal control showed to outperform state of the art 
pulses in terms of CEST effect and pulse energy. The 
next logical step would be the implementation on the 
MR scanner and comparison to both the CW and 
Gaussian RF pulse. 

Table 2: Comparison of significant features of a CW 
pulse with a DC-OC pulse and a DC-Gaussian stand-
ard pulse. Total duration was set to 1 s.  

Pulse feature CW Gaussian OC 

CEST-Effect [%] 35.55 24.70 34.94 

Integral (𝐵1(𝑡))2 [(µT)2s] 2500 2844 2094 

Area [a.u.] 200 191 198 
Duty Cycle, 𝐷𝐶 [%] 100 90 90 

 

Conclusion 

We implemented an optimal control framework for 
CEST RF pulse design. The optimized pulses were 
able to outperform state of the art Gaussian pulses by 
30.5% and achieve almost the same efficiency as CW 
pulses while being applicable to clinical scanners.  
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Abstract⎯ Electrical neuromodulation using trans-
cutaneous spinal stimulation can modify the spinal 
motor output. In recent years, proof-of-principal stud-
ies have shown the benefits of this intervention to re-
cover locomotor functions. Here, we assess changes 
of joint torques during stimulation over a wide range of 
stimulation frequencies (1 – 100 Hz). The presented 
example shows high susceptibility to the external input 
by modifying stepping patterns during robot-assisted 
treadmill training. 
 
Keywords⎯ Transcutaneous spinal stimulation, neu-
romodulation, sensorimotor integration, spinal cord in-
jury, robot-assisted gait training 
 

Introduction 

Spinal cord injury (SCI) is a devastating neurological 
condition that affects the interactions between su-
praspinal structures and the spinal cord below the le-
sion. It results in partial or complete loss of volitional 
and postural control of movements associated with im-
paired sensorimotor integration. The ensuing muscle 
weakness is often accompanied by spastic motor be-
haviors, such as increased muscle tone (hypertonia), 
hyperactive reflexes (hyperreflexia), and clonus, as 
well as involuntary muscle contractions (spasms) and 
improper muscle coordination (dyssynergia) [1, 2]. 

New developments in electrical neuromodulation with 
transcutaneous (TSS) spinal stimulation show prom-
ise for improving walking in people with SCI [3–5]. The 
underlying premise of TSS interventions is that the 
generated afferent input modifies the excitability of the 
lumbosacral network to either augment appropriate or 
suppress pathophysiologic spinal motor output [4, 6].  
 
Here, we address the impact of TSS frequency from 1 
up to 100 Hz on locomotor pattern in people with in-
complete SCI. 
 

Methods 

Robot-assisted treadmill stepping 
The participant was first instrumented for EMG record-
ing and TSS stimulation (see below). After determining 
the stimulation thresholds, the subject was placed in 
the bodyweight support harness and fitted into the ro-
botic gait orthosis (Lokomat Pro V4, Hocoma AG, 
Volketswil, CH). The Lokomat (Fig. 1A) was used in a 
research mode, which provided real-time analog data 
output. This device controls leg movement towards a 
predefined trajectory of a physiological gait pattern by 
controlling the hip and knee joint torques of the exo-
skeleton. A cascaded control system (Fig. 1B) inte-
grates a first-order impedance controller (proportional-

 

Figure 1. (A) Components of the robot-assisted gait exoskeleton, Lokomat Pro. (B) Cascaded control struc-
ture. Primary angle controller based on desired (qdes) and measured actual (qact) angles; secondary torque 
control loop based generates the actuating torque (Tctr) of the exoskeleton; actual torque (Tact) measured at 
the actuators. The disturbance torques by a participant (Tpat) and treadmill (Ttm). Modified from Jezernik et al. 
(2003) [7]. 
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derivative, PD) for angle deviations and a second-or-
der proportional (P) torque controller [7]. 
 
TSS intervention 
Two self-adhesive hydrogel electrodes (5 cm, diame-
ter) were placed on both sides of the T11/12 interspi-
nous space and connected to act as a single cathode. 
The rectangular electrodes (7.5 x 10 cm) were placed 
over the lower anterior abdomen left and right of the 
umbilicus and connected as a single cathode [8]. The 
stimulation frequencies were randomized from 1 to 
100 Hz, whereas the intensity was set individually to 
allow comfortable stepping across the applied fre-
quency range. 
 

Experimental procedure 
After checking the proper orthosis fit and stepping pat-
tern over ~30 gait cycles, the robotic torques and EMG 
were first recorded without stimulation (10 gait cycles). 
Then, the stimulation frequencies were randomly se-
lected by custom-made software up to 100 and re-
mained constant for ten consecutive gait cycles. The 
trigger signal provided by a data acquisition card 
(CompactRIO Systems) was used to synchronize the 
frequency change with the right heel-strike defined by 
the Lokomat. Stepping without stimulation was re-
peated at random throughout the recording. Data from 
310 consecutive gait cycles were analyzed of which 
the first ten gait cycles without stimulation were used 
for normalization. 

 

Figure 2. Recording setup and illustrative robotic torques and angles in participant S2 (left leg). A: Recording 
setup: The subject is placed in a robotic-assisted gait orthosis (Lokomat Pro, Hocoma, Inc.) on a treadmill with 
body-weight support. Robotic torques and angles in hip and knee joints were output using the Lokomat re-
search setting. EMG signals were simultaneous recorded in the rectus femoris (RF), medial hamstrings (MH), 
tibialis anterior (TA), and soleus (SO) muscles. During stepping at constant treadmill speed and body weight 
support, continuous transcutaneous spinal stimulation was applied at various frequencies but the same inten-
sity. B: Angle (A) and torque (T) signals for five superimposed consecutive gait cycles (duration 2.4 s) at differ-
ent stimulation frequencies. Hip–knee cyclograms (top) present the gait trajectories of the robotic joints (begin-
ning of stance, black circle; beginning of swing, grey circle). Robotic hip (middle) and knee (bottom) joint tor-
ques produced by the robotic actuators (stance phase, 62%, marked in black; swing phase, 38%, in grey). 
Note similar trajectories but changes in hip and knee torques at different stimulation frequency. C: Traces of 
stimulation frequency (top), hip (middle), and knee (bottom) robotic torques over 310 gait cycles for stance 
(black) and swing (gray). The stimulation frequency was randomized and kept constant for ten consecutive 
gait cycles. Hip and knee robotic torques are expressed relative to the first 10 gait cycles (no stimulation). 
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Data analysis 
The subsequent heel identified a gait cycle–strike sig-
nals from the Lokomat output and divided it into the 
stance (62%) and swing (38%) phase. The robotic tor-
ques (T) generated by the Lokomat hip and knee ac-
tuators during stepping were calculated as the area 
under the curve (Fig. 1B), separately for stance and 
swing, hip and knee, and left and right sides. The rel-
ative change in torque (rΔTgc, in %) was calculated as 
the normalized difference between the torque during 
each gait cycle (Tgc) and the averaged torque across 
the first ten gait cycles without stimulation (Tavg[1:10]) 
for each side, joint, and gait phase (Eq. 1). 

 

Results 

An example of relative changes in the robotic torques 
(rΔT) are shown in Figure 2B-D for the entire recording 
session (310 gait cycles) with and without TSS applied 
at randomly selected stimulation frequencies in a par-
ticipant (left leg). The robotic torques for no stimulation 
conditions (baseline), interspersed throughout the re-
cording session, was stable (Fig. 2B, first and last col-
umns). Administering the stimulation at different fre-
quencies produced instantaneous changes in torque 
predominantly sustained in magnitude over multiple 
gait cycles or showed an incremental or decremental 
change (Fig. 2C). The changes in robotic torques dur-
ing stimulation were largely in opposite directions be-
tween stance and swing in both hip and knee joints 
(Fig. 2B, middle columns; Fig. 2C). With frequency 
data aggregated in bins, it became apparent that the 
hip and knee robotic torques increased during stance 
and decreased during swing at higher frequencies in 
this participant (Fig. 3). 
 

Discussion 

In this study, we examined the immediate effect of 
TSS across different stimulation frequencies on ro-
botic support of hip and knee kinematics and muscle 
activation patterns during treadmill stepping. We have 

found individually distinct patterns of changes in the 
robotic torques that differed in magnitude and direction 
depending mainly on the applied stimulation fre-
quency and gait phase (Fig. 2). 
Recently developed methods of transcutaneous pos-
terior root stimulation have opened a new avenue to 
provide non-invasive, multi-segmental input to modify 
the motor output of the lumbosacral spinal cord. This 
study has presented that TSS has the potential to 
modify the state of the lumbosacral network during 
stepping. However, an injured spinal cord provides op-
portunities for more in-depth comparative studies to 
deduce the nature and scope of changes after SCI. 
The study demonstrates that robotic torques and an-
gle cyclograms can be informative for evaluating a pa-
tient’s progress during gait training. Additionally, we 
raise the awareness for and establish the impact of 
Lokomat parameters on gait kinematics and robotic 
torques, which can enrich the knowledge of rehabilita-
tion progression when used as an assessment tool in 
research and clinical settings. 
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Figure 3. The violine plots for the relative changes in hip and knee torques for each stimulation frequency bin 
during stance and swing. The line graph presents the mean (avgT) and standard deviation of each frequency 
bin. 
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Abstract⎯ In the last couple of decades, Spinal 
Cord Stimulation (SCS), either epidural or transcuta-
neous, has become a strong research branch in neu-
romodulation. In an initial effort to understand the 
mechanisms behind SCS, the monosynaptic reflex 
loops have been well studied; however, very few 
studies focus on the polysynaptic responses, which 
appear after 50ms. Here we study how low repetition 
continuous stimulation promotes the appearance of 
such responses as well as basic characteristics of 
their behaviour. Although limited to a single case, it 
shows that the versatility of the polysynaptic re-
sponses might be a pivotal element to understand 
how polysynaptic circuitry can be engaged to help 
the restorative neurological process.    
 
Keywords⎯ SCS, monosynaptic reflex, polysynaptic 
reflex 
 

Introduction 

Spinal Cord Stimulation (SCS) to treat paralysis, 
either with an epidural or transcutaneous approach, 
has become a strong research branch in neuromodu-
lation in the last couple of decades. In an initial effort 
to understand the mechanisms behind SCS, the 
monosynaptic reflex loops have been well studied; 
however, very few studies focus on the polysynaptic 
responses, which appear after 50ms. On the other 
hand, the application of SCS already as a possible 
treatment had led to some promising results [1]–[3]. 
However, these reports remained a limited series of 
clinical cases, and the generalized application re-
mains limited by the lack of information on how to 
identify responders from non-responders.  
 
SCS relies on the selective activation of the posterior 
afferent branches of the spinal roots. After an electri-
cal stimulus, axons in the posterior roots are activat-
ed, triggering the reflex circuits in the lumbosacral 
spinal cord. Multiple reports have helped characterize 
the output of such a circuit, but most of them have 
focused on the mono- and oligosynaptic phase only 
or in evoked EMG-like activity. 

 
This report analyses the posterior root reflex activity 
at latencies between 50 and 400ms and how they 
evolve with increasing intensity and repetitive stimula-
tion. 
 

Methods 

Low-frequency SCS stimulation was applied in a 
person with a motor discomplete Spinal Cord Injury 
(SCI). 
 
SCS was applied non-invasively using a transcuta-
neous bipolar setup [4]. Briefly, the cathode was 
placed at the vertebral level T11-T12 and the anode 
10cm below. The stimulation pulses consisted of 
biphasic current-controlled rectangular pulses of 1ms 
per phase. Stimulation was delivered by a 
STMISOLA stimulator (Biopac Systems Inc., USA). A 
custom programmed Labview (National Instruments 
Inc., USA) interface was used to control the stimula-
tor via a D/A converter module (USB-6221 OEM, 
National Instruments Inc., USA). 
 
SCS was applied in single pulses and continuous 
mode. For single pulses, 8s delay was allowed be-
tween pulses. Recruitment curves were acquired by 
a stepwise increase of amplitude, starting from 60mA 
until 100mA per pulse phase in increments of 5mA. 
For continuous mode, a rate of 2 pulses per second 
(pps) was used. In the present case, the maximum 
intensity applied was 95mA, the individual threshold 
for perceiving discomfort.  
 
The response of the central nervous system was 
indirectly monitored via surface electromyography on 
the lower limb muscle groups. Specifically for this 
report, left Quadriceps (LQ), Hamstrings (LH) were 
chosen. 
 
The monosynaptic responses were quantified as the 
peak-to-peak value (mVpp) of the short-latency re-
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sponse, which appears between 5-50ms post-
stimulus. 
 
The polysynaptic responses were identified as bursts 
of activity higher than the noise level (15µV) that last 
for at least 3ms. If at least 5ms separated above-
threshold activity, then they were considered part of 
different polysynaptic discharges. 
 

Results 

Consistent with other reports, the results show that 
SCS can elicit monosynaptic responses in all mus-
cles (Fig. 1). These responses have an intensity-
dependent amplitude, aligning with the concept that 
higher intensities synchronously recruit a higher 
number of afferent nerve fibres. Even at the low stim-
ulation rate used in continuous mode, post-activation 
depression is already visible in the monosynaptic 
responses (Fig. 2). 
 

 

Figure 1: Responses elicited by A) single and B) 
2pps repetitive stimulation. Red marks correspond to 

polysynaptic activity, 

Polysynaptic responses are characterized by asyn-
chronous motor unit discharges distributed in tens to 
hundreds of milliseconds.  
 
Polysynaptic responses were observed mainly at 
2pps stimulation and only at LQ and LH. Polysynapic 
responses had a higher stimulation threshold with 
85mA and 80mA for LQ and LH, respectively, in con-
trast to their monosynaptic threshold of 75mA and 
70mA.  
 
On each muscle, the aspect and behaviour of the 
polysynaptic responses looked different in shape, 
latency, and duration. On the other hand, within the 
same muscle, the responses were consistent, at 
least regarding the latency. 
 
Interestingly, in LQ, a second group of polysynaptic 
activity started to appear at 90mA and was fully es-
tablished at 95mA. 
 

Discussion 

While intensity has a significant effect on the occur-
rence of polysynaptic responses, higher stimulation 
intensity does not necessarily lead to higher re-
sponse amplitudes; but instead, other complex 
changes could be observed, like the grouping of 
spread discharges or triggering spasms-like activity 
[5]. 
 
Here is shown how, on the same subject, single and 
still low repetitive stimulation with 2pps produced an 
input to the central nervous system that resulted in 
entirely different behaviour. Since the electrode con-
figuration and setup remain the same, the only ex-
planation is the role of temporal variables evoked 
with continuous though slow repetition of stimulation. 
In this case, we report observations with 2pps only, 
since it allows us to observe the responses directly. 
However, it is expected that with higher stimulation 
rates, where the period between stimuli is shorter 
than the latency of the polysynaptic responses, the 
effects would be observed not as direct discharges 
but as modulation. Thus, while the post-activation 
depression is well studied and explains observed 
habituation of the monosynaptic reflexes, the control 
strategies for polysynaptic responses are still to be 
studied and understood in more detail.  
 
This case report shows how the rhythmical activation 
of the same motor pool can facilitate the consistent 
activation of the polysynaptic circuitry. It also shows 
how the polysynaptic response amplitude is depend-
ent on the intensity, but not in a linear way. Specifi-
cally, it appears that increasing the intensity facilitates 
the synchronization of all elicited responses. Moreo-
ver, the triggering of a completely new group of poly-
synaptic responses suggests complex interneuron 
processing, namely since in the presented example, 
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it appeared only in one of the four main lower extrem-
ity muscle groups. 
 

 

Figure 2: Recruitment curves of the monosynaptic 
reflexes evoked by A) single and B) 2pps repetitive 
stimulation. Squares represent the single points and 

continuous line the average. 

 
Mono- and oligosynaptic reflex loops are essential to 
characterize the lumbosacral circuits. However, they 
remain just an artificial response to an unphysiologi-
cal grouped sensory input, which does not exist in the 
same form in natural conditions and, therefore per se, 
are not enough to understand the engagement of 
deeper polysynaptic circuits involved in the volitional 
movement. 
 
Further studies on the behaviour of these polysynap-
tic responses will be necessary to characterize indi-
vidual functional profiles of spinal cord injury and 
understand how to gain reliably control over these 
reflex mechanisms, as well as to understand their 
role in coordinated interaction between multiple bilat-
eral muscle groups and how to neuromodulate the 
motor behaviour as a whole, rather than just in limited 
reflex loops. 
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Abstract Electrical stimulation methods have been 
used in numerous studies to treat a variety of neuro-
logic disabilities. Traumatic brain injury (TBI) may 
lead to several different complications, many of which 
can be treated with electrical stimulation. Only recent-
ly, the focus of researchers has shifted more towards 
preclinical studies to be able to investigate the under-
lying mechanisms of how these stimulation methods 
affect nervous tissue in greater detail. This article will 
give an overview of the most prominent electrical 
stimulation modalities, namely transcranial magnetic 
stimulation (TMS), transcranial direct current stimula-
tion (tDCS), deep brain stimulation (DBS) and vagus 
nerve stimulation (VNS). Some preclinical studies will 
be highlighted to show the diverse range of possible 
applications of electrical stimulation for the treatment 
of TBI sequelae. 
 
Keywords traumatic brain injury, transcranial 
magnetic stimulation, transcranial direct current stim-
ulation, deep brain stimulation, vagus nerve stimula-
tion 
 

Introduction 

Traumatic brain injury (TBI) may lead to a variety of 
different diseases and disabilities, ranging from neu-
ropsychiatric changes to motor impairments [1]. Neu-
ropsychiatric sequelae can be subdivided into cogni-
tive disorders, such as attention, memory and execu-
tive deficits, and behavioral disorders like personality 
changes, depression, anxiety and posttraumatic 
stress disorder [2]. Post-TBI motor impairments in-
clude tremor, ataxia, paresis and postural instability 
[1]. TBI patients are also prone to headaches, dizzi-
ness, nausea, fatigue, sleep disturbances and sei-
zures [2]. 
Over the years, many different therapeutic methods 
have been proposed to target neuronal damages 
caused by TBI at various stages post-injury. A mod-
ern approach is the stimulation of neurons with the 
help of electrical currents to mitigate further damage 
following the initial incident and help restore original 
function in the affected areas [3]. This article will give 
a brief overview of the most commonly used methods 
for electrical stimulation of nervous tissue and differ-

ent stimulation protocols that can be applied. The aim 
is to provide a basis for finding new treatment modali-
ties and an incentive to refine stimulation parameters 
of existing protocols for specific disabilities to achieve 
better treatment outcomes. 
 
Effects of Electrical Stimulation 

Nervous tissue can generate action potentials spon-
taneously based on the intrinsic properties of the 
neuronal cell membranes. The excitability of neuronal 
cells allows for the modulation of their activity through 
neurostimulation. The resulting activation or inhibition 
of excitable tissue may serve as an effective thera-
peutic method in many subfields of neurology, espe-
cially in neurotraumatology [4]. 
The effect of electrical stimulation depends on intrin-
sic features of the targeted brain tissue. On a neu-
ronal level, it is generally easier to excite an axon 
than a soma, while myelinated axons are the most 
excitable part of the cell [3]. In almost all cell areas, 
except for some types of dendrites [3], action poten-
tials can be elucidated easier with negative currents. 
Increasing the negative potential of the extracellular 
space drives depolarization within the neuron, which 
can ultimately lead to the induction of action poten-
tials. Branching, bending and diameter changes of 
the axon lead to differences in the site and threshold 
of the stimulation [3].  
Electrical stimulation influences brain electrophysiol-
ogy on a deeper level through modulation of neuronal 
signaling. This effect is not only limited to short-term 
observations, but can also result in the facilitation or 
attenuation of long-term modifications on a cellular 
level. Activity-dependent synaptic plasticity may ei-
ther strengthen or weaken the formation of synapses, 
which is crucial for post-traumatic regeneration and 
recovery of high-level cognitive abilities like learning 
and memory formation [5]. 
Since TBI may result in a lower threshold to seizures 
[4], the safety of electrical stimulation needs to be 
considered. Only very few studies, however, report 
seizures after stimulation of brain tissue of TBI pa-
tients, which may correlate with the severity of the 
injury [4]. 
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Stimulation Methods 

Transcranial Magnetic Stimulation (TMS) 

TMS utilizes magnetic fields to induce electrical cur-
rents in cortical tissue with the aim to improve various 
neurologic conditions. A magnetic coil is positioned 
tangentially near the surface of the head of a subject, 
acting as the stimulating device. Discharging a large 
alternating electric current through the coil leads to a 
magnetic field perpendicular to the stimulating coil. 
This magnetic field is able to penetrate the skull and 
induce secondary electrical currents in the intracrani-
al tissue [6]. Depending on the direction of the in-
duced current, the change in membrane potential 
may result in the inhibition or excitation of neuronal 
activity, as well as the elicitation of action potentials 
when the cell membrane is depolarized above its 
threshold potential [6]. 
Since the induced electromagnetic field diminishes 
greatly over distance through the neuronal tissue, 
TMS is mainly used to stimulate structures near the 
surface of the brain such as the neocortex. Some of 
these structures project axons to deeper regions 
within the brain, allowing for indirect stimulation of 
functionally connected regions [7]. Different coil types 
achieve different penetration depths depending on 
their geometry, materials, and coil design. Circular 
coils achieve a higher depth penetration and are 
used to stimulate larger volumes of neuronal tissue 
since the entire region below the coil is affected simi-
larly. A figure-of-eight shaped coil, where two circular 
coils are positioned next to each other with their cur-
rents flowing in different directions, allows for more 
selective stimulation of brain tissue at the cost of 
stimulation depth. The intersection of the two elec-
tromagnetic fields produced by this arrangement is 
characterized by an increased current density com-
pared to the surrounding regions [6]. TMS can be 
applied in the form of single or repetitive pulses [8], 
leading to different treatment outcomes. 
 
Transcranial Direct Current Stimulation (tDCS) 

tDCS uses direct current, as opposed to the pulsed 
protocols of most other stimulation methods, to 
hyperpolarize or depolarize the membranes of 
neurons in desired cortical areas [9]. For that, two 
large pad electrodes are placed on the scalp of the 
patient near the area of interest and a current of 
several milliamperes is applied. Thereby, the cur-
rent density is the decisive factor for the efficacy 
and localization of the induced stimulus [10]. The 
resulting excitation or inhibition of neurons can 
lead to neuromodulation [9]. 
This stimulation method is painless, noninvasive, 
and can be used as a treatment for depression and 
a variety of cognitive dysfunctions, including TBI 
sequelae [11]. Anodal tDCS increases the excita-
bility of underlying cortical neurons, while cathodal 
tDCS inhibits neuronal activity [10]. 
 

Deep Brain Stimulation (DBS) 

DBS involves the implantation of a stimulation 
electrode into a target brain region so that electri-
cal stimuli can be delivered to specific brain areas. 
It is commonly used for the treatment of Parkin-
son’s disease, essential tremor, obsessive com-
pulsive disorder and epilepsy in humans [12]. Due 
to its versatility and accuracy, DBS has potential 
as a treatment for many different neurological dis-
eases, including sequelae from TBI. The targeted 
area depends highly on the kind of condition to be 
treated. Current research focuses on neuromodu-
lation and the neuroprotective effects of DBS, as 
well as its potential for neurogenesis [13]. 
DBS systems usually consist of a stimulation elec-
trode that is implanted in the target area and a 
connected subcutaneous wire that forwards the 
stimuli from an external pulse generator. Stimula-
tion electrodes are frequently implanted bilaterally 
and comprise four metal contacts, which can be 
used both as anodes and cathodes [13]. Bipolar 
configurations, where an electrical field is generat-
ed between two adjacent contacts, allow for a con-
centrated electric field and higher precision. 
The brain area of interest is usually identified with 
the help of CT and MRI scans, which may also be 
used to guide the surgeon during implantation. 
During the procedure, electrical activity is continu-
ously measured through the DBS microelectrodes 
to determine their relation to the target area and 
verify the position of the metal contacts. After-
wards, initial stimulation is carried out to confirm 
the efficacy of the implanted device. [14] 
 
Vagus Nerve Stimulation (VNS) 

VNS is an invasive stimulation method that uses a 
cuff electrode wrapped around the vagus nerve to 
indirectly stimulate distant brain regions. The United 
States Food and Drug Administration (FDA) has 
approved VNS for the treatment of drug-resistant 
epilepsy and refractory major depressive disorder. 
Several studies show that it may also be useful in the 
treatment of TBI sequelae. The exact mechanisms 
underlying VNS are still not fully understood, but 
several studies have revealed its potential for neuro-
protection, which is achieved through a combination 
of anti-inflammatory effects, reduction of the permea-
bility of the blood-brain barrier and the modulation of 
neurotrophins and neurotransmitters [15]. Preclinical 
research focuses on various applications for VNS 
and further investigations into its underlying mecha-
nisms. It has been shown that it is able to mitigate 
TBI sequelae in animal models and is therefore a 
promising new treatment approach. 
Most commonly, the stimulation is delivered to the left 
cervical vagus nerve [16], which is relatively easy to 
access through surgical means. Stimulation of the 
right vagus nerve is usually avoided since it has more 
projections to the cardiac atria and could therefore 
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affect the cardiac rhythm [16]. Helical electrodes, 
which can have a monopolar, bipolar or tripolar con-
figuration, are implanted and wrapped around the 
vagus nerve. Monopolar electrodes are comparative-
ly cheap but require an additional ground electrode. 
Bipolar configurations allow the induced current to 
flow between the two electrodes, enabling a much 
greater control of the current path. Tripolar electrodes 
are more expensive, but this configuration can pre-
vent leakage currents by positioning the stimulating 
electrode between two common counter-electrodes. 
 

Treatment Outcomes 

The stimulation methods mentioned above are under 
preclinical investigation to treat a variety of conditions 
directly or indirectly related to TBI. Not just the modal-
ity of stimulus delivery, but also the stimulation proto-
col is of utmost importance to reach the desired out-
come. Factors such as stimulation frequency, ampli-
tude and signal shape have different effects on the 
affected tissue, and finding the optimal parameters is 
often an iterative process. Additionally, researchers 
are interested in the time frame of the treatment, 
which includes the optimal time for the onset of 
stimulation after TBI and the number of sessions per 
day, or whether the stimulation delivery is connected 
to a trigger during behavioral tests. This section high-
lights some examples of preclinical studies using 
electrical stimulation to treat TBI sequelae. 
In [17], researchers use TMS together with environ-
mental enrichment to facilitate recovery from TBI by 
increasing cortical excitability and reorganization. 
Rats are subjected to a controlled cortical impact 
(CCI) TBI model and stimulated for six days with 
custom 25 mm figure-eight TMS coils placed above 
the center of their head between the lambda and 
bregma. Stimuli are delivered once daily with the 
following protocol: 7 cycles of 4 s, 26 s interval be-
tween stimuli, 10 Hz pulses. After six weeks of be-
havioral and functional tests, the investigators con-
cluded that the TMS group showed a significant im-
provement on the beam walk and challenge ladder 
tests, as well as increased primary somatosensory 
cortex local field potentials and biceps motor evoked 
potentials compared to an unstimulated control 
group. 
As an example of a tDCS study, [18] describes a 
stimulation protocol to decrease impulsivity in a rat 
TBI model using CCI. Before CCI, the animals were 
trained on a five-choice serial reaction time task to 
measure their motor impulsivity and attention. After 
injury, rats were allowed to recover for 6 weeks be-
fore tDCS sessions began. While the rats were anes-
thetized, two Ag/AgCl hydrogel electrodes were 
placed on their heads for stimulation, with the cath-
ode in front of the bregma and the anode between 
the scapulae. tDCS session were carried out daily 
over a period of 7 days in the form of cathodic stimu-
lation for 10 min with 800 µA, resulting in a current 
density of 7.08 A/m². Two hours after stimulation, 

tests were started and the results compared to the 
post-injury baseline that was acquired after the re-
covery period. It was found that cathodal tDCS slight-
ly decreased accuracy, but significantly reduced im-
pulsivity in the reaction time task compared to the 
unstimulated baseline, with the greatest recovery in 
rats with more severe deficits. 
Rajneesh et al. [19] demonstrate the effect of DBS 
on bladder function of rats with TBI induced by the 
weight-drop method. Four weeks post-injury, twisted 
bipolar DBS electrodes were implanted in the pedun-
culopontine tegmental nucleus (PPTg) of the ani-
mals. Thereafter, an initial urodynamic measurement 
was conducted to evaluate bladder function. Elec-
trode positions were verified with the help of MRI 
studies. During experiments, the bladder contraction 
pressure was continuously measured. When it ex-
ceeded a given threshold, DBS with a frequency of 
50 Hz, a pulse width of 182 µs and varying voltages 
between 1 and 2.5 V was applied for 10 s to augment 
bladder contractions. Urodynamic analyses showed 
that the DBS protocol with 2 V significantly improved 
the voiding efficiency of TBI rats from 39 to 69 %. 
They concluded that DBS in the PPTg is an effective 
treatment for bladder dysfunction. 
In [20], the wake-promoting effects of VNS are inves-
tigated. Adult rats were subjected to a severe TBI 
model by free fall drop and their degree of con-
sciousness was observed one hour later. Thereafter, 
the left vagus nerve was surgically exposed at the 
cervical level and a VNS electrode wrapped around 
it. Animals were then stimulated by a VNS protocol 
with a frequency of 30 Hz, an amplitude of 1 mA and 
a pulse width of 0.5 ms. Their consciousness was 
assessed again one hour after stimulation. Six hours 
after VNS, rats were euthanized and tissue from their 
prefrontal cortices extracted for further immunohisto-
chemistry and western blot analysis. These findings 
were compared with observations from unstimulated 
rats, and the researchers concluded that VNS could 
promote alertness, with the primary mechanism be-
ing the upregulation of excitatory and the downregu-
lation of inhibitory neurotransmitters. 
 

Conclusion 

From the examples shown above, it is apparent that 
electrical stimulation can be used to treat a wide vari-
ety of neurological impairments. Although electrical 
stimulation methods differ greatly in the way the 
stimuli are delivered, the underlying mechanisms to 
induce neuronal modulation are often quite similar. 
Investigating these mechanisms and comparing them 
between different stimulus delivery modalities could 
lead to new neurological insights and aid in the dis-
covery of innovative concepts for electrical stimula-
tion. The main objective is to find novel stimulation 
methods that are less invasive and more precise than 
current approaches.  
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Abstract ⎯ Following major amputations and the 
consequent truncation of nerves, up to 45-85% of 
patients are left with a neuropathic pain condition 
known as phantom limb pain (PLP). Recent research 
has shown that the addition of somatosensory feed-
back to daily use prostheses has the potential to 
alleviate the phenomenon of PLP, as long as a natu-
ral sensation, “as if” it was coming from the missing 
limb, is restored. One approach to evaluating how 
natural a sensation is perceived, is by studying the 
neural correlates of somatosensory stimulation, 
known as somatosensory evoked potentials (SEPs). 
Source localization techniques such as dipole model-
ing may be used to reconstruct the neural sources of 
SEPs, thus mapping the origin of each sensation 
within the somatosensory homunculus. Source local-
ization of SEPs has already been demonstrated to 
discriminate stimulations in the upper-limb/mouth 
corners and between left/right side of the body, how-
ever, no evidence so far is present for the lower limb 
and same body side. In this work, the discriminability 
of SEPs relative to foot vs. thigh stimulations on the 
same body side is being studied. The spatiotemporal 
evolution of SEPs is analyzed, and preliminary 
source localization results are presented.  
 
Keywords⎯ Electroencephalography (EEG), soma-
tosensory evoked potentials (SEP), source localiza-
tion, dipole fitting, phantom limb pain 
 

Introduction 

Following major amputations and consequent trunca-
tion of nerves, up to 45-85% of patients experience a 
chronic neuropathic pain known as phantom limb 
pain (PLP) [1]. Among the identified causes of PLP, 
there is the loss of sensory input from the missing 
(i.e. phantom) limb [1]. A consistent body of literature 
suggests that somatosensory feedback has the po-
tential not only to improve the functional performance 
of prostheses [2] and to enhance the sense of em-
bodiment [3], but also to reduce phantom limb pain 
[4]–[6]. 
Somatosensory feedback can be given through both 
invasive and non-invasive techniques [7], such as the 
(invasive) electrical stimulation of the peripheral 
nerves with implanted electrodes [4], [5], the (non-
invasive) electrocutaneous stimulation of the sensory 
nerves [3], or the non-invasive mechanical 
stimulations such as vibrotactile stimulation on the 
stump [8], with the aim being, in all cases, to restore 

a sensation as natural as possible, as if it was com-
ing from the missing limb. 
One of the main limitations when studying soma-
tosensory feedback is the lack of objective evaluation 
methods, i.e., the findings are usually indirect and 
mostly based upon the patients' perceptions. One 
opportunity for objectification may come from quanti-
tative neurophysiological recordings such as electro-
encephalography (EEG), i.e., the non-invasive re-
cording of the brain's electrophysiological activity 
using a set of electrodes placed on the scalp. 
When a somatosensory stimulus is applied, e.g., with 
electrical or vibrotactile stimulation, the EEG can 
capture the corresponding neural response known as 
somatosensory evoked potential (SEP) [9]. EEG 
source localization techniques such as dipole model-
ing (as in [10]) may then be used to reconstruct the 
3-dimensional sources of neural activity related to the 
SEP, and therefore give information on where the 
sensation is mapped and felt. 
Being able to discriminate the stimuli at more proxi-
mal or distal areas of the same limb, would give us 
insights into the efficacy of a prosthesis wishing to 
restore a sensation from the amputated limb; by 
mapping indeed the stimulation with respect to the 
somatosensory homunculus [11], it would be possi-
ble to assess whether a realistic sensation from the 
missing limb is restored. 
The efficacy of SEPs source localization to discrimi-
nate stimuli applied to the fingers or mouth corners, 
and between left and right side of the body, has al-
ready been demonstrated [12]–[14]; however, 
whether and to which extent it is possible to discrimi-
nate stimuli in the lower limb, and on the same side 
of the body, has not yet been explored. 
In this work, the neural correlates and mapping of 
somatosensory stimuli elicited in the foot vs. thigh 
area of the same leg are being studied. Given the 
exploratory nature of the study, a cohort of healthy 
participants is enrolled. 
 

Methods 

Participants and experimental paradigm: Twenty 
healthy volunteers (ten females and ten males), aged 
28.43 ± 9.7 years (mean ± std), took part in the study 
which was approved by the local ethical committee 
from Medical University Graz. All participants had 
right leg dominance, as assessed by the Waterloo 
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Footedness Questionnaire Revised test (WFQ-R) 
[15]. The data from one participant were excluded 
due to technical problems. 
The experiment was organized into three blocks, of 
which two stimulation blocks (for the foot and the 
thigh area) and one final resting block. 
In each stimulation block, 500 biphasic, single-pulse, 
square electrical current pulses of 300us were deliv-
ered every 1.5-2s, through a certified functional elec-
trical stimulation device (Motionstim 8, Medel, Ham-
burg). Breaks of 3 to 4.5 seconds were inserted every 
four stimulations, and a fixation cross was displayed 
in front of the participants to avoid blinks and sac-
cadic eye movements. The electrical stimuli were 
delivered through a pair of round, 3.2cm electrodes 
(Axelgaard Manufacturing Co., Ltd., Fallbrook, USA) 
applied to the skin surface (Figure 1a-b). 
For the foot area, the electrodes were placed behind 
the malleolus, so to target the suralis nerve (Figure 
1b-c). For the thigh area, the electrodes were placed 
above the knee (Figure 1a), so to target the sciatic 
nerve (Figure 1c). 
 

 
Figure1. Stimulation sites in the thigh (a) and foot (b) 

area, targeting the sciatic and suralis nerve (c). 
 
The stimulation intensity was tailored to each partici-
pant, so as to elicit a clear but tolerable sensation 
(sensory threshold) but no muscle twitch. We defined 
the stimulation intensity in the foot area, and then 
kept the same for the thigh area. The applied current 
was 11.48 ± 2.58 mA (mean ± standard deviation). 
All stimulations were delivered on the right leg. 
The order of stimulation blocks (foot or thigh) was 
randomized across participants. Each stimulation 
block lasted for approximately ~20mins, while a final 
resting block collected approximately 200s of resting-
state EEG. 
 
 

Data recording: We collected the 64 channel EEG 
signal at 512Hz with an eego™ sports amplifier and a 
waveguard™ electrode cap (ANT Neuro, Hengelo, 
Netherlands). Reference and ground electrodes were 
CPz and FPz, respectively. We digitized the exact 
positions of EEG electrodes with an ultrasonic posi-
tion-measuring device (ELPOS, Zebris Medical 
GmbH, Germany). 
 
 

Data analysis: We analyzed the EEG signals using 
Matlab (Mathworks Inc., Natick, USA) and EEGLAB 
(Swartz Center for Computational Neuroscience, La 
Jolla, USA), with a similar pipeline as in previous 
work from our group [10]. The raw EEG was zero-
phase bandpass filtered between 0.5 and 100Hz 
(with a 10th order Butterworth), the bad channels 
were interpolated, and the data were re-referenced to 
their common average (CAR). The continuous EEG 
was epoched [-0.2 0.5]s with respect to the stimulus 
onsets, and the trials with an abnormal probability 
distribution (based on standard deviation and kurto-
sis) were rejected. An independent component anal-
ysis (ICA) [16] was used to separate the data into 
components (IC) that are maximally statistically inde-
pendent. The ICs were used to fit source dipoles in 
the brain (with the DIPFIT toolbox [17]), and only the 
ICs explaining more than 90% of the variance of their 
scalp projection, were considered for further analysis. 
The remaining ICs were additionally visually inspect-
ed, and the ones related to artifacts (e.g. eye move-
ment, or electrical noise) were excluded from further 
analysis. Reconstruction of the signal with the so-
selected IC components and mixing matrix, led us to 
obtain the clean EEG data. The epoched and clean 
data were finally split into the two stimulation condi-
tions, i.e. foot vs. thigh stimulation. 
The relevant SEP components were isolated by fur-
ther epoching of the data between [0 115]ms with 
respect to the stimulus onset [12]–[14]. An additional 
ICA was finally run for each stimulation condition, and 
the resulting IC components were used to fit the 
equivalent current dipoles. All fitted dipoles were 
visually inspected, and the ones lying in the sen-
sorimotor areas were identified as corresponding to 
the SEPs. For each participant, only one dipole for 
each SEP was identified. For visualization purposes, 
the x/y/z coordinates of the dipoles were averaged 
across participants. A Wilcoxon signed-rank test was 
used to evaluate statistical differences in the x/y/z 
position distributions of the foot vs thigh. 
The spatiotemporal distribution of SEP components 
of foot vs. thigh was further inspected. A Wilcoxon 
rank-sum test was used to reveal statistical differ-
ences in signal amplitudes, for each electrode and 
time-point, between the foot and thigh stimulations. A 
post-hoc Bonferroni correction was applied to the 
significance level, to control for the type I error. 
 

Results 

Spatiotemporal evolution of SEPs:  
The temporal evolution of the SEP at a selected loca-
tion (Cz) is depicted in Figure 2, showing the grand-
averaged amplitude of the EEG signal, in both foot 
and thigh stimulation conditions, with respect to the 
stimulus onset. Statistically significant differences 
between the two stimulation conditions (alpha=0.01, 
Bonferroni corrected) were revealed in the first [0 
110]ms after stimulus onset. Within this period, both 
foot and thigh SEPs share the same shape (i.e., 
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sequence of positive and negative deflections), but 
with a delay of ~10ms for the foot with respect to the 
thigh stimulation condition. For example, while the 
larger negative component peaks at ~95ms for the 
thigh, it peaks at ~105ms for the foot. 
 
 

 
Figure 2: Grand-average amplitude of the EEG signal 

at location Cz, for both stimulation conditions, with 
respect to the stimulus onset. The variability among 
subjects is displayed in the confidence intervals (al-
pha=0.01). The time-points with statistically different 
SEP responses (alpha=0.01, Bonferroni corrected) 

are highlighted in yellow. 
 
The spatiotemporal evolution of the SEPs for both 
stimulations is also displayed in Figure 3, showing 
the topographical representation of average scalp 
potential, at different time points after the stimulus 
onset. A small positivity at 55ms in the central elec-
trodes, followed by a negativity at 95ms, can be seen 
for the thigh stimulation condition (upper row). A simi-
lar positivity at 65ms, followed by a negativity at 
105ms, is visible in the foot stimulation condition 
(middle row). When contrasting the two conditions 
(lower row), it appears that the SEP components for 
the thigh are more frontally located than the foot. 
 

 
Figure 3: Topographical representations of average 

scalp potentials for the thigh (upper row), foot (middle 
row) and difference thigh-foot (lower panel), at se-

lected time points with respect to the stimulus onset. 
 
Source localization: The results of source localiza-
tion, i.e., the estimated positions for the foot vs. thigh 
dipoles, averaged across participants, are depicted in 
Figure 4. The average difference in (x,y,z) position 
between foot and thigh was (-0.05, 7.8, 1.8) arbitrary 

units. No statistical difference in the (x,y,z) coordi-
nates distributions between foot and thigh was found, 
however, a tendency (p-value = 0.08) of the foot 
component being located more frontally than the 
thigh component was highlighted. 
 

 
Figure 4. Estimated positions for the foot vs. thigh 

dipoles, averaged across participants. 
 

Discussion 

In this study, we investigated whether and to which 
extent the neural correlates of somatosensory stimu-
lations applied to more proximal and distal areas of 
the lower limb, could be discriminated. 
To do so, we analyzed the spatiotemporal evolution 
of somatosensory evoked potentials (SEPs) elicited 
by non-invasive electrocutaneous stimulation of foot 
vs thigh area, and additionally projected the SEPs to 
source space, to identify their cortical origin. 
When looking at the SEPs in the time domain we 
could observe that, despite sharing a similar shape, 
the responses to stimulations in the foot vs. thigh 
were delayed from each other by approximately 
~10ms. A delayed response coming from the foot 
area with respect to the thigh area can be easily ex-
plained, if considering the more distal location, and 
therefore longer distance to be traveled in the as-
cending sensory pathways, with respect to the collec-
tion point. 
When looking at the spatiotemporal evolution of the 
SEPs, we could also find differences between foot 
and thigh stimulations, with the thigh SEP compo-
nents being more frontally located than the foot SEP 
components. 
When finally projecting the SEPs to source space, we 
could observe a tendency for the foot dipoles to be 
estimated more anteriorly with respect to the thigh 
dipoles; however, due to the dispersion of data, the 
difference was not significant. One approach to im-
prove the localization of dipoles could be to increase 
the number of stimuli per condition. While indeed, in 
literature, typically 500 to 1000 stimulations are deliv-
ered [12]–[14], using only 500 stimuli per condition, 
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and further reducing this number when cleaning the 
data and rejecting artifactual trials, might not be suffi-
cient to achieve the desired signal-to-noise. A second 
aspect that might have affected our recordings, is the 
potential presence of cross-talk between the foot and 
thigh stimulation condition, and so the effect of differ-
ent stimulation setups could be explored in the future. 
As a final way to improve the reliability of source 
localization, the subject-specific anatomical data from 
MRI scans could be incorporated. 
Altogether, this study could show that somatosensory 
stimulations even at proximal and distal locations of 
the same leg, produce SEPs with distinct spatiotem-
poral evolutions. Additional preliminary results for 
projecting the SEPs to source space are encourag-
ing, however, further investigation needs to be car-
ried out to improve the reliability of the technique. 
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Abstract

The recent introduction of  in-vivo field cycling MRI
systems  enables  the  exploration  of  new  contrast
mechanics  at  different  field  strength.  The  present
work explores changes in T1  for main magnetic field
from 200 mT down to 2 mT. The problem of inherent
low SNR with such low fields is overcome by using a
joint regularization approach in space and exploiting
shared  information  between  different  parameter
maps.  This  strategy  enables  preservation  of  fine
details  while  effectively  suppressing  noise  in  the
reconstructed  T1 maps.  Especially  in-vivo  data
showed  huge  improvements  of  visual  quality
compared to reference methods.

Keywords fast  field-cycling,  MRI,  multi-field  T1

quantification, ultra-low field imaging

Introduction

Fast  field  cycling  (FFC)  MRI  is  a  technique  that
allows  the  modulation  of  the  main  magnetic  field
during an imaging experiment and thus gives access
to new, unexploited contrast mechanisms [1]. Recent
work on MR hardware enabled the construction of
the first whole-body FFC system with fields ranging
from 50 μT to 200 mT [2]. The ramping of the main
magnetic  field  can  be  utilized  to  explore  the  field
dependency of the longitudinal (T1) and transverse
relaxation  (T2)  times,  also  referred  to  as  Nuclear
Magnetic  Relaxation  Dispersion  (NMRD)  [3].  The
controlled change of the main field allows to quantify
these  relaxation  time  constants  at  various  field
strengths. Especially T1 shows promising potential for
imaging with novel contrast in region affected by a
stroke  [2].  However,  the  small  fields  lead  to  a
decreased SNR [4] which complicates evaluation and
quantification of the results.

In  the  context  of  quantitative  MRI  in  high  field
applications, model-based reconstruction was proven
to improve SNR in the final parameter maps while
simultaneously  preserving  quantitative  accuracy
[5,6,7].  Dedicated  regularization  functionals  can
exploit spatial similarity between neighboring pixels to
stabilize  the  fitting  procedure.  Further,  features  in
individual  parameter  maps,  such  as  tissue

boundaries,  can  be  assumed  to  correlate  well
throughout all unknown parameter maps. To this end,
we  propose  to  incorporate  the  T1 quantification
process for multi-field FFC imaging in a model-based
reconstruction  framework  [8].  Specifically,  the
redundancies between T1 maps from multiple fields
will  be  exploited  by  means  of  a  total  generalized
variation (TGV) functional [9]  in conjunction with a
Frobenius norm. This type of regularization promotes
spatially  smooth  structures  but  also  allows  for
discontinuities, i.e., edges between tissue, leading to
an overall improved image impression and avoids the
known stair casing artifacts from total variation.  The
proposed approach  is  compared  to  standard  non-
linear fitting techniques on simulated numerical data
and in-vivo stroke patients.

Theory

The  MRI  signal  for  an  inversion-recovery  FFC
sequence [10] can be described by

M z ( tevo )=[−α M0−M 0
E ] e

− t evo

T 1
E

+M 0
E
, (1)

with  M z ( tevo )being  the  signal  after  an  evolution

time  t evo.  M 0 refers  to  the  equilibrium

magnetization for the detection field and M 0
E refers

to  the  magnetization  at  the  evolution  field.  α
accounts for imperfections of the inversion pulse,
incomplete polarization,  and field ramping effects
[11]. A schematic sequence diagram is given in Fig.
1.

Introducing a  proportionality  constant  C to  relate
evolution  field and detection field  with the
corresponding magnetization, one ends up with

. (2)

This equation is valid for one evolution time and 
field strength and incorporates the sampling and 
Fourier transformation operator . The signal 
equation resembles the well known behavior of the

Proc. Annual Meeting of the Austrian Society for 
Biomedical Engineering 2021

 
DOI: 10.3217/978-3-85125-826-4-14

CC BY 51 Published by Verlag der TU Graz 
Graz University of Technology



inversion recovery sequence but  relaxation takes 
place at the evolution field . The unknowns  u 

consist of  C,  α E, and T 1
E and are identified from 

measurement data d  using a regularized non-
linear least squares problem given by

          (3)

The regularization parameter   is used to balance
between data and a prior knowledge. The terms in
bracket  after  the  regularization  parameter  reflect
the  TGV  Frobenius  functional,  with   being  an
auxiliary  variable,  enabling a  weighting  between
first  and  higher  order  derivatives.  The  ratio  of
parameters   balances the optimization costs
between first and second derivatives, respectively,
and is chosen as  .  The derivatives a realized
via  finite  differences  for  the  gradient   and
symmetrized gradient  .  The optimization itself  is
carried using PyQMRI, a recently proposed Python
toolbox  for  quantitative  MRI  [8].  Regularization
parameter  is chosen based on visual inspection
of the results.

Figure  1:  Exemplary  sequence  diagram  for  an
inversion  recovery  FFC  acquisition.  After  the
inversion pulse, the main magnetic field is ramped
to the evolution field where relaxation takes place.
Prior to data acquisition the field is ramped back.

Methods

Numerical brain phantoms were simulated using eq.
(2)  and  three  simulated  field  strengths.  Simulated
evolution times and T1 values were chosen similar to
expected  in-vivo  values.  Image  resolution  was
chosen as 128x128 pixels, similar to the resolution of
the acquired stroke images.  To account for in-vivo
SNR levels, complex Gaussian noise was added to
the simulated data to achieve an SNR of 8.3 in white

matter  and  16.7  in  gray  matter,  directly  after
inversion. The simulated ground truth is given in the
top of Fig. 2. 

Acquired stroke images are part of an ongoing study
at University of Aberdeen and were acquired using
an inversion-recovery spin-echo FFC sequence with
a  128x128  matrix  and  at  3  field  strengths.  The
proposed method is applied to an exemplary data set
of  this  study  to  show  its  applicability  for  in-vivo
applications. 

The reference methods consisted of non-linear fitting
for each field separate with Tikhonov regularization, a
field-combined approach with Tikhonov regularization
and a field-combined method using H1 regularization,
i.e.,  penalizing  the  2-norm  of  the  gradient  of  the
parameter maps [12].

Results

Figure  2:  Ground  truth  phantom  T1 maps  and
reconstruction  results  using  different  fitting
algorithms.  The  proposed  method  is  visually
closest to the reference.
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Numerical simulations, given in Fig. 2, show the 
reduced noise using spatial regularization 
compared to Tikhonov based methods. Further, 
edges are best preserved using the proposed 
approach. Quantitative evaluation (Fig. 3) shows 
good accordance to the ground truth values. The 
proposed method shows least residual noise and 
best relative absolute difference for low field 
strength. At 200 mT a small bias to the ground 
truth can be observed. 

Application to in-vivo measurements show a similar
picture (Fig. 4). Standard methods without spatial 
regularization show poor SNR which might even 
hide the lesion. Both spatially regularized 
approaches are able to recover high quality T1 
maps, enabling a clear delineation of the stroke. 
The proposed approach shows the best 
suppression of noise while maintaining sharp 
edges between different tissue.

Discussion

This work demonstrates that spatial regularization in
combination with fitting all data in a combined fashion
can hugely improve the quality of T1  maps obtained
from multiple fields using FFC imaging techniques.
The  best  results  could  be  achieved  using  the
proposed  TGV-Frobenius  prior,  preserving  sharp
edges and effectively suppressing noise.

The improved noise suppression could be achieved
by leveraging spatial information in combination with
redundant  information  at  different  field  strength.  A
limitation of such an approach might be the possibility
of cross contamination from one map to the other.
Although such an effect  is theoretically possible,  it
could not be observed in practice [13, 14]. Still, care
should  be taken  when choosing the regularization
parameters  as  too  much  regularization  might
introduce such effects.

As the proposed method is posed as reconstruction
problem from k-space, it could further be leveraged to
reduce  the  acquisition  time  of  the  measurement,
enabling either faster scanning or the acquisition of
multiple additional fields in the same scan time. 

Especially in-vivo applications benefit from the 
proposed fitting approach, showing a vast 
improvement in image quality. This improvement of 
image quality   enables the exploration of the 
underlying contrast mechanics and is subject of an 
ongoing study at the University of Aberdeen. The 
proposed method is freely available at: 
https://github.com/IMTtugraz/PyQMRI

Figure  3:  Relative  absolute  difference  to  the
ground truth for the used fitting algorithms. Mean
difference within the object is given in the top right
corner of each map. The proposed method shows
improved  edge  preservation  and  noise
suppression,  especially  for  maps  at  lower  field
strength.
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Figure  4:  Exemplary  in-vivo  results  for  a  patient
suffering  from a  stroke.  The  stroke  area  can  be
clearly delineated in T1 maps from lower fields and
in approaches using spatial regularization and all
fields  combined  for  fitting.  Results  using  the
proposed method show the least residual noise in
the T1 maps.
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Abstract 
Arterial Spin Labeling is an MR imaging method to 
non-invasively and quantitatively measure perfusion. 
Problems like long scan times and motion sensitivity 
prevent it as of yet from being in clinical use. We 
present a novel data acquisition sequence and re-
construction method for ASL to overcome these chal-
lenges. The introduced 3D GRASE sequence with 
time-dependent CAIPIRINHA undersampling pattern 
allows faster, single-shot imaging. The novel sec-
ond—order, spatio-temporal TGV constraint in the 
reconstruction produces a better Signal-to-Noise ratio 
from fewer measurements by denoising the images. 
Both novel methods improve upon the motion sensi-
tivity of ASL. Given all this progress, ASL becomes 
closer to being in clinical use.  
 
Keywords MRI, Arterial Spin Labeling, Quantita-
tive Imaging 
 

Introduction 

MR Imaging is an invaluable tool in today’s clinical 
environment. In many situations, an MR scan is the 
optimal path towards diagnosis or disease monitor-
ing. Novel MRI methods are capable of measuring 
additional physiological parameters for supporting 
clinical diagnosis or treatment decisions. One of 
these techniques is Arterial Spin Labeling (ASL) 
which allows the non-invasive quantification of perfu-
sion in organs. In contrast to other perfusion meas-
urements (e.g. PET, DSC, DCE), ASL does not use 
an exogenous tracer, but magnetically labels blood 
flowing into the organ. The non-invasiveness of the 
procedure and the possibility of absolute quantifica-
tion of perfusion makes it highly suitable for repeated 
measurements and longitudinal studies.  
ASL works by acquiring a set of two images, a so-
called ‘label image’ where the inflowing blood of the 
organ is magnetically labeled with special preparation 
pulses and a ‘control image’ without preparation. By 
calculating the difference between these two images, 
the signal from the static tissue cancels while the 
signal from the inflowing labeled blood remains. 
Through a physiological model, quantitative perfusion 
values can be calculated [1]. ASL was shown to yield 
promising results in stroke, arteriovenous malfor-
mation and tumor studies as early as 2000 [2]. The 
continued importance of ASL is shown by a recent 
consensus paper from the ISMRM study group 
summarizing state-of-the-art methods and recom-
mending imaging procedures [3].  

However, ASL faces many challenges before it can 
be adopted as a routine tool for clinical diagnosis. 
The perfusion signal is relatively small, leading to 
inherently low SNR. The intuitive solution, measuring 
multiple times and averaging, results in clinically un-
feasible scan times and makes the scans prone to 
physiological noise (e.g. motion).  
 

Methods 

In this work we present and combine two novel 
methods that bring ASL beyond its current limita-
tions and one step further into clinical routine. 
The first aspect to be addressed is the image acquisi-
tion. ASL images are commonly acquired with a mul-
ti-shot Gradient and Spin Echo (GRASE) or Stack-of-
Spiral (SoS) sequence, where different parts of the 
data are acquired over several brief acquisition peri-
ods called ‘shots’ [3]. While this technique provides 
good SNR and image quality it is very susceptible 
to inter-shot motion which is a main source of phys-
iological noise (see figure 1 below) [4].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: (A) A fully sampled, multi-shot acquisition 

of a 3D k-space of a stationary patient. Each dot 
represents one k-space line and each color repre-

sents one shot. (B) In case of motion between shots 
(here, rotation), the true coordinates of the acquired 
data do not align with the expected k-space coordi-
nates [4]. Below the result of image acquisition of a 

stationary and a moving subject.  
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To reduce the influence of inter-shot motion cur-
rent recommendations [3] propose parallel imaging 
with acceleration factors of up to 3. This allows the 
acquisition of the k-space in two shots, which im-
proves motion robustness but is insufficient for 
patients (e.g. stroke) who often move involuntarily. 
To overcome this limitation we developed a 
GRASE [6] sequence (see figure 4) whose accel-
eration can be increased up to 6 by using a time-
dependent CAIPIRINHA undersampling pattern [5] 
(see figure 2), allowing a single-shot acquisition of 
each time frame. [11]  
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Comparison of GRAPPA and CAIPIRINHA 
undersampling patter: (A) 2x1 GRAPPA acceleration. 

(B) 1x6 CAIPIRINHA acceleration with a shift of 2 
 
The developed time-dependent CAIPIRINHA pattern 
brings together the acceleration of common parallel 
imaging techniques like GRAPPA or SENSE while 
introducing additional spatial and temporal incoher-
ence which is advantageous in the reconstruction. 
Also, over the course of several images a full data-
set is acquired allowing easy calculation of coil sensi-
tivities (see figure 3) which are needed in the recon-
struction process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: A time-series of 6 k-spaces with a 1x6(2) 
time-dependent CAIPIRINHA acceleration. Over the 
course of the series a full k-space is acquired. Still, a 

full image can be reconstructed from each under-
sampled k-space.  

 
The readout sequence, GRASE, improves upon 
Echo-Planar Imaging (EPI). Over the course of any 
MR data readout, the signal decays due to T2 relaxa-
tion. The longer the readout lasts, the stronger is the 
decay. This decay leads to blurring in the image [7]. 
During an EPI readout, the signal decay happens 
with time constant T2*. In a GRASE sequence, EPI is 
combined with a Turbo-Spin Echo (TSE). This leads 
to a signal decay with a mix of time-constants T2* 
and T2, which is longer than T2*. This allows more 
data to be acquired while keeping the blurring at the 
same level.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: The GRASE readout of the sequence dia-
gram. Prior to the shown section, a pulsed Continu-
ous Arterial Spin Labeling (pCASL) [8] labeling mod-
ule is applied in combination with background sup-
pression pulses to improve SNR. In the shown sec-
tion, a 3D slab is excited. Then, the TSE refocusing 
pulses reverse signal losses due to field inhomoge-
neities (red). In between two refocusing pulses, an 
EPI readout occurs (green). The shown section is 
repeated several times. The number of refocusing 
pulses and the length of the EPI readout determine 
how many lines of k-space are measured per shot.  

 
The second aspect of the ASL process to be im-
proved is the image reconstruction. As a baseline, 
the new, accelerated sequence necessitates parallel 
imaging reconstruction algorithms. In theory, this 
would suffice to get the images. Here, a second-
order, spatio-temporal Total Generalized Variation 
(TGV) [9] regularization is added to constrain the 
reconstruction process for the control, the label and 
the difference images simultaneously [11]. TGV is a 
powerful regularization tool which enforces piece-
wise smooth images which has been shown to be an 
appropriate choice for MR image reconstruction [10]. 
All images are reconstructed simultaneously. Sparsity 
in both the spatial and temporal dimensions are ex-
ploited with TGV which inherently denoises the re-
constructed images. The full reconstruction problem 
is stated in equation (1):   
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                                                                                   (1) 
 
 
 
In equation (1) λ and ɣ are weighting parameters, c 
and l are the control and label images, K is the 
forward Operator from image space to the meas-
urement space and d refers to the measured data. 
The definition of TGV can be found in [9].  
 
To test this novel acquisition and reconstruction 
method data was acquired in-vivo to compare it to 
fully sampled multi-shot acquisitions. 5 healthy, con-
senting volunteers were measured on a 3T MR sys-
tem (Prisma, Siemens Healthcare, Germany). All 
measurements were done using a pCASL sequence 
with a 3D-GRASE readout, once using 6 shots for a 
fully sampled acquisition and once using the above 
described CAIPIRINHA acceleration for single-shot 
acquisition. The parameters were: FOV: 200x200 
mm2, matrix: 64x64x38 voxels, 3.1x3.1x3 mm3 reso-
lution, 20% slice oversampling, TE/TR: 15/4100, EPI-
factor: 21, Turbo-factor: 23, 180° refocusing pulses, 
labeling duration: 1800 ms, Post-Labeling Delay: 
1800 ms. This results in an acquisition time of 4.5 
min for 5 control/label pairs and one proton density 
image for the fully segmented acquisition. All scans 
were done with the patients being asked to remain 
still. For two volunteers the procedure was repeated 
with the subjects cued to move their head in a pre-
determined manner. All data was then reconstructed 
using equation (1). In post-processing, all images for 
each subject were registered to reduce motion arti-
facts in the averaging process, the perfusion 
weighted images were calculated and Cerebral Blood 
Perfusion (CBF) maps were created according to [3].  
 

Results 

Figure 5 shows a comparison between the motion-
affected and the motion free data acquired with the 
standard multi-shot approach and the proposed 
single-shot method. The figure clearly shows visually 
that the multi-shot acquisition is much more prone to 
motion-induced errors than the accelerated single-
shot sequence.  
 
In figure 6, there is a comparison between the differ-
ent acquisition types for different number of averages 
in. Visually, a significant noise increase is evident for 
the fully sampled image between 30 and 12 averag-
es, especially in the white matter. For the novel ac-
quisition and reconstruction method nearly the same 
image quality can be achieved although the acqui-
sition time is reduced by more than half. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Comparing the effects of motion onto the 
CBF maps for the two tested acquisition methods.  

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Comparison for a different number of 

averages for the two tested acquisition methods.  
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A quantitative comparison confirms the visual 
analysis. The novel method increases temporal 
signal-to-noise ratio over the whole brain by 16% 
compared to the full acquisition. In addition the 
acquisition time can be reduced by a factor of 3 
without the loss of information or image quality. 

 
Discussion 

The results show a clear improvement of the GRASE 
sequence with a time-dependent CAIPIRINHA pat-
tern and TGV-constrained reconstruction compared 
to the recommended ASL acquisition as described by 
Alsop et al [3]. With this, the motion problem as well 
as the SNR problem are addressed. 
With this new approach the current motion prob-
lems are reduced due to two factors. First, the single 
shot acquisition completely circumvents the problem 
of inter-shot motion. The only motion that can impact 
the data for one image is during the < 300 ms acqui-
sition period. Second, the TGV constraints enforces 
smoothness in spatial and temporal directions. Thus, 
slight inconsistencies between subsequent images 
may be smoothed out in the reconstruction process.  
The TGV constraint also reduces the problem of low 
SNR. Additionally, it allows the acquisition of less 
averages while maintaining details and image quality.  
The proposed method is currently evaluated in 
simulations and patients with neurovascular dis-
eases and compared to current gold standard 
methods. 
Measuring perfusion non-invasively can be a great 
step forward in the clinical routine as well as in 
brain research areas e.g. for studying the neuronal 
activity in the human brain or for real-time inter-
operative guidance. Also, having increased the time 
resolution by a factor of 6, real-time ASL for psycho-
logical and neurological research becomes a possi-
bility.  
With the presented improvements ASL has come 
one step closer to a clinically, viable tool.  
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Abstract- When using deep neural networks to
separate Alzheimer’s disease patients (n=119)
from normal controls (n=131) by using MR images,
heat mapping revealed that the image
preprocessing is introducing misleading features
used by the classifier. Therefore we systematically
investigated the influence of registration and brain
extraction on the learned features by heat
mapping. Results were compared to a novel
relevance-guided training method, focusing on
brain tissue. The relevance-guided configurations
yielded highest classification accuracies and also
confirmed histopathologically relevant regional iron
deposition.

Keywords- Deep convolutional neural networks,
heat mapping, relevance guidance, Alzheimer’s
disease

Introduction
Deep learning techniques are increasingly utilized
in medical applications, including image
reconstruction [1], segmentation [2], and
classification [3,4]. However, despite the good
performance those models are not easily
interpretable by humans [5]. Especially medical
applications require verification that the high
accuracy of those models is not the result of
exploiting artifacts in the data [6]. Our previous
experiments on Alzheimer's disease (AD)
classification showed that Deep Neural Networks
such as Convolutional Neural Networks (CNNs)
might learn from features introduced by the brain
extraction algorithm [7]. Therefore, in this work we
investigated how preprocessing steps including
registration and brain extraction determine which
features in the R2* maps are relevant for the
separation of patients with AD from normal
controls. MR-based R2* mapping enables the in
vivo detection of iron. Brain iron accumulates
during aging and has been associated with
neurodegenerative disorders including AD.

Methods
Dataset: We retrospectively selected 252 MRI
datasets from 119 patients with probable AD
(mean age=72.4±9.0 years) from our outpatient
clinic and 133 MRIs from 131 age-matched healthy
controls (mean age=70.3±9.1 years) from a local
community dwelling study. Patients and controls
were scanned using a consistent MRI protocol
performed at the same scanner at 3 Tesla
(Siemens TimTrio) including a T1-weighted
MPRAGE sequence (1mm isotropic resolution)
and a spoiled FLASH sequence (0.9x0.9x2mm³,
TR/TE1=35/4.92ms, 6 echoes, 4.92ms echo
spacing, 64 slices). The AD data was randomly
split up into 178 training, 37 validation and 37 test
scans and the normal control data was randomly
split up into 95 training, 19 validation and 19 test
scans, creating 1 partition.

Preprocessing: Binary brain masks from each
subject were obtained using FSL-SIENAX [8] and
subsequently used for brain extraction (BET) to
isolate the brain tissue from the skull. R2* maps
were calculated voxelwise using a numerical
correction model [9] and nonlinearly registered to
the 1mm MNI152 template using FSL fnirt [10].

Classifier network: We utilized a 3D classifier
network, combining a single convolutional layer
(kernel 8x8x8, 8 channels) with a
down-convolutional layer (kernel 8x8x8, 8
channels, striding 2x2x2) as the main building
block. The overall network stacks 4 of these main
building blocks followed by two fully connected
layers (16 and 2 units) (Figure 1). Each layer is
followed by a Rectified Linear Unit (ReLU)
nonlinearity, except for the output layer where a
Softmax activation is applied.
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Figure 1: Overview of the used relevance-guided classifier network. We extend a default classifier network
(green) with a relevance map generator (blue). For every layer of the classifier network a corresponding
relevance redistribution layer is added to the generator network. The output relevance map of the generator
has the same resolution as the R2* map used as input for the classifier and allows to guide the training of the
classifier network by adding a term that sums relevance values outside a given brain mask to the categorical
cross entropy loss.

Relevance-guided classifier network: To focus
the network on “relevant features”, we propose a
relevance-guided network architecture that
extends the given classifier network with a
relevance map generator (Figure 1). To this end
we implemented the deep Taylor decomposition
(z+-rule) [11] to generate the relevance maps of
each input image depending on the classifier's
current parameters.

Training: We trained models for two differently
preprocessed types of R2*:

● R2* images in native subject space
● R2* images nonlinearly registered to the

1mm MNI152 template
For each type we compare the two standard
classifier networks (unmasked and masked) with
the outcome of our relevance-guided method.
Each model was trained using Adam optimizer [12]
for 60 epochs with a batch size of 8. The difference
in the class sizes was accounted for using a class
weighting in the loss function.

Heat map presentation: Besides qualitatively
comparing individual heat maps, we compared

average heat maps by accumulating the bin
contents of each averaged heat map histogram
from top until we reached 20 % of all relevance
within the heat map overlaid on an MNI152 1mm
template.

Results
The resulting balanced classification accuracy
between normal controls and AD shows increased
performance on the test set for the
relevance-guided models (Table 1). However, the
obtained relevance maps (Figure 2) show that
using unmasked images or brain masking yield
highly relevant features for AD/normal control
classification at the respective outer boundaries
(left and center column). In contrast,
relevance-guided training identifies regions within
brain tissue, with the highest feature density in the
basal ganglia. The corresponding receiver
operating characteristics (ROC) curves for all six
models are shown in Figure 3.
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Figure 2: Mean relevance maps (highest relevances in yellow) overlaid on MNI152 template and balanced
classification accuracy (percentage) obtained for all six models. Unmasked and masked MRI classifiers
obtain relevant image features overwhelmingly from volumetric information (left and center columns). In
contrast, the proposed relevance-guided method bases the classifier’s decision on deep brain image
features, virtually independently of the registration method (right column).

Table 1: Performance (in %) for the different
models on the test set. Highest values per column
are highlighted in bold.

Class., Classifier; BET, brain extraction; Reg.,
registration; Bal. acc.; balanced accuracy; Sens,
sensitivity; Spec., specificity; AUC, area under the
curve of the receiver operating characteristics;
CNN, convolutional neural network; RG,
relevance-guided

Class. BET Reg. Bal.
acc. Sens. Spec. AUC

CNN no - 70% 89% 50% 0.70
CNN yes - 73% 89% 56% 0.79
CNN no nlin 73% 84% 63% 0.77
CNN yes nlin 74% 79% 69% 0.79
CNN+
RG no - 79% 92% 66% 0.80

CNN+
RG no nlin 83% 79% 88% 0.85

Discussion and Conclusion
In this explorative study we demonstrate that the
preprocessing of MR images is crucial for the
feature identification by DNNs. While previous
work has shown that skull stripping is necessary
to avoid identification of features outside the
brain, this introduces new edges by the brain
mask, which are subsequently used by the DNN
for classification. In this context, it was
demonstrated that the outcome of brain extraction
algorithms can be biased by the patient cohort
[13]. In contrast, when using the proposed
relevance-guided approach and independently of

Figure 3: Comparison of receiver operating
characteristics for all six configurations. The
relevance-guided models (blue) show higher
values for the area under the curve (AUC in
legend) compared to unmasked (purple) and
masked (orange) configurations.

preprocessing, the regions of highest relevance
were found in the basal ganglia. R2* is considered
as a measure of iron content [14]. Histological and
in-vivo studies [15], [16] have shown that brain
iron concentration is higher in these regions in AD
patients compared to normal controls. In
conclusion, our results are in good agreement
with findings from iron mapping studies and
strongly support the hypothesis that the
relevance-guided approach is minimizing the
impact of preprocessing steps such as skull
stripping and registration. Additionally,
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relevance-guiding forces the feature identification
to focus on the parenchyma only and therefore
provides more plausible results with higher
classification accuracy.
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Abstract¾ This work aimed to design and investigate 
inversion pulses that are robust among B0 and B1 in-
homogeneities with a minimized pulse duration by op-
timal control. The optimized RF pulse was compared 
numerically to a state-of-the-art adiabatic RF pulse 
and a customized adiabatic one. All three RF pulses 
were investigated in extensive measurements on a 3T 
MRI system. Phantom measurements were per-
formed to examine robustness with respect to B0 and 
B1. In vivo measurements of the knee emphasized the 
practicability of the proposed RF pulse which is shown 
to be robust among variations within B0 and B1. 
 
 
Keywords¾ RF pulses, optimal control, robustness, 
B0 inhomogeneities, B1 inhomogeneities 
 
Introduction 
Different MRI application experiments require inver-
sion radio frequency pulses, i.e. pulses with a flip an-
gle of 180°. However, for many applications, inhomo-
geneities within the B0 and B1 field are an issue, [1-9]. 
For special applications such as arterial spin labeling, 
even small deviations from the required exact inver-
sion are unsatisfactory, [10]. Strong improvements re-
garding inversion efficiency could be achieved by us-
ing composite [6] or adiabatic [3] RF pulses, but at the 
cost of higher pulse energy and prolonged pulse dura-
tion. The design of RF pulses by optimal control has 
shown in the past that even conflicting requirements 
such as best pulse performance, short pulse duration, 
and limited pulse energy can be combined and fulfilled 
by using the entire parameter space [11-15]. This ap-
proach was already extended to account for B0 and B1 
inhomogeneities, [4,16,17]. In [18], an ensemble-
based optimal control formalism was used to include a 
time-minimal formalism and optimize for B0 and B1 ro-
bust inversion pulses. This work aims to compare the 
optimized RF pulse to state-of-the-art adiabatic RF 
pulses in phantom and in vivo measurements on a 3T 
MR system. 
 
Theory and Methods 
The goal of the optimization is to design RF pulses 
with robustness over a wide range of B0 and B1 varia-
tions, [18]. Therefore, we include B1 scalings of 70% 
to 130% (i.e. a scale of the amplitude of the RF pulse 

by those factors) and B0 offsets of +/-5ppm at 3T into 
the optimization. The optimization itself uses exact dis-
crete derivatives supplied by adjoint calculus within a 
trust-region, semi-smooth quasi-Newton framework 
[13]. We use a 10ms RF pulse with random magnitude 
and random phase as initial. During optimization, the 
relaxation times were chosen to coincide with those of 
our cylindrical MR phantom (plastic bottle with diame-
ter 14cm, length 42,5cm, filled with H20 and contrast 
agent resulting in T1=102ms, T2=81ms at 3T). The un-
derlying Bloch equations were solved using a symmet-
ric operator splitting allowing for the inclusion of the re-
laxation effects, [19]. 
 
To compare the optimized pulse, two adiabatic, hyper-
bolic secant pulses are introduced. The first one (HS1) 
is commonly implemented for arterial spin labeling ap-
plications [10] and has a long pulse duration of 
15.36ms. The second one (HS2) was designed so that 
the pulse duration and bandwidth coincide with those 
of the optimized pulse.  
 
An extensive numerical comparison of all three RF 
pulses is performed including a broad set of B0 offsets 
and B1 scalings. The inversion efficiency is calculated 
for long a long repetition time (TR) with negligible T1 
influence for each pair of B0 and B1 as 
 
 𝑒𝑓𝑓 =	− !("#$)

!&
=	− "($)	''("#$)($) ()*a($)

"($)	'&($) ()*a($)
=	−''("#$)($)

'&($)
 (1) 

 
with Mz being the z-magnetization at the end of the re-
spective RF pulse. Furthermore, M0 is the initial mag-
netization and S(x) describes the signal intensity. For 
measurement, a slice selective excitation pulse with 
flip angle α is necessary. This excitation pulse is af-
fected by RF inhomogeneities as well. 
 
In addition, all three RF pulses were investigated in 
vivo measurements of the knee. We used the knee coil 
and we set the sequence parameters repetition time 
(TR) and echo time (TE) to TR=8000ms and 
TE=2.7ms. Those experiments were performed with a 
fixed B1 scale of 100% and without additional B0 offset. 
The flip angle was set to 90°. 
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Results 
 

 
Figure 1: Simulated and measured inversion efficien-
cies of optim for B1 scaled from 0% to 160% and ΔB0 

from -7ppm to 7ppm. 
 

Figure 1 depicts the inversion efficiency of optim over 
a broad set of B0 and B1 variations. The red box indi-
cates the area where the optimization was done (i.e. 
B1 from 70% to 130% and B0 from -5ppm to 5ppm). 
The pulse duration was reduced to Tp=3.25ms during 
optimization. The top figures show the numerical effi-
ciencies which were calculated with the relaxation 
times of the phantom, while the bottom figures show 
the efficiencies measured on the MR scanner. The 
plots in the left column use an efficiency scale of 0% 
to 100% while in the right the plots are scaled from 
70% to 100%. A very good inversion efficiency of more 
than 94.5% can be observed within the optimized area 
(red box). Furthermore, the figure shows strong ac-
cordance between numerical and measurement re-
sults.  
 

 
Figure 2: Simulated and measured inversion efficien-
cies of HS1 for B1 scaled from 0 % to 160% and ΔB0 

from -7ppm to 7ppm. 
 

In Figures 2 and 3 we observe the inversion efficien-
cies of HS1 and HS2. Again, a good accordance be-
tween simulated and measured inversion efficiencies 
can be observed. In both cases, the efficiency of HS1 
does not reach top values. There is strong robustness 
among changes within B0, but for B1 the efficiency is 
only acceptable for a scale of 100% and more. Below, 
the efficiency is less than 70%. In contrast, HS2 shows 
a good inversion efficiency in the center of the plot (B1 
of 100% and B0 at 0ppm). Only for a larger offset of B0 
the efficiency significantly decreases. 
 

 
Figure 3: Simulated and measured inversion efficien-
cies of HS2 for B1 scaled from 0 % to 150% and ΔB0 

from -7ppm to 7ppm.  
 

Figure 4 displays a sagittal cross-section of the knee 
using no pulse in the gradient echo sequence (top) 
and the optim inversion pulse (bottom). Figure 5 de-
picts the inversion profile measured with optim, a B1-
scale of 100% and without an additional B0 offset. Be-
tween water and fat, bound protons at a resonance 
offset of 3.4ppm exist. Some chemical shift artifacts 
occur at tissue boundaries. We observe a severe de-
crease in signal intensity towards the proximal and dis-
tal parts in the image where the coil sensitivity and RF 
field strength drops to very low values. In Figure 5, the 
measured inversion efficiencies are depicted for all 3 
RF pulses. Similarly to the phantom measurements, 
optim shows the best inversion efficiency among 
those 3 pulses within the defined field range. HS1 has 
a decreased inversion efficiency even in the center of 
the knee with a fast loss in efficiency towards the coil 
edge. HS2 shows a rather broad inversion capability, 
but with general lower inversion efficiency, in particular 
within the fatty bone marrow. 

 
 

Discussion 
 
During the optimization, the pulse duration of optim 
was reduced to 3.25ms, which is substantially shorter 
than the long duration of 15.36ms of HS1. HS2 has the 
same pulse duration as optim by design. However, 
the maximum amplitude is increased by 25% which 
makes the pulse unsuitable for many applications due 
to the amplitude limitations of the MR scanner. Here, 
optimization for optim was started with random initial-
ization. If existing for the application at hand, a so-
phisticated initialization is in general helpful for an 
optimizer, and also our optimizer can be used in this 
classical setup. However, optimizers that robustly 
converge from random initialization to a competitive 
minimizer, are rare, and open new perspectives 
(e.g. finding new – possibly better - local minimizers 
or even quasi-global optimization by multi-random 
initialization). 
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Figure 4: Sagittal cross-section of the knee. The top 
picture displays the image without an inversion pulse 
(S(x) ⋅M0(x)⋅sina(x)), the bottom picture with an inver-
sion pulse (S(x)⋅Mz(inv)(x)⋅sina(x)) using optim. The 
inhomogeneous signal intensity represents the inho-
mogeneous RF field and coil sensitivity of the knee 

coil. 
 
 

 
Figure 5: Inversion efficiencies for measurements of 
the knee. Optim (left), HS1 (middle) and HS2 (bot-
tom). Efficiency scale of 0% to 100% (left) and 70% 

to 100% (right).  
 

Figure 5 displayed the comparison of the three inver-
sion pulses for in vivo applications. Similar to the phan-
tom results, optim showed the best behaviour in terms 
of inversion efficiency. The long adiabatic pulse HS1 
showed already in simulation and phantom measure-
ment only a moderate inversion efficiency which was 
validated in the in vivo measurement. One reason for 
that is its rather long pulse duration which results in 
relaxation effects affecting the efficiency. The short ad-
iabatic pulse HS2 could underline its behaviour in the 
in vivo experiments yielding a good efficiency. How-
ever, the main drawback is the higher amplitude 

required. Furthermore, in Figure 5, we depict line arti-
facts due to chemical shift behaviour. 
 
A consequent future improvement of this work would 
be to jointly control the slice-selective gradient for 
slice-selective applications. Furthermore, an exten-
sion to optimize for excitation pulses, i.e. RF pulses 
with a flip angle less than 180° would be desired. 
 

 

Conclusion 
Inversion pulses were optimized within an optimal con-
trol framework with the aim of B0- and B1-robustness 
and a reduced pulse duration. The numerical and 
measured comparison to state-of-the-art adiabatic 
pulses revealed a significant improvement in terms of 
inversion efficiency while being short and fulfilling all 
physical limitations. 
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Abstract Registration of dynamic CT image se-
quences is a necessary preprocessing step for accu-
rate assessment of multiple (patho)physiological 
determinants in the heart such as myocardial perfu-
sion. In this work we present a recursive-cascade-
network approach for deformable image registration 
using data from myocardial perfusion CT studies. A 
contrast-agent dependent loss function was intro-
duced which enabled us to further improve the 
accuracy of sequence registration. In addition, 
different network configurations were evaluated, 
showing a good trade-off between spatial registra-
tion accuracy and image quality. 
 
 
Keywords myocardial perfusion, dynamic cardiac 
computed tomography, deep learning, sequence 
registration, recursive cascade network. 
 
Introduction 

Deformable image registration (DIR) is essential 
for clinical applications where spatial alignment of 
anatomical structures is required. Such applica-
tions include image-guided procedures in diagnos-
tics and therapy [1]. In cardiac image analysis, DIR 
is used in image-guided interventions, perfusion 
studies and procedures that requires myocardial 
motion tracking [2]–[4] 
Cardiac perfusion studies in dynamic computed 
tomography (CT) are performed to qualitatively or 
quantitatively assess myocardial perfusion after 
contrast agent administration. Such studies evalu-
ate the distribution of contrast agent in the heart 
and aim to identify and detect ischemic areas in 
the ventricle characterized by hypo attenuation 
(reduced CT values) in the image [5]. During a 
patient examination, an image sequence of the 
heart is obtained by using an ECG-gated protocol 
that usually acquires image data at the end-
systolic phase. However, due to cardiac stressing, 
respiratory- and patient motion, spatial misalign-
ment can be present. Hence, the registration of the 
whole ventricle or a selected ROI over the whole 
2D/3D sequence is necessary for an accurate 
measurement of the time-attenuation curves. Such 
task has some unique challenges because of the 
non-rigid dynamic nature of the heart, the motion 

of the thorax and the lack of anatomical landmarks.  
Moreover, the dynamic information of the changing 
contrast agent introduces another degree of com-
plexity to the problem. 
Recent advances in image registration have 
demonstrated the potential of deep learning tech-
niques in applications for multi-modal and inter-
patient registration, and motion tracking [1], [6]. 
Furthermore, approaches using supervised and 
unsupervised learning have been introduced, how-
ever, supervised methods are hardly to be imple-
mented due to the need of ground-truth flow-fields. 
In contrast, unsupervised methods do not require 
flow-field labels and perform image registration 
using a similarity measure between the fixed and 
the warped moving image [6]. Current state-of-the-
art methods on DIR, however, use an unsuper-
vised approach [7], [8], [9].  
In this work, we further developed and evaluated 
the performance of a so-called Recursive-
Cascade-Network [9], an established method for 
DIR using datasets of myocardial perfusion  CT 
sequences. Here, we introduced a contrast-agent 
dependent loss function to improve the accuracy of 
sequence registration and evaluated the results 
using different network configurations. Finally, we 
evaluated the effects of the number of selected 
cascades and modified the loss function in terms 
of optimizing spatial alignment and image quality.    
 
Methods 

Recursive Cascade Network. Let   

denote a sequence of images, where  
and let   denote a fixed image. We want to 
predict a flow field  that aligns the se-
quence  The Recursive Cascade Network [9] 
generates a flow prediction function F which takes 
a fixed image  a moving image  and predicts  
This field is by the composition of flows (see Eq. 1) 
 

n  21     (1) 
 
where  for  is predicted by the k-th 
cascade which is a base subnetwork such as [7], [8]. 
The motivation of using a cascade-based-registration 
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concept is to decompose large displacements per-
formed by  into progressively small displacements 
generated by the flows  The final image 
is obtained by successively warping of the moving 
image along all cascades (see Eq. 2).  

mnm II  )( 21     (2) 
  
Loss function.  As suggested in [8], the loss function 
in image registration often consist of a similarity loss 

 for the fixed and warped image, and a regulari-
zation loss  to smooth the terms of the field as 
presented in Eq. 3. 
 

)(),(),,(  regmfsimmfnc LIILIIL    (3) 
 
However, for this application, we found that consider-
ing the loss as denoted in Eq. 3, affects negatively to 
regions of high contrast agent concentrations 
(right/left atrium or ventricle) in the image se-
quence. Specifically, for cases in which the con-
trast regions from the fixed image differ from the 
moving image. In these cases, contrast regions are 
introduced or removed from the moving image to 
make the warped image more similar to the fixed 
one. Therefore, to address this problem, we added 
a loss term that penalizes such changes and for-
mulated the loss as presented in Eq. 4: 
 

)(),,(),(

),,(

21 



regmfcontmfsim

mfc

LCIILIIL

IIL






   (4) 

 
The term Lsim is used to reduce the misalignment 
between Im and If, and the introduced term Lcont is 
used to penalize the changes of the contrast regions 
in the warped image. Here, we included the parame-
ters α1 and α2 to weight the losses. We experimental-
ly found that α1 has to be lower than 0.5 to reduce the 
changes in contrast regions. If Ci  Imi is a contrast 
region in the i-th moving image of the sequence S, 
we want to preserve as much information about Ci 
in the warped image, therefore, we want φ to modi-
fy this region only the necessary to reduce the misa-
lignment. For this purpose, masks of the contrast 
agent were used and the regions generated as 
shown in Eq. 5 
 

  (5) 
 
where M is the mask. Hence, the Lcont loss is defined 
as denoted in Eq. 6 
 

    (6) 

 
 
The first term penalizes the loss of contrast from 
the moving image in the warped image, and the 

second term penalizes the introduction of contrast 
regions into the warped image. Both cases are 
equally relevant for this application, therefore, we 
used the same weight factor, α2, for both terms. 
Moreover the operator  is the Hadamard product 
and d is a similarity metric such as correlation coef-
ficient, mutual information or mean squares. For 
this application we used the Pearson correlation 
coefficient. We ran several experiments with differ-
ent configurations for Lcont, to determine the pa-
rameters α1 and α2 . 
 
Dataset. We used a dataset comprising 247 CT 
sequences of 2D myocardial perfusion images. The 
data was acquired from 19 patients undergoing regu-
lar CT examination with a Philips-iCT 256 scanner. 
All patients gave informed consent. The sequences 
where obtained from a 13 slices volume stack of slice 
thickness of 5 mm and matrix size of  512x512, con-
taining 23 – 45 frames over time. However, from 
each volume stack only 4 to 5 slices representing the 
ventricular chambers were considered. For each of 
the frames, masks of the contrast agent (regions with 
high contrast agent concentrations) were obtained 
using a CT window of W:450 L:130. For training and 
validation, we used the default CT window W:750 
L:90. Subsequently, we split the data on subject lev-
el, 17 for training and 2 for validation.  of each 
sequence was set to the frame with the maximum 
amount of contrast-agent. 
 
Implementation. Our proposed configuration was 
implemented in PyTorch using a modified 2D ver-
sion of the original implementation (for 3D vol-
umes) as published in [9]. We also used the same 
hyper parameters and selected a VTN [7] for the 
base subnetworks. Our model was trained using a 
batch size of 32 on 2 TITAN RTX 25GB. 
 
Experiments. The registration of the sequence was 
performed using different numbers of cascades and 
loss functions. The aim was to assess how the net-
work configuration influences the image alignment 
and quality. Hence, we implemented several net-
works using 3, 5, 7, 10, 15 and 20 cascades, and 
trained them based on the loss function according to 
Eq. 3 and Eq. 4, respectively. The Pearson correla-
tion coefficient was used as the similarity metric for 
Lsim and Lcont, Lreg is the total variation loss as used in 
[7] and the parameters α1 and α2 were set to 0.4 and 
0.3, respectively. Finally, we assessed the registra-
tion performed by the networks by calculating the 
evaluation measures. 
 
Evaluation Metrics. The performance of the regis-
tration was evaluated based on the accuracy of spa-
tial alignment and the image quality. The spatial 
alignment was quantified using the Dice score [10] 
which measures the overlap between two regions 
and ranges between 0 and 1, where 1 means perfect 
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matching.  In particular, we calculate the Dice score 
between the segmentations obtained from of the 
whole heart. Furthermore, the image similarity before 
and after registration was measured to assess the 
loss of information during the process, i.e. changes in 
contrast agent concentration over time. Next the 
Mutual Information (MI)[11] between the moving and 
the warped image is estimated.  In addition, we in-
cluded the Structural Similarity Index Measure 
(SSIM)[12] as an additional measure for estimating 
image quality, this was calculated between the mov-
ing and the warped image. The SSIM quantifies the 
quality between two images and ranges between 0 
and 1, where 1 represents the highest quality.  
 
Results 

To demonstrate the effectiveness of the proposed 
model configurations, a qualitative and quantitative 
evaluation was performed. For qualitative evalua-
tions we registered sequences and visualized them 
frame by frame by generating cines using the 
Graphic Interchange Format (GIF). Figure 1 shows 
the results of a CT perfusion sequence obtained 
from a 10-cascade model trained with Lnc (see 
Eq.3) and Lc (see Eq.4), respectively. The fixed 
(reference) image shows a good contrast between 
the LV cavity and myocardium, while the selected 
“moving” image represents a frame of the se-
quence before the contrast agent occurs in the LV 
(see first line: Fixed image shows perfect contrast 
between cavities and tissue. Moving image: no 
contrast agent appeared in the heart. Second line: 
Fixed image reveals perfect contrast. Moving im-
age: agent already occurred in the right atrium and 
ventricle).   

 

Figure 1: Results of sequence registration using a 10 
cascade model with  and , respectively. 

We also visualized the generated flow fields to 
assess the deformations performed by the models. 
Figure 2 shows the warped image and 10th flow 
field applied to the frames in the first row of Fig. 1. 
Here the norm of the vectors in the flow field is 
shown in a color scale, where red and blue repre-
sent large and small displacements, respectively. 
As expected, in the first column, Lnc, large dis-
placements can be observed in the contrast re-

gions while in the second column, Lc,, more uni-
form displacements can be seen in the contours. 
 The quantitative analysis was carried out using the 
evaluation metrics described above. We assessed 
the registration of the sequence by estimating the 
Dice score at frame level. Moreover, to investigate 
changes in the image quality, we calculated the MI 
between the moving and the warped image. The 
aim was to examine possible quality loss due to 
deformations. Figure 3 shows the mean Dice score 
and mean MI of one full CT perfusion sequence 
using a 10 cascade model trained with Lnc and Lc, 
respectively. The peak values are obtained at the 
frame selected as fixed. 

 
Figure 2: Warped images and flow field of two 
frames using a 10 cascade model. 
 
Finally, to identify the optimal configuration in 
terms of the number of selected cascades we per-
formed a quantitative analysis for all model config-
urations. Table 1 presents the means of the Dice 
score, MI and SSIM for the 3, 5, 7, 10, 15 and 20 
cascade configurations obtained from the se-
quences in the validation set. 

 
Figure 3: Evaluation metrics for one patient se-

quence using a 10 cascade-model 
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Table 1: Evaluation metrics for different model 
configurations for the validation set. 
 

N 
Dice MI SSIM 

Lnc Lc Lnc Lc Lnc Lc 

3 0.998 0.998 1.35 1.95 0.846 0.984 
5 0.998 0.996 1.44 1.93 0.874 0.992 
7 0.998 0.998 1.21 1.90 0.8 0.982 
10 0.998 0.998 1.20 1.87 0.8 0.979 
15 0.998 0.998 1.17 1.84 0.79 0.979 
20 0.998 0.998 1.16 1.70 0.79 0.965 

 

Discussion 

In this work different model configurations of the 
Recursive-Cascade-Network were implemented 
and tested with the aim to identify the optimal con-
figuration for the registration of myocardial perfu-
sion CT sequences. Firstly, we evaluated the effect 
of the loss function at different cascade numbers. 
The results showed that training the model based 
on a loss function that does not penalizes the 
changes in the contrast regions negatively affects 
the quality of the warped image. Figure 1 shows an 
example of quality degradation of the warped im-
age when the fixed and moving image have differ-
ent contrast regions. It can be noted that the model 
deforms and introduces artifacts in these regions 
(see Fig 1 and Fig 2) that were observed for all 
investigated cascade configurations. Moreover, the 
models’ performance was quantitatively assessed 
as shown in Fig 3 for a 10 cascade model as an 
example. Here, the quality metrics between the 
moving and the warped image were considerably 
lower in the Lnc model. Interestingly, the Dice score 
was higher than for the Lc model. However, con-
sidering only this measure as evaluation metric 
does not fully reflect the overall performance of the 
model. The latter can also be observed in Table 1, 
where despite achieving a high Dice score, all 
remaining quality measures (MI and SSMI) are 
lower. Finally, according to Table 1 and based on 
visual inspection, the best trade-off between spa-
tial alignment and image quality can be achieved 
with a n=7 cascade model trained using the Lc loss 
function. 
In summary, in this work we introduced a powerful 
loss function for optimizing the registration problem 
in cardiac CT perfusion imaging. Moreover, the 
effects of different model configurations were eval-
uated and they showed that considering the Dice 
score only as an evaluation metric does not fully 
represent the model performance of this approach 
in terms of spatial registration accuracy and image 
quality. In our future work we will investigate the 
effect of using other similarity metrics for the loss 
function and will evaluate the impact of feeding 
more contrast information into the network. 
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AbstractElectromyographic (EMG) control of pros-
thetics is well established both in research and cl ini-
cal settings. However, it remains unclear how much 
of the EMG information can be predicted from the 
electroencephalographic (EEG) signals, and used 
instead, for control. In this study, we used a dataset 
that contains simultaneously acquired EEG and EMG 
signals of 31 subjects performing 33 grasping condi-
tions, and applied unscented Kalman filtering (UKF) 
to continuously predict the EMG grasping envelopes 
from the low-frequency (0.1-2 Hz) EEG. We achieved 
higher prediction accuracy for intermediate grasps 
compared to power or precision grasps. Our findings 
indicate the feasibility of continuously predicting EMG 
envelopes of grasping movements from EEG signals. 
 
Keywords EEG, EMG, grasping, UKF  
 
Introduction 

Electromyographic (EMG)-based control of prosthetic 
devices has shown to be reliable in the detection of 
the initiation of movement, as well as in identifying 
the desired grasping type [1, 2]. Currently, the pros-
thetic control achieved with EMG signals looks prom-
ising and it is in daily use for many amputees. How-
ever, this type of control faces some limitations when 
the number of functional muscles or neuromuscular 
content in the EMG signal are not sufficient (e.g.,  in 
the case of high amputation, such as shoulder exar-
ticulation, or severe paralysis). One way of increasing 
performance is by leveraging the information related 
to the movement from the brain activity, in addition to 
the muscle information. Electroencephalographic 
(EEG) signals contain global motor-related infor-
mation that can be accessed to predict , instead of 
merely responding to the user’s intention. Recent 
EEG-based brain-computer interfacing (BCI) studies 
have shown the feasibility of discriminating between 
several types of movements [3-5]. Movement covari-
ates, such as velocity of hand movement, have also 
been decoded from low-frequency EEG activity [6]. 
 Furthermore, we have shown in a previous study 
that EEG and EMG activity share similarities during 
different stages of grasping [7]. Adaptive approaches 
for sensorimotor control have attracted a lot of atten-
tion over the last decades [8, 9]. Recent studies that 
use Kalman filtering approaches show promising 
results in terms of movement covariates’ predict ion 
from EEG activity [10, 11].     

In this study, we investigated the feasibility of predict-
ing the EMG envelopes of extrinsic hand muscles in 
a wide range of grasping movements from EEG sig-
nals. We conducted this study on a previously rec-
orded dataset [7]. EEG and EMG activity were rec-
orded simultaneously. We studied the amplitude 
patterns of the EEG signals in the delta frequency 
band (0.1-2 Hz) and used an unscented Kalman filter 
for the prediction. Our findings show the feasibility of 
this approach and could be informative for more intui-
tive and reliable upper-limb neuroprosthetic control. 
 
Methods 

A. Dataset description 
A previously recorded dataset [7] has been used in 
this study. The dataset contains simultaneously ac-
quired neural (EEG) and behavioral (muscle and 
kinematic) data of 31 participants, in a task that in-
volves observation and execution of 33 different 
grasping movements. Figure 1A illustrates the struc-
ture of the experimental protocol. 
During the fixation period, participants were instruct -
ed to focus their gaze on a cross located in the mid-
dle of the screen and avoid eye movements for three 
seconds. Next, during the observation phase which 
lasted four seconds, participants were presented with 
a static image showing a hand in a final grasping 
position together with the grasped object as shown in 
Figure 1B. During the execution phase which was 
also four seconds long, participants were instructed 
to focus their gaze on the “x” symbol located in the 
middle of the screen and perform the grasping 
movement that they had observed during the previ-
ous phase. Figure 1C shows the pictograms of the 33 
grasping movements with their ordinal numbers. The 
order of the grasping conditions (blocks) was ran-
domized among subjects. 
EEG and electrooculographic (EOG) data was rec-
orded using a 64-channel ActiCap System with two 
BrainAmp amplifiers (BrainProducts, Germany). The 
ground sensor was placed on AFz and the reference 
sensor on the right mastoid. Muscle activity was rec-
orded with a Myo armband (Thalmic Labs Inc., Ontar-
io, Canada). The armband was located on the right 
arm close to the elbow, above the extrinsic hand 
muscles. 
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Figure 1. (A) Experimental protocol. Each of the 33 blocks 
contained eight consecutive repetitions (trials) of the same 
grasp. Each trial had four phases: f ixation, observation, 
execution and relaxation. (B) Experimental setup. Photos of 
one participant during the observation and execution phas -
es, and the materials used during recording. (C) Pictograms  
of the grasping conditions. 
 
B. EEG and EMG data processing 
For all data preprocessing and analyses, we used 
Matlab R2016b (Mathworks, Inc. USA). EEG data 
was first filtered using a Butterworth fourth-order, 
zero-phase, band-pass filter between 0.1–40 Hz and 
then downsampled to 100 Hz. We rejected the trials 
in which the task was incorrectly performed. From the 
EEG and EMG data we extracted 10-second long 
trials consisting of the last two seconds from the fixa-
tion period and the entire observation and execution 
periods. Next, we performed a similar cleaning pro-
cessing pipeline as described in [7]. Then, we filtered 
the EEG data in the frequency range between 0.1–2 
Hz using a zero-phase Butterworth band-pass filter of 
fourth-order. The eight EMG data channels were 
processed using Hilbert transform, standardized 
using z-score and, finally, the envelope of the data 
was computed. For both types of the data we reor-
dered the groups of trials in a common order be-
tween subjects, as depicted in Figure 1C.  
For each of the subjects we built an EEG-based 
measurement matrix by concatenating all the 10-
second long trials, associated with different blocks of 
grasping conditions. In a similar way, the EMG data 
was concatenated across all t rials to generate an 
EMG state vector (8 EMG channels by time samples 
for 264 trials, associated with 33 grasping conditions 
× 8 repetitions). 
We used a hybrid approach similar to the one de-
scribed in [12]. Like the standard Kalman filter, the n-
th order unscented Kalman filter (UKF) [13] inferred 
the hidden state (the EMG envelope of the desired 
grasping) from the observations (low-frequency EEG 
amplitudes). The state transition model predicted the 
hidden state at the current time step given the state 

at the previous n  time steps, where n  is the order of 
the autoregressive model. 
The standard Kalman filter is described by the follow-
ing equations: 
 

11   kkk wFxx                      (1) 

 
1 kkk vHxy                         (2) 

where the random variables w  and v  represent the 
process and measurement noise, respectively. They 
are assumed to be independent (of each other), 
white, and with normal probability distributions. The 
matrix F in (1) relates the state at the previous t ime 
step k-1 to the state at the current step k. The matrix 
H  in (2) relates the state to the measurement. We 
choose a multivariate autoregression (MVAR) [14] to 
model the state transition equation because the trend 
of the EMG signal is assumed to be linear. The for-
mula that describes the model is the following: 

 


 
m

i

niinn enAxx
1

)(            (3) 

where 
nx  is the nth sample of a d-dimensional t ime 

series, each )(nAi
 is a d-by-d matrix of coefficients 

(weights) and 
ne  is additive Gaussian noise. The 

neural tuning model relates the status of the system 
and the measures. To infer the relation between EEG 
and EMG signals we applied part ial-least  squares 
(PLS) as described in [15].  
For each grasping condition, we performed an 8-fold 
cross validation (CV) among the EEG repetitions (7 
trials for training and 1 trial for prediction).  We used 
an n-th order UKF with a number of taps equal to the 
order of the fitted MVAR model (the model order was 
3 or 4). For the PLS regression we have used the 10 
previous lags of the EEG data to estimate the actual 
value of the EMG signal. Ten lags correspond to a 
time window equal to 0.4 s and we choose a fixed 
number of components (30), based on the level of 
explained variance (larger than 99%). Afterwards, we 
computed the mean over the different cross-validated 
predictions, for each trial and grasping condition. 
 
C. Evaluation metrics 

We define 
tx as the measurement value and 

ty as 
the prediction value at time t. We used Pearson cor-
relation (r) and mean absolute error (MAE) to evalu-
ate the quality of the EMG estimation with respect  to 
the original EMG signal. Since MAE is a scale de-
pendent metric, we expressed the prediction error in 
percentages and normalize it to the scale (the differ-
ence between maximum and minimum amplitudes) 
of the actual EMG envelope. We refer to the metric 
as normalized MAE (nMAE). The higher the r and the 
lower the nMAE values are, the better the prediction. 
Chance level values for our metrics were estimated 
by applying the 8-fold CV to shuffled data. We broke 
the association between x and y by randomly ex-
changing y across trials. The shuffling and 8-fold CV 
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procedure was repeated 100 times. Then, we then 
computed the α = 0.05 confidence interval for the r 
and nMAE distributions.    
Next, we calculated the values of these two metrics 
for each EMG channel, grasp condition and subject. 
Finally, we present our prediction results for catego-
ries of grasps. Specifically, we group the 33 grasp 
conditions according to the more conventional grasp-
ing categorization into power, precision and interme-
diate grasp type, and according to the position of the 
thumb during grasping, adducted or abducted.   
 
Results 

A.  Prediction accuracy of EMG envelopes 
Figure 2 shows three cases of EMG envelope predic-
tion. On the left plot we show an example of a good 
prediction (r = 0.65, nMAE = 20.4%), in which the 
overall shape of the predicted curve visually resem-
bles the actual one. Similarly, the middle plot  shows 
an average example of prediction (r = 0.41 and 
nMAE = 36.6%). In this case, the prediction is better 
during the grasping execution phase (from second 6 
to 10) than in the other phases. Finally, the right plot 
shows an example of poor prediction (r = -0.13 and 
nMAE = 40%). In this example, the predicted signal 
captures the small EMG activation during the obser-
vation period, but fails to infer the muscle activat ion 
during the movement execution phase. 
 

 
 
Figure 2. Examples of EMG single channel and single trial 
envelope estimation. Blue curves indicate actual EMG 
envelopes and red curves indicate predicted signals. 
 
B. Correlation and normalized mean absolute 

error 
Figure 3 shows median values of the two metrics for 
each grasping condition, across subjects. The high-
est r = 0.36 corresponds to grasp 11 (power sphere 
grasping), while the lowest nMAE value = 26% corre-
sponds to grasp 16 (lateral grasping). We show the 
relation between all grasps relative to the two metrics 
of prediction. Dotted black lines indicate the overall 
median values for the two metrics. Dotted red l ines 
show median chance level values across subjects 
and grasps. While it is informative to evaluate the 
prediction accuracy for each grasp, we believe that  
grouping the grasps into categories can be more 
interpretable and improve the general understanding 

of our findings. Hence, Figure 4 presents the results 
of the EMG envelope prediction for different catego-
ries of grasps. On the left side, the intermediate type 
of grasps has the lowest median nMAE = 27% com-
pared to the power (nMAE = 28.7%) and precision 
(nMAE = 30.2%) types, and the highest  correlation 
value r = 0.21, followed by r = 0.2 for power grasps 
and r = 0.18 for precision grasps. Regarding the cat-
egorization based on thumb’s position, we found a 
better median prediction for the adducted grasps (r = 
0.2, nMAE = 27.7%) than for the abducted grasps (r 
= 0.19, nMAE = 30%).  
 

 
 
Figure 3. Scatter plot representation of all grasping condi-
tions in terms of nMAE and r. The dotted black lines indi-
cate the overall median values among grasping conditions 
for the tw o evaluation metrics:  nMAE (vertical) and r (hor i-
zontal). The dotted red lines indicate the median chance 
level for the tw o metrics across subjects and grasps. 
 

 
 
Figure 4. Prediction evaluation in terms of r and nMAE for 
tw o categorizations: Left. the type of grasp (pow er, prec i-
sion and intermediate); Right. the position of the thumb 
(adducted and abducted). Dotted vertical and horizontal 
lines indicate median values for different groups of grasps.  
 
Discussion 

Our findings show the feasibility of predicting grasp-
ing EMG envelopes of extrinsic hand muscles from 
EEG signals using an UKF. In this study, we showed, 
for the first time, that EMG envelopes of a wide range 
of grasping conditions, involving periods of rest  and 
movement, can be continuously predicted from low-
frequency EEG amplitudes. Based on the presented 
categorizations of grasps we found a smaller predic-
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tion error for the grasps in which the position of the 
thumb was adducted. Moreover, we observed that 
the EMG envelopes of intermediate grasps can be 
more successfully predicted from the brain activity, 
than power or precision grasps.  
Previous studies have shown the abil ity of an UKF 
approach to infer EMG envelopes from low-
frequency EEG amplitudes while performing a con-
tinuous ground walking task on different terrains [12, 
16]. They obtained an overall r among subjects and 
muscles of 0.236, with an SNR of 0.8 dB. In the cur-
rent study, we found a similar median r of 0.2 and an 
nMAE of 28.6%. However, a direct comparison be-
tween their findings and the ones of the current is not 
straightforward due to the differences in the per-
formed task (other groups of muscles and different 
neural processes involved) and different  number of 
movement repetitions. 
Another study evaluated the prediction accuracy of 
grasping EMG envelopes of intrinsic hand muscles 
from firing rates in monkeys [17]. Their measurement 
consisted of more than 100 repetitions of each grasp 
leading to a better prediction and larger r than the 
ones reported in the current study. Nevertheless, 
comparison is again difficult due to further differences 
in signal acquisition modalities, measured hand mus-
cles and signal processing.  
Our findings show different levels of prediction accu-
racy among different grasps (Figure 3 and 4), as well 
as at single EMG channel level (Figure 2). We used 
median values to obtain robust global estimates in 
such cases of variability. Moreover, we employed r 
and nMAE as two complementary metrics for our 
prediction accuracy, evaluating both the phase and 
the amplitude similarity between the actual and the 
predicted values. Even though the number of grasps 
from each category is not the same, we observed 
that intermediate grasps have a lower median nMAE 
value than power or precision grasps. This observa-
tion could be due to the involvement of the wrist as 
an additional joint when performing intermediate 
grasp. Previous findings [3] have shown that EEG 
activity can be used to separate hand movements 
that involve different number of joints.   
We have shown the feasibility of using UKF to predict 
grasping EMG envelopes from EEG activity; howev-
er, a better prediction could be achieved by increas-
ing the number of movement repetitions for each 
grasp type, on which the model is trained. Moreover, 
the size of the prediction window plays also an im-
portant role, trading off precision to delay in the final 
prediction. In clinical setups,  it  is important to ac-
commodate the delay between the EEG-based pre-
diction and the actual triggering of the neuroprosthe-
sis. Hence, different prediction windows could be 
evaluated in the future to enhance the control. These 
advances could lead to an intuitive and reliable inter-
face that allows the user to reach autonomy in 
movement.   
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Abstract⎯ We investigated the cortical connectivity 
patterns that arise in subjects with spinal cord injury 
(SCI) during attempted hand and arm movements 
using multivariate autoregressive (MVAR) models and 
electroencephalographic (EEG) signals. The MVAR 
models were fitted using multiple trials from multiple 
subjects in order to capture general connectivity 
characteristics during different type of attempted 
movements. Based on the results we detected two 
main sources of information: the somatosensory and 
the primary motor area. Changes in directional 
connectivity between different regions before and after 
cue onset were found to be informative in terms of the 
type of movement attempted by the SCI participants.   
 
Keywords⎯ multivariate autoregressive model, 
directed coherence, EEG, spinal cord injury, 
attempted movement 
 

Introduction 

Multivariate autoregressive (MVAR) models have 
been extensively used to capture couplings between 
different time-series [1]–[3]. They provide measures of 
interdependency but also causality in the frequency 
domain, which is an important aspect when 
investigating directional connectivity in the brain (i.e., 
how brain regions send and receive information).  
Herein, we applied MVAR analysis in 
electroencephalographic (EEG) signals projected, 
however, on the source space for improved 
localization of brain sources. The EEG signals were 
acquired from spinal cord injury (SCI) subjects during 
attempted arm and hand movements. It has been 
previously suggested that motor cortex areas in SCI 
subjects can be activated during motor attempts of the 
paralyzed limbs [4]. This has enabled the use of EEG-
based brain-computer interfaces (BCI) to enhance 
restoration of movements lost after SCI [5], [6]. Our 
analysis was mainly exploratory, and our main goal 
was to capture general oscillatory interactions 
between different cortex regions before and after cue 
onset. To our knowledge, there has been only one 
study by Astolfi et al. [7] that has investigated SCI 
connectivity during attempted foot movements using 
MVAR models. Herein, we focused on detecting 
possible connectivity patterns that can be linked to the 
different type of attempted hand/arm movements. This 
information is important in order to establish MVAR-
based measures as possible features for BCI 
applications. 
 

Methods 

Data Acquisition 

61-channel EEG signals were obtained from 10, 
originally right-handed, SCI participants (median 
age of 54±18.5) as described in [5] (available at 
https://doi.org/10.1038/s41598-019-43594-9). The 
neurological level of injury ranged from C1-C7. At 
the beginning of each trial, a fixation cross was 
initially presented on a black screen, along with a 
beep sound. The class cue was displayed 2s after 
the trial initialization. The participants were asked to 
attempt unilaterally one of the following arm/hand 
movements: pronation, supination, palmar grasp, 
lateral grasp or hand open. Each trial lasted for 5s. 
 
Data Preprocessing 

The recorded EEG signals were pre-processed 
using EEGLAB and Matlab. First, we bandpass-
filtered the signals between 0.3 and 70 Hz using a 
4th order, zero-phase, Butterworth filter. Trials with 
dominant impulsive noise characteristics were 
rejected using thresholding, as well as techniques 
based on abnormal joint probabilities and kurtosis 
[5]. Next, we performed independent component 
analysis (ICA) to remove stationary artefactual 
components such as blinks, saccades, and muscle 
movements. Source localization was carried out in 
Brainstorm [8] using minimum norm imaging and 
sLoreta. To examine connectivity related to motor 
function, we extracted 26 spatially segregated 
signals (13 for the left hemisphere and 13 for the 
right hemisphere) from anatomical regions defined 
by the Brodmann atlas (Fig. 1). These 26 
anatomical regions correspond to the 
somatosensory area, the primary motor area, the 
pre-motor area, the Broca’s area, the visual area 
and the perirhinal area (Fig.1). The extracted 
signals were then used to fit MVAR models using 
multiple trials from all participants for different 
attempted movements.  
 
MVAR 

In an MVAR model, each variable is predicted by 
the linear combination of its past values, as well as 
the history of all other variables. An 𝑀-dimensional 

MVAR of order 𝑝 can be expressed as [9], 

𝒚(𝑛) = ∑ 𝑨𝑘𝒚(𝑛 − 𝑘)
𝑝

𝑘=1
+ 𝜺(𝑛)            [1] 
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where 𝒚(𝑛) = [𝑦1(𝑛) … 𝑦𝑀(𝑛)]𝑻  ∈ 𝑹𝑀×1 is a 
vector containing the values of 𝑀 time-series at time 
𝑛 (i.e., the 26 source signals in our case). 𝑨𝑘 is the 

so-called autoregressive matrix for 𝑘 = 1, . . , 𝑝 and 
𝜺(𝑛) is the MVAR driving process noise which is 
assumed to be zero-mean and white. Equation 1 
can be reformulated as, 

𝒚(𝑛) = 𝑨𝝋(𝑛) +𝜺(𝑛)                       [2] 

where 𝑨 = [𝑨1 … 𝑨𝑝] ∈  𝑹𝑀×𝑀𝑝 and 𝝋(𝑛) =
[𝒚(𝑛)𝑻 … 𝒚(𝑛 − 𝑝)𝑻]𝑻 ∈  𝑹𝑀𝑝×1.  

In this work, we used multiple trials from all 
participants to fit MVAR models that describe 
different type of attempted movements. Therefore, 
we expressed 𝒚(𝑛) and 𝝋(𝑛) as, 

𝒚(𝑛) = [𝒚1(𝑛) … 𝒚𝐾(𝑛)]𝑻  ∈ 𝑹𝑀×𝐾        [3] 

𝝋(𝑛) = [𝒚(𝑛)𝑻 … 𝒚(𝑛 − 𝑝)
𝑻

] ∈  𝑹𝑀𝑝×𝐾       [4] 

where 𝒚(𝑛)  represents the 𝑀 source signals 

concatenated from all 𝐾 trials at time point 𝑛. The 
trial-based MVAR coefficients were computed using 
ordinary least-squares estimation. 

MVAR model order selection 

One important step in MVAR estimation is the 
selection of the model order 𝑝. Herein, we used the 
multivariate Akaike Information Criterion (AIC) 
defined as [10], 

𝐴𝐼𝐶(𝑝) = 𝑁 ∙ 𝑙𝑜𝑔(|�̂�|) + 2 ∙ 𝑑                 [5] 

where 𝑁 is the total number of samples, |�̂�| is the 

determinant of the covariance of the residuals and 

𝑑 = 𝑀2𝑝 the total number of MVAR coefficients. The 
optimal 𝑝 was selected by minimizing the AIC score 
described in Eq.(5). 

MVAR coupling measures 

To extract measures of coupling and directionality 
in the frequency domain, we applied the Fourier 
transform on Eq.2, 

𝒀(𝑓) = 𝑯(𝑓)𝑬(𝑓) = [𝑰 − 𝑨(𝑓)]−𝟏𝑬(𝑓)         [6] 

where 𝑨(𝑓) = ∑ 𝑨𝑘
𝑝
𝑘=1 𝑒−𝑖2𝜋𝑓𝑘𝑇 is the coefficient 

matrix and 𝑯(𝑓) = [𝑰 − 𝑨(𝑓)]−𝟏 = �̅�(𝑓)−𝟏 is the 
transfer matrix in the frequency domain. The 
relationship between 𝑯(𝑓) and 𝑨(𝑓) allows 
frequency domain measures of coupling to be 
derived easily using solely the coefficients of the 
MVAR model. The power spectral density matrix of 
the MVAR process can be written as, 

𝑺(𝑓) = 𝑯(𝑓)𝜮𝑯𝑯(𝑓)                           [7] 

where 𝑯𝑯(𝑓) is the Hermitian of 𝑯(𝑓) and 𝜮 =
𝑑𝑖𝑎𝑔([𝜎1

2 … 𝜎𝑀
2 ]) is the covariance matrix of the 

process noise 𝜺. Based on the power spectral 
density matrix, we can generate smoothed versions 
of the power spectral density of the signals under 
consideration using the MVAR model as 
interpolating function.  
The transfer matrix, the coefficient matrix as well as 
the power spectral density matrix can be also used 
to extract various coupling and causality measures 
such as coherence (COH) [11], directed coherence 
(DC) [12], partial coherence (PCOH) [13] and partial 
directed coherence (PDC) [14]. For the purposes of 
this work, we only considered DC, which describes 
causality as direct and indirect power contributions 
from one time-series to the other. DC from time-
series 𝐷 (i.e., driver) to time-series 𝑇 (i.e., target) 

(𝐷 → 𝑇) at frequency 𝑓 is computed as [12], 

𝐷𝐶𝑇𝐷(𝑓) =
𝜎𝐷 ∙  𝐻𝑇𝐷(𝑓)

√∑ 𝜎𝑚
2𝑀

𝑚=1 ∙  |𝐻𝑇𝑚(𝑓)|2  
           [8] 

The total information outflow from a particular region 
can be defined as the sum of statistically significant 
connections (e.g., DC values) towards all other 
cortical regions [1], 

𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝐷  (𝑓) = ∑ 𝐷𝐶𝑇𝐷
∗(𝑓)

𝑀

𝑇=1,𝑇≠𝐷

               [9] 

where 𝐷𝐶𝑇𝐷
∗(𝑓) refers to statistically significant DC 

values from time-series 𝐷 to time-series 𝑇. To 
evaluate statistical significance, we permuted 
randomly 50 times the order of the source signals in 
each trial and estimated MVAR models based on 
the acquired trials. This way we destroyed possible 
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causal interactions between different regions and 
generated a reference DC distribution under the null 
hypothesis of no ‘‘causality’’ from time series 𝐷 to 𝑇. 
The significance of the DC values evaluated from 
the actual data was then assessed using the 
reference DC distribution. The estimated DC and 
outflow values were finally averaged over different 
cortex areas. The 12 regions of interest (ROI) were 
the left and right hemisphere somatosensory, 
broca’s, primary motor, pre-motor, visual and 
perirhinal areas. 

Results  

The MVAR framework was applied on two different 
time periods: before and after cue onset. The 
optimal model order (p) varied from 7-9 (for a 
sampling rate of 256Hz and for different MVAR 
models fitted on different attempted movements). 
The estimated DC values averaged over different 
type of attempted movements in the frequency 
range of [0.3 70] Hz can be found in Fig. 2. In the 
depicted matrices the columns and rows represent 
the driver and target ROIs, respectively. For 
example, the first column is the DC from left 
hemisphere (L) somatosensory area to all other 
regions (denoted in the y-axis of the matrix). Figure 
3 illustrates the total information outflow (Eq. 9) from 
each ROI in different frequency bands (delta [0.3-4] 
Hz, theta [4-7] Hz, alpha [8-14] Hz, beta [14-32] Hz, 
gamma [32-60] and broad [0.3-70] Hz) and for 
different type of attempted movements before and 
after cue onset.  
The obtained results were subjected to a three-way 
analysis of variance (ANOVA) examining the effect 
of attempted movement, frequency band and ROI 
on the DC changes before and after cue onset (i.e., 
the dependent variable was defined as 

𝐷𝐶𝑇𝐷(𝑓)(𝑎𝑓𝑡𝑒𝑟 𝑐𝑢𝑒 𝑜𝑛𝑠𝑒𝑡) − 𝐷𝐶𝑇𝐷(𝑓)(𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑢𝑒 𝑜𝑛𝑠𝑒𝑡)). 
The resulting p-values for the independent variables 
and their interactions can be found in Tab. 1. 

Table 1: Three-way ANOVA examining the effect of 
attempted movement, frequency band and ROI on the DC 
changes after cue onset. p < 0.05 indicates strong effects. 

Source p-value 

Attempted movement 0.086 

Frequency band 0.011 

ROI 0 

Attempted movement ∗ Frequency band 0.984 

Attempted movement ∗ ROI 0 

Frequency band ∗ ROI 0 

Discussion 

Figs. 2 and 3 provide important information 
regarding the main sources/hubs of information. We 
detected overall increased outflow from the 
somatosensory and primary motor areas before and 
after cue onset. The outflow from the 
somatosensory area was elevated mainly in the 

beta and alpha band, whereas the outflow from the 
primary motor cortex was more pronounced in the 
delta band. The somatosensory area outflow was 
overall higher prior to cue onset. In contrast, the 
primary motor area outflow increased after cue 
onset, especially in the delta band. The main 
receivers of somatosensory information were the 
primary motor, the broca’s, the perirhinal and the 
somatosensory area itself. On the other hand, the 
main receivers of primary motor information were 
the visual, the perirhinal and the somatosensory 
area. We also detected an ipsilateral pattern 
whereby dominant sources of information originated 
mainly from the right hemisphere. 
Based on Fig.3, the outflow from different ROIs and 
for different type of attempted movements exhibited 
similar characteristics. However, we detected 
significant differences in DC changes before and 
after cue onset (Tab. 1). The three-way ANOVA 
returned a p-value of 0.086 (i.e., weak effect) for the 
factor ‘attempted movement’ and a p-value of 0 (i.e., 
strong effect) for the interactions between 
‘attempted movement’ and ‘ROI’, indicating that the 
mean DC change can be explained better when 
considering both type of movement and driving ROI. 
An important aspect that should be pointed out here 
is that the exact attempt onset after the cue is not 
exactly known and this could also affect the results 
(i.e., the effect of the factor ‘attempted movement’ 
by itself could be more significant). 

Conclusions 

We estimated directional connectivity and 
information flow in SCI subjects during attempted 
hand and arm movements. Our results indicate that 
the most prominent sources of information were the 
somatosensory area prior to cue onset (in the 
beta/alpha band) and the primary motor area after 
cue onset (mainly in the delta band). DC and outflow 
measures exhibited the same patterns for different 
type of attempted movements. However, DC 
changes before and after cue onset in different 
ROIs were more informative in terms of the type of 
movement attempted by the SCI participant. This 
implies that the time- and spatial- varying aspects of 
DC could be used as features to improve decoding 
performance in BCI applications [5]. Future work 
involves DC estimation in a time-varying (TV) 
context using nonstationary MVAR models [2] and 
attempted movement classification using various 
TV-MVAR based connectivity measures.  
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Figure 2: Averaged DC values over all attempted movements before (left panel) and after (right panel) cue onset in the 
frequency range of [0.3 70Hz]. The columns represent the drivers and the rows the targets. (L) and (R) refers to left and 
right hemisphere. 

 

Figure 3: Total information outflow before (blue) and after (red) cue onset in the delta (first column), theta (second 
column), alpha (third column), beta (fourth column), gamma (fifth column) and broad (sixth column) and for different type 
of attempted movements i.e., supination (first row), pronation (second row), hand open (third row), palmar grasp (fourth 
row) and, lateral grasp (fifth row). 
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Abstract⎯ In this work, the hand trajectory decoding 
was investigated in the source space. A couple of di-
mensionality reduction techniques were utilized to re-
duce the number of the source-space signals, namely, 
computing the mean, principle component analysis 
(PCA), locality preserving projection (LPP).  
The decoding performances from the source-space 
approaches were compared to the sensor-space ap-
proach. We found that every approach showed perfor-
mance metrics in a similar range and only slight differ-
ences across approaches could be observed. The 
source-space approach with PCA with 8 components 
exhibited higher performance metrics than other ap-
proaches and slightly higher performance metrics than 
the sensor-space approach (improvement for correla-
tion 0.01 to 0.09, SNR 0.05 to 0.1 dB). The results sug-
gested that the source-space-based decoding is pos-
sible, and it can achieve comparable performance to 
the sensor-space approach.  
 
Keywords⎯ EEG, BCI, source localization, PCA, 
LPP, PLS, UKF, hand trajectory decoding 
 

Introduction 

The electroencephalogram (EEG) measures the elec-
trical changes of the brain non-invasively. Since the 
actual underlying sources in the brain are inaccessible 
from EEG, source localization is utilized to estimate 
the underlying cortical sources. The source localiza-
tion is rarely implemented in the processing steps but 
rather in the post-analysis because of the complexity 
of the problem.  
Recently, some studies investigated this direction. 
They demonstrated the possibility of source-space 
classification in brain-computer interfacing (BCI) [1]–
[4]. Still, only single literature [5] focused on the re-
gression problem, so this work will explore the possi-
bility of regression of hand trajectory in the source 
space.  

Previously, a couple of works from our group [6]–[9] 
studied the decoding of hand movement trajectory for 
the pursuit tracking task (PTT) from EEG in an online 
setting. Group-level source localization analysis re-
veals the brain regions contributing to the decoding of 
the movement kinematics to be located between the 
medial part of the frontal and parietal area, which cor-
responds to the frontoparietal network [10]. This infor-
mation could be used to restrict the signals in the 
source space, but the resulting number of signals is 
still in the range of thousands. Hence, different dimen-
sionality reduction techniques widely used in different 
research fields were investigated, namely, principal 
component analysis (PCA), locality preserving projec-
tion (LPP) [11], and computing the mean. 
 

Methods 

Dataset description 
The data from 2 studies [8], [9] was used. In total, 
there are 15 measurements from 14 different partici-
pants since one participant was in both studies while 
one participant was excluded due to the signal quality 
in some measurement runs. 
 
Experimental setup 
The task for the participant was to follow a target cur-
sor ("snake") on the screen by controlling a robotic arm 
(JACO, Kinova Robotics Inc., Canada) via a mixed 
control between the hand movement, captured via the 
LeapMotion (LM) system (LeapMotion Inc., USA), and 
the decoded signal from EEG. The mixed percentage 
of the control was adjusted to the respective run from 
100% LM and 0% EEG to 0% LM and 100% EEG. The 
EEG signals were simultaneously measured via 64 (in 
[8]) and 60 (in [9]) active EEG electrodes (actiCAP, 
Brain Products GmbH., Germany) recorded at 500 Hz 
with biosignal amplifiers (BrainAmp, Brain Products 
GmbH, Germany). The common EEG channels be-
tween both studies used in this analysis can be seen 

Figure 1: Overview of the experiment information a) common processing pipeline adapted from [7], [8] with addi-
tional source-space transformation and ROI scouting block, highlighted with dashed lines, b) common electrodes 
position used in the analysis, c) the predefined region-of-interest 
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in Fig. 1b. The data from the 100% LM was used to 
calibrate the decoding model.  For a detailed explana-
tion of the experimental setup, please refer to [8], [9] 
 
Processing Pipeline 
The overview of the processing was shown in Fig.1a. 
For a detailed description of the processing pipeline, 
please refer to [8], [9], on which the processing pipe-
line was based. The following changes were made in 
the processing pipeline. 1. an additional source-space 
transformation and ROI scouting block were added 2. 
criteria for choosing the retained number of compo-
nents in the partial least square (PLS) model were to 
retain 95% of total variances components instead of 
fixing the same number of components across meas-
urements. The combination between PLS and the 
square roots unscented Kalman filter (SR-UKF) [12] 
produces the following movement kinematics: hori-
zontal position, vertical position, horizontal velocity, 
vertical velocity, speed, and distance. 
 
Source-space transformation 
Before the experiment, electrode positions were 
measured. This information was used to co-register 
with an ICBM152 template head model. The forward 
problem was modeled with a boundary element 
method (BEM) with 5000 unconstrained cortical dipole 
sources, meaning that each source was modeled with 
3 components in XYZ directions. The conductivity of 
the scalp, skull, and brain was set to (0.41, 0.02, 0.47)  
[13], respectively. The inverse problem was solved 
with OpenMEEG [14] and sLORETA [15] using the 
Brainstorm package [16].  
 
ROI scouting 
Several regions-of-interests (ROIs) were defined ac-
cording to the Mindboggle brain atlas [17] to reduce 
the number of signals in the source space. The prede-
fined ROIs, which were based on the frontoparietal 
network [6], [10], are as follows: cuneus, lateral occip-
ital, paracentral, postcentral, precentral, precuneus, 
superior frontal, and superior parietal in both hemi-
spheres (Fig. 1c). Different dimensionality reduction 
techniques were employed for each directional com-
ponent of sources in each ROI to reduce the number 
of signals further. These are PCA, LPP [11], and com-
puting the mean signals. The optimum number of re-
tained components for both PCA and LPP were cho-
sen by comparing the correlation and the computa-
tional complexity of 1,2,4,8, and 16 components. For 
both PCA and LPP, 8 components were retained per 
each directional source component or equivalently 24 
components per ROI. The processes of source-space 
transformation and ROI scouting can be summarized 
as matrix multiplications as: 
 
 Y = 𝑆𝐾𝑋 (1) 

 

where X is processed sensor-space EEG signals, K 
is a kernel matrix that transforms sensor-space sig-
nals into the source space, S is a scouting matrix that 
produces the representation signals Y from the 
source-space signals. 
 
Decoding performance evaluation 
The following metrics were chosen to compare among 
the different approaches. Namely, the correlation be-
tween the decoded and the actual trajectory, signal-to-
noise (SNR) ratio defined as: 

 SNR(zt, zt̂) = 10 log10 
var(zt)

𝑚𝑠𝑒(zt,zt̂)
 (2) 

and decoded-signals-to-signal (DSSR) ratio defined 
as [7]:  

 DSSR(zt, zt̂) = 10 log10 
var(zt)

var(zt̂)
 (3) 

where zt, zt̂ indicate the true and the decoded kinemat-

ics, var(𝑥) means the variance of x and 𝑚𝑠𝑒(𝑥, 𝑦) 
means the mean squared error (MSE) between x and 
y. The DSSR [7] could be interpreted as the amplitude 
mismatch between the decoded and the actual move-
ment kinematics. The best case is that the amplitude 
of kinematics matches with a DSSR at 0 dB. The hor-
izontal and vertical components were grouped by 
computing the mean and distance and speed into po-
sition, velocity, and magnitude. The 3 kinematics will 
be called 'simplified' kinematics, and they were meant 
only for visualization purposes, while the 'full' kinemat-
ics contain the original 6 kinematics. The metrics dif-
ferences between 'Se' and the best source-space ap-
proach for each of the 'full' kinematics were computed 
by subtracting the best source-space approach to 'Se' 
from the same measurement and then computing the 
mean across measurements. 
 
Statistical evaluation 
The experiment was repeated in a simulated manner 
that closely resembles the online processing pipeline 
with different approaches: sensor-based approach 
'Se', computing the mean 'Mean', 'PCA8', and 'LPP8'. 
The subject-level average metrics were computed. 
Multiway repeated-measures ANOVA was used to 
compare the following factors: 1. control percentage 
(100% LM – 0% LM), 2. movement kinematics, and 3. 
different approaches ('Se', 'Mean', 'PCA8', 'LPP8'), us-
ing Greenhouse-Geisser correction. For the DSSR, 
the absolute value was used in the statistical test (aD-
SSR). Tukey's HSD test was used as a post-hoc test 
for multiple comparisons. These statistical tests were 
performed on the 'full' kinematics. 
 

Results 

The results from the 'simplified' kinematics were sum-
marized in Fig. 2. Overall, the boxplots revealed the 
trends where the directional kinematics indicated 
higher performance than the non-directional ones.  
From Fig. 2., every approach showed the median cor-
relations in a similar range at around 0.30, 0.32, 0.12 
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for the position, velocity, and magnitude. ‘PCA8’ ex-
hibited a higher median correlation in velocity and 
magnitude than ‘Se’. 
 

 
Figure 2: The subject-level boxplot correlation of differ-
ent approaches, 'Se', 'Mean', 'PCA8', 'LPP8'. For visu-
alization purposes, the 'simplified' kinematics were 
used, and the mean of the correlations was computed 
across 100%LM to 0%LM runs. The numbers indicate 
the corresponding median values. The dashed lines 
indicate the median value of ‘Se’. 
 
Multiway repeated-measures ANOVA revealed statis-
tically significant differences between approaches in 
terms of correlation (F(3,39)=5.5, p=0.010), SNR 
(F(3,39)=5.1, p=4.15x10-5), but not in the case of ab-
solute DSSR (F(3,39)=2.47, p=0.101). 
Post-hoc tests revealed that 'Mean' and 'LPP8' 
showed lower performance than 'Se' and that 'PCA8' 
indicated slightly higher performance than the rest.  
The only statistically significant results were between 
a pair of 'LPP8' to 'PCA8' (p=0.018), while the other 
comparison between pairs was not statistically signifi-
cant. The performance's ranking is as follows: ‘PCA8’ 
> ‘Se’ > ‘Mean’ > ‘LPP8’. The group-level differences 
between 'PCA8' and 'Se' of the 'full' kinematics can be 
found in Tab. 1. In most cases for correlation and SNR, 
'PCA8' showed slightly higher performance than 'Se'. 
 
Table 1: Group-level differences of 'PCA8' and 'Se' 
from 'full' kinematics 

 Corr. SNR aDSSR 

Pos. X 0.0009 0.1084 -0.0121 

Vel. X 0.0049 -0.0165 -0.04 

Pos. Y 0.0035 0.0938 -0.0454 

Vel. Y 0.0084 -0.02 -0.0588 

Distance -0.0015 0.0704 0.0282 

Speed 0.0096 0.0499 0.0503 

 

Discussion 

Several works had proven that the decoding of hand 
movement trajectory in humans based on the sensor-
space EEG signals could be done with an actual hand 
movement [8], [9], or imagined hand movement [18]. 
However, an open question was whether it is possible 
to perform decoding of hand movement trajectory 
based on the source-space signals. 
To answer that, we tried several approaches to over-
come the problem of a high number of signals in the 
source space, namely, 'Mean', 'PCA8', 'LPP8'. 

The processing pipeline of 'Se' is the same as in [9], 
and the results indicated the correlations of 'Se' to be 
in a similar range. Comparing 'Se' to the source space 
approaches ('Mean', 'PCA8', 'LPP8'), we see the per-
formance in a similar range as in 'Se' with some slight 
differences. It is indicated via post-hoc tests that 
among all approaches, 'PCA8' could perform slightly 
better than 'Se', but the differences were not statisti-
cally significant. The results showed that the decoding 
in the source space is possible with comparable per-
formance, and the best candidate out of all could be 
'PCA8'. 
We have the following assumptions to explain the 
cause of the lower performance of 'Mean'. First, the 
number of signals from 'Mean' was reduced from each 
ROI with the original number of signals in a range be-
tween hundreds to thousands of signals per ROI, to 
just 3 signals (1 for each direction of the source com-
ponents), and this could retain very little information. 
Second, by using the mean function, we assumed the 
distribution of the signals in each ROI to be normally 
distributed, which was hardly the case in this situation.  
In LPP, it was introduced as a dimensionality reduction 
technique that tries to retain the local network structure 
in the lower dimension [11]. This technique was suc-
cessfully applied in the computer vision field and the 
BCI field [19]. However, the results suggested the per-
formance of LPP to be the worse among the candi-
dates. The worse performance could be due to the dif-
ference between classification problems (as LPP was 
typically used) and the regression. 
Some works [1]–[4] that utilized the source-space in-
formation in the classification problem indicated some 
improvement over the sensor space. However, Sosnik 
and Zheng 2021 [5], who investigated the decoding of 
joints kinematics with signals in the source space, 
showed slightly lower performance than the sensor 

space. Their approach was comparable with our 
'Mean' approach, which also showed slightly lower 
performance than 'Se'.  
There are some interesting points to further explore for 
the source-space-based decoding: the benefits of in-
corporating the individualized anatomical information 
from the magnetic resonance imaging (MRI) and how 
the decoding behaves in the actual online experiment.  
 

Conclusion 

Different reduction techniques were implemented to 
overcome the problem of a high number of signals. 
By comparing the performance metrics from the sen-
sor-space approach, 'Se', to the source-space ap-
proaches, 'Mean', 'PCA8', 'LPP8', we found that only 
the 'PCA8' could perform better than 'Se'. However, 
the differences were only marginal and not statistically 
significant. The results suggested that the source-
space-based decoding of hand movement trajectory 
is possible with comparable performance to 'Se'. 
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Abstract Recent research from our group has 
shown that non-invasive continuous online decoding 
of executed movement from non-invasive low-fre-
quency brain signals is feasible. In order to cater the 
setup to actual end users, we proposed a new para-
digm based on attempted movement and after con-
ducting a pilot study, we hypothesize that user control 
in this setup may be improved by learning over multi-
ple sessions. Over three sessions within five days, we 
acquired 60-channel electroencephalographic (EEG) 
signals from nine able-bodied participants while hav-
ing them track a moving target / trace depicted shapes 
on a screen. Though no global learning effect could be 
identified, increases in correlations between target and 
decoded trajectories for approximately half of the par-
ticipants could be observed.  
 
Keywords Electroencephalography, trajectory de-
coding, learning effects. 
 
Introduction 

Brain-computer interfaces (BCIs) [1, 2] are character-
ized by offering a user direct control over an interface 
without prior muscular activity. For years, a goal of our 
group has been the restoration of arm and hand move-
ment respectively in people with cervical spinal cord 
injury (SCI) [3, 4, 5]. Through a BCI, these persons 
should be enabled to control an end-effector, e.g., a 
neuroprosthesis or a robotic limb. Starting from identi-
fying different movement directions [6, 7, 8], the focus 
has advanced to continuous movement decoding.  
Recently, it was shown that movement information 
(positions and velocities) in a plane is contained in low-
frequency EEG signals, making it possible to infer ex-
ecuted movement trajectories in an online target track-
ing task with correlations between decoded and actual 
trajectories well above chance [9, 10]. However, the 
used paradigms were tailored to able-bodied partici-
pants, making their application to end users with lim-
ited motor output impossible.  
As a possible solution to this, we conducted a pilot 
study based [11] on attempted instead of executed 
movement [12]. Feedback from the participant on the 
perceived level of control at the beginning and the end 
of the experiment lead to the assumption that the de-
coder accuracy may be improved through training. 
This implies that the decoding performance may not 
only be optimized through utilization of increasingly 
powerful signal processing and machine learning al-
gorithms, but also via neuroplasticity with respect to 
the BCI users themselves. Considering this assess-
ment, we hypothesized that any visible learning effects 

would take place within a short time span already. For 
this reason, we chose to investigate possible in-
creases in BCI user performance over three sessions 
within five days. This timeframe was selected to keep 
the experience fresh in the participants’ minds while 
allowing them to recuperate from the mental workload 
between the sessions.  
In this work, we evaluate the two different paradigms 
we presented the participants with regarding an in-
crease in performance over the sessions. Further, we 
evaluate whether neuroplasticity can play a role in 2D 
trajectory inference. 
 
Methods 

Participants and setup EEG of nine able-bodied 
participants (24.2 ± 5.0ys) have been recorded three 
times each within five days. The participants sat in 
front of a TV screen with their dominant arm strapped 
to the chair (see Fig. 1, C), enabling minimal move-
ment but largely restricting the motor output in order to 
mimic attempted movement [12]. Each participant 
(four female, five male) was assessed as right-handed 
according to the Edinburgh Handedness Inventory 
[13] and had normal or corrected-to-normal vision. 
Data of one specific participant was excluded from fur-
ther analysis due to erroneous marker-labelling during 
the recording. The experiment was conducted as part 
of the Feel Your Reach project and as such was ap-
proved by the ethics committee of the Medical Univer-
sity of Graz. 
 
Paradigm  In each of the three sessions, the partic-
ipant was presented with two different paradigms: the 
snakeruns (Fig. 1, A) and the freeruns (Fig. 1, B).  
For the snakeruns, a target (called ‘snake’) was shown 
on the screen, moving according to specifically de-
signed trajectories that ensured decorrelation between 
x and y coordinate. The participant was asked to visu-
ally track the snake while attempting movement with 
the strapped lower arm and hand as if wielding a cur-
sor.  
In the freeruns, three different static shapes were 
shown on the screen: two diagonals (from top or bot-
tom left, respectively), and a circle. In this paradigm, 
the participants had to trace the shape following their 
own pace without stopping, again visually as well as 
with attempted movement.  
Each session was roughly divided into an offline cali-
bration and an online feedback part.  
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During the calibration phase, two eyeruns (including 
resting gaze, blinks, horizontal and vertical eye move-
ment) and four snakeruns (12 trials of 23s each) were 
recorded. For the calibration snakeruns, fake feed-
back in form of a green dot corresponding to the de-
layed snake trajectory was shown on the screen to ac-
custom the participants to the additional visual infor-
mation. After recording the data for the calibration, the 
eye data were used to train our sparse generalized 
eye artifact subspace subtraction (SGEYESUB) algo-
rithm [14], while the snakeruns were used to fit the par-
tial least squares regression unscented Kalman filter 
(PLSUKF) decoder discussed in [10].  
In the online phase, the feedback condition was suc-
cessively increased first to 50% EEG feedback, corre-
sponding to the mean between actual and decoded 
snake position (three snakeruns: 36 trials of 23s dura-
tion), and then to 100% EEG decoded feedback (three 
snakeruns, three freeruns: 36 trials of 23s duration 
each). 
 
Recording and preprocessing Data from 64 
channels was recorded, corresponding to a 60 chan-
nel EEG according to the 10-10 system and four elec-
trooculographic (EOG) electrodes placed at the outer 
canthi of both eyes as well as above and below the left 
eye. Ground and reference electrodes were placed at 
Fpz and the right mastoid. The initial sampling rate of 
200Hz was first reduced to 100Hz after high pass fil-
tering at 0.18Hz and anti-aliasing filtering at 25Hz; the 
bad channels were then interpolated, the eye artifacts 
attenuated using the SGEYESUB algorithm [14], and 
the EOG and AF channels were removed. The data 
were then re-referenced to common average refer-
ence, and pops and drifts in the signals were attenu-
ated using the HEAR algorithm [15]. After low pass fil-
tering at 3Hz and further downsampling to 20Hz, the 
signals were fed to the PLSUKF decoder [10, 16], 
yielding the feedback output shown as a green dot on 
screen. 
 
Results 

Snakeruns An accurate assessment of the decoder 
performance was accomplished by evaluating the 
Pearson’s correlation coefficient r between actual 
snake trajectory (ground truth) and decoded EEG sig-
nals for each trial. The correlations for each feedback 
condition (50% and 100% EEG), directional move-
ment parameters (posx, velx, posy, vely), session and 

participant are presented in Fig. 2. The correlations for 
single trials (36 per session and condition, notwith-
standing trial rejection) are displayed as small dots, 
mean and 25th resp. 75th percentiles as big dots and 
whiskers. For each session, the chance levels were 
calculated using a shuffling approach [9], in which 
EEG data and corresponding snake trajectories were 
randomly interchanged, a new PLS model fitted, and r 
evaluated, for 100 times. The upper confidence inter-
vals of the chance level correlations (with alpha = 0.05) 
were then found as the 95th percentile of the correla-

tion moduli and are depicted as horizontal lines. For all 
participants, sessions and feedback conditions, mean 
correlations (approx. 0.3) lie well above chance levels 
(approx. 0.15).  
After evaluating the data of the first participant (P1), 
the initial recording sequence of three 50% EEG 
snakeruns and three 100% EEG freeruns was 
adapted, and snakeruns with 100% EEG feedback 
condition were added for quantitative performance 
analysis due to the lack of a ground truth for the self-
paced freeruns. As a result, P1 could not be included 
in the 100% EEG feedback snakerun analysis (Fig. 2, 
bottom). 
For both feedback conditions, single trial correlations 
are found to be spread over the whole range (0,1), with 
no global trend for the means over each session. A 
downward tendency from first to third session for ap-
proximately half of the participants can be observed, 
while the other half improved, often accompanied with 
a performance peak in the second session. Further, 
improvements in performance in one movement direc-
tion (x or y) are not necessarily seen in the other direc-
tion as well, implying varying decoder performance 
across movement directions over multiple sessions.  
Further measurements with additional participants will  
 

Figure 2: Correlations for all trials (small dots) with 
mean (big dots), 25th and 75th percentiles (whiskers) 
and chance levels (horizontal lines, see [9]) for each 
participant, directional movement parameter (posx, 
velx, posy, vely), session and feedback condition (top: 
50% EEG, bottom: 100% EEG). 

Figure 1: Experimental setup and paradigm. A) de-
picted moving target (snake, white) with green 
feedback dot, B) freerun shapes /, \ and O to be 
followed at the participant’s own pace, C) experi-
mental setup with the participant’s dominant 
hand/arm strapped to the chair. 
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allow for statistical evaluation of the correlations over 
all individuals. 
 
Freeruns Because of the self-paced character of 
the freerun task, target positions as in the snakeruns 
are not available as a ground truth in the freeruns. As 
a workaround, the expected target position on screen 
at each point in time was assumed as the point the 
participant was visually focusing on. The ground truth 
trajectories were inferred via horizontal and vertical bi-
polar derivates of the EOG signals. After lowpass fil-
tering at 3Hz and downsampling to 20Hz of the raw 
EOG data, the correlation between the trajectory in-
ferred via horizontal and vertical EOG derivates and 
the decoded trajectory was used as an evaluation met-
ric.  

 
Three single freerun trials taken from P4, session 2 are 
shown in Fig. 3 for demonstration. The static shape 
shown to the participant on the screen is depicted in 
red, the EEG-decoded trajectory corresponding to the 
tracing task is overlaid in black. Pearson’s correlation 
r between EOG-inferred trajectory (ground truth) and 
decoded trajectory for each participant, session and 
trial is shown in Fig. 3 (bottom). Small dots correspond 
to single trials, big dots and whiskers again to mean 
and 25th/75th percentiles of the correlations in each 
session. No distinction between the different depicted 
shapes (/, \, O) was made yet. The chance levels were 
again calculated using a shuffling approach.  
As can be seen, the mean correlation lies below 
chance level for some sessions in contrast to the 
mean correlations during the snakeruns. Again, no 
global trend can be observed in terms of improvement 
or degradation of performance over all participants. 
However, a steady increase in performance can be 

observed in approximately half of the participants. Ad-
ditionally, any trend from first to third session observed 
in one movement direction can be also seen in the 
other direction in two thirds of the participants, in con-
trast to the correlations in the snakeruns.  
 
Discussion 

Over three consecutive sessions in nine participants, 
no global learning effect could be observed for both 
presented paradigms (snakeruns, freeruns).  
For each feedback condition, participant and session, 
the mean correlation in the snakeruns lay above 
chance level, though different decoding accuracies in 
x and y direction could be observed, implying a fa-
vored decoding direction. Approximately half of the 
participants showed an increase in performance from 
first to third session, which was often paired with a per-
formance peak during the second session, while the 
other half exhibited a steady decrease in performance. 
Following a preliminary assessment, this does not di-
rectly correlate with the decoder performances ob-
served on the calibration data. This implies underlying 
causes that are not strictly related to the varying de-
coder performance from session to session, even 
though the decoder was fitted anew for each session. 
Decreasing motivation and engagement of the partici-
pants due to the long experiment (3-4 hours per ses-
sion) must be mentioned as influencing factors, along 
with a varying frustration tolerance between the partic-
ipants. Although we did not ask the participants to fill a 
questionnaire, there seemed to be a consensus that 
higher learning rates were expected. This may have 
led to frustration and can explain the decrease in cor-
relations from second to third session in participants 
with a performance peak in the second session.  
For the freeruns, approximately half of the participants 
showed improvement from first to third session, 
whereas the performance decreased for the other half.  
Mean correlations did not lie above chance for all ses-
sions, which in part can be attributed to the EOG tra-
jectories that were used as a ground truth in the 
freeruns. In part, this may also imply that the self-
paced freerun task was harder to fulfill than the track-
ing task during the snakeruns. Detailed investigations 
on correlations per specific shape (/, \, O), as well as 
on changes in correlation from session to session, re-
main to be done.  
Detailed analysis regarding the grand average over all 
participants remains to be done and cannot be pre-
sented within the preliminary results yet. 
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Figure 3: Top— Depicted shapes (red) and three 
corresponding EEG-decoded freerun trajectories 
(black) from P4, session 2. Bottom— Correlation be-
tween EOG-inferred and decoded trajectory for 
each trial (small dots), with mean (big dot), 25th resp. 
75th percentiles (whiskers) and chance levels (hori-
zontal lines) for each participant and session. 
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Abstract⎯ Fluid balance can be considered a 
valuable biomarker of critical illness. Administering 
the right dosage over time of fluids, thereby avoiding 
fluid overload, remains a challenge in intensive care. 
As a first step towards a fluid management decision 
support system, this work compared four models for 
predicting the course of the cumulative fluid intake in 
30 cardiac intensive care patients. Analyses of the 
root mean squared error (RMSE) showed the lowest 
prediction error for an extrapolation model using a 
piecewise regression-approach. 
 
Keywords⎯ Cumulative fluid intake, prediction, fluid 
overload, fluid balance, intensive care 
 

Introduction 

Fluid balance can be considered a valuable 
biomarker of critical illness [1]–[4]. It is calculated by 
subtracting the fluid outputs from the fluid intakes and 
documented routinely during a patient’s stay in the 
intensive care unit (ICU). During fluid management in 
the ICU, fluid overload represents a serious side 
effect being associated with various comorbidities 
such as edema, cardiovascular dysfunction or respir-
atory complications [5]. In addition, fluid overload is 
an independent risk factor for morbidity and mortality 
when referring to critically ill surgical patients [6]–[11]. 
Hence, cumulative fluid balance (CFB), defined as 
the sum of daily fluid balances over a certain period 
of time, may provide important information for clinical 
decision making with respect to fluid management. 
The clinical course of a patient’s CFB in sepsis has 
been described by various hit models, such as the 
“ROSE model” which comprises the resuscitation-, 
optimisation-, stabilisation- and evacuation-phase [5], 
[12], [13]. Typical patient trajectories for CFB and 
cumulative fluid intake (CFI) [5], [12]–[15] with 

respect to the ROSE model are outlined in Fig. 1. 
Despite the necessity of administering large amounts 
of fluids in the resuscitation phase, fluids need to be 
considered as drugs, emphasising the administration 
of the right dosage over time within the subsequent 
phases to meet patient’s needs and to avoid fluid 
overload. However, identifying the transition of a 
patient from the resuscitation phase to the 
optimisation phase (and subsequently to the 
stabilisation phase) is crucial in order to control 
adequate administration of fluids. Therefore, 
predicting CFI trajectories might pose the first step 
towards a fluid management decision support system 
and could prove beneficial in support intensivists in 
daily clinical practice. We therefore evaluated and 
compared four different approaches for estimating 
the CFI course in cardiac intensive care patients over 
a clinically reasonable timespan. 
 

Methods 

Patient cohort: 30 patients from the FLUIDATEX 
study (vote EK 30-076 ex 17/18 by the Ethics Com-
mittee of Medical University of Graz) were randomly 
chosen for analysis. The study includes patients in 
intensive care after cardiac surgery (20 males, 10 
females). The mean age of the patients was 68.99 
years (sd = 8.38 years). The mean length of stay at 
the ICU was 5 days (± 1 day). Twelve patients had a 
coronary artery bypass grafting, 12 patients had heart 
valve replacement and the remaining 6 patients un-
derwent both interventions. 
 
Materials: Fluid intake for all patients comprised all 
administered fluids (oral, enteral, parenteral) that 
were registered in the electronic patient records. For 
each patient, all intakes were added up cumulatively, 
resulting in a monotonous time series (expressed by 
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the CFI) describing the patient’s intake since admis-
sion. Data of the first 48 hours of ICU stay was used 
for generating the model for CFI and data of the sub-
sequent 24 hours were considered to estimate the 
extrapolation error of prediction. 
 

 
Figure 1: Clinical courses of the cumulative fluid bal-
ance (CFB) and the cumulative fluid intake (CFI) 
throughout a patient’s stay at the intensive care unit 
(ICU) according to the ROSE model. 
 
Statistical modelling and extrapolation: We used 
the statistical programming language R for Windows 
10 (version 4.0.5) [16] for data modelling and analy-
sis. The CFI was modelled using four different meth-
ods. As a benchmark we selected linear regression 
analysis (lm() in base R) as simplest method. Linear 
models are commonly used to describe and predict a 
target variable based on one or more independent 
variables. The general equation of the simple linear 
regression used in this work is shown in Eq. 1 where 
y is the observed variable, x is the explanatory varia-
ble, β1 describes the slope and β0 the intercept. The 
term e subsumes an unobserved random error. 

1 0     y x e = + +                                               (1) 

The fitted line can easily be extrapolated using the 
regression equation provided by the model. Second, 
we selected a “broken stick” approach, which adds 
two multiple linear regression lines together [17]. This 
method provides more freedom after a possible 
change in patient treatment over time. Based on this 
approach two subsequent simple linear regression 
models were fitted to the data. The breakpoint is 
determined as described in Eq. 2 [17]. The piece-
wise.linear() function from the R package SiZer was 
applied to model this approach. Extrapolation was 
performed using the “predict” function in R. 

0 1

0 1 2 ( )

i i i

i

i i i i

x e for x
y

x x e for x

  

    

+ + 
= 

+ + − + 
      (2) 

The third method was a time series-based analysis, 
carried out automatically using the auto.arima() func-
tion [18], [19] from the forecast package in R. Time 
series analysis employs past time-discrete data to 
predict prospective data points by decomposing pa-
tient data into level, trend, seasonality and noise 
components. This approach may result in a spectrum 
of models of different degrees of complexity. Note 
that for prediction we applied the forecast() function 
from the forecast package as well. The fourth method 
was a non-linear regression approach, however us-
ing polynomial terms of power 2. Adding a polynomial 
term of this power, such as β2*x2 to Eq. 1 as can be 
seen in Eq. 3, describes the final polynomial model.  

2

2 1 0       y x x e  = + + +                                 (3) 

Extrapolation was again performed with the predict() 
function. All model extrapolations were compared 
against the true course of the CFI using the root 
mean squared error (RMSE) as evaluation metrics. 
 
Statistical comparison: A within-subjects ANOVA 
was calculated, comparing the four methods of mod-
elling and extrapolation. The RMSE (in the unit millili-
ters) over the prediction timespan was entered as the 
dependent variable, selecting the modelling methods 
as independent variable (within-subjects factor). 
 

Results 

The four different extrapolation methods are depicted 
exemplarily for a selected patient in Fig. 2. The verti-
cal dotted lines separate the modelling (48h) and 
prediction (24h) timespans. In this patient linear (2A) 
and piecewise linear (2B) regressions show a better 
fit compared to time series analysis (2C) or polyno-
mial regression (2D). The distributions of 
extrapolation error of the CFI model over all patients 
is shown in Fig. 3. Piecewise linear modelling (“pw”) 
revealed fewer extreme deviations compared to the 
other modelling approaches, in particular compared 
to regression analysis with polynomial terms (“poly”) 
and time series analysis (“tsa”). The methods of 
modelling were found to be statistically significantly 
different, F(2.3,66.71) = 5.51, p = 0.004, generalized 
eta square = 0.11 (details in Fig. 4). Post-hoc 
analyses with Bonferroni adjustment revealed that 
the piecewise linear regression model showed 
stastically significant reduced extrapolation errors 
compared to all other models, while there was no 
difference in-between the three remaining models 
(meanpw = 631ml, meanlinearmodel = 984ml, meantsa = 
1184ml, meanpoly =1265ml, p < 0.05). 

Proc. Annual Meeting of the Austrian Society for 
Biomedical Engineering 2021

 
DOI: 10.3217/978-3-85125-826-4-23

CC BY 88 Published by Verlag der TU Graz 
Graz University of Technology



 

Figure 2: Linear (A), piecewise linear (B), time series 
analysis (C) and polynomial (D) regression of the 
cumulative fluid intake (CFI) in an exemplary patient 
using the first 48h of stay for modelling and the sub-
sequent 24h for prediction.  

 

 

Figure 3: Whole sample extrapolation error of the 
cumulative fluid intake (48h of modelling, 24h of pre-
diction). Piecewise linear modelling (pw), linear mod-
eling (lm), time series analysis (tsa), polynomial terms 
(poly), root mean squared error (RMSE). 

 

 

Figure 4: Variance analysis of the cumulative fluid 
intake extrapolation errors. Piecewise linear model-
ling (pw), linear modeling (lm), time series analysis 
(tsa), polynomial terms (poly), root mean squared 
error (RMSE). 

 

Discussion 

In this study we aimed to find a viable model for CFI 
estimation in cardiac intensive care patients and 
compared four different statistical methods. Our anal-

ysis demonstrated that a piecewise regression model 
seems to be the most promising model for estimating 
the CFI trajectory for the 24 hours – which is in good 
accordance with the common horizon for setting CFB 
goals – subsequent to the first 48 hours after admis-
sion to the ICU. 
 
In this work, the orders of the applied models were 
restricted. Extrapolations using simple linear regres-
sion might be biased too much by the past trajectory, 
while polynomial regression of power 2 showed large 
deviations increasing with prediction time. A piece-
wise regression model using more than two straight 
lines or a polynomial regression of power 3 or more 
might outperform our models by allowing a higher 
degree of freedom. However, this may lead to com-
plicated and overfitted models. Too much complexity 
might also be a reason for the underperformance of 
the time series-based model. The applied algorithm 
compares models of different complexity and choos-
es based on the best fit. Piecewise linear regression 
with one breakpoint might just be within a goldilock 
zone, where the method shows enough freedom to 
respond to changes in the CFI but not so much as to 
overestimate small changes. Still, we cannot assume 
that other statistical models may not perform better at 
other times of ICU stay or in other patient cohorts. 
 
Although the applicated amount of fluids is usually 
documented by utilizing either paper-based or com-
puter-assisted tools, especially small amounts of 
administered fluids (e.g. diluents, fluids used for 
flushing) are not able to be recorded [20]. Further-
more H. Asfour reported that documentation errors 
occur in 35% of reported CFBs [21]. These effects 
might negatively influence the prediction performance 
of CFI estimation models. 
 
Setting and prescription of fluids to maintain microcir-
culation, to avoid hypoperfusion respectively, is a 
major challenge in critically ill patients. In this context 
fluid overload is common and associated with worse 
outcomes [5]–[11]. Decision support tools to display 
the history and prediction of the CFI and CFB might 
influence the clinical decision at bedside to assist the 
intensivist when prescribing fluids during the different 
phases of fluid resuscitation and evacuation.  
 
In summary, predicting the CFI course using a 
piecewise linear regression model might assist clini-
cians in guiding fluid therapy, especially when incor-
porated in future decision support tools. The pro-
posed approach needs to be verified in a larger pa-
tient cohort to determine the individual fluid transfer 
characteristics for CFB prediction. 
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Abstract⎯ This paper presents the development of a 
system theory-based model of the COVID-19 pan-
demic spread based on weekly reports available on 
the EU Open Data Portal (EUODP). The considered 
mathematical model will be represented in the S com-
plex domain as a transfer matrix. System identification 
methodology, well known in control system theory, 
was applied. Stability analysis with possibilities of con-
trollability and observability was considered. The 
spread of a pandemic can be controlled by propor-
tional (P) action in an open loop. 
 
Keywords⎯ SARS-CoV-2, transfer matrix, transfer 
function, mathematical modeling, system identification 
 
Introduction 

The spread of the SARS-Cov-2 pandemic can be de-
scribed as a mathematical model of a system that is a 
unique function that maps the input vector to the out-
put vector according to the mathematical law. The sys-
tem model is an idealized, imaginary system, which 
retains the properties of the real system essential for 
system analysis [1]. Having in mind the definitions of 
the system [1], [2], the spread of the coronavirus pan-
demic can be considered as a dynamic model. 
A large number of mathematical models of disease 
spread can be found in [3-8] with the aim to predict the 
pandemic's next moves. However, available models 
[9-14] are based on data representing the output func-
tion.   
Mathematical modeling of a biological system based 
on system theory and control system engineering con-
cepts however enable to determine and characterize 
the system model of the spreading pandemic by con-
sidering various aspects of the system including sta-
bility, observability, and controllability. 
 
Methods 

As known from systems dynamics and control theory, 
a dynamic system can be described by a behavioral 
differential equation which can be stochastic and de-
terministic [1]. The assumption is introduced that the 
spread of a pandemic system can be described as 
a dynamic system.  
In previous considerations [15], a so-called SISO 
(single input – single output) system was consid-
ered. A similar approach is applied in this work, 
however, the system here will be defined as a 

multiple transfer system. Such a system is de-
scribed by one input and two outputs (SIMO – single 
input – multiple outputs), that is why it is necessary 
to define the transfer matrix of the system instead of 
the transfer function. 
The behavioral differential equation of the system 
with multiple inputs and multiple outputs is defined 
according to [16], [17] 

∑ 𝐀𝑘𝐘(𝑡)

𝑙

𝑘=0

= ∑ 𝐁𝑘𝐔(𝑡)

𝑚

𝑘=0

, 𝑚 ≤ 𝑙 (1) 

 

where 𝐴 ∈ 𝑅𝑁×𝑁 and 𝐵 ∈ 𝑅𝑁×𝑀 are matrices with 
constant coefficients, and 𝑙, 𝑚 the highest deriva-
tions that occur between output and input variables.  
Based on the ordinary differential equation of the 
system behavior, the transfer matrix of a system is 
defined as 

𝐆(𝑠) =  (
𝐺11 ⋯ 𝐺1𝑀

⋮ ⋱ ⋮
𝐺𝑁1 ⋯ 𝐺𝑁𝑀

)  (2) 

 
where 𝑁 is the dimension of the output vector and 

𝑀 is the dimension of the input vector.  
For the considered system describing the spread 
SARS-CoV-2 virus we assumed a system with one 
input and two outputs. The general transfer matrix 
is:  
 

 𝐆(𝑠) =  (
𝐺11(𝑠)
𝐺21(𝑠)

)  
 

(3) 

 

 

Figure 1. Illustrated block diagram of the system. 

A block diagram of the system is given in Figure 1 
based on Equation 3. Following Figure 1, 𝑢(𝑡) is the 

input variable, 𝐲(𝑡) =  (𝑦1(𝑡) 𝑦2(𝑡))𝑇 is the output 
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vector and 𝒛(𝑡) = (𝑧1(𝑡) 𝑧2(𝑡))𝑇 is the disturbance 
vector. The disturbance vector can also be defined 
as an input vector, but can also be considered sep-
arately. Note that the disturbance vector is needed 
to be defined according to the definition of the input 
of a system [16]. For modeling the spreading pan-
demic, disturbances were not taken into considera-
tion. 
To determine the transfer matrix of the system, the 
concept of system identification that has been 
widely used in the field of control system engineer-
ing was applied. If it is not possible to determine a 
mathematical model based on physical laws, e.g. 
Newton's law, Bernoulli's equation, Kirchhoff's law, 
etc. the system identification methodology can be 
subsequently applied in case of a known response 
of the system, represented by the input and output 
vectors.  
However, there are different approaches for system 
identification including parametric, nonparametric, 
linear, nonlinear, stochastic or deterministic model-
ing concepts. In general, the identification of a sys-
tem is performed according to a flow chart with mul-
tiple key elements in the system identification cycle 
as defined in [18]. An adapted flow chart for this pro-
cess is given in Figure 2.  

 
Figure 2.  Adapted flow chart in system identifica-

tion of the spread of SARS-CoV-2. 
 
To determine the mathematical model of the system 
(spread of SARS-CoV-2) we used publicly collected 
data available on the EU Open Data Portal [19]. In 
a previous study pre-published in [15], mathemati-
cal models were provided based on data collected 
daily. It should be noted that in one period 

(14.12.2020 to 11.03.2021), the availability of data 
changed from a daily to weekly periods, as coun-
tries have begun to adopt anti-pandemic strategies 
on a two-week basis. Therefore, in this paper we 
present models based on the number of infected 
and dead persons weekly. Observed from the as-
pect of control theory, the sampling time was finally 
defined to be one week. 
The basic hypothesis of this work was to define and 
predict the input vector, i.e. the number of new cases 
on a weekly level based on the output variable. In our 
recent work [15] we were able to demonstrate that the 
methodology can be applied similarly for different 
countries when the sampling time is daily. Model vali-
dation therein was performed for multiple countries 
such as Austria, Italy, Germany and Serbia. In this 
work, vectors were defined on a weekly basis, sample 
rate was set to one week, and results for Austria and 
Germany are presented in more detail.   
 
Results 

Models for Austria and Germany were exemplarily 
developed and evaluated in order to determine 
whether the used methodology can be applied with 
regard to a diminished (weekly) sampling time by 
maintaining a sufficient prediction accuracy. 

 

Figure 3. Identified transfer function model in rela-
tion to the number of new cases in Austria 

 

Figure 4. Identified transfer function model in rela-
tion to the number of deaths in Austria 

In accordance with the definition of a behavioral dif-
ferential equation, the ordinary differential equation 
(ODE) should be of lowest order, fully describing the 
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dynamic characteristics of the system. Therefore, 
we decided to adopt a second-order system based 
on the conducted analysis for systems from 1st to 5th 
order. 
The spread of pandemic was assumed as a contin-
uous-time model, and therefore a continuous-time 
transfer matrix was identified. Parameterization of 
the model included that each transfer function has 
two poles and one zero, the number of free coeffi-
cients is 4. The transfer matrix of the system 𝐆(𝑠), 
which responses are shown in Figures 3 and 4, is: 
 

𝐆(𝑠) =  (
𝐺11(𝑠)

𝐺21(𝑠)
) = (

17,53𝑠+17,71

𝑠2+10,59𝑠+18,85

0.007816𝑠−0.0001566

𝑠2+0,3026𝑠+0,000003505

)  (4) 

 
Transfer matrices for other countries can be deter-
mined similarly. Figures 5 and 6 show that the transfer 
matrix for Germany with a ten times higher population 
than Austria can also be defined as a system of sec-
ond-order in relation to the number of new cases and 
deaths. 
 

 

Figure 5. Identified transfer function model in rela-
tion to the number of new cases in Germany.  

 

Figure 6. Identified transfer function model in rela-
tion to the number of deaths in Germany. 

 

The transfer matrix determined for Germany, in re-
lation to the number of new infected and the number 
of deaths as shown in Figures 5 and 6, is given by 
Eq. 5.  

𝐆(𝑠) =  (
𝐺11(𝑠)
𝐺21(𝑠)

) = (

6,397𝑠+8,704

𝑠2+2,787𝑠+9,023
0.007961𝑠+0.0001296

𝑠2+0,1518𝑠+0,01323

)  (5) 

 
The slight time delay of the model simulations ob-
served in Figures 4 and 6 can be explained by ef-
fects of the disturbance and input vector. It should 
be noted that for both countries the spread of the 
pandemic can be determined by the transfer matrix 
which transfer functions are of second order. Note 
that the coefficients are different as a consequence 
of different values of the input and output vectors. If 
other countries were analyzed similarly, transfer 
matrices would be determined with appropriate 
transmission functions of second order. 
 

 

Figure 7. Pole-Zero Map for Austria and Germany.  

Based on the pole distribution of transfer matrices for 
both systems as shown in Figure 7, it is reasonable to 
evaluate controllability and observability, because the 
systems of both countries are concluded to be stable. 
The same conclusion about stability can be made from 
the analysis of transient responses of the systems. For 
both systems, controllability and observability matrices 
were determined, and pandemics in both countries 
were observable and controllable, which could also be 
confirmed for the other countries.  
When transfer matrices are known, behavioral differ-
ential equations are also known. By applying the in-
verse Laplace transform, the time responses of the 
systems are obtained, which also represent the solu-
tions of the behavioral differential equations of those 
systems. 
 
Discussion 

By applying the system identification methodology 
from control theory, it is possible to determine a math-
ematical model of pandemic spread, as demonstrated 
on the example of SARS-CoV-2. Linear models of a 
second-order system at a satisfying level can be used 
to describe mathematical models representing a dy-
namic system. Deviations of the actual values from the 
model can be explained by the effect of disturbance 
on the system.  
Theoretically it is possible to consider different types of 
control algorithms, e.g., predictive control model, 
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natural tracking control, exponential tracking control or 
fuzzy control so that in the future, in the case of similar 
epidemics, epidemic control can be exerted.  
The models which are applied for both countries from 
the aspect of system control theory are represented by 
an application which contains a proportional gain of 
the control system. The system is considered as an 
open-loop control system without compensation of the 
effects of disturbances. A lockdown represents the ap-
plication of a P (proportional) action in the open loop 
of controlling the spreading of the disease (see Figure 
8). 

 

Figure 8. Control in open-loop with P-action. 

Models were able to be determined even though the 
diminished weekly sampling time and provide suffi-
cient information "on the basis of which" it is possible 
to predict the further spread of the pandemic since the 
mathematical model of the system is known. One of 
the conditions that need to be considered in further re-
search is the impact of the number of vaccinated per-
sons and the determination of mathematical models of 
pandemic spread, considering the data of the popula-
tion. 
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Because of their repetitive nature, short sequencing 
reads derived from transposable elements (TEs) 
cannot be unambiguously mapped to the reference 
genome. As a result, most genomic analyses neglect 
over 50% of the human genome. Here, we present 
T3E, an algorithm to characterize the histone 
modifications associated with TEs from Chromatin 
Immunoprecipitation Sequencing (ChIP-seq) data. 
T3E relies on the structure of the ChIP-seq control 
experiment to assess enrichment. When applying T3E 
to five ChIP-seq libraries we found consistently fewer 
enrichments compared to a strategy that assumes a 
random distribution of the reads across the genome, 
suggesting that the latter has a high false positive rate. 
This provides a framework for the functional analysis 
of TEs. 
 
Keywords¾ Transposable element, enrichment, 
ChIP-seq, histone modifications 

Introduction 
Over half of the human genome consists of repetitive 
sequences, including transposable elements (TEs) 
[1]. Based on their sequence and transposition 
mechanisms, TEs have been hierarchically classified 
into several groups/subgroups [2]. TEs are 
contributors to regulatory network evolution, playing 
role as host promoters, enhancers, and forming 
silencer/insulator regions [3]. To study the exaptation 
of TEs as cis-regulatory elements, we aim to 
quantitatively investigate the relationship between 
epigenetic histone modifications and TE 
groups/subgroups. 
Repetitive sequences pose several analytical 
challenges to current short-read sequencing 
technologies. Specifically, reads originating from 
repetitive sequences will often map to multiple loci 
(multi-mappers) and cannot be unambiguously 
assigned to any region of the genome. The problem 
has been tackled in different ways. For example, some 
strategies simply use one random mapping, 
increasing the number of mapped reads, but reducing 
the precision of the mapping [4]. Others discard multi-
mappers from the analysis and use only uniquely 
mapped reads [5]. 
Here, we present T3E, an algorithm that identifies TE 
groups featuring enrichment for specific histone 
modifications using chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) data.  

Methods 
Selection of ChIP-seq datasets 
We selected five ChIP-seq samples for the H9 cell line 
from the ENCODE Project data repository [6]: 
H3K4me1 and H3K4me3 (active euchromatin), 

H3K9me3 and H3K27me3 (repressed 
heterochromatin), and H4K8ac (both euchromatin and 
heterochromatin). All single-ended sequencing 
libraries were generated by the laboratory of Zhiping 
Weng, UMass Medical School.  

ChIP-seq reads quality control and mapping 
The raw data quality of all samples and their 
respective “input” controls (FASTQ files) were 
assessed using FASTQC [7]. Sequencing adapters 
were removed and low-quality reads (minimum Phred 
score of 10) were filtered out/or trimmed. Mapping was 
performed using BWA mem [8] against the 
GRCh37/hg19 assembly of the human genome with 
the parameter “-a”, which outputs all found alignments 
for the single-end reads. The resulting mappings 
(BAM files) were processed with SAMtools [9] and 
BEDtools [10] to filter out unmapped reads, non-
chromosomal scaffolds, and reads mapping to the 
mitochondrial chromosome (Tab. 1). The “input” 
controls were processed in the same manner. 

Table 1. ENCODE Project ChIP-seq libraries 
considered in this study. * Number of processed 
reads. ENCFF969KKW has 9,862,491 reads and a 
read length of 30 base pairs (bp). ENCFF416GCS 
has 16,845,808 reads and a read length of 36 bp. 
The read length considered for the sample is the 
same for the corresponding “input” control. 

Histone 
modifications 

File  
accession 

* Read 
count 

Input file  
accession 

H4K8ac ENCFF974
MOD 

5508640 ENCFF969
KKW 

H3K9me3 ENCFF776
JLA 

7054172 ENCFF969
KKW 

H3K4me3 ENCFF909
NXO 

9771318 ENCFF416
GCS 

H3K27me3 ENCFF212
TLT 

12002119 ENCFF416
GCS 

H3K4me1 ENCFF210
BMG 

16779354 ENCFF416
GCS 

TE groups/subgroups 
Repeat annotation for the GRCh37/hg19 assembly of 
the human genome was obtained from the 
RepeatMasker track of the UCSC Genome Browser 
[11]. Repeat annotation was processed to filter out 
simple repeats (micro-satellites), low complex repeats, 
satellite DNA, RNA repeats (including RNA, tRNA, 
rRNA, snRNA, scRNA, srpRNA, non-TE elements 
and uncommon repeats (less than 100 instances). 
Adjacent and overlapping TE instances of the same 
group/subgroup were merged. 
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Reads associated with a TE group/subgroup 
The contribution of a read to a TE group/subgroup 
considers the fraction of a read mapping to a given TE 
instance and the total number of mappings for the read 
in the genome: 

𝐶𝐾 	 = 	!!!
𝑙𝑘	𝑟𝑖
𝑁𝑟	𝐿𝑟

𝑁𝑟

𝑖=1!∈#𝑘∈𝐾

																																												 (1) 

where 𝐾  is the set of all instances of a TE 
group/subgroup in the genome, 𝑆 is the set of all reads 
in the sample, 𝑁* is the number of mappings of read 
𝑟, 𝐿*	is the length of read 𝑟, and 𝑙+	*# is the number of 
nucleotides of the 𝑖th mapping of read 𝑟 overlapping 
with TE instance 𝑘, where /𝑙+	*# ∈ ℤ,

-: 0 ≤ 𝑙+	*# ≤ 𝐿*5. 

Input-based background probability distribution 
The estimated probability of a mapping starting at 
position 𝑛  on chromosome 𝑐 ∈ {1, 2, … , 22, 𝑋, 𝑌}  of 
the genome is calculated based on the reads in the 
“input” library and defined by: 

𝑝. =	
∑ 1

𝑁**∈/

∑ 𝐿*
𝑁**∈0

																																																																				(2) 

where 𝐿* is the length of read 𝑟, 𝑁* is the number of 
mappings of read 𝑟, 𝐾 is the set of all read mappings 
on chromosome 𝑐 overlapping 𝑛, and 𝑀 is the set of 
all read mappings on chromosome 𝑐 . Note that 
nucleotides with zero coverage have no probability 
assigned and are consequently excluded from the 
analysis. 
We sample genomic positions from the corresponding 
empirical cumulative distribution for a given 
chromosome using discrete sample. Then, among the 
reads mapping to that position, we randomly select 
one. Finally, we identify all other mappings of the 
selected read (if any). The process is repeated as 
many times as there are reads in the ChIP-seq library 
of interest, resulting in a simulated “input” library of the 
same size of the ChIP-seq library. 

TE group enrichment analysis 
For each ChIP-seq library, we simulated N=100 “input” 
libraries. For each of them, we computed the number 
of reads associated with a TE group/subgroup as 
described above. 
For each TE group/subgroup, the number of reads in 
the ChIP-seq library was compared to the number in 
the simulated “input” libraries using a permutation test. 
A P-value was calculated as the number of simulated 
“input” libraries with a number of reads higher than or 
equal to the number of reads associated with the TE 
group/subgroup in the ChIP-seq library divided by N. 
A fold-change (FC) was computed as the ratio 
between the number of reads associated with the TE 
group/subgroup in the ChIP-seq library divided by the 
average of the number of reads associated with the 
TE group/subgroup across all N simulated “input” 
libraries. 

Note that enrichment was calculated for TE 
groups/subgroups, not for individual TE instances. 

Uniform background distribution 
A more traditional method to define a background 
distribution assumes a uniform distribution of the 
sequencing reads across the genome. Thereby, the 
reads of a ChIP-seq library are randomly shuffled 
across the entire genome. 

Computational specifications and execution time 
The algorithm is written in Python 3 and was executed 
in two machines using Python 3.8.5. Three samples 
were processed on a computer with AMD Ryzen 9 
3900X, 12 cores, with in total 128 GB of RAM and 
running Linux version 5.8.0-41-generic (machine 1). 
Two samples were processed using a computer with 
AMD Ryzen Threadripper 3970X, 32 cores, with in 
total 128 GB of RAM and running Linux version 5.8.0-
44-generic (machine 2). The execution time increased 
approximately linearly with the library size (Fig. 1). 

 
Figure 1. Execution time as a function of the ChIP-
seq library size. Note that the times correspond to 
two different machines. 

Results 
In T3E the number of mappings observed for a given 
read is taken into account to quantify the contribution 
of a read to a TE group/subgroup. By doing this, every 
single nucleotide mapping onto a TE instance is 
counted and weighted by the uncertainty of where 
multi-mapper reads come from. As background for the 
enrichment analysis, the algorithm constructs a 
probability distribution of read mappings based on the 
read mappings in the ChIP-seq control experiment 
(Fig. 2).  
In total, the repeat annotation comprises 860 different 
TE groups/subgroups covering 44.83% of the human 
genome. Read mapping statistics evaluation shows a 
substantial percentage of alignments uniquely 
mapping on TE regions (Fig. 3), indicating that 
although different instances of the same TE 
group/subgroup have repetitive sequences, they are 
not identical. Multi-mapper reads also mapped to non-
TE regions, indicating the presence of other genomic 
repetitive sequences or non-annotated TEs. 
The number of reads that are expected to be mapped 
by chance to TE groups/subgroups computed based 

100

125

150

175

200

225

5 10 15 20
Library size (million reads)

Ti
m

e 
(h

ou
rs

)

Machine
1
2

Proc. Annual Meeting of the Austrian Society for 
Biomedical Engineering 2021

 
DOI: 10.3217/978-3-85125-826-4-25

CC BY 96 Published by Verlag der TU Graz 
Graz University of Technology



 

 

on the reads in the “input” library is strongly correlated 
with that computed assuming a uniform distribution 
(Fig. 4). However, LINE and SINE major groups 
exhibit clear deviations, in particular for LINEs using 
the ENCFF416GCS “input” library (Fig. 4). 

 
Figure 2. T3E algorithm strategy. The structure of 
the “input” control is used to construct the background. 
Overlapping of different TE groups are shown and 
reads mapping on this region contribute partially to 
both groups. 
 
Consistently, T3E identified fewer TE 
groups/subgroups featuring histone modification 
enrichments. On average, T3E found only 11.11% of 
the TE groups/subgroups identified based on the 
uniform background distribution (Fig. 5). In total, 11 TE 
groups/subgroups showed enrichment: 4 to H3K4me3 
(including LTRs, MER57E3 and HERVH-int, all 

classified into ERV1 - endogenous retroviruses group) 
and 7 to H3K9me3 (LTR12E and 6 SVA 
retrotransposons).  

 
Figure 3. Read mapping statistics. On average, 
10,223,121 reads comprised 64.04% uniquely 
mapped on non-TE, 15.77% multiple mapped on TE 
regions, 14.32% uniquely mapped on TEs, and 5.88% 
multiple mapped on non-TEs. 

 
Figure 4. “Input” control simulations. Comparison 
of T3E input-based background and uniform 
background distribution counts as the average of 10 
iterations. Each dot represents one TE 
group/subgroup. Unknown represents ancient TE not 
yet classified [12]. 
 

 
Figure 5. TE group/subgroups enrichment for different histone modifications. Only TE group/subgroups 
exhibiting a P-value ≤ 0.05 and a log2 FC ≥ 1 were considered enriched. Light-coloured cells indicate no enrichment. 
Red intensity varies according to log2 FC values, from 1.0 to the maximum found (log2 FC = 4.99). (*) Uniform 
background distribution. (**) T3E. Columns were clustered using Euclidean distance and complete linkage.

Discussion 
Although a considerable effort has been done to study 
TEs in an integrative manner, several challenges are 

faced when mapping TE-derived sequences and 
predicting the enrichment of TEs in high-throughput 
sequencing, such as ChIP-seq data. Long reads 
increase the uniqueness of sequenced fragments and 
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also help in the mapping step, but still, it is a limiting 
factor in ChIP-seq and many other applications.  
Like the repEnrich [13] method, T3E accounts for the 
uncertainty in the mapping of multi-mapper reads by 
dividing by the total number of mappings. In addition, 
T3E was developed to use the structure of the “input” 
library to estimate TE enrichments. Thus, the 
probability of observing a mapping at a given genomic 
position reflects the read distribution of the “input” 
control. Our approach avoids the bias of a uniform 
background, which does not reflect the read 
mappings, since TEs are not uniformly distributed 
across the genome [14] and the read mappings in the 
“input” control have a specific distribution. This is 
reflected in the decrease in the number of TE 
groups/subgroups showing enrichment. Furthermore, 
T3E’s strategy of randomly sampling read mappings 
based on the “input” library takes into account potential 
library preparation biases. It also eliminates the need 
for normalization in enrichment computations, 
preventing the removal of true biological variations.  
In summary, T3E is more conservative compared to 
other current approaches and has the benefit of 
estimating TE enrichment of groups/subgroups at a 
nucleotide resolution, without the need of further 
normalizations. Although this study is a proof of 
principle, it provides a framework for the analysis of the 
regulatory functions of TEs. 
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Abstract - The emergence of genome wide 
chromosome conformation capturing techniques 
such as HiC has enabled researchers to investigate 
the crucial role of chromatin folding in gene 
regulation. DNA folding forms distinct multiscale 
patterns which become visible in contact maps 
generated by such experiments. The abundance of 
information about chromatin architecture contained in
the nucleotide sequence alone is still not well 
understood. Here we present a purely sequence 
based computational approach DDA-DNA that sifts 
out the sequence dependencies of genome 
architecture at 1Mb resolution. 

Keywords Hi-C,  A/B  Compartments,  delay
differential analysis, nonlinear dynamics 

Introduction

Advances in high-throughput chromosome 
conformation capture assays such as Hi-C has 
enabled the cataloging of genome-wide interaction 
maps in various cell types. How strongly DNA 
sequence signatures alone and at which scales 
they reflect this hierarchical organization remains 
unknown. The genome has various levels of 
organization. At megabase (Mb) resolution, 
chromosomes are organized into two types of 
chromatin called A and B compartments which 
correspond to open and closed chromatin [1]. The 
A/B compartments have been found to be cell-type 
specific and contribute to cell-type-specific gene 
expression [2]. 
Here we applied Delay Differential Analysis (DDA) [3]
to extract dynamical properties of the DNA sequence 
that contribute to its conformation in 3D space. This 
method has been shown to achieve excellent 
classification and prediction performance in various 
data types [4, 5, 6]. The key difference to machine 
learning (ML) is that DDA uses a sparse feature set 
of only 4 terms compared to the typically huge 
parameter sets in ML. DDA does not utilize a typical
training/testing approach, but rather a structure 
selection step where the model and the two fixed 
parameters that best represent the overall 
dynamics of the system are searched for. This 
makes DDA robust to overfitting and easily 
generalizable to new data [3].
We hypothesize that a substantial contribution of 
chromatin organization, at least at the 1Mb scale, 
arises from the sequence itself. 

Methods

Background
Genome-wide chromosome conformation capturing 
techniques (Hi-C) is a type of next generation 
sequencing (NGS) method which produce contact 
frequency maps that depict the degree of interaction 
between two loci in the genome. The contact matrix 
is highly self-similar, a hallmark for a chaotic process,
and can thus be understood as a recurrence map. It 
has been found that the contact frequency between 
two genomic regions i and j follows the power scaling
law as

(1)
The scaling exponent  has been typically found to 
be slightly below 1. This is in good agreement with 
the predictions made by the so called “fractal” globule
model of DNA [1, 7, 8]. 

Construction of contact maps from HiC-assay 
data
The Hi-C contact maps were derived using the 
publicly available Hi-C raw sequencing data set of a 
fetal lung fibroblast cell-line (GEO accession 
GSM862724). The reads were mapped using 
bowtie2 [9] and contact maps were generated with 
hicexplorer [10]. 

Construction of contact maps from nucleotide 
sequence
The DDA-contact maps were generated in a three-
step process: 1) conversion of the nucleotide 
sequence into a numerically differentiable signal; 2) 
structure selection on chr14; and 3) testing on 
chr13,15,16, 17. A crucial fact of DDA ist that its 
functional form and parameters are never updated as
in traditional ML methods. DDA does not learn but 
rather captures the important underlying macroscopic
features of a dynamical system. A DDA model 
associates the numerical derivative of a signal, in this
case a spatial sequence, with its delayed versions 
[3]. We used a cubic 3-term DDA model with two 
parameters  and 

(2)

where  is the converted version of the 
DNA sequence delayed by . The coefficients

 and the least squares error  are 
estimated from the over-determined system of 
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equations with singular value decomposition (SVD)
[11] and used as classifying features. 

Figure 1: A) conversion of the nucleotide sequence
B)  DDA (example for a simple linear 2-term DDA

model) C) ST DDA D) CT DDA E) DE-DDA 

1) conversion of the nucleotide sequence
For DNA-DDA (see Fig. 1 B)), each nucleotide A, C, 
T and G in the sequence of the human genome 
(hg38 assembly) was encoded as 1, 2, 3 and 4 
respectively, and the entire sequence was split into 
1Mb long bins. To make the signal suitable for DDA, 
a small amount of signal-to-noise ratio (SNR) of 50 
dB Gaussian noise was overlain to the signal of each
bin  where  is the encoded DNA 
sequence,  are numbers drawn from the standard 

normal distribution and .

2) structure selection
The converted DNA signal  of each bin was 
inputted into Eq. (2) and the features  and

 were calculated for each delay pair  in a 
probe list consisting of 870 delays between 1 and 
30. 
The individual calculation of DDA features is called
single-trial(ST) DDA. Data windows of multiple time
series can be combined in cross-trial(CT) DDA 
where features are computed simultaneously by 

including them in the over-determined system of 
equations given by Eq. (2) [6, 12].
Each feature may be considered separately or 
combined. For instance for two 1Mb genomic 
regions i and j, we can compute the ST DDA 
features  as well as the CT DDA feature . 
The CT errors and mean of the ST errors should 
be similar if the analyzed time series have similar 
dynamics and their quotient will be close to one. 
The dynamical ergodicity (DE) DDA  [12] is 
defined by the quotient 

(3)

Thus the lower , the more dynamically similar 
these two 1Mb stretches of sequence are to one 
another. Motivation of this feature comes from 
ergodic theory [13] which is concerned with the 
statistical properties of a dynamical system. 
We hypothesize that DE DDA is correlated with the
proximity of two 1Mb stretches of sequence in 3D 
space. Hence, we predict the contact probability 
between two DNA sequences i and j as 

(4)

Where  is the distance between genomic bin i 
and bin j and  is the scaling exponent and was set
to .

Calling A/B Compartments
We generated the pearson correlation matrices 
from the contact matrices to call A/B 
compartments. The HiC- and DDA-contact maps 
(Fig. 2 A) were normalized with Toeplitz 
normalization using the 4D nucleome Analysis 
toolbox [14] before being converted to a correlation
matrix as described by [1]. The principal 
components which determine A/B compartments 
were derived using matlabs [15] pca function. The 
A and B compartments correspond arbitrarily to 
PC>0 or PC<0 respectively. 

3) testing
Model performance was assessed with the 
stratum-adjusted correlation coefficient (SCC) 
given by HiCRep [19], the mean square error 
(MSE), Pearson's R of the resulting first or second 
PCs of the Pearson correlation matrices ( ), and 
lastly the area under the ROC curve of the 
compartment classification (AUC). Before 
calculating testing measures, both matrices were 
normalized to 0 and 1 whilst ignoring the main 
diagonal which was subsequently set to 1. 
It is worth noting that the ordinary Pearson 
correlation coefficient is not sufficient for 
comparison of matrices of such type. The SCC 
statistic [19] takes spatial features such as domain 
structure and distance dependence into account. 
An averaging filter of size 2 was applied to HiC and
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DDA maps using matlabs fspecial function before 
calculating the SCC (smoothing parameter=0) .

Results

The interaction probability between two genomic 
regions is not simply a matter of linear distance (Fig. 
2A). Each chromosome has a unique and 
characteristic structure. Chr14 was arbitrarily chosen 
for the structure selection process. Based on the 
aforementioned performance measures the 
feature/delay pair combination that resulted in the 
highest performance was found to be  and the 
mean of the DDA-maps for . We 
tested this model-parameter combination on 
chr13,15, 16, 17 on which DNA-DDA shows 
promising performances (Tab. 1). 

Table1:  Performance  of  DNA-DDA  for  delays
 on chr13-17

ChrNr SCC

13 0.74 0.78 0.84 0.06
14 0.62 0.74 0.80 0.02
15 0.68 0.61 0.78 0.06
16 0.74 0.71 0.82 0.06
17 0.73 0.71 0.82 0.06

Figure 2: A) log-transformed HiC- and DDA-contact
maps ( ) for chromosomes 13-17. One value in
the map corresponds to a genomic region of 1Mbp.

B) Corresponding Pearson correlation HiC- and
DDA-maps for chromosomes 13-17. 

Figure 3: PCs of HiC (blue) and DDA (magenta)
correlation maps  (Fig  2 B))

Highly interacting regions predicted by DNA-DDA 
match very well those of the HiC-contact maps 
achieving a mean SCC of 0.72 on hold out 
chromosome contact maps (Fig. 2B). DNA-DDA-
based compartment prediction was also remarkably 
accurate (Fig. 3) achieving a mean AUC of 0.82 on 
hold out chromosomes.

Discussion

We present DDA-DNA,  a  novel  method  based in
nonlinear dynamics and ergodic theory that predicts
the folding of chromatin inside the nucleus using the
nucleotide  sequence  alone.  Being  able  to  infer
structural changes in the genome could immensly aid
in understanding disease pathology and be of clinical
use in the long run.  Hierarchial organization of the
genome  is  crucial  for  nuclear  activity  such  as
transcription, DNA replication as well as for cellular
processes and development. 
Current  approaches  for  modeling  genome
organization  are  based  on  machine  learning  or
polymer chemistry and physics. The former typically
rely on epigenomic information as input (eg [2,  16]),
which are not able to model the effects of genetic
variation.  However  recently, some deep  learning
sequence  based  multi-scale  models  including
DeepC, Akita,  and Orca for chromatin architecture
have  emerged  [17,  18,  20].  DeepC  is  a  transfer-
learning  based  neural  network  which  like  Akita,
predict  interactions  within  Mb-scale  loci.  The
training/testing and validation sets were split based
on  chromosomes.  DeepC  uses  two  training
procedures the first of which used chr11 and chr12
for validation and chr15-17 for testing,  the second
used  tha  same  validation  chromosomes  but  only
chr16  and  chr17  for  testing.  GPU  support  was
needed for training and the final models had ~60M
parameters. DeepC models were trained on seven
human  and  one  mouse  data  sets   and  cross-
validation  accross  all  chromosomes  acheived  an
average distance stratified Pearson’s R of ~0.36 on
raw  skeleton  data  and  ~0.57  when  applying  a
smoothing filter  to the discrete  and noisy skeleton
[17]. Akita uses a convolutional neural network that
predicts  interaction  contacts  up  to  1Mbp.  They
divided the human genome into ~1Mb sequences
and  used  a  80/10/10  random  split  for  training,
testing and validation sets ( ~262kb in the training
set  and ~524kb for the validation and test  sets).
The  resulting  model  has  746,149  trainable
parameters.  Training  and  prediction  were
conducted on 5 high quality Hi-C and Micro-C data
sets and acheived performances of MSE=0.14 and
distance stratified Pearson’s R=0.61. Akita currently
makes predictions for 1Mb long windows and will
need to be extended to make prediction on more
distal  pairs  of  genomic  loci  to  obtain  chromatin
features  such  as  A/B  compartmentalization  [18].
Currently  in  preprint,  Orca  is  the  first  sequence
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based model  that  predicts  chromatin  architecture
from kp to  whole-chromosome scale.  The model
takes  1Mb-256Mb  as  input  and  predicts
interactions  from  4kb-256Mb.  On  holdout  test
chromosomes  9  and  10,  the  model  achieves  a
Pearson  correlation  of  0.78-0.84  and  0.72-0.79
consistently across all scales for the two micro-C
datasets.  Based  upon  additional  analysis  on
sequence  effects  on  A/B  compartments,  they
proposed that compartment A formation is driven
by  TSS  sequences  whereas  compartment  B
requires  sequences  of  >  6-12kp  without
compartment A activity, is  AT-enriched, and may
be the “default” state established on all sequences
not belonging to compartment A [20]. 
DNA-DDA’s  performance  measures  do  very  well
when  compared  with  these  recent  publications
achieving  a  mean  of  SCC=0.72,  MSE=0.06,
AUC=0.82  and  rPC=0.70  across  the  test
chromosomes.  What sets this method apart from
the others, is the vastly lower number of parameters
and  distinguishing  features.  Opposed  to  other
methods, we use merely one chromosome (chr14) to
fix  the  DDA-model  and  parameters  (

) and subsequently test it on four
others (chr13, 14, 15, 16, 17). Furthermore, the final
fixed DNA-DDA can be computed on CPUs on new
chromosomes in minutes (chr13: ~23 minutes on 6
AMD Ryzen 9 3950X CPUs).  There remain many
possibilities  of  adjusting  our  analysis  such  as:
conversion of the sequence to a time series signal
and using a different DDA functional form. 
Additional  analysis  is  still  needed to assess DNA-
DDA’s  robustness  on  all  remaining  human
chromosomes and on the sub-megabase scale. 
We hypothesize that DNA-DDA has the potential to
detect  cell-type specific structural  differences. DDA
applied to other systems such as the human brain is
able to classify various disease states defined by a
certain delay pair and thus we hypothesize that also
here, a different delay pair will best characterize DNA
structure in another cell type. 
We  believe  tha  DNA-DDA  has  high  potential  in
helping  to  understand  the  mechanisms  by  which
derangement  in  the  hierarchial  architecture  of  the
genome causes diesease pehotypes. Implementing
DNA-DDA to perturbed sequences could help predict
the effects of various genetic mutations. This is of
particular  interest  for  understanding  disease
progression such as in cancer. Similarly, removal of
certain sequence motifs can give us insight into the
highest  contributing  sequence  signatures  and
biological mechanisms of genome folding at various
scales. 
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