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Introduction

Electroencephalogram (EEG) has already been used as  a  scientific  tool  for  almost  100
years.  Hans  Berger,  a  German neurologist  and  psychiatrist,  discovered  a  specific  EEG
rhythm, called alpha oscillations in 1924 and published his findings in 1929 (Berger 1929).
Since, EEG is one of the standard methods to measure brain activity in many fields and the
main  source  of  signals  for  non-invasive  brain-computer  interfaces  (BCI).  This  chapter
highlights  the  physiological  foundation  and  properties  of  the  EEG,  different  recording
techniques  and  their  implications.  The  final  section  describes  current  BCI  research
applications using different EEG signals.
 

General establishment of EEG

From Neuron to EEG

The human brain is estimated to comprise 100 billion neurons, with each neuron having
approximately 10,000 connections to other neurons. This huge, electrically active neuronal
network can be divided into many subnetworks. Ionic currents present in these subnetworks
cause  local  extracellular  potential  changes.  The  superposition  of  these  differences  in
potentials has been named local field potential (LFP) (Buzsáki et al. 2012). The frequency
spectrum of LFPs is quite broad starting from DC (direct current) up to several hundred Hz.
Synaptic transmissions and action potentials (APs) are regarded as main sources of LFPs
(Einevoll et al. 2013). A plausible assumption is that synaptic transmissions are the source of
low frequency components and APs are the source of high frequency components (>500 Hz)
(Buzsáki  et  al.  2012).  If  ohmic  impedances  (i.e.  the  resistance  is  independent  from
frequencies) and electric dipole sources are assumed, the contribution of single sources to
the LFP decays with the square of the distance (Nunez & Srinivasan 2006). However, the
type of impedance of brain tissue is controversial. Typically, brain tissue is assumed to have
high pass (i.e. high frequencies pass, low frequencies are dampened) properties, but there
are also indications for low pass properties (Grimnes & Martinsen 2000; Bédard et al. 2004).
A  paper  of  Logothetis  et  al.  (2007)  showed  that  pure  ohmic  impedance  is  a  sufficient
assumption for low frequencies (<1000 Hz )(Logothetis et al. 2007). A recent modeling of the
LFP conducted by Linden et al. (2011) indicated that for uncorrelated activity, a reach of 200
μm is a realistic assumption. For correlated activity this assessment it is more difficult, but
they concluded that “...the LFP recorded by an electrode is dominated by populations with
substantial synaptic processes in the recording layer.”  (Lindén et al. 2011). Hence, nearby
sources contribute most to the LFP and distant sources contributions are subject to strong
attenuation. Resulting from this, it is only possible to measure the collective activity of a large
number of neurons at the scalp (Fabiani et al. 2007).
EEG is by far the most common non-invasive method for measuring electrical brain activity.
It  can  measure  the  brain  potentials  through  various  types  of  electrodes  (see  Electrode
principles to measure EEG) which get mounted at the scalp level with the help of an EEG
cap. These measured scalp potentials are a modified version of the LFPs  (Buzsáki et al.



2012). The modification has at least two causes. First, as described above, the electric field
decays with the square of the distance from the source, and therefore, the LFP substantially
attenuates until it reaches the scalp electrodes. Second, volume conductance of the head’s
tissues (mainly brain, cerebral fluid, skull and scalp) causes spatial smoothing over an area
of about 10 cm² (Buzsáki et al. 2012).
Due to the attenuation and smoothing, only synchronous brain activity (i.e., brain activity that
sums  up  over  brain  areas)  can  be  measured  at  the  scalp  level.  Rhythms  that  occur
synchronously  are  typical  for  lower  frequency  ranges  of  the  LFP.  The  low  frequency
components of LFPs are mainly caused by correlated synaptic transmissions and can be
seen as neural dipoles in parallel pyramid cells (see Figure 1) (Buzsáki et al. 2012; Einevoll
et al. 2013). Since only afferent APs lead to synaptic transmissions, it can also be assumed
that the major contribution to LFP at lower frequencies comes from these afferent APs of
cortex layers 1 to 4 (see Figure 1).
APs cause synaptic transmissions, but information coded in AP spike trains is not one-to-
one equivalent to information in low frequency components of the LFP (Einevoll et al. 2013;
Hodgkin & Huxley 1990). In fact, the connection from APs via synaptic transmissions to the
LFPs is not entirely understood yet. Ionic transmembrane currents can be well described by
models; however our understanding is limited by influences like the feedback of the LFP to
surrounding cell  activity and other effects  (Einevoll  et  al.  2013;  Hodgkin & Huxley 1952;
Goldman 2004).
In  summary,  APs  of  afferent  fibers  in  the  cortex  can  cause  synaptic  transmissions.
Correlated  synaptic  transmissions  form  parallel  neural  dipoles  which  contribute  most  to
synchronous low frequency components of  the LFP and therefore also contribute to the
scalp EEG.

Figure 1: Sketch of BCI signal sources. I - VI mark the cortical layers. Cortical layer 5 and 6 pyramidal
cells are highlighted in green. Their apical and basal synapses are color coded. The spatial and temporal
dendritic integration of synaptic transmission leads to formation of dipoles. If millions of neurons receive
synchronous basal or apical synaptic transmissions, the resulting electrical field propagates over large
distances and is even detectable at the scalp where it is called EEG. Modified from (Steyrl et al. 2016)

 



The larger the synchronously active cell population, the higher the potential deflection, i.e.
amplitude in the EEG. In contrast, in deep brain structures (e.g., amygdala), neurons’ electric
fields are typically oriented in different directions, which impedes the summation process
(i.e.,  they  cancel  each  other  out)  (Lorente  de  No  1947).  Thus,  such  structures  do  not
generate large summated dipoles  (Harmon-Jones & Beer 2012) and therefore cannot be
assessed by EEG oscillations at the scalp. This holds also to some extent for the orientation
in sulci.
Considering  EEG’s  physiological  foundations  that  was  outlined  so  far,  an  important
implication for correctly interpreting EEG signals emerges. EEG oscillations recorded at the
scalp only represent a subset  of  the electrical  brain activity at a particular  point  in time.
Research  indicates  that  low-frequency  oscillations  (e.g.,  theta)  span  larger  neural
populations,  while  higher-frequency  oscillations  (e.g.,  gamma)  span  smaller  neural
assemblies (Buzsáki & Draguhn 2004).
Gevins and Smith outlined five major determinants of the degree to which potentials arising
in the cortex are measureable at scalp level (Gevins & Smith 2006): 1) signal amplitude at
the cortex, 2) size of the region over which post-synaptic potentials occur synchronously, 3)
proportion of cells that are in synchrony in that region, 4) location and orientation of the
activated cortical region in relation to the surface of the scalp, and 5), the amount of signal
dampening and spatial smearing generated by conduction through the liquor, skull and other
tissue layers.

Recording, Electrodes, Amplifiers and Artifacts

Electrode Positioning System

In EEG recordings, electrode locations are based on standard position systems. The 10-20
system originally proposed by Jasper (1958) is one of the most internationally recognized
methods to describe the locations of the EEG scalp electrodes and it ensures that the inter-
electrode  distances  are  equal.  Here,  electrodes  are  placed  at  sites  10  percent  and  20
percent from four anatomical landmarks: the nasion, inion, left, and right preauricular points.
However, to achieve a higher spatial resolution, extra electrodes can be added to the 10-20
system, leading to more detailed systems such as the 10-10 or 10-5 systems. For that,
intermediate  positions  between  those  of  the  original  10-20  system  have  been  added
(Oostenveld & Praamstra 2001). Figure 2 shows a 10-5 system where only the original 10-
20 system electrodes are labeled. The existing naming convention for electrode positions is
shown in Figure 2. The following rules apply:

(1) The first character refers to the cortical area (F = frontal area, C = central area, P =
parietal area, T = temporal area, and O = occipital area). Electrodes between these
areas are labeled using two characters (e.g., FC = frontal-central).

(2) A number (e.g., P3) or another character (e.g., Cz) follows after the first letter. Odd
numbers indicate sites on the left hemisphere and even numbers indicate sites on
the right hemisphere. Midline electrodes (i.e. on the virtual line connecting the nasion
and the inion, where the vertex corresponds to its half-length) have “z” as indicator.
Moreover,  numbers  increase  as  distance  from  the  midline  increases  (see,  for
example, Fz, F3 F7 in Figure 2).



However,  for specific BCI applications,  researchers often choose individualized and end-
user  specific  electrode  positions.  Still,  the  general  rules  described  above  are  usually
adopted.

Figure 2: Scheme of a 10-5 electrode system, based on  (Oostenveld & Praamstra 2001).
Selected electrode positions are shown. A1 is the earlobe, P shows the preauricular point. It
is on the line between Nasion and Inion above the tragus.

Electrode principles to measure EEG

At the very beginning, in 1924, scientists inserted steel needles into the subcutaneous tissue
of the scalp and used galvanometers to visualize and interpret the recorded signals (Berger
1929).  The  quality  and  the  interpretability  of  the  signals  improved  with  technological
developments to amplify the very small signals. Still a standard nowadays, silver chloride
(AgCl) covered electrodes were introduced by Berger in 1931 (Collura 1993). 
When measuring EEG, a conductive connection to bridge the gap between the electrode
and the skin surface has to be introduced.  Currently,  there are three common types of
electrodes:  gel-based,  water-based,  or  dry-electrodes.  The latter,  as the name indicates,
does not need an additional conductive substance. Figure 3 shows different types of EEG
electrodes.
Gel-based electrodes can be subdivided based on the usage of abrasive gel or hydrogel.
Abrasive gel is mainly used in combination with passive electrodes (i.e., direct connection
between the electrode and the amplifier input). In contrast, the hydrogel is used for active
electrodes. On active electrodes, a tiny pre-amplifier sits on the electrode and increases the
robustness of the signals before being conducted to the main amplifier. The main difference
between these two types of gels is that with the abrasive gel, the topmost layer of the skin,
consisting  of  dead  cells  and  a  small  amount  of  fat,  is  removed  in  a  time-consuming
procedure  to  decrease  the  impedance.  This  can  lead  to  skin  irritation,  infection,  or
inflammation. For both types of gels, it is necessary for the participants to wash their hair
after the measurement. Water-based electrodes use a felt or other fabric material soaked in
water or saline solution to connect the electrode with the skin. Using tap water-soaked fabric
to connect the two surfaces is a relatively new and practical method. This type of electrodes



should deliver a very good signal quality, the setup is less time-consuming, and no hair wash
is needed after the measurement (Volosyak et al. 2010, Pinegger et al. 2016).
Dry electrodes, in contrast, work without any conductive substance. Pins made of metal alloy
or  conductive  rubber  are  pressed  directly  onto  the  skin,  and  rely  on  small  amounts  of
existing perspiration to get connected to the skin. Several studies highlighted the advantages
of different dry electrode-based systems e.g., (Zander et al. 2011; Guger et al. 2012; Mota et
al. 2013). However, experience shows that one main disadvantage of this type of electrodes
is their sensitivity to movement artifacts.

Figure 3:  Examples of  electrodes.  (A)  old cup electrode,  (B) old passive sintered AgCl
electrode,  (C)  gel-based  passive  Ag/AgCl  ring  electrode  (from EasyCap),  (D)  gel-based
active Ag/AgCl electrode (g.LADYbird from g.tec), (E) gel-based active Ag/AgCl (actiCAP,
BrainProducts), (F) passive dry electrode with gold-coated pins (g.SAHARA electrode from
g.tec),  (G)  (tap)  water-based  passive  electrode  (Mobita,  TMSi),  (H)  (tap)  water-based
passive  electrode  (BitBrain  Technologies),  (I)  passive  dry  electrodes  with  pins  (BitBrain
Technologies).

When looking on electrode technology from a BCI end-user perspective, comfort should be
maximized and extra inconveniences eliminated (e.g., washing the hair). From a technical
point of view, the signal quality has to be optimal to make the BCI perform effectively and
efficiently. A system, which is user-friendly and provides, in the same time, the necessary
signal  quality  is  therefore  challenging  to  develop.  A recent  work  (Pinegger  et  al.  2016)
evaluated three different commercially available EEG acquisition systems. They differed in
the type of  electrodes (gel-,  water-,  or  dry-based),  the amplifier  technique,  and the data
transmission method. Every system was tested regarding three different aspects, namely, (i)
technical, (ii) BCI effectiveness and efficiency (P300 for communication and control), and (iii)
user satisfaction (comfort). The findings indicate that the water-based system had the lowest
short circuit noise level, the gel-based system had the highest P300 spelling accuracies, and
the dry electrode-based system caused the least inconveniences for the user (Pinegger et
al. 2016).
Another recent study  (Melnik et al. 2017) investigated the variance across different EEG
systems compared to the variance across subjects or  sessions.  The authors tested four



different systems, one mobile EEG system with dry electrodes, one affordable system with a
low  number  of  channels  and  two  standard  gel-based  research-grade  systems.  They
recorded  four  subjects  three  times  with  each  of  the  four  EEG  systems  in  six  different
standard  EEG  paradigms.  The  authors  describe  that  the  two  standard  research  EEG
systems  had  no  significantly  different  means  from  each  other  across  all  paradigms.
However, the two other EEG systems demonstrated different mean values from one or both
of the two standard research-grade EEG systems in at least half of the paradigms.

It can be concluded that the type of application and its requirements are important to decide
which electrode technology should be used (Nijboer et al  2015). Of course, this is often
strongly  coupled  with  the  choice  of  the  amplifier,  since  many  of  those  electrodes  are
company-specific. Nowadays, all amplifiers have built-in analog-to-digital conversion and get
connected to the computer via USB or network connection.

EEG Artifacts

When doing BCI research and single-trial classification it is of great importance to process
clean EEG data. However, there is always the danger of having contaminated EEG signals
and therefore BCI  researchers must  carefully  consider  artifacts.  Generally,  technical  and
biological artifacts exist.
The main sources of technical artifacts are primarily external electrical and electromagnetic
noise coming from power lines, electric lights, or other fields. Poor contact can lead to high
impedances und thus foster electromagnetic artifacts. Wrong electrode material can lead to
high  pass  effects  which  can hide the requested  signal.  Also,  mainly  hidden  to  the BCI
researcher are amplifier noise and quantization noise of the analogue-to-digital conversion.
Aliasing effects  due to wrong adjusted filters  can be problematic.  Experience show that
major countermeasures for technical artifacts include: shielding the recording system, using
filters (e.g., notch filters to remove power line noise) and high quality amplifiers. A properly
grounding  of  the  participants  to  reach  potential  equalization  between  participant  and
measurement system is mandatory.
The main sources of biological artifacts are participants’ muscle - electromyogram (EMG)-
activities (e.g., neck, face), eye blinks and eye movements. Slight baseline drifts (drift of the
zeroline of the signal)  due to sweating can also be problematic. While EMG occurs in a
range between 20 and 1500 Hz, electrooculogram (EOG) cover a narrow low frequency
range from DC up to 10 Hz. Depending on the type of BCI study or application, concurrent
recording  of  the  EOG  and  EMG  are  advised  for  applying  detection  or  artifact  removal
algorithms. Artifacts must be detected and somehow indicated in an online system, where
EEG data is processed and e.g. feedback to a user is generated. Depending on the type of
processing - offline or online – both, visual and automatic artifact detection (e.g., Oostenveld
& Praamstra 2001; Scherer et al. 2007) or removal  (e.g., Schlögl et al. 2007, Daly et al.
2015) are  important  to  record  correct  data  (i.e.  non-artifactual  features)  and  therefore
reliable classification results.



Brain signals and their use in BCI

EEG research distinguishes between two major types of brain activity. Consequently, there
are also two major types of non-invasive and EEG-based types of BCIs: (i) spontaneous
EEG (also referred to as endogenous or continuous EEG), which is based on internally-
induced processes and mental tasks that generate mainly changes in the ongoing EEG, and
(ii) event-related potentials, which are based on events or external stimuli. 
In this section these two different phenomena are discussed and prominent BCI examples
are given thereafter.

Spontaneous EEG

The spontaneous or continuous EEG is the measurable part of brain activity that goes on
permanently in the living individual. In the healthy waking brain, the peak-to-peak amplitude
of this signal is typically under 75µV but sometimes increases to 100µV  (Gevins & Smith
2006). A considerable portion of the signal power originates from rhythmic oscillations in a
frequency  bandwidth  from  below  1Hz  to  approximately  40Hz,  even  though  higher
frequencies are also measureable up to 100 Hz  (Schomer & da Silva  2012).  This  wide
frequency  range  got  subdivided  into  smaller,  functional  ranges  with  associated  names
(Schomer & da Silva 2012). 
The  alpha rhythm is characterized by medium-frequency activity (8-13 Hz) and generally
indicates states of relaxed wakefulness in healthy adults  (Berger 1929). The amplitude of
these oscillations are typically very large and can be ten times μV. This wave type is also
common during resting periods in which people have their eyes closed, then amplitudes are
largest in the occipital  areas. Based on this finding,  researchers have argued that alpha
waves constitute a neural correlate of cognitive inactivity, also referred to as cortical “idling”
(Pfurtscheller  et  al.  1996).  However,  studies  with  evoked  EEG  activity  (i.e.,  ERP
investigations) have found that alpha rhythms may indicate different forms of information
processing in which different alpha sub-bands (e.g., 8-10 Hz and 10-13 Hz) are dedicated to
different  functional  processes  (Klimesch  1999;  Niedermeyer  1997).  Alpha  rhythms
originating  from sensorimotor  areas are  also  known as  mu rhythms and can be further
subdivided into lower and higher mu rhythm  (Pfurtscheller et al. 2000). Large amplitudes
indicate resting sensorimotor areas.
Beta oscillations are characterized by medium to high-frequency activity (13-30 Hz) related
to  various  mental  states,  such  as  active  concentration,  task  engagement,  excitement,
anxiety, attention, or vigilance. Also, it is a marker for sensorimotor activity. The amplitudes
of  this  waves  are  usually  in  the  μV.  Beta  activity  primarily  constitutes  an  excitatory
mechanism (Pfurtscheller & Lopes da Silva 1999) (see Figure 4.E).
Gamma  oscillations are  characterized  by  very  high-frequency  activity  (30-200  Hz,  but
typically  not  measurable  higher  than  100  Hz  by  EEG).  These  oscillations  are  often
associated  with  arousal  and  perceptual  binding  mechanisms (i.e.,  integration  of  various
aspects of a stimulus into a coherent overall perception). The amplitudes are already rather
small and usually between 1 and 2 μV (Hughes 2008).
Delta waves are characterized as very low-frequency activity (below 1 - 4 Hz) which usually
relate to deep and unconscious sleep in healthy humans. Delta waves (amplitude can by
several 10th of μV) are also associated with pathological neural states, such as coma or the



loss  of  consciousness.  Generally,  delta  activity  diminishes  with  increasing  age,  which
suggests  that  delta  activity  is  primarily  an inhibitory  mechanism  (Hobson & Pace-Schott
2002).
Theta waves occur as low-frequency activity (4 - 8 Hz) and are typically associated with
specific sleep states, drowsiness, and meditation. However, in addition in the literature, also
frontal  midline  theta  is  described.  This  type  has  been  associated  with  mental  effort,
suggesting that attention is directed to an existing stimulus. In general, the amplitude of theta
waves are typically between 8 and 10 μV (Cahn & Polich 2006).

It is important to mention that these rhythms can be time-locked to an event; however, they
are  always  non-phase  locked.  This  means,  when  one  compares  to  similar  trials  the
amplitude behavior may be similar, however, the oscillations of the EEG rhythms will  not
have the same phase.  Therefore, with simple averaging techniques,  it  is  not  possible to
extract meaningful information from the signals. The main challenge in BCI-research though
is, to identify oscillatory patterns in EEG without knowing the time point of establishment –
i.e., in an asynchronous BCI application an end user may wish to use the system without any
external pace, stimulus or cue.

There are many methods to analyse spontaneous EEG, but in contrast to ERP analysis, the
simple  calculation  of  an  average  over  trials  does  not  work  (see  section  Event-related
potentials). To get a first and solid impression of spontaneous EEG activity related to various
conditions, one of the standard methods used in BCI research is to compare power values
with respect to a reference period. The so-called event-related (de)synchronization (ERD(S))
method introduced by Pfurtscheller in the late 1970s  (Pfurtscheller & Aranibar 1977) and
described in detail in  (Pfurtscheller & Lopes da Silva 1999), compares band power values
during  an  activity  period  with  the  band  power  of  a  reference  (resting)  period.  This
comparison results in relative band power changes given in %. By the calculation of these
values for several frequency bands the ERD(S) maps represented as time-frequency maps,
can be obtained (Graimann et al. 2002)) (See Figure 4.D).
There are many other methods available which exploit these EEG oscillatory components
either for  direct  feedback (neuro-feedback,  (Birbaumer et  al.  1999))  or  machine learning
based  BCIs.  Exemplarily,  most  common are  band  power  (Guger  et  al.  2000),  common
spatial patterns  (Ramoser et al. 2000; Blankertz et al. 2008) and many others  (Wolpaw &
Wolpaw 2012)

Of high importance is, though, how these oscillatory components can be mentally changed
or influenced by study participants or end-users.

Motor imagery and other mental tasks

One of  the first  mental  strategies was to imagine hand movements (motor imagery,  MI)
(Pfurtscheller and Neuper 1997; Munzert et al. 2009; Cincotti et al. 2003). MI describes the
mental rehearsal of a motor task without its execution. Typical kinesthetic MI tasks are: (1)
sustained imagination of squeezing a training ball (Kaiser et al. 2014; Coyle et al. 2015), (2)
repetitive opening and closing of the hand (Pfurtscheller et al. 2003; Ramoser et al. 2000) or
(3) sustained/repeated movement imagination of both feet, e.g., dorsi- or plantar-flexion of
both  feet  (Hashimoto  and  Ushiba  2013;  Müller-Putz  et  al.  2007).  Furthermore,  this
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phenomenon can be triggered by an external event, and users may induce it  by actively
performing the designated task (Pfurtscheller et al. 1997; Millan et al. 2003; Mason and Birch
2000).  This  fact  is  used  in  non-cue-guided,  asynchronous  BCI  scenarios,  where  users
decide for themselves when to establish control (Müller-Putz et al. 2005; Scherer et al. 2004;
Leeb et al. 2007).
Motor imagery can be an efficient strategy for controlling a BCI based on the modulation of
rhythms of  the  sensorimotor  cortex  also  known as  SMR-based  BCI  (Faller  et  al.  2012;
Kreilinger et al. 2013; Neuper et al. 2009; Scherer et al. 2008; Blankertz et al. 2010; Pichiorri
et  al.  2011).  The  SMR-BCI  uses  the  power  decreases/increases  as  a  feature  for
discriminating between two or more different MIs.
Beside motor imagination, there are also other mental tasks which can be used and lead to
successful modulation of EEG patterns (Millán et al. 2002; Obermaier et al. 2001; Harmony
et  al.  1996;  Cabrera  et  al.  2010;  Jeunet  et  al.  2016).  For  example,  distinct  levels  of
kinesthetic  attention (from focused attention to mind wandering)  in  a continuous passive
mobilization task have been shown modulatory effects at the level of theta, alpha and beta
frequency bands  (Melinscak et  al.  2016).  Another  study  (Friedrich  et  al.  2013) explored
seven mental tasks (mental rotation, word association, auditory imagery, mental subtraction,
spatial navigation, left hand MI, both feet MI) and in a user-centered approach, the best four
classes were used to build a BCI. Later on, this approach was successfully used to apply a
BCI in end-users with disabilities (Scherer et al. 2015).

Event-related potentials

Event-related potentials (ERP) mainly originate from specific external stimuli. Regan (Regan
1989) gives the following definition:
„An EP is a transient wave complex elicited by a certain stimulus or event that is, to be
precise,  repeated only  once.  The averaged  transient  EP reflects  a  true response  if  the
relevant brain mechanisms were in their resting states before each stimulus, and return to
their  resting  states  before  the  next  stimulus.  It  is  consequently  assumed  that  the  EP
response to a single event does not depend on a previous one.“

When the stimuli are, for example, visual, auditory, somatosensory, or even olfactory, then
they are called evoked potentials. However, ERPs can also be elicited by actions which are
generated by a person’s interval volition to perform a task, e.g, when starting a movement,
or even when such a single movement is attempted or imagined (Shibasaki et al. 1980). This
particular  example  of  ERP  illustrates  the  movement-related  cortical  potential  (MRCP).
Another  example of  an ERP is  the error-related potential  (ErrP).  After  a stimulus,  which
seems erroneous to a person due to a mismatch in his or hers expectation, the elicited brain
wave can be recorded from the midline of the scalp (Falkenstein et al. 1991). Steady-state
evoked potentials (SSEPs) are another type of potentials which get evoked only if a stimulus
(visual or tactile) is presented with a high repetition rate, usually higher than 6 Hz.  Regan
(Regan 1989) defines:
“SSEPs occur when sensory stimuli are repetitively delivered at high enough rates so that
the relevant neuronal structures are prevented to return to their resting states. [..] Ideally, the
discrete frequency components remain constant in amplitude and phase within an infinitely
long time period.  [..]  In practice,  SSEPs never completely  fulfil  this definition of  an ideal
SSEP.”

https://paperpile.com/c/hiwOUv/G8tm
https://paperpile.com/c/hiwOUv/sDXw
https://paperpile.com/c/jXEI0f/PJhn
https://paperpile.com/c/jXEI0f/yce4+P8Jc+UnZI+DxQu+GKEN
https://paperpile.com/c/jXEI0f/yce4+P8Jc+UnZI+DxQu+GKEN
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https://paperpile.com/c/jXEI0f/ugNr+BaPz+izpl+SwlZ+z99B+1PF9
https://paperpile.com/c/jXEI0f/ugNr+BaPz+izpl+SwlZ+z99B+1PF9
https://paperpile.com/c/jXEI0f/dBbX+Zni6+hPBB
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ERP signals are typically not very strong, and, hence, it is difficult to distinguish them from
the spontaneous EEG in raw, single-trial, data. However, by repeated presentation of stimuli
and averaging of the EEG responses, these ERPs can be made visible. Since ongoing EEG
is not time-locked and not phase-locked to the stimulus, averaging increases the signal-to-
noise ratio (Fabiani et al. 2007; Luck 2014; Regan 1989). In BCI research, however, our goal
is usually to achieve single-trial detection, in which case specific paradigm design, signal
processing techniques and machine learning approaches are necessary (see Chapters 7,
25, ZZ).

Various types of BCIs based on different ERPs as well  as specific ERP-components are
discussed next.

P300 Component

The P300 is regarded as indicator of information processing in relation to attentional and
memory mechanisms and was first described by Sutton et al. (1965). Evidence that is more
recent has shown that the P300 comprises two subcomponents: (i) the P3a, also referred to
as “novelty P3” and (ii) the P3b, also referred to as “classical P300”. The P3a is a positive
potential  having  its  maximum  amplitude  over  frontal/central  electrode  sites  and  a  peak
latency in the range of 250-280ms. This wave has been associated with engaging attention
(especially the orienting, involuntary shifts to changes in the environment) and processing
novelty.  In contrast,  the P3b is a positive potential  having the maximum around 300ms,
though depending on the task, the peak can vary in latency from 250-500ms. Amplitudes are
typically  highest  over  midline  parietal  brain  areas.  Generally,  the  P3b  is  related  to  the
likelihood of events, and the less likely an event, the larger the P3b  (Katayama & Polich
1998; Simons et al. 2001).
The P300-component was used for the design of one of the first BCI systems. Already in
1988, Farwell and Donchin (Farwell & Donchin 1988) presented a first BCI paradigm based
on  a  visual  P300Subjects  were  presented  with  a  matrix  of  characters  displayed  on  a
computer screen. The rows and column of the matrix were highlighted by flashes at short
intervals. Subjects were asked to focus on the desired character (as an intersection of a row
and column) and count internally its flashing occurrences (for each row and column) (see
Figure 4.A). Since then, many BCI examples have been and are still published, exploring the
different properties of the P300. One major contribution was made by Kaufmann et al. in
2011  (Kaufmann et al. 2011). Kaufmann introduced pictures of faces as stimuli instead of
simple flashing characters since faces are known for eliciting particularly strong ERPs due to
their psychological salience. In 2013 he published work where it was shown that this system
increases significantly the accuracy of ALS patients (Kaufmann et al. 2013).
Since then, many applications have been developed, to name some of them: brain painting,
web browsing, music composing (Pinegger et al. 2017).
Since many people are notable to focus their vision so precisely, tactile stimuli can be used
to elicit the P300 (Herweg et al. 2016; Brouwer & Brouwer 2010). 
Moreover, auditory P300 BCIs have also been developed and give now additional ways to
help or assist  end-users with limited visual  pathways  (Pokorny et al.  2013;  Hohne et  al.
2010; Schreuder et al. 2011).



Steady-state evoked potential

This potential appears as sinusoids with the same frequency as the stimulation frequency
and sometimes with higher as well as sub harmonics (Müller-Putz, Scherer, Brauneis, et al.
2005;  Herrmann  2001)).  Since  the  early  2000s,  steady-state  visual  evoked  potential
(SSVEP)-based  BCIs  are  researched,  first  introduced  by  Middendorf  and  colleagues
(Middendorf et al. 2000). Since then, many papers appeared investigating e.g., high number
of classes (Gao et al. 2003), higher harmonics as shown in Figure 4.C (Müller-Putz, Scherer,
Brauneis, et al.  2005) and other features like overlaying stimuli  to avoid eye movements
(Allison et al. 2008). A new application of an SSVEP BCI was shown by Pinegger et al.
where they used this kind of analysis to check, whether a user was focusing a P300 spelling
matrix.  When the user’s  attention  moves  away  also  the  SSVEP elicited  by  row-column
flashing diminishes and the spelling could be stopped (Pinegger et al. 2014). Since not all
end-users keep control  of  their  eye movements Müller-Putz presented the idea of  using
steady-state somatosensory evoked potentials (SSSEPs) to create a BCI based on repetitive
tactile stimuli applied to the two index fingers (Müller-Putz et al. 2006). As a basic concept
the proof was made, however later attempts did not bring this kind of BCI to a level, where
end-users  could  fully  benefit  from  it  (Pokorny  et  al.  2016;  Breitwieser  et  al.  2016).
Nevertheless,  SSVEPs  can  be  harnessed  also  in  healthy  BCI  users  when  engaging  in
cooperative tasks (e.g., game playing) (Cruz et al. 2017).  



Figure 4: Various EEG signals and patterns. A) P300 target signal (blue) and average non-
target responses (red). B) MRCP from 10 subjects averaged over 1000 trials (Sburlea, 
Montesano & Minguez 2015). C) SSVEP spectra of focused attention to 4 different flashing 
lights: 6 Hz, 7Hz, 8Hz, 13Hz (Müller-Putz, Scherer, Brauneis, et al. 2005). D) ERD map of a 
Laplacian derivation of Cz in an end-user with spinal cord injury during foot motor imagery. 
E) Examples of single EEG trials, Laplacian derivation, from Cz corresponding to D.



Error Potential

A possibility to increase the BCI performance is to automatically detect errors from recorded
brain signals after reactions to particular decisions and thereby allowing a BCI system to
either correct or inhibit erroneous commands. 
In the early 1990s, the idea of the error potential  (ErrP),  often also referred to as error-
related  negativity  (ERN)  due  to  its  negative  polarity,  came  up.  It  is  described  as  a
characteristic wave complex measurable on frontal  midline electrodes above the anterior
cingulate cortex (ACC), a brain region to be known for its functional role in conflict monitoring
and  error  processing  (Botvinick  et  al.  1999;  Botvinick  et  al.  2004;  Carter  1998).  ERN
develops  concurrently  with  response  onset  and  often  peaks  within  100ms  after  onset;
however, depending on the type of error peak, latencies may also range up until 500ms after
response onset. Generally, the ErrP occurs after one perceives erroneous events. 
Depending on the way these potentials are generated they are defined as either observation
(Miltner et al. 1997), feedback  (Miltner et al. 1997), response  (Falkenstein et al. 1991), or
interaction ErrPs (Ferrez & Millán 2008, Chavarriaga et al. 2014). Interaction ErrPs can be
detected at the region over the anterior cingulate cortex (ACC) (Mathalon et al. 2003) and
can be measured after a person witnesses a false execution of an intended command. From
the user’s perspective, an interaction ErrP occurs whenever a command was misinterpreted
by the used control interface.
In contrast to the other types of ErrPs, which either do not require the involvement of the
user or do not emerge in self-paced scenarios, the interaction ErrP seems to be the most
promising for increasing performance in BCI applications for end-users.
By using these interaction ErrPs, the performance of BCIs can be improved by detecting
specific reactions to errors that differ from reactions to correct events. False actions can be
inhibited which lead to increased accuracies of BCI-driven systems. Several studies have
already mentioned the technical capabilities of error correction for various paradigms (Ferrez
& Millán 2008). The paradigms used in these experiments have in common that they are
designed to work well for ErrP processing. Because of the discrete nature of the feedback,
ErrPs can be detected easily by evaluating time periods after discrete events.
However, modern BCI applications are no longer limited to discrete applications where only
one  discrete  decision  can  be  made  at  one  given  point  in  time.  Instead,  continuously
controlled applications gain importance as they offer a more natural implementation of BCI
for activities of  daily  living.  Relevant  examples are a continuously  moving wheelchair  for
mobility (Galán et al. 2008) or moving cars in a computer game (Kreilinger et al. 2016). 
A recent study showed that ErrPs can also be recorded and utilized during one of these
continuous  applications.  A  continuous  feedback  in  form  of  a  moving  artificial  arm  was
coupled with additional  discrete events as triggers and ErrPs were successfully found in
offline  analysis  (Kreilinger  et  al.  2012,  Omedes et  al.  2018),  as well  as asynchronously
(Lopes Dias 2018).
An alternative and complementary BCI paradigm was presented by Iturrate and colleagues
recently  (Iturrate et  al.  2015).  In their  approach a robotic arm executed actions that  the
participants evaluated as erroneous or correct, and exploited correlated brain patterns of this
assessment to learn suitable motor behaviours.



Movement-related cortical potential

Movement-related cortical potentials (MRCPs) have been discovered in 1965 by Kornhuber
and  Deecke  (Kornhuber  &  Deecke  1965) as  EEG  potentials  that  precede  the
electromyography (EMG) onset of voluntary action. These potentials have been observed
over the motor and sensorimotor areas. In their study, the flexion of the index finger was
investigated. Later, MRCPs have been studied in other types of movement such as, hand
movements (Pereira et al. 2017; Jochumsen et al. 2015, Schwarz et al. 2018, Ofner et al.
2017), foot movements (Shibasaki et al. 1981; do Nascimento et al. 2005), and also in other
actions  such as  walking  (Jiang  et  al.  2015;  Sburlea,  Montesano & Minguez  2015),  see
Figure 4.B. 
In all types of movements the MRCP emerges before the movement onset with a negative
slope (the Bereitschaftspotential, BP) which has a similar distribution in both foot and hand
movements, and starts between 1.2 and 0.5 s before the movement onset. The maximum
negativity  is  reached  between 0.5  and  0  s  before  the EMG onset.  In  the  case  of  foot
movement,  the  MRCP  is  visible  on  the  midline  precentral  region  and  is  symmetrically
distributed, while for hand movements the MRCP is localized to the contralateral precentral
region.  It  is  considered  that  the  maximum  negativity  of  the  MRCP  is  related  to  the
movement, whereas the BP is more related to a non-specific preparation (or planning) of the
cerebral cortex for voluntary movement (Shibasaki et al. 1980). 
MRCPs are not  only  observed during movement  execution,  but  are also  present  during
attempt  of  execution  and  movement  imagination.  This  corresponds  to  a  very  valuable
property which can be exploited for BCIs based on EEG. MRCPs have been investigated
especially in the lower delta frequency for the detection of movement intention in healthy
subjects (Niazi et al. 2011; Lopez-Larraz et al. 2014; Jiang et al. 2015; Sburlea et al 2015,
Jochumsen et al. 2015; Pereira et al 2017; Pereira et al 2018) and in patients (Miltner et al.
2016; Sburlea, Montesano, Cano de la Cuerda, et al. 2015; Sburlea et al. 2017). Ongoing
studies that  focus on the rehabilitation  of  motor impaired patients (stroke or  spinal  cord
injured) use MRCPs to control assistive robotic devices or neuroprosthesis (López-Larraz et
al. 2016; Müller-Putz et al. 2017). The detection of the MRCP’s earliest component (BP) can
also enhance positive neuroplasticity  (Mrachacz-Kersting et al. 2012; Xu et al. 2014) and
facilitate the recovery.
Intracortical research on primates (Nicolelis & Chapin 2002) and also humans (Hochberg et 
al. 2006; Collinger et al. 2013) has shown that brain signals contain information about hand 
movement trajectories in a 3-dimensional space. Following a similar research goal (of 
decoding movement trajectories) but from non-invasive EEG activity, some first results 
(  Ofner and Müller-Putz 2012; Ofner and Müller-Putz 2015; Bradberry et al. 2010; Antelis et   
al. 2013  )   indicated that movement trajectory information can be recovered from the low-
frequency EEG amplitudes. Although these studies report promising results, there is still a lot
of research necessary before such non-invasive BCIs will be available for end-users. A more
detailed review on this topic can be found in (Müller-Putz et al. 2016) 
 

Discussion
In this chapter EEG was discussed in detail, from the neurophysiological foundations to EEG
phenomena, signal  recording methods, and respective signal patterns to be used in BCI
research. With its high temporal resolution and its easy applicability EEG has played and will
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continue  to  play  a  major  role  in  BCI  applications  for  end-users  with  disabilities  and
furthermore in healthy users  (Nijholt et al 2009, Gürkök et al 2017, Brunner et al. 2015) .
Also,  the  combination  of  EEG  with  other  recording  techniques  like  near-infrared
spectroscopy (Shin et al. 2017) or functional magnetic resonance imaging (fMRI) (Zich et al.
2015; Steyrl et al. 2017) gained importance during the last years. And finally, with particular
interest for studies on movement neurophysiology, high density EEG recordings for source
localization receive more and more attention. This is due to the fact that EEG, in contrast to
fMRI,  allows  measurements  while  participants  execute  body  movements  (Wagner  et  al.
2016; Seeber et al. 2016).
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