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Abstract - Restodng the ability to reach and gmsp can 
dramatically improve quality of life for people with ce,"Vical spinal 
cord injury (SCI)" The main challenge in restoring independent 

,"eaching and gmsping in patients is to develop assistive 
technologies with intuitive and non-invasive user inte,"faces. We 
believe that this challenge can be met by directly translating 

movement-related brain activity into control signals" During the 

last decade, we have conducted ,"esea,"ch on EEG-based brain­
computer interfaces (BCIs) for the decoding of movement 

parameters, such as trajectories and targets" Although our 

findings are promising, the control is still unnatural. Therefore, 
we sUl"mise that natural and intuitive control of neu,"opl"Ostheses 

could be achieved by developing a novel control framework that 

incorporates detection of goal directed movement intention, 

movement decoding, identifying the type of grasp, error potentials 
detection and delivery of feedback. 
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1. INTRODUCTION 

Grasping an apple, brushing teeth, or simply playing around 
with the fingers is not possible for people who received a 
cervical spinal cord injury. Depending on the damaged area, 
motor commands from the brain to the periphery (efferent) or 
sensory signals from the periphery to the brain (afferent) 
cannot bypass the interruption in the spinal cord. One approach 
to provide help for this group of people is to detect the 
intention of their movement and to reproduce the movement of 
their paralyzed arm/hand with the help of a motor 
neuroprosthesis or artificial anno 

In the past we have shown that it is possible to combine 
brain-computer interfaces with motor neuroprostheses [1]. We 
used classical motor imagery of sustained feet or hand 
movement in a single class BCI to switch between predefined 
grasp phases [2], [3]. Later, we applied our methodology for 
elbow movements in healthy subjects and in end-users with 
SCI [4], [5], [6]. 

The introduction of hybrid BCIs [7], [8], known as the 
fusion of a BCI with a second input modality (e.g., shoulder­
controlled joystick), allowed the user to benefit from the 

advantages of both technologies [9]. Various studies showed 
the benefits of the hybrid BCI concept over classical BCI [10], 
[11]. However, these strategies have the drawback of not 
reflecting the natural way of planning a movement. To achieve 
an ecological and intuitive control, the movements decoded by 
the BCI need to be closely related to the user's intention. 

11. METHODS & RESULTS 

In the following section we describe the results of first 
experiments which are the basis of our research towards a 
natural neuroprosthesis control based on non-invasive EEG 

signals. 

A. Goal directed movement detection 

Movement-related cortical potentials (MRCPs) are EEG 
neural correlates of movement which have been used for 
movement intention detection and are known to be modulated 
by several movement-related parameters [12]. We study 
MRCPs during goal-directed movement tasks to assess whether 
goal-directed strategies should be preferred in the context of 
BCI control [13]. Our first results on healthy subjects suggest 
that movement detection is significantly improved in goal­
directed movement execution when compared to the same task 
(i.e. same movement kinematics) without a specific target. 
These differences are particularly visible during movement 
planning. Such performance improvements can lead to a 
reliable and natural response of the BCI-controlled system to 
the user's intention. By estimating the brain sources of the 
discriminative spatial patterns, we further concluded that the 
differences between the two motor tasks were associated to 
motor areas and the posterior parietal lobule. 

B. Movement decoding from executed and 

imagined arm movements 

We showed in [14] the decoding of executed hand 
movements with a linear decoding model from low-frequency 
EEG signals. The Pearson correlation coefficients between the 
decoded and measured hand positions were 0.70, 0.78 and 
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0.62 for the x, y, and z dimension, respectively. Based on this 
decoder, we discriminated between imagined horizontal and 
vertical hand movements with astatistically significant 
cIassification accuracy of 64% [15]. 

c. Decoding o/movement target/direction 

In a preliminary study employing a center-out reaching 
task to 4 targets displayed on a computer screen, all 3 subjects 
reached a statistically significantly classification accuracy of 
42%, 47% and 73% [16]. 

D. Single joint movement classifzcation 

Based on EEG signals from 0.3 to 3 Hz, we found 6 
different upper-limb movements to be discriminable with a 
cIassification accuracy of 37% in a group of 15 healthy 
subjects [17]. The cIassifier sources originated mainly on 
premotor and primary motor areas. 

E. Classifzcation 0/ different types 0/ grasp 

Despite the high number of degrees of freedom of the 
human hand, most actions of daily life can be executed using 
just palmar, pinch or lateral grasp [18]. Therefore we 
conducted an EEG-based study in 15 healthy users to find out 
whether these grasps can be discriminated from each other and 
from a no-movement condition. Using a cue-guided paradigm, 
we recorded 72 trials of executed reach and grasp actions for 
each condition. Our results show that time-domain features 
located in the low frequency range (0.3-3 Hz) provide 
sufficient information for meaningful classification [19]. 

TTT. DISCUSSION 

With the presented work we laid the basis for a series of 
several studies in these specific areas, with the final aim of 
developing a new decoder system. Using the new system end 
users with SCI will be able to control neuroprosthethic arm 
movements in 3D space with the goal to grasp and manipulate 
objects. However, several aspects need to be addressed further. 

When the user controls a robotic arm or neuroprosthesis, 
visual feedback is inherent. Without experimental restrictions, 
the eyes would track points of interest (e.g. end-effector and 
target object). lt is therefore imperative to remove the resulting 
electroocular artifacts in order to obtain reliable control based 
on EEG brain activity. 

In addition, we aim to incorporate a classifier of error­
related potentials, as a backup system. When the main cIassifier 
fails, and the prosthesis's movement does not correspond to the 
user's intent, the user will perceive this action as an error and 
therefore generate an error-related potential. By detecting error­
related potentials during the continuous movement of the 
prosthesis, its trajectory can be automatically corrected or 
interrupted, allowing a smoother and faster interaction between 
the user and the prosthesis. 

Intuitive control of a neuroprosthesis necessitates artificial 
feedback to compensate for the absence of the comprehensive 
feedback provided to a healthy person via intact afferent 
pathways, such as the sense of touch, proprioception or grasp 
force. 

IV. CONCLUSION 

In conclusion, our findings highlight the growing interest 
for non-invasive EEG-based BCI and its potential for the 
recovery of upper limb lost functions in individuals with 
spinal cord injury. The results of our studies based on the 
detection of goal directed movement intention, movement 
decoding, identifYing the type of grasp, error potentials 
detection and deIivery of feedback, show a promising 
perspective towards achieving a natural and intuitive control 
of neuroprostheses. 
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