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Abstract

The thesis introduces a generalized modelling and higher-order accurate analysis of
curved shells and structural membranes. In the modelling of curved, thin-walled struc-
tures, a dimensional reduction from the 3D shell body to its 2D mid-surface is a key
step. Mathematically, this results in partial differential equations (PDEs) on manifolds
embedded in the three-dimensional space.
In the classical approach of modelling shells and membranes, the mid-surface is defined
explicitly by a (piecewise) parametrization. Such a parametrization inherently defines
curvilinear coordinates which are employed in all classical models. However, the mid-
surface may also be defined implicitly by means of (multiple) level-set functions and
curvilinear coordinates on the surface are not available. Therefore, the classical models
of shells and membranes do not extend to this situation.
In this thesis, the classical models such as linear Kirchhoff-Love shell, linear Reissner-
Mindlin shell, and structural membranes undergoing large deformations are reformulated
in the frame of the tangential differential calculus (TDC) including all relevant mechan-
ical aspects. The major advantage of this reformulation is that the employed surface
operators and geometrical quantities are defined in the global Cartesian coordinate sys-
tem so that curvilinear coordinates are not necessarily required. The resulting models
are valid independently of the concrete geometry definition, enabling the analysis of
explicitly and implicitly defined shells and membranes in a unified sense. Hence, the
reformulated PDEs are more general than the classical theories and naturally yield a
symbolic notation, whereas the classical approach is typically formulated in index nota-
tion.
For the numerical treatment, the reformulated boundary value problems are applicable
to two fundamentally different numerical approaches. On the one hand, one may use
the classical Surface FEM where the geometry is discretized by two-dimensional surface
elements. On the other hand, it also applies to recent Trace FEM which is a fictitious
domain method (FDM) for PDEs on manifolds. In the Trace FEM, three major issues
of FDMs have to be addressed properly in order to enable higher-order accuracy: (i)
the accurate integration of the implicitly defined geometry, (ii) the stabilization of the
stiffness matrix, and (iii) the enforcement of essential boundary conditions.
The obtained shell and membrane models are discretized by higher-order accurate Sur-
face and Trace FEM. In addition to the well-known benchmarks with reference or exact
(manufactured) solutions, new benchmarks which enable higher-order convergence rates
in the analysis are proposed. The convergence is also confirmed in the residual errors,
i.e., in the strong form of the equilibrium. Provided that the involved mechanical fields
are sufficiently smooth, optimal orders of convergence are achieved for linear shells and
non-linear membranes for both Surface and Trace FEM.





Zusammenfassung

Das Ziel der vorliegenden Arbeit ist eine verallgemeinerte Formulierung von Schalen-
und Membranproblemen und deren Analyse mit Genauigkeit höherer Ordnung. In der
Modellierung von dünnwandigen Tragwerken ist die Reduktion vom 3D-Körper auf die
gekrümmte 2D-Mittelfläche ein wesentlicher Aspekt. Die Modellgleichungen werden
dann als partielle Differentialgleichungen (PDGen) auf Mannigfaltigkeiten (Oberflächen)
formuliert, die im dreidimensionalen Raum eingebettet sind.

In der klassischen Modellierung von Schalen und Membranen ist die Mittelfläche explizit
über eine (stückweise) Parametrisierung definiert. Diese Parametrisierung definiert au-
tomatisch krummlinige Koordinaten, welche in allen klassischen Modellen verwendet
werden. Oberflächen können jedoch auch implizit über (mehrere) Level-set Funktionen
angegeben werden und krummlinige Koordinaten sind in diesem Fall nicht verfügbar.
Aus diesem Grund sind die klassischen Modelle von Schalen und Membranen nicht auf
implizit definierte Geometrien anwendbar.

In dieser Dissertation werden die klassischen Modelle, wie die lineare Kirchhoff-Love
Schale, lineare Reissner-Mindlin Schale und nicht-lineare Membran, mit Hilfe des Tan-
gential Differential Calculus (TDC) neu formuliert. Die resultierenden Oberflächenoper-
atoren und geometrischen Größen sind dann im globalen kartesischen Koordinatensystem
definiert und daher werden krummlinige Koordinaten nicht zwingend benötigt. Daraus
folgt, dass die erhaltenen Schalen- und Membranmodelle unabhängig von der tatsäch-
lichen Geometriedefinition (explizit oder implizit) wohl definiert sind und die Analyse
in einer vereinheitlichten Beschreibung ermöglicht wird. In diesem Sinne sind die neu
formulierten PDGen allgemeiner und führen auf eine symbolische Notation, während die
klassische Formulierung typischerweise die Indexnotation verwendet.

Für die numerische Lösung der reformulierten Randwertprobleme sind zwei fundamental
unterschiedliche Finite Elemente Methoden (FEM) anwendbar. Auf der einen Seite
die klassische Surface FEM, bei der die Geometrie und das Randwertproblem durch
2D-Oberflächenelemente diskretisiert wird. Alternativ können auch innovative Finite
Elemente Methoden wie die Trace FEM eingesetzt werden. Diese Methode ist eine
Fictitious Domain Method (FDM) für PDGen auf Mannigfaltigkeiten. Wie bei jeder
FDM muss auch bei der Trace FEM besondere Aufmerksamkeit auf die: (i) Integration,
(ii) Stabilisierung und (iii) das Aufbringen von Randbedingungen gelegt werden.

Die neuen Schalen- und Membranformulierungen werden mit der Surface und Trace FEM
mit Genauigkeit höherer Ordnung diskretisiert. Zusätzlich zu den etablierten Bench-
markbeispielen mit Referenzlösungen oder exakten (analytisch vorgegebenen) Lösun-
gen werden neue Testfälle, welche Konvergenzordnungen höherer Ordnung ermöglichen,
vorgeschlagen. Darüber hinaus, ist Konvergenz auch in den Residualfehlern (Fehler in
der starken Form des Gleichgewichts) bestätigt. Vorausgesetzt, dass die Lösung eine
hinreichend hohe Glattheit besitzt, können optimale Konvergenzordnungen für lineare
Schalen und nicht-lineare Membranen in beiden numerischen Methoden, Surface und
Trace FEM, gezeigt werden.
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1 Introduction

Curved shells and membranes are outstanding structural elements and occur in various
fields of engineering and nature. Common applications in technology are in automotive,
aerospace, biomedical and civil-engineering [27], [58], [145]. In Fig. 1.1, examples of
shells and membranes in nature and technology are illustrated. A characteristic feature

(a) Nautilus shell [45] (b) L’Oceanogràfic, Spain [87] (c) ASU SkySong, USA [86]

Fig. 1.1: Shells and membranes in nature and technology.

of curved shells and membranes is that these 3D structures are typically thin-walled,
meaning that one dimension, i.e., the thickness, is significantly smaller compared to the
other two spatial expansions. The curved shape enables transverse loadings to be carried
by membrane actions and thus the whole cross section of the shell or membrane body is
fully activated. Hence, the resulting structure may be typically light-weight and results
in an extremely efficient structural component with high bearing capacity. On the other
hand, the large slenderness causes a pronounced sensitivity against imperfections of both
geometry and loading. Therefore, a sufficiently accurate analysis of their behaviour is of
utmost interest for successful applications in technology.

1.1 Geometry definition

In the modelling of thin-walled structures, a key step is the dimensional reduction from
the 3D shell body to its mid-surface Γ. As a result, the shell can be completely de-
scribed by a curved surface embedded in the physical space with given thickness t.
For the mechanical modelling and mathematical description, the mid-surface Γ has to
be well-defined, regular, sufficiently smooth, orientable and typically bounded. Such a
surface may also be called a two-dimensional manifold in the three-dimensional space.
Given that it is possible to compute the first fundamental form at all points, this is a
Riemannian manifold of codimension 1. The first fundamental form provides a metric
to measure arc-lengths, angles and areas on the surface. More mathematical details
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regarding the required properties which are necessary for the analysis and calculus are
given in [16], [42], [52], [138].
There are two fundamentally different methodologies for the definition of suitable sur-
faces. One approach is to parametrize the mid-surface, resulting into an explicit surface
definition. The parametrization is a smooth, continuous map χ from some 2D param-
eter space to the possibly curved surface Γ embedded in R3. In Fig. 1.2 an example of
a parametrized surface is shown. The rectangular domain Ω̂ represents the parameter
space and with the map χ, the curved surface Γ is defined. Hence, every point r∗ ∈ Ω̂
has a unique counterpart x∗ ∈ Γ. The curvilinear coordinates (grey lines) on the surface
Γ are implied by the mapped coordinates r = [r, s]T in the parameter space Ω̂.

x∗x∗

ΓΓ

s

r
Ω̂̂Ω
r∗r∗

χ : Ω̂ → Γχ : Ω̂ → Γ

χ(r∗)χ(r∗)

y

z

x

Fig. 1.2: Explicitly defined surface with curvilinear coordinates modelling a curved roof.

Alternatively, the surface Γ may also be represented implicitly by means of level-set
functions. A level-set function is a scalar-valued function φ : R3 → R and one can define
the surface implicitly by Γ := {x ∈ R3 : φ(x) = c}, with some given constant c ∈ R. In
practice, the constant is often set to zero (c = 0), the surface is then defined by the zero-
isosurface of the level-set function φ. This procedure is labelled as the level-set method
and was first introduced by Osher and Sethian in the context of interface capturing [114].
An overview of applications and advancements of the method is presented in the recent
review paper [71]. For the implicit definition of bounded surfaces, one may either restrict
x to a subset Ω̃ ⊂ R3 or introduce additional level-set functions whose intersections
with the zero-isosurfaces uniquely define the boundaries. Employing this concept, the
mid-surface of the shell is defined by a master level-set function φ and the boundaries
are given by the intersection of φ with slave (additional) level-set functions ψi, i ∈ N. In
Fig. 1.3, different examples of bounded implicitly defined surfaces are illustrated. The
yellow surface represents the zero-isosurface of φ and the transparent surfaces are the
zero-isosurfaces of ψi. The blue lines indicate the boundary of the surface.

1.2 Mechanical and mathematical modelling of shells

The mechanical modelling of shells and membranes has a rich legacy starting in the early
19th century. The first attempts of modelling membranes may be traced back to the work
of Lamé and Clapeyron in 1828, see [137, pp. 115-117] and [145] for details. Taking the
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(a) curved roof (b) gyroid

Fig. 1.3: Implicit representation of bounded surfaces: (a) curved roof, and (b) gyroid.

flexural rigidity into account, this leads to models of plates and shells which are able to
carry transversal loads by bending actions. The elastic behaviour of thin shells is based on
the Kirchhoff assumptions from 1850 [96] which have been extended to shells by Love in
1888 [101]. The major assumption is that the shell is thin. In the context of curved shells,
it is found that the product of thickness t and the largest curvature of the surface κmax
are relevant and a shell can be considered as thin if tκmax � 1. Further assumptions are:
(1) straight lines that are normal to the mid-surface prior to deformation remain straight
and normal to the deformed mid-surface, and experience no change in length, and (2)
direct stress acting in normal direction of the shell mid-surface is negligible [145, p. 13].
When modelling moderately thick shells, one has to alleviate the assumptions on the shell
kinematics, which results in the Reissner-Mindlin or first-order shear deformation theory
[118]. The important difference is that transverse shear deformations are considered,
which results in a further rotation of the normal vector independent of the mid-surface
displacement. As a consequence, straight lines normal to the undeformed mid-surface
remain straight after the deformation but not necessarily orthogonal to the deformed
mid-surface. During the last century, these two theories have been further developed
based on different mechanical assumptions by numerous scientists. Detailed historical
reviews of the development of shell and membrane theories are presented in [14], [145]
and excellent overviews of classical shell and membrane theories are given, e.g., in [14],
[33], [94], [132], [133] or in the textbooks [7], [15], [27], [30], [31], [116], [139], [145].
The mathematical modelling of the equilibrium equations results in boundary value
problems (BVPs) where partial differential equations (PDEs) are formulated on the
mid-surface of the structure. For structural membranes, this results into a vector-
valued, second-order surface PDE for the unknown mid-surface displacement. Also in
the Kirchhoff-Love shell equations, the only unknown field is the deflection of the mid-
surface. However, the incorporation of bending actions results into a fourth-order PDE
for the equilibrium equations and higher continuity requirements need to be satisfied.
Furthermore, the description of mechanical meaningful boundary conditions requires
special attention [7], [125]. As mentioned above, allowing transverse shear deforma-
tions lead to the Reissner-Mindlin shell theory, where the continuity requirements are
relaxed compared to the Kichhoff-Love shell. There, the equilibrium equations are a set
of two vector-valued, second-order PDEs for the unknown fields, i.e., the mid-surface
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displacement and rotation of the normal vector.
Independently of the concrete model, the classical approach of modelling thin-walled
structures is to formulate the PDEs in curvilinear coordinates resulting from a para-
metrization of the mid-surface [14]. All geometric quantities (normal vectors, curvatures,
etc.) and differential surface operators (gradients, divergence, etc.), which are the key
ingredients for modelling physical phenomena on curved surfaces are based on the two-
dimensional, curvilinear local coordinates living on the manifold. Co- and contravariant
base vectors and Christoffel symbols result naturally. It is important to note, however,
that the classical models are not applicable to implicitly defined geometries because there,
no curvilinear coordinates are available. A parametrization of a surface is not unique,
hence there are infinitely many maps which result in the same curved surface. Obviously,
the physical modelling must be independent of a concrete parametrization, which sug-
gests the existence of a parametrization-free formulation. Note that there is a difference
between “a model which holds for any parametrization, i.e., for any curvilinear coordi-
nates” and a model “which does not necessarily need curvilinear coordinates”. While the
first applies only to parametric definitions, the second applies to both parametric and
implicit descriptions.
A parametrization-fee (or coordinate-free) framework which allows to define the geomet-
ric quantities and surface operators independently of curvilinear coordinates is estab-
lished by the tangential differential calculus (TDC). There, these operators are defined
based on the global Cartesian coordinate system which is the case in both explicit and
implicit surface definitions. In this sense, the TDC-based approach is more general than
approaches based on local coordinates, which are restricted to explicit surface descrip-
tions. The TDCmay be traced back to Gurtin and Murdoch in [79]. In flow and transport
applications on curved surfaces, the general coordinate-free definition of the BVPs is a
standard for a long time [42], [49], [52], [62], [90], thus enabling the analysis of PDEs
on implicitly defined manifolds. However, in the field of structural analysis, the TDC is
not as established, although the reformulation of classical (curvilinear) models for shells
and membranes is a crucial preliminary step in order to enable the analysis of implicitly
defined shells and membranes—the most important goal of this thesis is to establish the
TDC also in shell and membrane mechanics. The TDC in structural mechanics was
employed for curved beams in [84], Kirchhoff plates with arbitrary orientation in R3

in [82] and Kirchhoff-Love shells are considered in [37]–[40] with a mathematical focus
and in [99], [113], [143] from an engineering perspective, however, only with focus on
displacements. Curved membranes in the frame of the TDC are considered in [79], [81],
[83]. A recast in the frame of the TDC including all relevant mechanical aspects for
Kirchhoff-Love shells is presented in [125], for Reissner-Mindlin shells in [127], for linear
membranes in [81] and for large deformation membranes in [66], [83].

1.3 Numerical treatment of surface PDEs

Apart from thin-walled structures, many challenging applications in engineering and
natural sciences are characterized by physical phenomena taking place on curved surfaces
in the three-dimensional space. There are numerous examples for transport and flow
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phenomena on biomembranes or bubble surfaces [75], [140]. Phenomena on surfaces may
also be coupled to processes in the surrounding volume such as in surfactant transport,
hydraulic fracturing, reinforced structures etc. As an additional challenge, the surfaces
may be moving [50], [56], [141], i.e., the domain of interest changes. The modelling of
such phenomena naturally leads to BVPs where PDEs are formulated on manifolds. For
the solution of such models, tailored numerical methods are needed.
The first application of the finite element method (FEM) for the solution of the Laplace-
Beltrami operator on manifolds was reported in 1988 by Dziuk [49]. Since then, the
topic has attracted a tremendous research interest leading to a variety of numerical
methods for PDEs on surfaces existing today, see, e.g., [16], [52] for an overview. The
most straightforward approach is to generate surface meshes on the manifold and extend
the finite element method in a straightforward way. As a consequence, the surface
elements automatically provide curvilinear coordinates resulting from the map of the
two-dimensional reference element. The resulting method may be labelled Surface FEM,
see, e.g., [42], [65], and is applicable to BVPs on manifolds which are based on curvilinear
coordinates (the classical approach, still standard in shell mechanics) as well as the TDC
(the standard approach for transport and flows on manifolds). It is obvious that the
Surface FEM is inherently linked to parametrized surfaces, no matter whether there is
a global map from the parameter space or an atlas of maps as provided by the surface
elements.
However, as discussed before, the BVP may also be set up based on an implicit descrip-
tion in which case the TDC has to be used as curvilinear coordinates are not available. It
is now possible to obtain the solution on all iso-surfaces of the involved level-set functions
(not only on the zero level-set) [19], [51]. Then, the problem is naturally set up in the
three-dimensional space embedding the manifolds, i.e., volumetric elements and shape
functions are employed. However, typically only the solution on one iso-surface, say the
zero-isosurface, is sought. One may then restrict the surrounding domain to a narrow
band around the manifold [12], [36], [55]. There are interesting similarities to phase field
and diffuse interface approaches [117]. A recent approach is to collapse the narrow band
to the manifold itself. Then, shape functions of the volumetric background elements are
used, however, the integration takes place on the trace of the manifold only. The result-
ing approaches are fictitious domain methods (FDMs) and are labelled TraceFEM [16],
[72], [74], [108], [109], [119], [124]. This may also be called Cut FEM which, in the last
years, has become a popular FDM enabling higher-order accuracy [21], [22], [24]. When
using the Cut FEM for the solution of PDEs on manifolds as done herein, the method
becomes analogous to the Trace FEM [26], [28]. This recent finite element technique is
fundamentally different compared to standard Surface FEM approaches, see, e.g., [42],
[52], [62], [65].
Elevating the order of the employed shape functions leads to the p-version of the finite
element method (p-FEM) [48]. The advantages of the p-FEM are higher-order accurate
and efficient approximations of BVPs. For a successful application of the p-FEM, the
geometry must be accurately represented by higher-order elements and the involved fields
should be sufficiently smooth. The use of higher-order elements in both the Surface and
the Trace FEM, is of particular importance in this thesis. For both the Surface and the
Trace FEM, higher-order approximations of PDEs on manifolds have been reported in
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different contexts before: For explicit (handcrafted or automatically generated) surface
meshes in [42], [61], [65] and in the context of the Trace FEM in [66], [92], [100], [119],
[129]. Adaptivity is considered, e.g., in [43], [44]. If the geometry is defined by multiple
level-set functions, we refer to [66], [129] and for one level-set function, we refer to [91],
[92], [100].
In the following, the major differences of the Surface FEM and the Trace FEM are
outlined.

1. Firstly, the differences in the geometry definition are emphasized. In the Trace
FEM, the (shell) surfaces are implicitly defined by means of (multiple) level-set
functions, see Fig. 1.3. In the context of Surface FEM, the geometry is usually given
through an atlas of element-wise local maps, implying local curvilinear coordinates,
see Fig. 1.4(b). Note that a parametrization is only available in the explicit case
and is, in general, not available in implicitly defined geometries.

2. Secondly, the mesh generation and the location of the degrees of freedom (DOFs)
are considered. In the Trace FEM the domain of interest, i.e., the surface Γ, is
embedded in a three-dimensional background mesh. The 3D background mesh
may consist of higher-order Lagrange elements into which the domain of interest
is completely immersed. Neither the shell surface nor the shell boundary have to
conform to the background mesh. There is one master level-set function whose
zero-isosurface implies the surface and additional slave level-set functions imply
the boundaries. The set of cut elements is labelled active mesh and is visualized
in Fig. 1.4(a) where cubic tetrahedral elements are used as an example. For the
numerical simulation, the DOFs are located at the nodes of the active mesh, which
are clearly not on the mid-surface of the shell. The corresponding shape functions
are those of the active mesh and are restricted to the trace. This means that for
the integration of the weak form, the 3D shape functions are only evaluated on
the zero-isosurface of the master level-set function. In contrast, in the Surface
FEM a boundary conforming surface mesh, see Fig. 1.4(b), is defined through an
atlas of element-wise local maps and the DOFs are located at nodes of the surface
mesh which are on the discrete mid-surface of the shell. The corresponding shape
functions are the 2D shape functions living only on the surface mesh. The location
of the DOFs and the different dimensionality of the shape functions are the most
important differences between the two finite element techniques.

3. Lastly, integration points need to be placed on the shell mid-surface for the integra-
tion of the weak form. In the case of the Trace FEM, this requires the identification
of the zero-isosurface which is not a trivial task especially when a higher-order ac-
curate integration scheme is desired [63]–[66], [100], [102], further details are given
below. Regarding the Surface FEM, standard Gauß integration rules are applicable
and mapped from the reference to the surface elements in the usual manner.

As mentioned above, the Trace FEM is a fictitious domain method and the following
three well-known implementational aspects require special attention: (i) integration of
the weak form, (ii) stabilization and, (iii) enforcement of essential boundary conditions.
Regarding the integration of the weak form, suitable integration points with higher-order
accuracy for multiple level-set functions have to be provided. Herein, the approach which
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(a) meshes in the Trace FEM (b) meshes in the Surface FEM

Fig. 1.4: Examples of employed meshes in the numerical treatment of surface PDEs. (a) The
set of cut three-dimensional background elements are labelled as active mesh and
their nodes imply the DOFs for the Trace FEM, and (b) conforming surface mesh
consisting of cubic 2D Lagrange elements for the Surface FEM.

naturally extends to multiple level-set functions as outlined by the author and coworkers
in [63]–[66] is employed. Other higher-order integration schemes for implicitly defined
surfaces with one level-set function are presented, e.g., in [100], [102]. A stabilization
of the stiffness matrix is necessary due to small supports caused by unfavourable cut
scenarios and the restriction of the 3D shape functions to the trace. An overview and
analysis of the different stabilization techniques in the Trace FEM is presented in [109]
and a recent approach where two stabilizations techniques, i.e., face stabilization of the
cut elements and the normal derivative stabilization on the zero-isosurface, are combined
is presented in [98]. Herein, the “normal derivative volume stabilization” first introduced
for scalar-valued problems in [26], [73] and for vector-valued problems in [74], [107] is
used. The advantage of this particular stabilization technique is that it is suitable for
higher-order accuracy, a straightforward implementation and a rather flexible choice of
the stabilization parameter. The essential boundary conditions need to be enforced in a
weak manner due to the fact that a strong enforcement by prescribing nodal values does
not apply (because the nodes of the background mesh are not on the shell boundary).
In principle, there are different approaches to enforce the boundary conditions weakly.
The penalty method is robust and straightforwardly implemented [6]. The main ad-
vantages are the built-in linear independence of the constraints and auxiliary fields are
not required. The drawbacks are variational inconsistence and conditioning issues. One
alternative is the Lagrange multiplier method [5], [23], [144]. Although the Lagrange
multipliers are variationally consistent, additional degrees of freedom are introduced and
the well posedness of the augmented system of equations is not guaranteed. Furthermore,
in the case of FDMs, the discretization of the Lagrange multiplier fields can become a
challenging task depending on the cut scenarios. A consistent approach without auxiliary
fields is Nitsche’s method [104]. This method has been developed to be a standard choice
in FDMs due to these advantages. The original approach from [104] has been adopted to
various applications for enforcing essential boundary conditions, see, e.g., [11], [57], [59],
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[66], [80], [120], [129] and coupling, see, e.g., [1], [77], [78], [121]. Different variants of
Nitsche’s method have been developed, i.e., the symmetric and non-symmetric version.
The first version does not change the symmetry of the discrete bilinear form. How-
ever, additional stabilization terms are required in order to recover positive definiteness
[59]. In contrast, the non-symmetric version of Nitsche’s method does not require an
additional stabilization term for imposing boundary conditions [20], [76], [78], [129].

1.4 Discretization of thin-walled structures

The focus is now shifted from numerical methods applied to generic PDEs on surfaces to
the situation of shells and membranes. For the numerical treatment of Kirchhoff-Love
shells, it is crucial to consider continuity requirements due to the variational index 2
[14]. In other words, the employed functions need to be at least in the function space
H2, which is the space of functions with square integrable first and second derivatives.
This requires continuous first derivatives across the element borders. Unfortunately, on
unstructured, general meshes it is not possible to achieve a C1-continuous discrete sur-
face in a conventional sense when local polynomials are employed as shape functions [2].
A different approach based on subdivision surfaces is presented in [33]. The complica-
tions resulting from the continuity requirements when neglecting the transverse shear
deformations are a major obstacle for conventional Surface FEM approaches. However,
employing spline-based, isogeometric formulations, the continuity requirements are easily
met. The isogeometric analysis (IGA) as proposed by Hughes et al. [34], [88], has been
applied to Kirchhoff-Love shells by Kiendl et al. [94]. The curvilinear coordinates which
are implied by the map from the parameter space to the physical space of the NURBS
patch and the high continuity are a perfect fit for the analysis of Kirchhoff-Love shells.
Other successful implementations of the Kirchhoff-Love shell model may be found, e.g.,
in [32], [33], [94], [103], [125], [135].
As mentioned above, taking transverse shear deformations into account leads to the
well-known Reissner-Mindlin shell. An advantage of this model is that the correspond-
ing variational index is 1 and only C0-continuity in a finite element analysis is required,
enabling standard Surface FEM (based on Lagrange elements). A general overview of
successful implementations of Reissner-Mindlin shells is given, e.g., in [8], [97], [142]. In
the context of IGA, Reissner-Mindlin shells are considered in, e.g., [10], [127]. Further-
more, in [46], [47] an approach with exactly calculated shell directors in the frame of IGA
is presented. Isogeometric collocation for the Reissner-Mindllin shell is presented in [95].
On the other hand, the model often suffers from locking phenomena for increasingly thin
shells which may require further measures in the numerical treatment. Hierarchical shell
formulations which efficiently eliminate transverse shear locking have been introduced
in [53], [105], [106]. A mixed displacement approach which also eliminates membrane
locking is elaborated in [13], [146].
Successful discretization of shells with FDMs are rather scarce compared to the Surface
FEM. For instance, linear membranes have been introduced for Cut FEM in [28]. A
recent pre-print where a C1-continuous Trace FEM approach for Kirchhoff-Love shells
with boundary conforming background meshes is presented in [69]. Higher-order accurate
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Trace FEM approaches are presented by the author and coworkers for linear Reissner-
Mindlin shells in [129].
Concerning structural membranes, one may employ standard Surface FEM procedures
[14]. As the equilibrium is formulated in a second-order PDE, C0-continuous discretiza-
tion of the mid-surface is sufficient. Large displacement membranes are presented in [89].
For a TDC-based modelling of large deformation membranes with the Surface FEM, we
emphasize the work in [83] and within the Trace FEM [66].

1.5 Scope and objectives of the thesis

The scope of the thesis is to reformulate classical shell and membrane models based on
the TDC and to develop a higher-order accurate numerical framework for the analysis of
explicitly and implicitly defined thin-walled structures. The mathematical and mechan-
ical modelling of shells and membranes leads to surface PDEs on manifolds embedded
in the physical space.
The classical approach of modelling shells and membranes is to formulate the PDEs
in curvilinear coordinates which are implied by a parametrization. Consequently, the
classical theory is limited to explicitly defined surfaces. Herein, the equilibrium equations
are recast in the frame of the TDC where the employed surface operators and geometric
quantities are based on the global Cartesian coordinate system. With this reformulation,
the crucial requirement of a parametrization is circumvented and the obtained BVPs in
strong and weak form are well-defined independently of the concrete surface definition.
In this sense, the reformulated shell and membrane equations are generalized and a
unified formulation for explicitly and implicitly defined structures is presented. Based
on this, the obtained BVPs may be discretized with standard Surface FEM or with
recent finite element techniques such as the Trace FEM or the Cut FEM. Moreover,
the resulting equations are formulated in symbolic notation which results in a more
compact presentation of the formulas, whereas the classical theory typically employs
index notation.
For the approximation of the PDEs on surfaces, higher-order accurate Surface and Trace
FEM are first investigated on a model problem in order to analyse the properties and
differences of the methods in a simplified setting. The implementational aspects are
described in detail. Next, the weak forms of the equilibrium equations of thin-walled
structures are discretized with the higher-order Surface and Trace FEM. The numerical
results confirm optimal higher-order accuracy of the two FEM approaches, independently
of the mechanical model and provided that the involved mechanical fields are sufficiently
smooth.
The novelty of the thesis is a complete reformulation of classical shell and membrane
models including all relevant mechanical quantities in the frame of the TDC. This enables
the unified description of the BVPs for parametric and implicit surfaces. For the first
time, a higher-order Trace FEM is applied to shells and large deformation membranes.
Numerical benchmarks, which enable higher-order convergence rates of thin-walled struc-
tures are proposed. Furthermore, the concept of residual errors in code verification is
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employed in order to perform a strict benchmarking for general test cases without the
need of reference displacements, analytical or manufactured solutions.
The contributions of the thesis have been published in the following 7 peer-reviewed
journal articles: [131], [129], [66], [127], [125], [65] [64] and 8 conference proceedings:
[130], [67], [128], [124], [126], [123], [122], [68].

1.6 Outline of the thesis

Following this introduction, Chapter 2 introduces the geometry definitions, important
geometrical quantities and the employed surface differential operators in the frame of
the TDC. In Chapter 3, discretization methods for surface PDEs are introduced. In
particular, the key ingredients such as the involved functions spaces, employed shape
functions and meshes are defined for both Surface and Trace FEM. Major implemen-
tational aspects such as (i) numerical integration, (ii) stabilization and (iii) treatment
of essential boundary conditions are elaborated and compared in detail. Furthermore,
the methodologies of Surface and Trace FEM are compared on a model problem. In
Chapter 4, we focus on the linear Kirchhoff-Love shell. The shell model is recast in the
frame of the TDC and mechanically meaningful boundary conditions are outlined. The
obtained shell model is discretized with an IGA approach (closely related to the Surface
FEM) and is successfully verified on a set of benchmarks. In Chapter 5, analogous to the
previous chapter, the Reissner-Mindlin shell theory is reformulated. The resulting BVP
is discretized with IGA for parametrized surfaces and with a higher-order accurate Trace
FEM for implicitly defined shell geometries. The discrete modelling of the rotation of
the normal vector is elaborated in detail for both situations, Surface and Trace FEM.
Benchmarks are performed with both finite element methodologies and the numerical
results confirm optimal orders of convergence for both methods provided that the in-
volved fields are sufficiently smooth. Chapter 6 extends the reformulation of BVPs to
non-linear problems. In particular, large deformation membranes within the finite strain
theory are considered in the frame of the TDC. The obtained BVP is discretized with
Surface and Trace FEM and the numerical results confirm the higher-order accuracy also
in case of non-linear problems. Finally, in Chapter 7, the present work is summarized
and future work and applications are sketched.







2 Preliminaries

This thesis is devoted to thin-walled structures such as shells and membranes. The
geometries are represented by curved surfaces in the three-dimensional space plus ad-
ditional information on the thickness. In this chapter, we first focus on the geometry
definition including all relevant quantities such as normal vectors and curvature. Next,
differential operators such as surface gradients of scalars, vectors, and tensors are defined.
Furthermore, Green’s formula on manifolds is presented. The geometric and differential
operators are formulated on the surface employing a framework where only Cartesian
base vectors are required and no curvilinear coordinates are needed. This framework is
called the tangential differential calculus (TDC), see, e.g., [41], [52], [62], [83], [125].

The major content of this chapter follows our own articles in [65], [125], [127], [129].

2.1 Geometry definition

Shells (and membranes) are thin-walled structures with thickness t, with one dimension
being significantly smaller compared to the other two dimensions. Then, the shell can
be reduced to its mid-surface Γ which is embedded in the physical space R3. In the
context of thin-walled structures, the mid-surface may also be called reference surface.
The surface represents a two-dimensional manifold in the three-dimensional space, hence,
a manifold with codimension 1.

The surface Γ shall be possibly curved, sufficiently smooth, orientable, connected and
bounded by ∂Γ. There are two fundamentally different approaches to the definition
of surfaces, explicitly and implicitly. For explicit definitions, there is a bijective map
χ(r) : Ω̂ → Γ from the parameter space Ω̂ ⊂ R2 to the real domain Γ ⊂ R3. Hence,
the surface is given by a parametrization or parametrized. In Fig. 2.1(a) an example of
a global parametrization is illustrated. As a result of the map, there exist curvilinear
coordinates on the surface giving rise to co- and contravariant base vectors and the
notation of Christoffel symbols. In the context of Surface FEM, the parametrization is
rather defined through an atlas of element-wise local maps, see Section 3.1 for details.

Alternatively, surfaces may also be defined implicitly by means of (multiple) level-set
functions following the level-set method, see Fig. 2.1(b). The important difference is
that in this case, there are no curvilinear coordinates on the surface, hence, no natural
base vectors and Christoffel symbols. However, as already seen in Fig. 2.1, the same
surface may be defined in a parametrized or implicit manner. Hence, geometry related
quantities such as normal vectors and curvature must be identical and computable in
both situations.
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Fig. 2.1: Examples of bounded surfaces Γ embedded in the physical space R3: (a) Explicitly
defined surface by a map χ(r), (b) implicitly defined surface implied by a master
level-set function φ(x) = 0 (yellow) and slave level-set functions ψi for the boundary
definition (gray).

Let there be a master level-set function φ(x) : R3 → R whose zero-isosurface defines the
(unbounded) mid-surface of the shell in R3, see Fig. 2.2(a) and 2.2(b). The boundaries
of the shell ∂Γi are defined by additional slave level-set functions ψi with i ∈ ωψ =
{1, . . . , nSlaves}, see Fig. 2.2(c), where the blue lines indicate the boundary of the shell
∂Γ. For the sake of simplicity, all slave level-set functions feature the same orientation,
i.e., positive inside the domain and negative outside. The bounded mid-surface Γ and
the boundaries ∂Γi of the shell are then defined by

Γ :=
{
φ(x) = 0 ∧ ψi(x) > 0 ∀ x ∈ R3, i ∈ ωψ

}
, (2.1)

∂Γi :=
{
x ∈ Γ̄ : ψi(x) = 0

}
, (2.2)

where Γ̄ is the closure of Γ and the union of all boundaries define ∂Γ := ∪
i∈ωψ

∂Γi.
Slave level-set functions are not necessarily needed when the master level-set function is
restricted to some bounded domain of definition Ω∗ ⊂ R3 in Eq. 2.1 rather than R3.

For any surface Γ, there exists a unit normal vector nΓ = [nx, ny, nz]T ∈ R3, see Fig. 2.1.
The representation of the normal vector depends on whether the surface is based on a
parametrization or not. In the parametrized case, the normal vector is determined by
the normalized cross-product of the tangent vectors living in the shell surface and given
by the columns of the Jacobi-matrix J(r) = ∂χ/∂r ∈ R3×2,

nΓ = [J]i1 × [J]i2
‖[J]i1 × [J]i2‖

with i = 1, 2, 3 . (2.3)

Along the boundary ∂Γ there exists the local triad (nΓ, t∂Γ,n∂Γ) consisting of the normal
vector, associated tangent vector and co-normal vector, see Fig. 2.1(a). The associated
tangent vector t∂Γ ∈ R3 is pointing along ∂Γ which can be directly obtained through the
mapping of the tangent vector t̂∂Γ in the parameter space to the physical space. The
co-normal vector n∂Γ at ∂Γ points “outwards” and is perpendicular to the boundary yet
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(a) isosurfaces of φ (b) implicit shell mid-surface

(c) some bounded shell mid-
surface

nΓnΓ
nΓnΓ

n∂Γ,1n∂Γ,1
t∂Γ,1t∂Γ,1

nΓnΓ
n∂Γ,2n∂Γ,2
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(d) normal vector and local tri-
ads

Fig. 2.2: Implicit definition of a (bounded) spherical shell: φ(x) = ‖x‖−r, ψ1(x) = x, ψ2(x) =
z. (a) The colors represent different isosurfaces of φ, (b) implicit shell mid-surface
defined by the zero-isosurface of φ, (c) definition of boundaries with additional slave
level-set functions ψ1 (purple) and ψ2 (green), and (d) normal (black), co-normal
(red) and tangent (green) vectors.

in the tangent space TpΓ. It is defined as

n∂Γ(x) = t∂Γ(x)× nΓ(x) , (2.4)

see Fig. 2.1(a). In the implicit case, the normal vector of the shell is given through the
normalized gradient of the master level-set function φ

nΓ(x) = ∇φ(x)
‖∇φ(x)‖ . (2.5)

The associated tangent vector t∂Γ,i is defined by the normalized cross product of the
corresponding slave level-set function ψi and the master level-set function φ

t∂Γ,i(x) = ∇ψi(x)×∇φ(x)
‖∇ψi(x)×∇φ(x)‖ , x ∈ ∂Γi . (2.6)

The orientation of the tangent vector t∂Γ,i is defined through the orientation of the slave
level-set function ψi. Finally, the co-normal vector, in accordance with Eq. 2.4 for the
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explicit case, is

n∂Γ,i(x) = t∂Γ,i(x)× nΓ(x) , x ∈ ∂Γi . (2.7)

For an illustration, see Fig. 2.2(d), where the normal vector nΓ and the local triad
(nΓ,n∂Γ,i, t∂Γ,i) at the boundaries are visualized for an implicitly defined spherical shell.
For the formal proof of equivalence of both geometry definitions, i.e., explicit and implicit,
we refer to, e.g., [52].

2.2 Tangential differential calculus (TDC)

The TDC provides a framework to define differential operators using the global Cartesian
coordinate system and is applicable to both explicit and implicit surface definitions. It
may be traced back to Gurtin and Murdoch in [79]. The concept of the TDC from a
more mathematical point of view is considered in detail, see, e.g., [39], [41], [42], [52],
[85], [90] and applications with a focus in engineering may be found in, e.g., [62], [81]–
[84], [125], [127]. More classical approaches to differential geometry are based on local
coordinate systems and Christoffel symbols, see, e.g., [27], [31], [138]. However, they rely
on the parametrized definition of surfaces and are not straightforwardly applicable to the
implicit definition. In this sense, the TDC-based definition of geometric and differential
operators on surfaces is more general. In the following, the employed surface operators
and other important relations and quantities needed in this work are briefly presented
in the frame of the TDC. For the sake of brevity, we restrict ourselves to the case of
surfaces embedded in the three dimensional space. However, the shown relations and
definitions may be adopted to other situations accordingly (e.g., curved lines embedded
in 2D or 3D), see, e.g., [66].

2.2.1 Projection operators

On the manifold Γ, the projection operator Q(x) ∈ R3×3 is based on the normal vector

Q(x) = nΓ(x)⊗ nΓ(x) . (2.8)

It projects an arbitrary vector v(x) : Γ→ R3 in normal direction of Γ. The operator ⊗
is the dyadic product of two vectors. There holds Q ·nΓ = nΓ, Q = QT, and Q ·Q = Q.
Instead, the projection operator P(x) ∈ R3×3 is defined as

P(x) = I−Q(x) (2.9)

and projects arbitrary vectors into the tangent space TPΓ. There holds P · nΓ = 0,
P = PT, and P ·P = P. The projection of a vector field v(x) : Γ→ R3 onto the tangent
plane is given by

vt = P · v ∈ TPΓ , (2.10)
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where vt is tangential, i.e., vt · nΓ = 0. The double projection of a second-order tensor
function A(x) : Γ→ R3×3 leads to an in-plane tensor and is defined as

At = P ·A ·P ∈ TPΓ , (2.11)

with the properties At = P ·At ·P and At · nΓ = nT
Γ ·At = 0.

2.2.2 Differential operators

Tangential gradient of scalar-, vector-, tensor-valued functions

The tangential gradient ∇Γ of a scalar-valued function u(x) : Γ→ R on the manifold is
defined as

∇Γu(x) = P(x) · ∇ũ(x) , ∇Γu(x) ∈ R3×1 , x ∈ Γ , (2.12)

where ∇ is the standard gradient operator in the physical space and ũ is a smooth
extension of u in a neighbourhood U of the manifold Γ (note that the particular choice
of extension does not affect the tangential gradient [41]). Alternatively, ũ is given as
a function in global coordinates ũ(x) : R3 → R and only evaluated at the manifold
ũ|Γ = u.

For parametrized surfaces defined by the map χ(r), and a given scalar function u(r) :
Ω̂ → R, the tangential gradient can be determined without explicitly computing an
extension ũ using

∇Γu(x) = J+(r) · ∇ru(r) , (2.13)

with x = χ(r) and J+ = J·G−1 ∈ R3×2 is the Moore–Penrose inverse of J and G = JT ·J
is the metric tensor or the first fundamental form. The operator ∇r is the gradient with
respect to the reference coordinates. The components of the tangential gradient are
denoted by

∇Γu =



∂Γ
xu
∂Γ
y u
∂Γ
z u


 =



uΓ
,x

uΓ
,y

uΓ
,z


 , (2.14)

representing first-order partial tangential derivatives. An important property of ∇Γu is
that the tangential gradient of a scalar-valued function is in the tangent space of the
surface ∇Γu ∈ TPΓ, i.e., ∇Γu · nΓ = 0. When using the Surface FEM, see Section 3.1,
to solve BVPs on surfaces, one may use Eq. 2.13 to compute tangential gradients of the
shape functions. If, on the other hand, the Trace FEM is used, see Section 3.2, one may
employ Eq. 2.12.

Consider a vector-valued function v(x) : Γ→ R3 and apply to each component of v the
tangential gradient for scalars. This leads to the directional gradient of v and is defined
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as

∇dir
Γ v(x) = ∇dir

Γ



vx(x)
vy(x)
vz(x)


 =



∂Γ
xvx ∂Γ

y vx ∂Γ
z vx

∂Γ
xvy ∂Γ

y vy ∂Γ
z vy

∂Γ
xvz ∂Γ

y vz ∂Γ
z vz


 . (2.15)

Note that the directional gradient is not in the tangent space of the surface, in general. A
projection of the directional gradient to the tangent space leads to the covariant gradient
of v and is defined as

∇cov
Γ v = P · ∇dir

Γ v (2.16)

which is an in-plane tensor, i.e., ∇cov
Γ v ∈ TPΓ. The covariant gradient often appears

in the modelling of physical phenomena on manifolds, i.e., in the governing equations.
In contrast, the directional gradient appears naturally in product rules or divergence
theorems on manifolds.

For a second-order tensor function A(x) : Γ → R3×3, the partial directional gradient
with respect to xi is defined as

∇dir
Γ,iA = ∂Γ

xi
A =



∂Γ
xi
A11 ∂Γ

xi
A12 ∂Γ

xi
A13

∂Γ
xi
A21 ∂Γ

xi
A22 ∂Γ

xi
A23

∂Γ
xi
A31 ∂Γ

xi
A32 ∂Γ

xi
A33


 , (2.17)

with i = 1, 2, 3. The directional gradient of the tensor function is then defined as

∇dir
Γ A =

(
∇dir

Γ,1A ∇dir
Γ,2A ∇dir

Γ,3A
)
. (2.18)

The covariant partial derivative is determined by projecting the partial directional deriva-
tive onto the tangent space

∇cov
Γ,iA = P · ∇dir

Γ,iA ·P . (2.19)

Second-order tangential derivatives

Next, second-order derivatives of scalar-valued functions are considered. The directional
second-order gradient of a scalar function u is defined by

[
Hedir

]
ij

(u(x)) = ∂Γ, dir
xj

(
∂Γ
xi
u(x)

)
= udir,ji ,

Hedir(u(x)) =



∂Γ
xxu ∂Γ

yxu ∂Γ
zxu

∂Γ
xyu ∂Γ

yyu ∂Γ
zyu

∂Γ
xzu ∂Γ

yzu ∂Γ
zzu


 = ∇dir

Γ (∇Γu(x)) , (2.20)

where Hedir is the directional Hessian matrix which is not symmetric in the case of
curved manifolds [41], i.e., udir,ij 6= udir,ji . For the case of implicitly defined surfaces and a
given scalar function in the physical space, Hedir can be directly computed by employing
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the relation from Eq. A.37

Hedir(u(x)) = ∇dir
Γ (∇Γu(x)) = ∇dir

Γ (P · ∇ũ)
=
[
∇dir

Γ,1P · ∇ũ ∇dir
Γ,2P · ∇ũ ∇dir

Γ,3P · ∇ũ
]

+∇cov
Γ ∇ũ .

(2.21)

For the case of parametrized surfaces and a given scalar function in the reference space,
the directional Hessian-matrix can be determined by

Hedir(u) = ∇dir
Γ

(
J+ · ∇ru

)

=
[
J+
,r · ∇ru J+

,s · ∇ru
]
· J+T + J+ · ∇r (∇ru) · J+T

,
(2.22)

where J+
,ri

denotes the partial derivative of J+ with respect to ri. The covariant coun-
terpart is

Hecov(u) = ∇cov
Γ (∇Γu) = P · ∇dir

Γ (∇Γu) = P ·Hedir(u) . (2.23)

In contrast to Hedir, Hecov is symmetric and an in-plane tensor [138]. In the special
case of flat surfaces embedded in R3, the directional and covariant Hessian matrices are
equal.

Tangential divergence operators

The divergence operator of a vector-valued function v(x) : Γ→ R3 is given as

divΓv(x) = ∇dir
Γ · v(x) = tr

(
∇dir

Γ v(x)
)

= tr (∇cov
Γ v(x)) (2.24)

and the divergence of a matrix or tensor-valued function A(x) : Γ→ R3×3, is

divΓA(x) =



divΓ [A11, A12, A13]
divΓ [A21, A22, A23]
divΓ [A31, A32, A33]


 . (2.25)

Note that divΓA is, in general, not a tangential vector. It is only tangential if the surface
is flat and A is an in-plane tensor.

Weingarten map and curvature

The Weingarten map is defined as [41], [90]

H = ∇dir
Γ nΓ = ∇cov

Γ nΓ (2.26)

and is related to the second fundamental form in differential geometry. The Weingarten
map is a symmetric, in-plane tensor and its two non-zero eigenvalues are associated with
the principal curvatures

κ1,2 = − eig(H) . (2.27)
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The minus in Eq. 2.27 is due to fact that the Weingarten map is defined with the
“outward” unit normal vector instead of the “inward” unit normal vector, which leads
to positive curvatures of a sphere and is, in general, a matter of definition. The third
eigenvalue is zero, because H is an in-plane tensor. The corresponding eigenvectors t1, t2
and nΓ are perpendicular as H is symmetric. In Fig. 2.3, the osculating circles with the
radii ri = 1/κi and the eigenvectors at a point P are shown.

r1r1

r2r2

t1

t2

nΓ

PP

y

z

x

Fig. 2.3: Osculating circles (blue, red) and eigenvectors (t1, t2, nΓ) of H at point P on a
surface embedded in R3.

The Gauß curvature is defined as the product of the principal curvatures K = ∏2
i=1 κi

and the mean curvature is introduced as κ = tr(H) = −(κ1 + κ2).

Divergence theorems in terms of tangential operators

The divergence theorem or Green’s formula for a scalar-valued function f ∈ C1(Γ) and
a vector-valued function v ∈ C1(Γ)3 are defined as in [39], [41]

∫

Γ
f divΓv dA = −

∫

Γ
∇Γf · v dA+

∫

Γ
κf (v · nΓ) dA

+
∫

∂Γ
fv · n∂Γ ds ,

(2.28)

where C1(Γ) is the space of functions on Γ which are at least once continuously differ-
entiable. The term with the mean curvature κ is vanishing if the vector v is tangential,
then v · nΓ = 0. In extension to Eq. 2.28, Green’s formula for second-order tensor
functions A ∈ C1(Γ)3×3, is

∫

Γ
v · divΓA dA = −

∫

Γ
∇dir

Γ v : A dA+
∫

Γ
κ v · (A · nΓ) dA

+
∫

∂Γ
v · (A · n∂Γ) ds ,

(2.29)

where ∇dir
Γ v : A = tr(∇dir

Γ v · AT) and : is the contraction operator. In the case of
in-plane tensors, i.e., At = P ·At ·P, the term with the mean curvature κ vanishes due
to At · nΓ = 0 and we also have ∇dir

Γ v : At = ∇cov
Γ v : At. In addition, a summary of

product rules, useful relations and properties of important quantities which are employed
in the following chapters, are presented in Appendix A.







3 Discretization and numerical
methods for surface PDEs

Many challenging applications in engineering and natural sciences are characterized by
physical phenomena taking place on curved surfaces in the physical space. The mod-
elling of such phenomena naturally leads to boundary value problems (BVPs) where
partial differential equations (PDEs) are formulated on manifolds. For the solution of
such models, customized numerical methods are needed which discretize the continuous
weak forms of the particular problem. In principle, there are two fundamentally different
finite element approaches, i.e., the Surface FEM and the Trace FEM, which are outlined
in the following. The key ingredients for both approaches are defined with emphasis
on the numerical integration, stabilization and enforcement of essential boundary condi-
tions. The two introduced finite element approaches are applied to a model problem to
investigate the performance and the properties of the methods.
The major content of this chapter follows our own articles in [65], [129].

3.1 Surface FEM

The Surface FEM as described in [42], [52] is the classical approach for the approxi-
mation of BVPs on manifolds. It was first proposed by Dziuk [49] for heat flows on
curved surfaces. In the approximation of shells and membranes, it became the standard
approach [14], [30], [31], even, until the Trace FEM was recently proposed, the only
available FEM-approach [28], [66], [129].
The starting point for the outline of the Surface FEM is a discretization of the domain
of interest based on a surface mesh in R3, see Fig. 3.1(a), composed by (curved) two-
dimensional finite elements. Each element implies a piecewise parametrization of the
surface and is thus inherently linked to the classical definition of shell BVPs based on
curvilinear coordinates.
In the following, the major ingredients of the Surface FEM are defined: (i) the test and
trial function spaces, (ii) higher-order accurate quadrature of the weak form, and (iii)
enforcement of essential boundary conditions.

3.1.1 Function spaces

As mentioned above, in the context of the Surface FEM, the domain is typically defined
through an atlas of element-wise local maps. Let there exist a map χT : T̄ → T ∩ Γ
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from the 2D reference element T̄ to the physical element T with the properties χT ∈
C l(T̄ ,R3), χ is bijective and rank ∇χ = 2 on T̄ . C l is the space of l-times continuously
differentiable functions. The map χT is called a local parametrization and χ−1

T is labelled
local chart. The set of all local parametrizations is denoted as τχ. The union of all local
parametrizations leads to a C l-atlas of element-wise local maps and defines Γ := ∪χ∈τχχ,
see Fig. 3.1(a). The local maps are often defined as χT (r) := ∑

iNi(r)·xi, r ∈ T̄ , xi ∈ T

s

r
T̄̄T

χT : T̄ → TχT : T̄ → T

(a) atlas of local parametrizations (b) surface mesh and DOFs (c) integration points in the
physical elements

Fig. 3.1: Example of a parametrized surface Γh: (a) Collection of local parametrizations
χT ∈ τχ, (b) conforming surface mesh consisting of quadrilateral, cubic 2D La-
grange elements with black dots being the nodes, and (c) integration points for the
Surface FEM obtained by standard Gauß-Legendre integration rules.

being nodal coordinates. Associated to the reference element, there is a fixed set of basis
functions {Nk

i (r)}, with i ∈ ω̂ = {1, . . . , nnodes}, where nnodes are the number of nodes
per element. The basis functions are the Lagrange basis functions, i.e., Nk

i (rj) = δij and
Nk
i (r) ∈ Pktri(T̄ ) or Qk(T̄ ), where Pktri

(
T̄
)
is the polynomial basis in a triangular element

and Qk

(
T̄
)
in a quadrilateral element, both being of complete order k. The set τΓ of

all surface elements T defines the surface mesh Γh := ∪T∈τΓT . The employed Lagrange
basis functions are C∞(T̄ ) inside the elements but only C0(Γh). Therefore, the discrete
surface Γh is defined through a C0-atlas, i.e., Γh ∈ C0 across the element edges. Based
on that, a general finite element space on Γh with the polynomial degree k is defined
by

QkΓ,h =
{
uh ∈ C0

(
Γh
)
| uh ◦ χT ∈ Pktri

(
T̄
)
orQk

(
T̄
)
, T ∈ τΓ

}
⊂ H1(Γh), (3.1)

where H1 is the Sobolev space of functions with square integrable first derivatives. In
order to further specify the employed finite element functions, the connectivity of the
mesh needs to be discussed. The nodes of the surface mesh are labelled as j ∈ ω =
{1, . . . , n} with n being the total number of nodes in the mesh. The set of elements
T which share the same node j is labelled as τj and the corresponding reference node
numbers are uniquely defined by i = i(T, j) ∈ ω̂, T ∈ τj, j ∈ ω. The nodal basis functions
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Mk
j (x) which span the function space QkΓ,h are then defined as

Mk
j (x) =




Nk
i (χ−1

T (x)) for x ∈ T, T ∈ τj, i = i(T, j)
0 for x ∈ Γh\ ∪T∈τj T

, j ∈ ω . (3.2)

Note that τj is the support of the shape functionMk
j (x). Employing the same order k for

the mapping χT and the shape functions Mk
j (x) leads to the well-known isoparametric

concept and every function uh ∈ QkΓ,h takes the form

uh(x) =
n∑

j=1
Mk

j (x)ûj, x ∈ Γh, ûj ∈ R , (3.3)

where ûj are the nodal values. Later on, in the analysis, the nodal values imply the
degrees of freedom (DOFs) and are directly located at the nodes of the elements T ∈ Γh,
see Fig. 3.1(b). For further information regarding the definition of higher-order surface
finite element spaces, we refer to [42], [52], [93].

3.1.2 Higher-order accurate quadrature on parametrized surfaces

Secondly, for the higher-order accurate numerical integration of the discrete weak form in
the Surface FEM, one may employ the same numerical integration schemes, e.g., Newton-
Cotes, Gauß-Legendre, which are applied in standard 2D finite element applications, see,
e.g., [144]. The only difference compared to the flat case results from the mapping χT .
In particular, the integration points and weights are mapped from the 2D reference
element T̄ to the physical element T which is embedded in R3. In detail, the integration
points in the reference element x̄IP,i ∈ T̄ are mapped to the physical element T with
xIP,i = χT (x̄IP,i) ∈ T , i = 1, . . . , nQ being the number of integration points per element.
The integration weights w̄i are mapped with wi = w̄i · det(G(x̄IP,i)), with G = JT · J
being the first fundamental form. In Fig. 3.1(c), the mapped integration points (red
points) on the surface Γh and the integration points on the boundary (blue points) are
visualized. For further details regarding the numerical integration of explicitly defined
surfaces, we refer to, e.g., [144].

3.1.3 Essential boundary conditions

Lastly, in the Surface FEM, the essential boundary conditions may be, in principle,
enforced in a strong sense by directly prescribing nodal values or in a weak sense by
modifying the weak form with additional constraints. The major advantages of the
strong enforcement are its simplicity in the implementation, consistency and robustness.
On the other hand, one of the disadvantages is that the strong enforcement is limited to
interpolatory shape functions and less complex boundary conditions. For instance, if the
boundary conditions of a Kirchhoff plate or Kirchhoff-Love shell are to be strongly en-
forced and a standard displacement-based formulation is employed, it is only possible to
directly prescribe the displacements, and the rotations along the possibly curved Dirichlet
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boundary are not accessible, in general. Furthermore, it is not possible to enforce rotated
supports in a certain direction. Therefore, the strong enforcement of essential boundary
conditions in the context of thin-walled structures is limited to simple cases. Enforcing
the essential boundary conditions weakly overcomes this limitation, and all physically
meaningful boundary conditions may be enforced. However, the implementational effort
increases depending on the particular method and special attention regarding the sta-
bility and consistency is required. A detailed discussion of different strategies of weakly
imposed essential boundary conditions is presented in Section 3.2.4 and a comparison of
these different approaches is presented on a model problem in Section 3.3.2.

3.2 Trace FEM

The recently proposed Trace FEM [108], [110], [119] may be seen as a fictitious domain
method for surface PDEs, where the domain of interest is completely immersed in a
background domain ΩB ⊂ R3. Usually, this approach is related to implicit surface
definitions and a parametrization of Γ is neither available nor needed. In the context
of thin-walled structures, the domain of interest is the implicitly defined mid-surface Γ.
For examples of discretizations of surface PDEs with a trace finite element approach we
refer to, e.g., [72], [74], [108]–[110], [119], [124], [129]. Just as for the Surface FEM, it
remains to define for the Trace FEM, (i) the employed function spaces which are provided
by the 3D background mesh and require stabilization, (ii) the integration of the weak
form, and (iii) the enforcement of boundary conditions. The situation is closely related
to general discussions of fictitious domain methods where stabilization, integration and
enforcement of boundary conditions in the presence of cut elements also pose a major
challenge for the successful realisation.

(a) background mesh ΩB (b) active background mesh
ΩΓ

h

(c) cut element T

Fig. 3.2: (a) Generic background mesh consisting of higher-order tetrahedral Lagrange ele-
ments which completely immerses the surface Γ, (b) active mesh consisting only of
cut elements (black edges), and (c) degrees of freedom and intersection with the
implicitly defined mid-surface (blue surface) for one specific active element.
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3.2.1 Function spaces

Firstly, a background mesh ΩB into which the domain of interest is completely immersed
is generated, see Fig. 3.2(a). Without loss of generality, the mesh can be defined by a set
τB of 3D elements and is not restricted to a certain element type. Herein, the background
mesh consists of tetrahedral elements T of complete order k ≥ 1. The background mesh
is then defined by ΩB := ∪

T∈τB
T ∈ C0.

The finite element function space of the background mesh ΩB is implied by the three-
dimensional elements rather than two-dimensional as for the Surface FEM. Associated
to the reference element T̄ , there is a fixed set of basis functions {Nk

i (r)}, with i =
1, . . . , nnodes being the number of nodes per element. The shape functions are Lagrange
basis functions, i.e., Nk

i (rj) = δij and Nk
i (r) ∈ Pktet(T̄ ), where Pktet(T̄ ) is the polynomial

basis for 3D tetrahedral Lagrange elements of complete order k. With an atlas of element-
wise local maps from the 3D reference element to the 3D physical elements χT : T̄ → T ,
with χT (r) := ∑

iN
k
i (r)xi, r ∈ T̄ , xi ∈ T , where xi are the nodal coordinates, a general

finite element space is then defined as

QkΩB,h
:=
{
vh ∈ C0(ΩB) | vh ◦ χT ∈ Pktet

(
T̄
)
, T ∈ τB

}
⊂ H1(ΩB) . (3.4)

Analogously as above, this space is spanned by the nodal basis {Mk
j (x)} with the shape

functions of the 3D elements and employing the isoparametric concept, every function
vh ∈ QkΩB,h

takes the form

vh(x) =
n∑

j=1
Mk

j (x)v̂j, x ∈ ΩB, v̂j ∈ R . (3.5)

Next, the implicitly defined surface Γ is defined by a master level-set function φ plus
additional slave level-set functions ψi for the boundary, see Section 2.1. The continuous
level-set functions (φ, ψi) are interpolated by the shape functions {Mk

l (x)} of the back-
ground mesh based on their nodal values, i.e., φ̂i = φ(xi), ψ̂j,i = ψj(xi). This means that
the level-set data is only needed at the nodes of the background mesh ΩB. The discrete
shell mid-surface Γh is then implied by φh and the discrete boundaries of the shell ∂Γh
may be defined either through the discrete slave level-set functions ψhi or the boundary
of the background mesh. In the following, the discrete boundary is only defined with
additional slave level-set functions, otherwise the overall approach would be limited to a
boundary conforming background mesh. The discrete normal vector nhΓ and the discrete
local triad at the boundaries (nhΓ,nh∂Γ, t

h
∂Γ) are evaluated on the discrete zero-isosurface

of φh. For the computation of the normal vector and local triads, one may employ the
exact gradients of the level-set functions (φ, ψi) or, alternatively, the interpolated level-
set functions (φh, ψhi ). Herein, the latter approach based on the interpolated level-set
data is used, resulting in

nhΓ(x) = ∇φh(x)
‖∇φh(x)‖ , t

h
∂Γ,i(x) = ∇ψhi (x)×∇φh(x)

‖∇ψhi (x)×∇φh(x)‖ , n
h
∂Γ,i = th∂Γ,i(x)× nhΓ(x) ,

(3.6)
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where x ∈ Γh ∪ ∂Γh. The projectors P and Q are then computed by means of the
discrete normal vector nhΓ. Consequently, the gradients of (φh, ψhi ) are not exact and
an additional source of error is added. However, the level-set functions are interpolated
using quasi-uniform, higher-order background elements and it is shown in the numerical
results in Section 5.3 and Section 6.3 that optimal convergence rates are achieved. Thus,
the additional error caused by employing interpolated rather than exact level-set data is
often acceptable.
The set of elements with a non-empty intersection with Γh is denoted by τΓ

Ω,h and defines
the active mesh ΩΓ

h := ∪
T∈τΓ

Ω,h

T ⊂ ΩB , see Fig. 3.2(b). The definition of the active mesh

is a crucial task, because the nodes of the active mesh imply the degrees of freedom
(DOFs) in the numerical simulation. As an example, the nodes of the red element in
Fig. 3.2(b) and the intersection with the zero-isosurface of the master level-set function
are visualized in Fig. 3.2(c).
Lastly, the Trace FEM function space Th is established by the restriction of a “higher-
dimensional finite element space” of the active mesh ΩΓ

h to the discrete zero-isosurface
Γh. The finite element space of the active mesh QkΩΓ

h
is defined in a similar manner as

QkΩB,h
in Eq. 3.4, but contains only cut background elements. A general Trace FEM

function space Th is then defined as

Th =
{
vh ∈ QkΩΓ

h
: vh|Γh ∈ H1(Γh)

}
⊂ H1(ΩΓ

h) . (3.7)

As mentioned above, the Trace FEM is a fictitious domain method and, compared to
standard surface finite element approaches, see Section 3.1, three well-known challenges
arise which are further outlined below: (i) integration of the weak form on the discrete
zero-isosurface and its boundaries, (ii) stabilization of the stiffness matrix due to the
restriction of the shape functions to the trace and small supports due to unfavourable
cut scenarios and (iii) the enforcement of essential boundary conditions. In the following,
these challenges are addressed in detail enabling a higher-order Trace FEM approach.

3.2.2 Higher-order accurate integration in cut background elements

The numerical integration of the domain of interest, i.e., the zero-isosurface of φh, is a
non-trivial task, in particular with higher-order accuracy. Herein, we employ the inte-
gration strategy as outlined by the author and coworkers in [63]–[66]. An adoption of
this approach in the context of finite cell methods and spline based boundary represen-
tations is reported in [134]. The advantages of this approach are an optimal higher-order
accurate integration and a natural extension to multiple level-set functions. In this ap-
proach, the placement of the integration points on the discrete zero-isosurface is based
on a higher-order accurate, recursive reconstruction in the cut reference element. That
is, the surface is reconstructed by higher-order surface elements. It is important that the
reconstructed surface elements are only used for the generation of integration points in
the 3D reference element and may be interpreted as an integration cell. In Fig. 3.3, an
overview of the procedure is illustrated. The yellow surface is the implicitly defined zero-
isosurface of φh and is restricted by additional slave level-set functions ψhi (green and
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purple surfaces). In Fig. 3.3(b), the cut scenario and integration points in the reference
space of the red element from Fig. 3.3(a) are visualized. In Fig. 3.3(c), the integration
points in the physical domain (red) and on the boundaries (blue) are shown. For further
information and details, we refer to [63], [64].

(a) active background elements (b) integration points in refer-
ence element

(c) integration points in physi-
cal elements

Fig. 3.3: (a) Active, (black) elements in a background mesh are intersected by Γh, (b) in-
tegration points in one 3D reference element based on a (recursive) decomposition
w.r.t. the master level-set function φh and further restriction to the slave level-set
functions ψhi , and (c) integration points in the physical domain (red points) and
integration points on the boundary (blue points) ∂Γh.

Alternatively, a numerical integration scheme which is also suitable for higher-order is
presented in [100]. The numerical integration is based on a higher-order accurate lift of a
linear reconstruction of the zero-isosurface. However, the extension to multiple level-set
functions, where the zero-isosurface of the master level-set function is restricted with
additional slave level-set functions has not been addressed so far. A different approach
which does not rely on decompositions is based on moment fitting and is presented for
implicit surfaces in [102]. In a recent contribution this approach has been efficiently
applied to non-linear 2D and 3D problems in [18].

3.2.3 Stabilization

Due to the restriction of the shape functions to the trace, see Eq. 3.7, the shape functions
on the manifold only form a frame, which is, in general, not a basis [109], [119]. In
Fig. 3.4, the consequences of the restriction to the trace of the manifold is visualized
for a simple example: Let us consider a 1D manifold (blue line) embedded in three bi-
linear, quadrilateral 2D elements, see Fig. 3.4(a). Furthermore, a constant function on
the manifold (black line) shall be interpolated based on the nodal values of the active
background mesh. As shown in Fig. 3.4(b), the choice of the nodal values in order to
interpolate the function on the manifold is not unique. In particular, three different
configurations, which share the same values on the manifold are visualized. Therefore,
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(a) overview (b) interpolation (c) stabilization

Fig. 3.4: Background meshes do not uniquely define a (constant) function on the zero level-
set: (a) The black line is a constant, scalar-valued function on the manifold (blue
line), which is embedded in three, bi-linear quadrilateral background elements, (b)
different possibilities for the interpolation of the function on the manifold (trace), and
(c) the stabilization adds a constraint in normal direction of the manifold resulting
in a unique interpolation (red surface).

a suitable stabilization term needs to be added to the discrete weak form, otherwise the
obtained linear system of equations does not have a unique solution w.r.t. the nodal
values. In addition to the restriction, depending on unfavourable cut scenarios of cut
background elements, unbounded small contributions to the stiffness matrix may occur,
which causes an ill-conditioned system of linear equations.

The used stabilization technique addresses both issues and is introduced for scalar-valued
problems in [26], [73]. This stabilization technique is called “normal derivative volume
stabilization”. In [74], [107], the stabilization is applied to vector-valued problems. The
stabilization term added to each unknown field in the discrete weak form is

sh(uh,vh) := ρ
∫

ΩΓ
h

(
∇uh · ne,hΓ

)
·
(
∇vh · ne,hΓ

)
dV , (3.8)

where ne,hΓ (x) = ∇φh(x)
‖∇φh(x)‖ ,x ∈ ΩΓ

h is a sufficiently smooth extension of the normal vector
nhΓ at the zero-isosurface of φh. It is noteworthy, that the integral is performed over the
whole active background mesh and is not restricted to the trace. However, the integrand
is sufficiently smooth and, therefore, a standard numerical integration scheme w.r.t. the
active elements is applicable, i.e., a standard 3D Gauß-Legendre rule. By adding this
constraint to the linear system of equations, the resulting system features a unique
solution, see Fig. 3.4(c). It is recommended in [73] that the stabilization parameter shall
be chosen within the following range

h . ρ . h−1 , (3.9)

where h is the element size of the elements in the active mesh. This stabilization tech-
nique is suitable for higher-order shape functions, does not change the sparsity pattern
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of the stiffness matrix, and only first-order derivatives are needed. In addition, the im-
plementation is straightforward and the choice of the stabilization parameter is rather
flexible. Other stabilization techniques are presented in [26], [109]. A recent approach
where two stabilization techniques, i.e., face stabilization of the cut elements and the
normal derivative stabilization on the zero-isosurface, are combined is presented in [98].

3.2.4 Essential boundary conditions

As outlined in [66], the enforcement of essential boundary conditions is a challenging
task in FDMs and, hence also in the Trace FEM, due to the fact that it is not possible
to directly prescribe nodal values of the active background elements. The situation in
the case of shells may be quite delicate due to complex boundary conditions, e.g., mem-
brane support, symmetry support, clamped edges, etc., and, therefore, the treatment of
boundary conditions requires special attention.

A popular strategy for weakly enforcing essential boundary conditions is the penalty
method [6]. The main advantages of the penalty method are the built-in linear indepen-
dence of the constraints which maintains the positive definiteness of the stiffness matrix
and the straightforward implementation. On the other hand, the overall approach is vari-
ationally inconsistent and suffers from the interplay between the accuracy and violation
of the constraint conditions, in particular if optimal higher-order convergence rates are
desired. In addition, the conditioning of the stiffness matrix may cause further compli-
cations. One alternative is the Lagrange multiplier method [5], [23], [144]. Although the
Lagrange multipliers are variationally consistent, additional degrees of freedom are intro-
duced and the well posedness of the augmented system of equations is not guaranteed.
Furthermore, in the context of fictitious domain methods (FDMs) the discretization of
the Lagrange multiplier fields may become a cumbersome task depending on the cut
scenarios.

As an alternative approach, Nitsche’s method [104] has been developed to be a standard
choice in FDMs because Nitsche’s method is variationally consistent, suitable for higher-
order and does not require the discretization of auxiliary fields. The original approach
from [104] has been adopted to various applications for enforcing essential boundary
conditions, see, e.g., [11], [57], [59], [66], [80], [120], [129] and coupling, see, e.g., [1],
[77], [78], [121]. In principal, there are two different versions of Nitsche’s method. The
symmetric version of Nitsche’s method requires an additional stabilization to ensure
positive definiteness [59]. The choice of the stabilization parameter is rather crucial
because if it is too large, the overall approach degenerates to a penalty method and,
otherwise, the stability is lost [35], [78]. In contrast, the non-symmetric version of
Nitsche’s method does not require an additional stabilization term for imposing boundary
conditions [20], [76], [78]. The weak points of the non-symmetric version are that the
resulting system of equations is not symmetric and the theoretical error estimates in the
L2-norm of the primal variables are suboptimal [3], [20]. Nevertheless, we prefer the non-
symmetric version of Nitsche’s method because the obtained results are, in fact, optimal
(also in the L2-norm similar to the results in [20], [121]) and the absence of an additional
stabilization term compared to the symmetric Nitsche method is very beneficial. It is
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noted that, a direct solver is employed herein, and, therefore, the non-symmetry of the
system of equations does not pose any problems. A detailed comparison of these different
approaches is presented for a model problem in Section 3.3.2.

3.3 Comparison of Surface FEM and Trace FEM

In this section, the above introduced finite element approaches, i.e., Surface FEM and
Trace FEM, are compared based on a simple model problem: the Poisson’s equation
on surfaces [49], [65]. In particular, the accuracy of the numerical integration, accuracy
w.r.t. degrees of freedom, convergence behaviour and the treatment of essential boundary
conditions is elaborated in detail.

The complete boundary value problem in strong form for the Poisson equation, formu-
lated in the frame of the TDC, on a surface Γ embedded in R3 states that we seek
u : Γ→ R such that:

−∆Γu = f on Γ, (3.10a)
u|∂ΓD = ĝ on ∂ΓD, (3.10b)

n∂Γ · ∇Γu|∂ΓN = t̂ on ∂ΓN, (3.10c)

where ∆Γu = divΓ(∇Γu) and f ∈ L2(Γ) is a source function. In case of bounded surfaces,
the boundary ∂Γ is divided into two non-overlapping parts, i.e., the Dirichlet boundary
∂ΓD and the Neumann boundary ∂ΓN. For a closed (compact) manifold, where no
boundary exists, one needs an additional condition for the problem to be well-posed.
Therefore, typically the zero mean constraint is imposed,

∫

Γ
u ds = 0. (3.11)

In the classical approach, employing curvilinear coordinates, the Laplace-Beltrami oper-
ator is defined as [52]

∆Γu(χ(r)) = 1√
det(G(r))

2∑

i,j=1

∂

∂rj

(
Gij(r)

√
det(G(r)) ∂u

∂ri
(r)

)
, (3.12)

where r = [r1, r2]T are coordinates in the parameter space, G is the first fundamental
form, see Section 2.2.2 andGij is the contravariant form of G = [Gij] with [Gij] = G−1. It
is readily seen that this definition in the classical approach is only applicable to explicitly
defined surfaces where a parametrization is available. In addition, the contravariant
entries of the first fundamental form are needed explicitly. Despite the restriction to
parametrized surfaces the overall notation appears to be more cumbersome in comparison
to the equivalent operators in the frame of the TDC, see Section 2.2.2. Following this
rationale, the formulation of the surface operators in curvilinear coordinates does not
provide concrete advantages and, therefore, only the formulation in the frame of the
TDC is employed herein.
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The strong form is converted to the weak form employing the Galerkin-Bubnov method.
In detail, Eq. 3.10a is multiplied with a suitable test function v, which will be specified
below, and integrated over the domain Γ. Employing Eq. 2.28, the continuous weak form
of the Poisson problem is achieved: Find u ∈ Vg such that

∫

Γ
∇Γv · ∇Γu dA =

∫

Γ
vf dA+

∫

∂ΓN
vt̂ ds ∀v ∈ V0 , (3.13)

with

Vg =
{
u ∈ H1(Γ) : u|∂ΓD = ĝ

}
, (3.14)

V0 =
{
v ∈ H1(Γ) : v|∂ΓD = 0

}
for manifolds with boundary, (3.15)

V0 =
{
v ∈ H1(Γ) :

∫

Γ
v ds = 0

}
for closed manifolds. (3.16)

The existence and uniqueness of the solution of the BVP is shown in [25], [52]. In case
of compact manifolds, the zero mean constraint is enforced by a Lagrange multiplier.

In the following, the continuous weak form is discretized with the Surface and the Trace
FEM. For the comparison of the two finite element approaches, two numerical experi-
ments are performed. In detail, in the convergence analyses, the following error measures
are employed

εΓ := |
∫

Γh 1dA− ∫Γ 1dA|
∫

Γ 1dA . . . area error , (3.17)

ε∂ΓD :=
| ∫∂ΓhD

1ds− ∫∂ΓD
1ds|

∫
∂ΓD

1ds . . . boundary error , (3.18)

ε2
L2 :=

∫
Γh(uh − uex)2 dA
∫

Γh u
2
ex dA . . . L2-error , (3.19)

ε2
H1 :=

∫
Γh(uh − uex)2 +∑3

i=1

(
∂Γ
i u

h − ∂Γ
i uex

)2
dA

∫
Γh u

2 +∑3
i=1(∂Γ

i uex)2 dA . . . H1-error , (3.20)

ε2
res :=

∑

T∈τ

∫
T

(
∆Γu

h + f
)2

dA
∫
T f

2 dA . . . residual error , (3.21)

ε2
L2,∂ΓhD

:=
∫
∂ΓhD

(uh − ĝ)2 ds
∫
∂ΓhD

ĝ2 ds . . . error in DirBCs , (3.22)

where the subscript “ex” indicates the analytical (exact) solution. The first two error
measures, i.e., Eqs. 3.17 and 3.18, are the integration error w.r.t. the surface and Dirichlet
boundary. Eqs. 3.19 and 3.20, are the classical relative L2- and H1-errors with the
experimental orders of convergence (EOC) O(p+1) and O(p), where p is the polynomial
order of the trial and test functions w.r.t. the element size h. Next, Eq. 3.21 is the
residual error, which measures the summed element-wise L2-error in the strong form. It
is noteworthy, that for the evaluation of the residual error of the Poisson equation, second-
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order derivatives are required. Therefore, only convergence of higher-order elements with
p ≥ 2 can be expected and the EOC is O(p − 1). However, this error measure enables
a rigorous verification of the proposed approach and only requires a sufficiently smooth
solution. The concept of residual errors may be particularly useful in situations where
an analytical solution is not available, for instance in case of complex geometries or when
more challenging PDEs are considered so that analytical solutions are hardly available,
see, e.g., [62], [66], [125], [127], [129]. Lastly, in Eq. 3.22, the L2-error in the Dirichlet
boundary conditions (DirBCs) is computed. This error measure may be interesting when
different methods of weak enforcement of essential boundary conditions are compared.

3.3.1 Example 1: Compact manifold

In the first example the Poisson equation is solved on a full torus, i.e., compact manifold,
and is taken from [26], [72]. The problem is defined in Fig. 3.5. The yellow surface is the
torus and is denoted by Γ which is either defined by a parametrization x(φ, θ) : Ω̂→ Γ
or implicitly by the zero-isosurface of φ, i.e., Γ = {x ∈ R3 : φ(x) = 0}. The analytical
solution uex satisfies the zero mean constraint and the source term f is determined by
the method of manufactured solution.

Geometry: Torus

x(φ, θ) = R

[
cos(φ)
sin(φ)

0

]
+ r

[
cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)

]

φ(x) =

√(√
x2 + y2 − R

)2
+ z2 − r

R = 1, r = 0.6
(φ, θ) ∈ [0, 2π)2 are torus coordinates

Analytical solution: uex(x) = (sin(3φ) cos(3θ + φ))

Source term: f(x) = r−2(9 sin(3φ) cos(3θ + φ) + (R + r cos(θ))−2

(10 sin(3φ) cos(3θ + φ) + 6 cos(3φ) sin(3θ + φ))

+ (r(R + r cos(θ)))−1(3 sin(θ) sin(3φ) sin(3θ + φ))
+ uex(x(φ, θ))

Fig. 3.5: Definition of the torus problem.

The discrete weak form of the Poisson equation, see Eq. 3.13, with the Surface FEM,
employing the explicit geometry definition, where the discrete surface Γh is defined by
an atlas of element-wise local maps χT , reads as follows: Given source term f on Γh,
find uh ∈ ShS,u such that for all test functions vh ∈ VhS,u there holds in Γh := ∪χ∈τχχ

∫

Γh
∇Γv

h · ∇Γu
h dA =

∫

Γh
vhf dA , (3.23)

with ShS,u = {uh ∈ QkΓ,h :
∫

Γh u
h dA = 0} and VhS,u = ShS,u.

The discrete weak form of the same problem with the Trace FEM approach employing
the implicitly defined geometry reads as follows: Given stabilization parameter ρ ∈ R+

and source term f on Γh, find the solution uh ∈ ShT,u such that for all test functions
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vh ∈ VhT,u there holds in Γh := {x ∈ R3 : φh(x) = 0}
∫

Γh
∇Γv

h · ∇Γu
h dA+ ρ

∫

ΩΓ
h

(
∇uh · ne,hΓ

) (
∇vh · ne,hΓ

)
dV =

∫

Γh
vhf dA , (3.24)

with ShT,u = {uh ∈ Th :
∫

Γh u
h dA = 0} and VhT,u = ShT,u.

The focus of the first test case is a comparison on the accuracy of the numerical integra-
tion w.r.t. the element size h which is proportional to an element scale factor h ∼ 1/n and
number of integration points nQ. The convergence is investigated in the error norms: (i)
εL2 , (ii) εH1 , and (iii) εres. In the numerical studies, the element scale factor n is varied
between 4 ≤ n ≤ 128 and the orders p are varied as 1 ≤ p ≤ 6 for the Surface FEM and
the Trace FEM, respectively. The stabilization parameter ρ in the Trace FEM is set to
ρ = 1/h for all presented results.

In Fig. 3.6, surface meshes consisting of quadrilateral, third-order Lagrange elements
with different element scale factors n are illustrated as an example. The black lines
on the surface indicate the element boundaries and the black dots are the nodes. In

(a) n = 8 (b) n = 16 (c) n = 32

Fig. 3.6: Surface meshes, which are used in the Surface FEM, consisting of higher-order La-
grange elements. As an example, third-order quadrilateral elements with different
element scale factors: (a) n = 8, (b) n = 16, and (c) n = 32 are shown.

Fig. 3.7, the background meshes (grey coloured elements) and the active meshes, i.e.,
only cut elements, for the Trace FEM are illustrated for different element scale factors n.
In particular, the meshes in Fig. 3.7 are consisting of third-order tetrahedral Lagrange
elements. The yellow surface indicates the discrete zero-isosurface of φh. For a better
visualization, the nodes of the active mesh are omitted for the finer levels of refinement.
In Fig. 3.8, the numerical solutions with both finite element approaches are presented
for two specific meshes. The colours on the surface indicate the approximate solution of
the problem. In Fig. 3.8(b), only the active mesh is visualized.

Firstly, the total number of elements nElem and the total number of integration points
nQ w.r.t. element size 1/n and the ansatz orders p are compared in Fig. 3.9. A direct
comparison of the surface meshes and the active meshes for the Trace FEM reveal that for
this particular geometry the number of elements and integrations points is approximately
one order of magnitude higher for the Trace FEM than for the Surface FEM. However,



36 3 Discretization and numerical methods for surface PDEs

(a) n = 4 (b) n = 8 (c) n = 16

Fig. 3.7: Background and active meshes, which are used in the Trace FEM, consisting of
higher-order tetrahedral Lagrange elements. As an example, cubic elements with
different element scale factors: (a) n = 4, (b) n = 8, and (c) n = 16 are shown.

it can be seen that for both approaches the number of elements and integrations points
increase with quadratic order, which is as expected when surfaces embedded in the
physical space are considered. The number of integration points nQ w.r.t. the order
p behaves in the Trace FEM analogously to the Surface FEM where, for each order,
the number of integration points increases by a certain factor. Note that the total
number of elements nElem (black dotted line) is independent of the polynomial order p.
In conclusion, the possible recursive refinement in case of complex cut scenarios, which
causes additional integration points, does not increase the expected order. Therefore,
both approaches behave asymptotically equally in terms of number of active elements
and number of integration points.
Secondly, the accuracy of the numerical area integration is elaborated. Therefore, the
relative integration error as defined in Eq. 3.17 is computed. The exact area of the
torus is given with Aex =

∫
Γ 1 dA = 4π2rR. In Fig. 3.10, the accuracy of the numerical

integration for the explicitly and implicitly defined geometry is illustrated. In Fig. 3.10(a)
and Fig. 3.10(b), the integration error for the explicit and implicit situation as a function
of the element size 1/n is presented. The thin, dotted lines indicate the theoretical optimal
order of converge O(p + 1) which is achieved for both situations and all orders p. As
shown in Fig. 3.9, the number of integration points for the implicit geometry definition
w.r.t. element size 1/n is higher than the explicit geometry definition. Nevertheless,
the integration error w.r.t. nQ is lower when surface meshes are employed, as seen in
Fig. 3.10(c). However, the computed results are excellent and optimal convergence rates
are achieved for both, explicit and implicit geometries, which is a crucial factor when
higher-order convergence rates are desired.
Next, the convergence in the above defined error norms, i.e., εL2 , εH1 , εres are shown
in Fig. 3.11 for the Surface FEM approach and in Fig. 3.12 for the Trace FEM ap-
proach, both w.r.t. element size 1/n. It can be concluded that in all considered error
norms, the optimal orders of convergence are achieved. Note that in the residual errors,
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(a) Surface FEM (b) Trace FEM

Fig. 3.8: Numerical solution uh of the torus problem. (a) uh obtained with the Surface FEM
with n = 16, p = 3, and (b) uh obtained with the Trace FEM with n = 8, p = 3.

(a) surface meshes (b) active meshes

Fig. 3.9: Total number of elements nnElem and integration points nQ: (a) Surface meshes
which are employed in the Surface FEM, and (b) active meshes which are used in
the Trace FEM.

see Fig. 3.11(c) and Fig. 3.12(c), a convergence order of O(p − 1) is expected. There-
fore, it is not surprising that the linear elements do not converge in this error measure.
Nevertheless, the higher orders p ≥ 2 converge with optimal order.
Lastly, the error per degree of freedom is compared between the Surface and Trace FEM.
Although optimal convergence rates are achieved in all error norms w.r.t. element size
1/n, it can be seen in Fig. 3.13 that the efficiency w.r.t. the number of DOFs nDOF is
higher for the Surface FEM than for Trace FEM. The same phenomena has also been
observed for the numerical integration w.r.t. nQ, see Fig. 3.10(c).
Summarising the obtained results for the torus problem, it can be concluded that the
performances of the Surface FEM and the Trace FEM are excellent and optimal conver-
gence rates are achieved in all error norms and for all orders. In the direct comparison
of the two approaches, the Surface FEM is more accurate w.r.t. nQ and nDOF than the
Trace FEM. However, in the Surface FEM, the construction of a conforming higher-order
accurate surface mesh is, in general, not a trivial task and may be seen as a drawback
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(a) explicit geometry (e.g.) (b) implicit geomery (i.g.) (c) accuarcy per integration point

Fig. 3.10: Accuracy of the numerical integration of the torus surface. (a) Explicitly defined
discrete surface, (b) discrete zero-isosurface of φh w.r.t. element size 1/n, and (c)
efficency of the numerical integration w.r.t. total number of integration points 1/nQ.

(a) L2-error (b) H1-error (c) residual error

Fig. 3.11: Results of the convergence analyses employing the Surface FEM approach.

of the Surface FEM, especially if the domain is moving or the topology of the surface
changes. The Trace FEM is a FDM and, therefore, meshing comes without extra costs as
simple, often structured background meshes may be employed. Although the accuracy
per DOF is less than in the Surface FEM, the convergence orders are still optimal. From
an implementational point of view, one major drawback might be that the higher-order
accurate integration of the discrete weak form is more challenging compared to the Sur-
face FEM, but with the approach sketched in Section 3.2.2, a completely automatic,
robust procedure for higher-order accurate integration of (bounded) zero-isosurfaces is
available. Furthermore, the employed stabilization technique is straightforward in the
implementation and is suitable for higher-order. Lastly, the treatment of essential bound-
ary conditions shall be elaborated in the following example.

3.3.2 Example 2: Bounded manifold

In the second example a hyperbolic surface with bumps is considered and is taken from
[65]. The problem is defined in Fig. 3.14 and in contrast to the first test case, a bounded
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(a) L2-error (b) H1-error (c) residual error

Fig. 3.12: Results of the convergence analyses employing the Trace FEM approach.

(a) L2-error (b) H1-error (c) residual error

Fig. 3.13: Error norms εL2 , εH1 , εres for both Surface and Trace FEM w.r.t. the total number
of DOFs.

surface is considered. The source term is again computed by the method of manufactured
solutions. The domain for the Surface FEM is explicity defined by a map x(r) : Ω̂→ Γ
and for the Trace FEM the domain is implicitly defined by means of multiple level-set
functions Γ = {x ∈ R3 : φ(x) = 0 ∧ ψi(x) > 0} with i ∈ {1, . . . , 4}.
The focus in this example is on a comparison of the treatment of essential boundary
conditions with the Surface and Trace FEM. In Section 3.2.4, different methods for
the enforcement of essential boundary conditions are outlined. In the following, these
different approaches: (1) strong enforcement (via nodal values), (2) Lagrange multiplier,
(3) penalty method, (4) symmetric version of Nitsche’s method and (5) non-symmetric
version of Nitsche’s method are employed in the Surface and Trace FEM. Each of these
approaches yield different discrete weak forms in the Surface and Trace FEM. Note that
the strong enforcement and the Lagrange multiplier method is exclusively used in the
Surface FEM as they are not (straightforwardly) applicable to the Trace FEM.

Analogously to above, the convergence analyses are performed with a varying element
scale factor n between 4 ≤ n ≤ 128 and the order is varied as 1 ≤ p ≤ 6. Furthermore,
the stabilization parameter ρ for the Trace FEM is set to ρ = 1/h. This set of parameters
is applied to all discrete weak forms below. As error measures, the error norms from
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Geometry: Hyperbolic surface with bumps

x(r, s) =

[
r
s

t(r, s)

]

t(r, s) = 0.5(r2 − s2) + 0.15 sin(2πr) sin(2πs)
(r, s) ∈ [−0.5, 0.5]2

φ(x) = t(x, y)− z
ψ1(x) = 0.5− x, ψ2(x) = x− 0.5
ψ3(x) = 0.5− y, ψ4(x) = y − 0.5

Analytical solution: uex(x) = sin [π (x− 0.5)] sin [π (y − 0.5)]

Fig. 3.14: Definition of the hyperbolic surface with bumps problem.

Eq. 3.17 to Eq. 3.22 are computed, yet only the most meaningful results are presented
here.
In Fig. 3.15, the numerical solutions according to the Surface and Trace FEM are il-
lustrated for two specific meshes. The boundary conditions are enforced weakly with
non-symmetric version of Nitsche’s method, see Section 3.3.2.4. Similar as above, the
colours on the surface indicate the approximate solution of the problem.

(a) Surface FEM (b) Trace FEM

Fig. 3.15: Numerical solution uh of the hyperbolic surface with bumps problem. The essential
boundary conditions are enforced with non-symmetric version of Nitsche’s method.
(a) uh obtained with the Surface FEM with n = 16, p = 3, and (b) uh obtained
with the Trace FEM with n = 16, p = 3.

3.3.2.1 Strong enforcement and Lagrange multipliers

As mentioned above, the strong enforcement and the Lagrange multiplier approach are
only applied to the Surface FEM. In principle, the Lagrange multiplier approach may be
also employed within the Trace FEM, but a suitable discretization of the auxiliary fields
is not trivial as the boundary of the domain is within the three-dimensional background
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mesh. One approach is to define a boundary conforming line mesh living only on the
Dirichlet boundary ∂ΓhD and employ the nodes and corresponding shape functions as
Lagrange multipliers. However, if the elements of the Lagrange multipliers are aligned
with the elements of the active mesh, which simplifies the numerical integration along
the boundary significantly, conditioning issues may occur due to small supports in case
of non-favourable cut scenarios. Furthermore, the definition of a boundary conforming
mesh within a FDM contradicts the main advantages of FDMs. Another approach which
has been used in a recent pre-print [69], is to use the shape functions of the active mesh
and restrict them only to the Dirichlet boundary. However, this requires additional
stabilization and due to this increase in complexity, this is excluded from the present
comparison.
In the following, the discrete weak forms for the strong enforcement of essential boundary
conditions and the Lagrange multiplier method within the Surface FEM are introduced.
Enforcing the essential boundary conditions in a strong sense, the discrete weak form
reads as follows: Given source term f on Γh, boundary conditions ĝ on ∂ΓhD and t̂ on
∂ΓhN, find uh ∈ ShS,g such that for all test functions vh ∈ VhS,0 there holds in Γh

∫

Γh
∇Γv

h · ∇Γu
h dA =

∫

Γh
vhf dA+

∫

∂ΓhN
vht̂ ds , (3.25)

with ShS,g = {uh ∈ QkΓ,h : uh|∂ΓhD
= ĝ} and VhS,0 = {vh ∈ QkΓ,h : vh|∂ΓhD

= 0}.
Enforcing the Dirichlet boundary conditions with Lagrange multipliers converts the dis-
crete weak form to a saddle point problem and the Lagrange multiplier field needs to
be carefully discretized in order to ensure a unique solution [5]. The discrete weak form
reads as follows: Given source term f on Γh, boundary conditions ĝ on ∂ΓhD and t̂ on
∂ΓhN, find the solution uh ∈ QkΓ,h and the Lagrange multipliers λhu ∈ LhS,λ such that for
all test functions (vhu, vhλ) ∈ QkΓ,h × VhS,λ there holds in Γh

∫

Γh
∇Γv

h
u · ∇Γu

h dA+
∫

∂ΓhD
vhuλ

h
u ds =

∫

Γh
vhuf dA+

∫

∂ΓhN
vhu t̂ ds ,

∫

∂ΓhD
vhλu

h ds =
∫

∂ΓhD
vhλ ĝ ds ,

(3.26)

with LhS,λ = VhS,λ = {λhu|∂ΓhD
: λhu ∈ QkΓ,h}. Note that the restriction of λhu to ∂ΓhD is in

the sense of a trace. As mentioned above, with the Lagrange multipliers the augmented
problem in Eq. 3.26 has a saddle point structure and a completely arbitrary choice of the
discrete function spaces is precluded [59]. As well-known, the Babuška-Brezzi condition
[4], [17], [60] must be satisfied in order to obtain useful solutions in all involved fields.
Herein, a common approach for the discrete Lagrange multipliers in the context of finite
element methods with conforming meshes is employed. In particular, the shape functions
which are used for the interpolation of uh are restricted to the Dirichlet boundary ∂ΓhD.
According to [59], this choice satisfies the discrete inf-sup condition. Further details and
other approaches of suitable discretizations of the Lagrange multipliers are given in, e.g.,
[5], [59].
The results of the convergence analyses are presented for both methods in Fig. 3.16 for
the L2-error. For both approaches, optimal orders of convergence are achieved, which
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(a) strong enforcement (b) Lagrange multiplier

Fig. 3.16: L2-errors in Γh of the hyperbolic surface with bumps problem with: (a) Strong
enforcement, and (b) Lagrange multipliers.

holds also for the H1-error and the residual error. The strong enforcement may be seen
as a good reference because the DOFs at ∂ΓhD are directly prescribed with the exact
solution. However, the Lagrange multiplier approach performs equally well in this direct
comparison. In conclusion, when a stable and robust discretization of the auxiliary
fields is available, one may prefer the Lagrange multiplier approach because in the case
of vector-valued problems this approach is more general and more complex boundary
conditions, e.g., symmetry boundary conditions, may be enforced in a straightforward
manner.

3.3.2.2 Penalty method

The penalty method is applied to both finite element approaches and the implementation
is in principle straightforward and robust. However, the additional terms in the discrete
weak form are inconsistent and suffer from the interplay between accuracy and violation
of the constraint conditions. In the following, the consequences on the choice of the
penalty parameter in both approaches are elaborated in detail.

Employing the Surface FEM, the discrete weak form reads as follows: Given penalty
parameter α ∈ R+, source term f on Γh, boundary conditions ĝ on ∂ΓhD and t̂ on ∂ΓhN,
find the solution uh ∈ QkΓ,h such that for all test functions vh ∈ QkΓ,h there holds in Γh

∫

Γh
∇Γv

h · ∇Γu
h dA+ α

∫

∂ΓhD
vhuh ds =

∫

Γh
vhf dA+

∫

∂ΓhN
vht̂ ds+ α

∫

∂ΓhD
vhĝ ds .

(3.27)

For the Trace FEM, the discrete weak form reads as follows: Given penalty parameter
α ∈ R+, stabilization parameter ρ ∈ R+, source term f on Γh, boundary conditions ĝ
on ∂ΓhD and t̂ on ∂ΓhN, find the solution uh ∈ Th such that for all test functions vh ∈ Th
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there holds in Γh
∫

Γh
∇Γv

h · ∇Γu
h dA+ α

∫

∂ΓhD
vhuh ds+ ρ

∫

ΩΓ
h

(
∇uh · ne,hΓ

) (
∇vh · ne,hΓ

)
dV

=
∫

Γh
vhf dA+

∫

∂ΓhN
vht̂ ds+ α

∫

∂ΓhD
vhĝ ds .

(3.28)

In the convergence analyses, the penalty parameter α is varied between 102 ≤ α ≤ 1016

with an interval of two orders of magnitude. In Fig. 3.17, partial results of the conver-
gence studies are presented. In particular, the L2-error is visualized for the Surface and
Trace FEM with α = 1010. It can clearly be seen that for the lower orders p ≤ 2 the
convergence rates are optimal O(p + 1). Furthermore, for an error level of about 10−8,
a further convergence is not be observed which is caused by a non-optimal choice of the
penalty parameter. The results in the H1-error and residual error are analogous and
are omitted for brevity. The convergence behaviour can be improved with increasing

(a) Surface FEM (b) Trace FEM

Fig. 3.17: L2-errors in Γh of the hyperbolic surface with bumps problem with penalty method
and α = 1010: (a) Surface FEM, and (b) Trace FEM.

penalty parameters but at a certain point, the inconsistency of the additional terms and
the conditioning of the stiffness matrix prevent higher-order convergence rates. In the
following, the situation for p = 4 is investigated. In detail, the L2-error in the domain,
see Eq. 3.19, L2-error in the boundary conditions, see Eq. 3.22, and the conditioning for
different parameters of α are presented. The condition numbers are computed with the
MATLAB function condest, which estimates the 1-norm condition number. In Fig. 3.18
and Fig. 3.19, the results are illustrated. Depending on α, convergence up to a cer-
tain error level can be observed, see Fig. 3.18(a) and Fig. 3.19(a). This seems to be
directly correlated to the error in the essential boundary conditions, see Fig. 3.18(b) and
Fig. 3.19(b). Furthermore, the condition numbers are typically dominated by α and the
expected growth of quadratic order can only be observed for α ≤ 104, which is too low
for proper convergence in this particular situation, see Fig. 3.18(c) and Fig. 3.19(c).
In the direct comparison of the penalty method in the Surface and Trace FEM, the
expected behaviour of the penalty approach, i.e., convergence only up to a certain error
level, can be observed for both finite element approaches. The major advantages of
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(a) L2-error in Γh (b) L2-error on ∂Γh
D (c) condition number

Fig. 3.18: Convergence for the Surface FEM with p = 4 for different parameters of α: (a)
L2-error in the domain, (b) L2-error in the boundary conditions, and (c) estimated
condition numbers.

(a) L2-error in Γh (b) L2-error on ∂Γh
D (c) condition number

Fig. 3.19: Convergence for the Trace FEM with p = 4 for different parameters of α: (a) L2-
error in the domain, (b) L2-error in the boundary conditions, and (c) estimated
condition numbers.

the method are that a discretization of auxiliary fields is not necessary and the resulting
method is stable and very robust. Depending on the particular application, in the context
of Trace FEM, these advantages may be more important which makes the penalty method
a reliable choice, especially if only lower orders are considered.

3.3.2.3 Symmetric version of Nitsche’s method

Next, the symmetric version of Nitsche’s method is employed for both finite element
approaches. The major advantage of Nitsche’s method is that auxiliary fields are not
needed and the overall method is consistent. The additional Nitsche terms for Poisson’s
equation, see Eq. 3.10a, are

∫

∂ΓhD

(
uh − ĝ

)
∇Γv

h · nh∂Γ ds , (3.29)
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which are added to the RHS of the obtained discrete weak form. The term ∇Γv
h · nh∂Γ

is the energy conjugated quantity to the primal variable at the Dirichlet boundary ∂ΓhD.
Furthermore, it can clearly be seen that these additional terms are consistent, i.e., the
new terms are vanishing if the exact solution is inserted. However, the symmetric version
of Nitsche’s method is not elliptic without a suitable stabilization. Therefore, additional
stabilization terms are added in order to ensure coercivity of the discrete weak form.
The structure of the stabilization is analogously to the penalty terms in Section 3.3.2.2
and are added to the RHS of the discrete weak form

ρN

∫

∂ΓhD
vh
(
ĝ − uh

)
ds . (3.30)

The required stabilization parameter ρN is typically several orders of magnitude lower
than the penalty parameters from above. The stabilization parameter need to be high
enough in order to ensure coercivity. On the other hand, if ρN is too large, the overall
approach may degenerate to the penalty method from above. Therefore, a suitable
choice of ρN is crucial within this approach. One may manually set the stabilization
ρN , yet a more advanced approach is to solve a global or local element-wise generalized
eigenvalue problem, see, e.g., [35], [57], [59]. The global generalized eigenvalue problem
results in slightly lower stabilization parameters than the local approach, although the
computational cost increases significantly and the influence on the accuracy is often
minor [120]. Herein, the stabilization parameters are determined by the solution of a
local, generalized eigenvalue for each element T ∈ τ∂ΓhD

where τ∂ΓhD
= {T ∩ ∂ΓhD 6= ∅}

AT · x = ΛTBT · x , (3.31)

with

[AT ]ij =
∫

T∩∂ΓhD

(
∇ΓMi · nh∂Γ

) (
∇ΓMj · nh∂Γ

)
ds , (3.32)

[BT ]ij =
∫

T∩Γh
∇ΓMi · ∇ΓMj dA , (3.33)

where Mi,Mj are the employed shape functions. Based on the obtained eigenvalues for
an element T the stabilization parameter for this element is set to

ρN,T = 2 max(ΛT ) . (3.34)

Note that in case of boundary conforming elements, which is the case in the Surface FEM,
or boundary conforming cells, only boundary DOFs shall be considered [120, p. 822].

The discrete weak form with the Surface FEM and the symmetric version of Nitsche’s
method, employing the local element-wise stabilization, reads as follows: Given stabi-
lization parameter ρN,T ∈ R+ ∀ T ∈ τ∂ΓhD

, source term f on Γh, boundary conditions ĝ on
∂ΓhD and t̂ on ∂ΓhN, find the solution uh ∈ QkΓ,h such that for all test functions vh ∈ QkΓ,h
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there holds in Γh
∫

Γh
∇Γv

h · ∇Γu
h dA−

∫

∂ΓhD
vh∇Γu

h · nh∂Γ ds−
∫

∂ΓhD
uh∇Γv

h · nh∂Γ ds

+
∑

T∈τ
∂ΓhD

ρN,T

∫

T∩∂ΓhD
vhuh ds

=
∫

Γh
vhf dA+

∫

∂ΓhN
vht̂ ds−

∫

∂ΓhD
ĝ∇Γv

h · nh∂Γ ds+
∑

T∈τ
∂ΓhD

ρN,T

∫

T∩∂ΓhD
vhĝ ds .

(3.35)

For the Trace FEM, the discrete weak form reads as follows: Given stabilization param-
eters (ρ, ρN,T ) ∈ R+, T ∈ τ∂ΓhD

, source term f on Γh, boundary conditions ĝ on ∂ΓhD and
t̂ on ∂ΓhN, find the solution uh ∈ Th such that for all test functions vh ∈ Th there holds
in Γh
∫

Γh
∇Γv

h · ∇Γu
h dA−

∫

∂ΓhD
vh∇Γu

h · nh∂Γ ds−
∫

∂ΓhD
uh∇Γv

h · nh∂Γ ds

+
∑

T∈τ
∂ΓhD

ρN,T

∫

T∩∂ΓhD
vhuh ds+ ρ

∫

ΩΓ
h

(
∇uh · ne,hΓ

) (
∇vh · ne,hΓ

)
dV

=
∫

Γh
vhf dA+

∫

∂ΓhN
vht̂ ds−

∫

∂ΓhD
ĝ∇Γv

h · nh∂Γ ds+
∑

T∈τ
∂ΓhD

ρN,T

∫

T∩∂ΓhD
vhĝ ds .

(3.36)

The convergence study is performed with the set of parameters as defined above for both
Surface and Trace FEM. In Fig. 3.20(a) and Fig. 3.21(a), the L2-error in Γh is visual-
ized for both approaches. It can be seen that for both approaches optimal convergence
rates are achieved after the pre-asymptotic region. This holds also for the H1-error and
the residual error. In Fig. 3.20(b) and Fig. 3.21(b), the error in the essential boundary
conditions is shown. It is noteworthy to emphasize that in comparison to the other
approaches, i.e., strong enforcement, Lagrange multiplier and penalty method, the en-
forcement of boundary conditions is rather weak which results in higher errors in εL2,∂ΓhD

,
especially at coarse levels. In case of the Surface FEM, the achieved order of convergence
is O(p + 1). The situation in the Trace FEM is slightly different. Only for p ≤ 4 the
order of convergence is O(p + 1) and for the higher orders p = (5, 6) a converge order
of roughly O(5) can be observed. Nevertheless, the suboptimal order of convergence for
p = (5, 6) at the Dirichlet boundary which is basically the trace of the L2-error in the
domain, does not hinder optimal convergence rates in εL2 and other error measures in
the domain, see Fig. 3.21(a).
As mentioned above, the stabilization parameters ρN,T are obtained by an element-wise,
generalized eigenvalue problem. In Fig. 3.20(c) and Fig. 3.21(c), the largest stabiliza-
tion parameters are presented. In case of the Surface FEM, the range between largest
and smallest stabilization parameter is almost negligible. Furthermore, the stabilization
parameters for the Surface FEM are between 101 ≤ max ρN,T ≤ 104 and, as already
mentioned, several orders of magnitude lower compared to the penalty method, which
are required for optimal convergence rates, e.g., α = 1016 for p = 4. In case of the Trace
FEM, the situation is different because the obtained stabilization parameter depends on
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(a) L2-error in Γh (b) L2-error on ∂Γh
D (c) stab. parameter (d) condition number

Fig. 3.20: Convergence with the Surface FEM employing the symmetric version of Nitsche’s
method: (a) L2-error in the domain, (b) L2-error in the boundary conditions, (c)
maximum stabilization parameters max ρN,T , and (d) estimated condition numbers.

(a) L2-error in Γh (b) L2-error on ∂Γh
D (c) stab. parameter (d) condition number

Fig. 3.21: Convergence with the Trace FEM employing the symmetric version of Nitsche’s
method: (a) L2-error in the domain, (b) L2-error in the boundary conditions, (c)
maximum stabilization parameters max ρN,T , and (d) estimated condition numbers.

the cut scenario and might be unbounded. This problem has been analysed in detail in
[35] and the suggested workaround is to employ a user defined limit, which prevents un-
bounded stabilization parameters. Alternatively, the gradient jump penalty method as
proposed in [21] may also remedy the situation. In this method, the Nitsche stabilization
parameter is independent of the concrete cut scenario and the issue of unbounded stabi-
lization parameters may be circumvented. Herein, the use defined limit ρN,T,max = 1015

is employed. In Fig. 3.21(c), such an unfavourable cut scenario is shown, and the sta-
bilization parameter for this level n = 8, p = 1 is set to ρN,T = ρN,T,max for at least one
element. Therefore, the stabilization parameters are between 103 ≤ max ρN,T ≤ ρN,T,max
depending on the cut scenario. The resulting method is then rather a hybrid between
Nitsche’s method and the penalty method. Lastly, in Fig. 3.20(d) and Fig. 3.21(d), the
estimated condition numbers are presented. In case of the Surface FEM, the condition
numbers behave as expected. In case of the Trace FEM, the condition numbers are
highly influenced by the obtained stabilization parameters. In conclusions, the sym-
metric version of Nitsche’s method performs excellent within the Surface FEM and the
presented element-wise stabilization. In case of the Trace FEM, the symmetric version
is less robust and tends to degenerate to the penalty method in case of unfavourable
cut scenarios. Nevertheless, the symmetric version of Nitsche’s method is a consistent
approach and if one obtains suitable stabilization parameters, this approach is a reliable
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method for both Surface and Trace FEM.

3.3.2.4 Non-symmetric version of Nitsche’s method

Lastly, the non-symmetric version of Nitsche’s method is investigated for the weak en-
forcement of essential boundary conditions. In the non-symmetric version, the Nitsche’s
terms from Eq. 3.29 are multiplied by −1

−
∫

∂ΓhD

(
uh − ĝ

)
∇Γv

h · nh∂Γ ds , (3.37)

leading to a non-symmetric system of equations. The major advantage is that the re-
sulting discrete weak form does not require an additional stabilization. The discrete
weak form with the Surface FEM reads as follows: Given source term f on Γh, boundary
conditions ĝ on ∂ΓhD and t̂ on ∂ΓhN, find the solution uh ∈ QkΓ,h such that for all test
functions vh ∈ QkΓ,h there holds in Γh

∫

Γh
∇Γv

h · ∇Γu
h dA−

∫

∂ΓhD
vh∇Γu

h · nh∂Γ ds+
∫

∂ΓhD
uh∇Γv

h · nh∂Γ ds

=
∫

Γh
vhf dA+

∫

∂ΓhN
vht̂ ds+

∫

∂ΓhD
ĝ∇Γv

h · nh∂Γ ds .
(3.38)

For the Trace FEM, the discrete weak form reads as follows: Given stabilization param-
eter ρ ∈ R+, source term f on Γh, boundary conditions ĝ on ∂ΓhD and t̂ on ∂ΓhN, find the
solution uh ∈ Th such that for all test functions vh ∈ Th there holds in Γh

∫

Γh
∇Γv

h · ∇Γu
h dA−

∫

∂ΓhD
vh∇Γu

h · nh∂Γ ds+
∫

∂ΓhD
uh∇Γv

h · nh∂Γ ds

+ ρ
∫

ΩΓ
h

(
∇uh · ne,hΓ

) (
∇vh · ne,hΓ

)
dV

=
∫

Γh
vhf dA+

∫

∂ΓhN
vht̂ ds−

∫

∂ΓhD
ĝ∇Γv

h · nh∂Γ ds .

(3.39)

The convergence analyses are performed with the same set of parameters than above.
In the following, the L2-error in Γh, L2-error on ∂ΓhD and the condition number are pre-
sented for both finite element approaches. The results of the Surface FEM, see Fig. 3.22,
are almost identical compared to the symmetric version of Nitsche’s method. The con-
vergence rates are optimal in all investigated error norms and in the direct comparison
with the symmetric version, the errors are lower in general. The condition numbers are
almost indistinguishable.
For the Trace FEM, see Fig. 3.23, the situation is analogously, optimal convergence rates
are achieved in the L2- , H1- and residual-errors. The convergence in the error of the
essential boundary conditions is similar as in the symmetric version. The condition num-
bers are not disturbed by an additional stabilization and in comparison to the symmetric
version, the condition numbers are lower.
In conclusion, the convergence behaviour of the non-symmetric version of Nitsche’s
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(a) L2-error in Γh (b) L2-error on ∂Γh
D (c) condition number

Fig. 3.22: Convergence with the Surface FEM employing the non-symmetric version of
Nitsche’s method: (a) L2-error in the domain, (b) L2-error in the boundary condi-
tions, and (c) estimated condition numbers.

(a) L2-error in Γh (b) L2-error on ∂Γh
D (c) condition number

Fig. 3.23: Convergence with the Trace FEM employing the non-symmetric version of Nitsche’s
method: (a) L2-error in the domain, (b) L2-error in the boundary conditions, and
(c) estimated condition numbers.

method is similar compared to the symmetric counterpart. However, in the theoretical
error estimates, suboptimal convergence rates in the primal variable could be expected,
see [3], [20]. Nevertheless, optimal convergence rates in L2-error have been observed in
all cases, confirming results in [20], [121]. The absence of an additional stabilization,
significantly improves the robustness of the overall approach, especially in the context
of FDMs. The drawback of a non-symmetric system of equations is less important for
direct solvers as employed herein.

3.3.2.5 Conclusion

Comparing all presented approaches for the treatment of essential boundary conditions
in the Surface and Trace FEM we conclude the following:
In case of the Surface FEM, all presented approaches perform as expected. In case
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of scalar-valued problems or simple boundary conditions, the strong enforcement may
be preferred due to its simplicity and robustness. In case of more complex boundary
conditions, e.g., directional supports or symmetry boundary conditions, the Lagrange
multiplier approach or the non-symmetric version of Nitsche’s method are reliable meth-
ods to achieve higher-order accurate results. When lower-order results are sufficient,
the penalty method may be preferred. The overhead of the additional stabilization for
the symmetric version of Nitsche’s method may only be justified if a symmetric sys-
tem of equations is desired and a consistent approach without auxiliary fields shall be
employed.
For the Trace FEM, the situation is different. First of all, the strong enforcement is,
except in special cases, not applicable. A suitable discretization of the Lagrange multi-
plier field is a major, non-trivial task. In terms of robustness, the penalty method may
be preferred, although the choice of a suitable penalty parameter in combination with
higher-order can become tricky. The symmetric version of Nitsche’s method may degen-
erate to a hybrid between Nitsche’s method and penalty method due to unfavourable cut
scenarios. In contrast, the non-symmetric version of Nitsche’s method is also consistent,
but without additional stabilization terms. Furthermore, it also offers the flexibility to
enforce all physically meaningful boundary conditions, which outweighs the drawback of
theoretically suboptimal convergence rates in the primal variable and the presence of a
non-symmetric system of equations. In particular, for many practical situations, optimal
convergence rates have indeed been reported. Therefore, the non-symmetric version of
Nitsche’s method is preferred in the following in the context of the Trace FEM.







4 Linear Kirchhoff-Love shells
The Kirchhoff-Love shell theory is recast in the frame of the TDC including all mechan-
ical quantities such as moments, normal and shear forces. The boundary conditions of
the Kirchhoff-Love shell are elaborated in detail. As a consequence of the reformula-
tion in the TDC, there is no need for a parametrization of the shell geometry implying
curvilinear surface coordinates as used in the classical shell theory. Therefore, the pro-
posed TDC-based formulation also applies to shell geometries which are zero-isosurfaces
as in the level-set method where no parametrization is available in general. For the dis-
cretization, the TDC-based formulation may be used based on surface meshes implying
element-wise parametrizations, hence, in the context of the Surface FEM. Then, the re-
sults are equivalent to those obtained based on the classical theory. However, it may also
be used in recent finite element approaches such as the Trace FEM and Cut FEM. Herein,
the obtained shell BVP is discretized with isogeometric analysis (for continuity reasons),
being a special variant of the Surface FEM, and the essential boundary conditions are
enforced with Lagrange multipliers and the non-symmetric version of Nitsche’s method.
The resulting discrete weak forms are presented including all relevant terms. The pro-
posed approach is carefully verified with classical and new benchmarks. Higher-order
convergence rates are achieved when the physical fields are sufficiently smooth.
The major content of this chapter follows our own articles in [125], [131].

4.1 Governing equations

In this section, we derive the linear Kirchhoff-Love shell theory in the frame of tan-
gential operators based on a global Cartesian coordinate system. We restrict ourselves
to infinitesimal deformations, which means that the reference and spatial configuration
are indistinguishable. Furthermore, a linear elastic material governed by Hooke’s law is
assumed. As usual in the Kirchhoff-Love shell theory, the transverse shear strains and
the change of curvature in the material law are neglected, which restricts the model to
thin shells (tκmax � 1) [7], [14], [145].
With these assumptions, an analytical pre-integration with respect to the thickness leads
to stress resultants such as normal forces and bending moments. The equilibrium in
strong form is then expressed in terms of the stress resultants. Finally, the transverse
shear forces may be identified via equilibrium considerations.

4.1.1 Kinematics

The mid-surface Γ of the shell is a sufficiently smooth manifold embedded in the physical
space R3. A point on the mid-surface is denoted as xΓ ∈ Γ ⊂ R3 and may be defined
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explicitly or implicitly, see Section 2.1. With the unit-normal vector nΓ, a point in the
domain of the shell Ω of thickness t is defined by

x = xΓ + ζnΓ , (4.1)

with ζ being the thickness parameter and |ζ| ≤ t/2. Alternatively, if the mid-surface is
defined implicitly with a signed distance function φSDF(x) the domain of the shell Ω is
defined by

Ω =
{
x ∈ R3 : |φSDF(x)| ≤ t

2

}
. (4.2)

In this case the mid-surface Γ is the zero-isosurface of φ(x), see Eq. 2.1. The zero-
isosurface may then be bounded by additional slave level-set functions as described in
Section 2.1. Independent of the concrete surface definition, the overall displacement of
a point P ∈ Ω is the difference between the spatial and reference configuration

uΩ(x) = P̄ (x)− P (x) ,

which takes the form

uΩ(xΓ, ζ) = u(xΓ) + ζw(xΓ) . (4.3)

There, u(xΓ) : Γ → R3 is the displacement field of the mid-surface and w(xΓ) ∈ TPΓ
is the difference vector, as illustrated in Fig. 4.1. Without transverse shear strains, the

ζ

nΓ
P (xΓ, ζ)

Undeformed
mid-surface Γ

ζζ

n̄Γ
P̄ (xΓ, ζ)

Deformed
mid-surface Γ̄

y

z

x

xΓxΓ

u

ζw

uΩ

Fig. 4.1: Displacements uΩ, u and w of the shell.

difference vector w expressed in terms of the TDC is defined as in [39],

w(xΓ) = −
[
∇dir

Γ u+ (∇dir
Γ u)T

]
· nΓ = H · u−∇Γ(u · nΓ) . (4.4)

As readily seen in the equation above, the difference vectorw is tangential. Alternatively,
the difference vector w may also be rewritten in terms of partial tangential derivatives
of u and the normal vector nΓ as

w(xΓ) = H · u−∇Γ(u · nΓ) = −




udir
,x · nΓ

udir
,y · nΓ

udir
,z · nΓ


 . (4.5)
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Consequently, the displacement field of the shell continuum is only a function of the
mid-surface displacement u, the unit normal vector nΓ and the thickness parameter ζ.
The surface gradient of uΩ(x) is given by

∇dir
Γ uΩ(x) = P · ∂uΩ(x)

∂x
· ∂x
∂xΓ

= P · (∇ũ+∇ζ ⊗w + ζ∇w̃) · (I + ζH)
=
(
∇dir

Γ u+ nΓ ⊗w + ζ∇dir
Γ w

)
· (I + ζH) ,

(4.6)

with H = ∇dir
Γ nΓ being the Weingarten map and P being the projector introduced in

Section 2.2.1 (not to be confused with some point P on the surface mentioned above).
Note that the gradient of the thickness parameter ζ can be identified as the normal
vector nΓ if the deformations in thickness direction are neglected. The second term
(I + ζH) in Eq. 4.6 is the inverse of the shell shifter [14], which is a second order
tensor. The equivalent expression in local coordinates is ∑3

i=1G
i⊗Ai, where Gi are the

contravariant base vectors in the shell continuum and Ai the covariant base vectors on
the surface [14].

The linearised strain tensor εΓ is defined by the symmetric part of the surface gradient
of uΩ

εΓ(x) = 1
2
[
∇dir

Γ uΩ + (∇dir
Γ uΩ)T

]
= εPΓ(x) + εSΓ(x) (4.7)

and is split into an in-plane strain εPΓ and a transverse shear strain εSΓ. Neglecting higher-
order terms in thickness direction, as usual in the classical theory [14], the in-plane strain
is defined by [125]

εPΓ = P · εdirΓ ·P (4.8)
= εPΓ,Mem + ζεPΓ,Bend (4.9)

which is divided into a membrane and bending strain. The in-plane membrane strain
becomes

εPΓ,Mem(u) = 1
2
[
∇cov

Γ u+ (∇cov
Γ u)T

]
, (4.10)

and the bending strain is

εPΓ,Bend(u) = 1
2
[
H · ∇dir

Γ u+ (∇dir
Γ u)T ·H +∇cov

Γ w + (∇cov
Γ w)T

]

= −



ucov
,xx · nΓ ucov

,yx · nΓ ucov
,zx · nΓ

ucov
,yy · nΓ ucov

,zy · nΓ
sym ucov

,zz · nΓ


 , (4.11)

where ∇cov
Γ w = −

[
ucov
,ij · nΓ + (∇dir

Γ u)T ·H
]
. The transverse shear strain is defined in a
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similar manner as in [84]

εSΓ(u, w) = Q · εΓ + εΓ ·Q = 0 (4.12)

and vanishes due to the kinematic assumptions from above. The resulting membrane
and bending strain in Eq. 4.10 and Eq. 4.11 are equivalent compared to the classical
theory, e.g., [7]. In the case of flat shell structures as considered in [82] the membrane
strain is only a function of the tangential displacement ut = P · u and the bending
strain only depends on the normal displacement un = u ·nΓ, which simplifies the overall
kinematics significantly. Moreover, the normal vector nΓ is constant and the difference
vector simplifies to w(xΓ) = −∇Γun.

4.1.2 Constitutive equations and stress resultants

As already mentioned above, the shell is assumed to be linear elastic and, as usual for
thin structures, plane stress is presumed. The in-plane stress tensor σΓ is defined as

σΓ(xΓ, ζ) = P · [2µεΓ + λtr(εΓ)I] ·P
= P ·

[
2µεdirΓ + λtr(εdirΓ )I

]
·P ,

(4.13)

where µ = E
2(1+ν) and λ = Eν

(1−ν2) are the Lamé constants and εdirΓ is the directional strain
tensor from Eq. 4.8. With this identity the in-plane stress tensor can be computed only
with the directional strain tensor

εdirΓ = εdirΓ,Mem(u) + ζεdirΓ,Bend(w) , (4.14)

with

εdirΓ,Mem = 1
2(∇dir

Γ u+ (∇dir
Γ u)T) ,

εdirΓ,Bend = −



udir
,xx · nΓ

1
2(udir

,yx + udir
,xy) · nΓ

1
2(udir

,zx + udir
,xz) · nΓ

udir
,yy · nΓ

1
2(udir

,zy + udir
,yz) · nΓ

sym udir
,zz · nΓ


 ,

which is, from an implementational point of view, an advantage because covariant deriva-
tives are not needed explicitly. In contrast to the classical theory, the in-plane stress
tensor expressed in terms of the TDC does not require the computation of the metric
coefficients in the material law. Therefore, the resulting stress tensor does not rely on
a parametrization of the mid-surface and the shell analysis based on implicitly defined
surfaces is enabled.
The stress tensor is only a function of the mid-surface displacement vector u, the dif-
ference vector w(u) and the thickness parameter ζ. This enables an analytical pre-
integration with respect to the thickness and stress resultants can be identified. The
following quantities are equivalent to the stress resultants in the classical theory [7],
[133], but they are expressed in terms of the TDC using a global Cartesian coordinate
system.



4.1 Governing equations 57

The symmetric moment tensor mΓ is defined as

mΓ =
∫ t/2

−t/2
ζσΓ(u, ζ) dζ = t3

12σΓ(εPΓ,Bend) = P ·mdir
Γ ·P , (4.15)

which results in the components
[
mdir

Γ

]
11

= −DB (udir
,xx + νudir

,yy + νudir
,zz) · nΓ ,

[
mdir

Γ

]
22

= −DB (udir
,yy + νudir

,xx + νudir
,zz) · nΓ ,

[
mdir

Γ

]
33

= −DB (udir
,zz + νudir

,xx + νudir
,yy) · nΓ ,

[
mdir

Γ

]
12

= −DB
1− ν

2 (udir
,yx + udir

,xy) · nΓ ,

[
mdir

Γ

]
13

= −DB
1− ν

2 (udir
,zx + udir

,xz) · nΓ ,

[
mdir

Γ

]
23

= −DB
1− ν

2 (udir
,zy + udir

,yz) · nΓ ,

where DB = Et3

12(1−ν2) is the flexural rigidity of the shell. The moment tensor mΓ is
symmetric and an in-plane tensor. Therefore, one of the three eigenvalues is zero and
the two non-zero eigenvalues of mΓ are the principal bending moments m1 and m2. The
principal moments are in agreement with the eigenvalues of the moment tensor in the
classical setting, see [7]. For the effective normal force tensor ñΓ we have

ñΓ =
∫ t/2

−t/2
σΓ(u, ζ) dζ = tσΓ(εPΓ,Mem) = P · ndir

Γ ·P , (4.16)

with the components
[
ndir

Γ

]
11

= DM
[
uΓ
x,x + ν(uΓ

y,y + uΓ
z,z)

]
,

[
ndir

Γ

]
22

= DM
[
uΓ
y,y + ν(uΓ

x,x + uΓ
z,z)

]
,

[
ndir

Γ

]
33

= DM
[
uΓ
z,z + ν(uΓ

x,x + uΓ
y,y)

]
,

[
ndir

Γ

]
12

= DM

[1− ν
2 (uΓ

x,y + uΓ
y,x)

]
,

[
ndir

Γ

]
13

= DM

[1− ν
2 (uΓ

x,z + uΓ
z,x)

]
,

[
ndir

Γ

]
23

= DM

[1− ν
2 (uΓ

y,z + uΓ
z,y)

]
,

where DM = Et
1−ν2 . Similar to the moment tensor, the two non-zero eigenvalues of

ñΓ are in agreement with those of the effective normal force tensor expressed in local
coordinates. Note that for curved shells this tensor is not the physical normal force
tensor. This tensor only appears in the variational formulation, see Section 4.2. The
physical normal force tensor nreal

Γ is defined by

nreal
Γ = ñΓ + H ·mΓ (4.17)
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and is, in general, not symmetric but also has one zero eigenvalue. The occurrence of the
zero eigenvalues in mΓ, ñΓ and nreal

Γ is due to fact that these tensors are in-plane tensors,
i.e., mΓ ·nΓ = nT

Γ ·mΓ = 0 . The normal vector nΓ is the corresponding eigenvector to
the zero eigenvalue and the other two eigenvectors are tangential. It is noted that the
vectors and tensors defined in the frame of the TDC live in the three-dimensional space.
In contrast, in the classical theory based on curvilinear coordinates, these are quanitites
given in two dimensions.

4.1.3 Equilibrium

4.1.3.1 Equilibrium in strong form

Based on the stress resultants from above, one obtains the equilibrium for a curved shell
in terms of the TDC using a global Cartesian coordinate system in strong form as

divΓnreal
Γ + nΓdivΓ(P · divΓmΓ) + H · divΓmΓ = −f , (4.18)

with f being the load vector per area on the mid-surface Γ. In the classical theory, see,
e.g., [7], the force equilibrium is often split into tangential and normal direction

P · divΓnreal
Γ + H · divΓmΓ = −f t , (4.19)

−H : nreal
Γ + divΓ(P · divΓmΓ) = −fn . (4.20)

Expanding the physical normal force tensor divΓnreal
Γ , converts the equilibrium from

Eq. 4.18 to

divΓñΓ + nΓdivΓ(P · divΓmΓ) + 2H · divΓmΓ +
3∑

i,k=1
[∂xΓ

i H]jk[mΓ]ki = −f . (4.21)

The obtained equilibrium does not rely on a parametrization of the mid-surface, but
in the presence of a parametrization it becomes equivalent to the equilibrium in local
coordinates [7], [139]. From this point of view, the reformulation of the linear Kirchhoff-
Love shell equations in terms of the TDC may be seen as a generalization, because it
holds for explicit and implicit geometry definitions. With boundary conditions, as shown
in detail in Section 4.1.3.3, the complete fourth-order boundary value problem (BVP) is
defined.

Based on the equilibrium in Eq. 4.18, the transverse shear force vector q is defined as

q = P · divΓmΓ . (4.22)

Note that in the special case of flat Kirchhoff-Love shells embedded in R3, the diver-
gence of an in-plane tensor is a tangential vector, as already mentioned in Section 2.2.
Therefore, the definition of the transverse shear force vector in [82] is in agreement with
the obtained transverse shear force vector herein.
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4.1.3.2 Equilibrium in weak form

The equilibrium in strong form is converted to a weak form by multiplying Eq. 4.18 with
a suitable test function v and integrating over the domain, leading to

−
∫

Γ
v · {divΓñΓ + nΓdivΓ(P · divΓmΓ) + 2H · divΓmΓ

+ [∂xΓ
i H]jk[mΓ]ki} dA =

∫

Γ
v · f dA .

(4.23)

With Green’s formula from Section 2.2, we introduce the continuous weak form of the
equilibrium: Find u ∈ VKL : Γ→ R3 such that

a(u, v) = 〈F , v〉 ∀ v ∈ VKL , (4.24)

with

a(u, v) =
∫

Γ
∇dir

Γ v : ñΓ − εdirΓ,B(v) : mΓ dA,

〈F , v〉 =
∫

Γ
f · v dA−

∫

∂ΓN
∇dir

Γ (v · nΓ) · (mΓ · n∂Γ)

− 2(H · v) · (mΓ · n∂Γ)− v · (ñΓ · n∂Γ)
− (v · nΓ) (P · divΓmΓ · n∂Γ) ds .

The corresponding function spaces are

VKL = {u : Γ→ R3 | u ∈ [H1(Γ)]3 : u,ji · nΓ ∈ [L2(Γ)]3} , (4.25)
VKL

0 = {v ∈ VKL(Γ) : v|∂ΓD = 0} , (4.26)

where the Dirichlet boundary is labelled ∂ΓD and the Neumann boundary ∂ΓN. Following
this procedure has the advantage that the boundary terms naturally occur and directly
allow to consider for mechanically meaningful boundary conditions.

4.1.3.3 Boundary conditions

As well-known in the classical Kirchhoff-Love shell theory, special attention has to be
paid to the boundary conditions. In the following, the boundary terms of the weak form
in Eq. 4.24 are rearranged in order to derive the effective boundary forces.
Using Eqs. (4.17) and (4.4), we have

−
∫

∂ΓN
∇dir

Γ (v · nΓ) · (mΓ · n∂Γ)− 2(H · v) · (mΓ · n∂Γ)

− v · (ñΓ · n∂Γ)− (v · nΓ) (P · divΓmΓ · n∂Γ) ds =
∫

∂ΓN
v · (nreal

Γ · n∂Γ) +w(v) · (mΓ · n∂Γ)

+ (v · nΓ) · (P · divΓmΓ · n∂Γ) ds .
(4.27)
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As already mentioned above, the difference vectorw is a tangential vector. Consequently,
the difference vector at the boundary may be expressed in terms of the tangential vectors
t∂Γ and n∂Γ

w(v) = [H · v −∇Γ(v · nΓ)] · n∂Γ︸ ︷︷ ︸
ωt∂Γ

n∂Γ + [H · v −∇Γ(v · nΓ)] · t∂Γ︸ ︷︷ ︸
ωn∂Γ

t∂Γ , (4.28)

where ωt∂Γ may be interpreted as rotation along the boundary and ωn∂Γ is the rotation
in co-normal direction, when the test function v is interpreted as a displacement, see
Fig. 4.2(a). Analogously to the difference vector, the expressions nreal

Γ ·n∂Γ and mΓ ·n∂Γ
in Eq. 4.27 are decomposed in a similar manner

nreal
Γ · n∂Γ = (nreal

Γ · n∂Γ) · t∂Γ︸ ︷︷ ︸
pt∂Γ

t∂Γ + (nreal
Γ · n∂Γ) · n∂Γ︸ ︷︷ ︸

pn∂Γ

n∂Γ , (4.29)

mΓ · n∂Γ = (mΓ · n∂Γ) · n∂Γ︸ ︷︷ ︸
mt∂Γ

n∂Γ + (mΓ · n∂Γ) · t∂Γ︸ ︷︷ ︸
mn∂Γ

t∂Γ . (4.30)

The term pnΓ = P · divΓmΓ · n∂Γ represents the resultant force in normal direction. In-
serting these expressions in Eq. 4.27, the integral along the Neumann boundary simplifies
to

∫

∂ΓN
v · (pt∂Γt∂Γ + pn∂Γn∂Γ + pnΓnΓ) + ωt∂Γmt∂Γ + ωn∂Γmn∂Γ ds . (4.31)

As discussed in detail, e.g., in [7], the rotation in co-normal direction ωn∂Γ is already
prescribed with v|∂Γ. Therefore, the term ωn∂Γmn∂Γ is expanded and with integration
by parts we obtain

∫

∂ΓN
ωn∂Γmn∂Γ ds =

∫

∂ΓN
−∇Γ(v · nΓ) · t∂Γ mn∂Γ + H · v · t∂Γ mn∂Γds

=
∫

∂ΓN
(v · nΓ) · (∇Γmn∂Γ · t∂Γ) + H · v · t∂Γ mn∂Γ ds

− (v · nΓ)mn∂Γ

∣∣∣
−C
+C

,

(4.32)

where +C and −C are points close to a corner C. The new boundary term represents
the Kirchhoff forces or corner forces Fc. Note that if the boundary of the shell is smooth,
the corner forces vanish. Finally, the integral over the Neumann boundary, with the “−”
in front of Eq. 4.24 is expressed in terms of the well-known effective boundary forces and
the bending moment along the boundary

∫

∂ΓN
v · (p̃t∂Γt∂Γ + p̃n∂Γn∂Γ + p̃nΓnΓ) + ωt∂Γmt∂Γ ds− (v · nΓ)Fc , (4.33)
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with

p̃t∂Γ = pt∂Γ + (H · t∂Γ) · t∂Γ mn∂Γ , (4.34)
p̃n∂Γ = pn∂Γ + (H · t∂Γ) · n∂Γ mn∂Γ , (4.35)
p̃nΓ = pnΓ +∇Γmn∂Γ · t∂Γ . (4.36)

In Fig. 4.2(b) the forces and bending moments along a curved boundary are illustrated.
The obtained effective boundary forces and moments are in agreement with the given

ut∂Γ

un∂Γ

unΓunΓ

ωt∂Γ

Γ∂Γ

(a) displacements and rotation

p̃t∂Γ

p̃n∂Γ

p̃nΓp̃nΓ

mt∂Γ

Fc1Fc1

Fc2Fc2

Γ∂Γ

(b) effective forces and bending moment

Fig. 4.2: Boundary conditions for the Kirchhoff-Love shell in terms of the local triad
(t∂Γ, n∂Γ,nΓ): (a) Decomposition of the mid-surface displacement u and the rota-
tion ωt∂Γ along the boundary, and (b) conjugated, effective forces, bending moment
and corner forces at the boundary.

quantities in local coordinates [7], [139]. The mechanically useful boundary conditions
are the conjugated displacements and rotations to the effective forces and moments at
the boundary

p̃t∂Γ ⇐⇒ u · t∂Γ = ut∂Γ ,

p̃n∂Γ ⇐⇒ u · n∂Γ = un∂Γ ,

p̃nΓ ⇐⇒ u · nΓ = unΓ ,

mt∂Γ ⇐⇒ ωt∂Γ = [H · u−∇Γ(u · nΓ)] · n∂Γ ,

= −
[
(∇dir

Γ u)T · nΓ
]
· n∂Γ .

In conclusion, for the unknown displacement field u and the rotation ωt∂Γ along the
boundary there exist two non-overlapping parts at the boundary of the shell ∂Γ. In
particular, the Dirichlet boundary ∂ΓD,i and the Neumann boundary ∂ΓN,i with i ∈
{u, ω}. The corresponding boundary conditions are

u = ĝu on ∂ΓD,u ,

p̃ = p̂ on ∂ΓN,u ,

ωt∂Γ = −[∇dir
Γ u

T · nΓ] · n∂Γ = ĝω on ∂ΓD,ω ,

mt∂Γ = n∂Γ ·mΓ · n∂Γ = m̂ on ∂ΓN,ω ,

(4.37)

where ĝu are the displacements, p̂ are the conjugated, effective forces to u, ĝω is the
rotation along the boundaries and m̂ is the conjugated bending moment to ωt∂Γ at their
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corresponding parts of the boundary. In Tab. 4.1, common support types are given. With
the quantities from above, other boundary conditions (e.g., membrane support, . . . ) may
be derived accordingly.

Clamped edge ĝt∂Γ = 0 ĝn∂Γ = 0 ĝnΓ = 0 ĝω = 0
Simply supported edge ĝt∂Γ = 0 ĝn∂Γ = 0 ĝnΓ = 0 m̂ = 0
Symmetry support p̂t∂Γ = 0 ĝn∂Γ = 0 p̂nΓ = 0 ĝω = 0
Free edge p̂t∂Γ = 0 p̂n∂Γ = 0 p̂nΓ = 0 m̂ = 0

Tab. 4.1: Set of common boundary conditions for Kirchhoff-Love shells.

4.2 Discretization

The previously derived continuous weak form can be discretized with different finite
element approaches such as the classical Surface FEM or more recent approaches such
as the CutFEM [21], [22], [28], [54] and TraceFEM [73], [109], [111], [119]. Herein, the
weak form of the BVP is discretized using isogeometric analysis (IGA) as proposed by
Hughes et al. [34], [88], being closely related to Surface FEM using NURBS-based test
and trial functions.
The NURBS patch TΓ is the mid-surface of the shell and the elements T are defined by
the knot spans of the patch. Linking isogeometric analysis to standard FE terminology,
one may naturally refer to (i) the NURBS patch as the “mesh”, (ii) the knot spans as
the “elements”, and (iii) the NURBS functions as the shape, test, and/or trial functions.
The shape functions Mk

j (x),x ∈ Γ are defined by means of the isoparametric concept
and are NURBS of order k with j = 1, . . . , nc being the number of control points. The
shape functions are employed for all (physical) fields and naturally fulfil the continu-
ity requirements of the Kirchhoff-Love BVP. We avoid the mathematical definition of
NURBS and the resulting patches here because of the abundance of literature devoted
to IGA and consider this as common state of the art, see, e.g., [34], [115].
The surface derivatives of the shape functions ∇ΓM(x) are computed as defined in
Eq. 2.13, similar to the Surface FEM [42], [52], [62], [65] using NURBS instead of La-
grange polynomials as trial and test functions. A general finite element space of order k
is now defined by

N k
Γ =



u

h ∈ Ck−1(Γ), uh(x) =
nc∑

j=1
Mk

j (x)ûj , ûj ∈ R



 , (4.38)

where the degrees of freedom ûj are stored at the control points. The shape functions of
order k ≥ 2 are in the function space VKL, see Eq. 4.25. In fact, the used shape functions
are in the Sobolev space [Hk(Γ)]3 ⊂ VKL iff k ≥ 2.
The discrete displacement of the mid-surface results as uh = uh,iEi, with Ei being
Cartesian base vectors, with i = 1, 2, 3 and uh,i = MT · ûi. Herein, the essential
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boundary conditions are enforced weakly with Lagrange multipliers or the non-symmetric
version of Nitsche’s method. Similar as in Section 3.3.2, both approaches lead to two
different discrete weak forms which are introduced in the following.

4.2.1 Lagrange multipliers

The Lagrange multiplier field for the displacements is labelled λhu ∈ R3 and the Lagrange
multipliers for the rotation along the boundary as λhω ∈ R. The shape functions of λhu
are defined as Mλu = {M |∂ΓD,u} and λhω for Mλω = {M |∂ΓD,ω} in the sense of a trace.
Note that shape functions of the Lagrange multipliers are NURBS of the same order
than the shape functions of the displacements. Based on this, the following discrete trial
and test functions spaces are defined

SKL,h
u = VKL,h

u =
{
uh ∈

[
N k

Γ

]3}
, (4.39)

LKL,h
λu

= VKL,h
λu

=
{
λhu|∂ΓD,u : λhu ∈ SKL,h

u

}
, (4.40)

LKL,h
λω

= VKL,h
λω

=
{
λhω|∂ΓD,ω : λhω ∈ N k

Γ

}
. (4.41)

The discrete weak form of the Kirchhoff-Love shell with Lagrange multipliers reads as
follows: Given Young’s modulus E ∈ R+, Poisson’s ratio ν ∈ [0, 0.5], surface load f
on Γ, traction and corner forces (p̂, F̂c) on ∂ΓN,u, bending moments m̂ on ∂ΓN,ω and
boundary conditions ĝu on ∂ΓD,u, ĝω on ∂ΓD,ω, find the displacement field uh ∈ SKL,h

u

and the Lagrange multiplier fields (λhu, λhω) ∈ LKL,h
λu
×LKL,h

λω
such that for all test functions

(vh, vhλu
, vhλω) ∈ VKL,h

u × VKL,h
λu
× VKL,h

λω
, there holds in Γ

∫

Γ
∇dir

Γ v
h : ñΓ − εdirΓ,B(vh) : mΓ dA+

∫

∂ΓD,u
vh · λhu ds+

∫

∂ΓD,ω
ωt∂Γ(vh)λhω ds

=
∫

Γ
f · vh dA+

∫

∂ΓN,u
vh · p̂ ds+

∫

∂ΓN,ω
ωt∂Γ(vh)m̂ ds− (vh · nΓ)F̂c ,

∫

∂ΓD,u
λhu · uh ds =

∫

∂ΓD,u
vhλu
· ĝu ds ,

∫

∂ΓD,ω
λhω ωt∂Γ(uh) ds =

∫

∂ΓD,ω
vhλω ĝω ds .

(4.42)

The usual assembly yields a linear system of equations in the form
[
KStiff C
CT 0

]
·
[
û

λ̂

]
=
[
bLoad
bλ

]
, (4.43)

with [û, λ̂]T = [ûx, ûy, ûz, λ̂] being the sought displacements of the control points
and Lagrange multipliers. Note that in the case of homogeneous Dirichlet boundary
conditions, bλ = 0. As usual in the context of Lagrange multiplier methods, Eq. 4.43
has a saddle point structure and the well-known Babuška-Brezzi condition [4], [17], [60]
must be satisfied in order to obtain useful solutions in all involved fields. With this
choice of discrete functions spaces, see Eq. 4.39 to Eq. 4.41, bounded condition numbers,
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unique solutions, and the expected rates of convergence for the presented test cases in
Section 4.3 are observed. Based on this observations, the discrete inf-sup condition seems
to be satisfied herein.

The resulting element stiffness matrix KElem is a 3× 3 block matrix and is divided into
a membrane and bending part

KElem = KElem,M + KElem,B . (4.44)

The membrane part is defined by

KElem,M = t
∫

Γ
Pib · [K̂]bj dA , (4.45)

[K̂]kj = µ(δkjMΓ
,a ·MΓT

,a +MΓ
,j ·MΓT

,k ) + λMΓ
,k ·MΓT

,j , (4.46)

summation over a and b. The matrix K̂ is determined by directional first-order deriva-
tives of the shape functions M . One may recognize that the structure of the matrix
K̂ is similar to the stiffness matrix of 3D linear elasticity problems, however, here only
integrated on the shell surface. For the bending part we have

[KElem,B]ij = DB

∫

Γ
ninjK̃ dA , (4.47)

K̃ = (1− ν)M cov
,ab ·M covT

,ab + νM cov
,cc ·M covT

,dd . (4.48)

A summation over a, b on the one hand and c, d on the other has to be performed.
The first term of K̃ is the contraction of the covariant Hessian matrix Hecov

Γ and the
second term may be identified as the Bi-Laplace operator. Note that for the Bi-Laplace
operator also directional derivatives may be used due to the fact that the trace of second
order derivatives is invariant, although the components differ. This suggests a further
rearrangement of the contraction of the covariant Hessian matrix in order to use only
directional derivatives, which is preferred from an implementational point of view. The
equivalent expression of K̃ using only second-order directional derivatives is

K̃ = (1− ν)PeaMdir
,ab ·MdirT

,be + νMdir
,cc ·MdirT

,dd , (4.49)

with summation over a, b, c and d, e as above. When the shell is given through a
parametrization, the resulting element stiffness matrix in the classical theory, e.g., [33]
is equivalent to the element stiffness matrix from above, but in the classical setting the
computation may be found more cumbersome due to fact that the local basis vectors
and the metric tensor in co- and contravariant form has to be computed. In contrast,
herein, the surface gradients and second-order derivatives are first applied to the shape
functions (NURBS or classical finite element functions) to obtain MΓ

,i,M
dir
,ij and M cov

,ij ,
which is independent of the application. In this sense, a significant part of the complexity
of implementing shells is shifted to finite element technology and may be recycled for
any kind of boundary value problems on curved surfaces in R3. Examples are transport
problems [42], [49], [52] or flow problems [62], [90] on curved surfaces. We expect that
future implementations in finite element software will provide frameworks for solving
PDEs on manifolds and, based, e.g., on this work will also apply to shells.
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With the shape functions of the Lagrange multipliers (Mλu ,Mλω), the constraint matrix
C for simply supported edges is defined by

C =
∫

∂ΓD,u



M ·MT

λu
0 0

0 M ·MT
λu

0
0 0 M ·MT

λu


 ds , (4.50)

for clamped edges

C =
∫

∂ΓD,u∩∂ΓD,ω




M ·MT
λu

0 0 (nxn∂ΓiM
Γ
,i) ·MT

λω

0 M ·MT
λu

0 (nyn∂ΓiM
Γ
,i) ·MT

λω

0 0 M ·MT
λu

(nzn∂ΓiM
Γ
,i) ·MT

λω


 ds , (4.51)

and for symmetry supports

C =
∫

∂ΓD,u∩∂ΓD,ω




n∂ΓxM ·MT
λu

(nxn∂ΓiM
Γ
,i) ·MT

λω

n∂ΓyM ·MT
λu

(nyn∂ΓiM
Γ
,i) ·MT

λω

n∂ΓzM ·MT
λu

(nzn∂ΓiM
Γ
,i) ·MT

λω


 ds . (4.52)

Note that all constraint matrices have three block-rows referring to the unknowns ûx, ûy, ûz.

4.2.2 Non-symmetric version of Nitsche’s method

The Nitsche terms which have to be added to the weak form in order to enforce the
displacements ĝu and rotations ĝω at the Dirichlet boundaries are the energy conjugated
terms for the displacements and rotation at their Dirichlet boundaries

∫

∂ΓD,u

(
ĝu − uh

)
· p̃(vh) ds+

(
ĝu − uh

)
· nΓmn∂Γ(vh)

∣∣∣
−C
+C

, (4.53)
∫

∂ΓD,ω

[
ĝω − ωt∂Γ(uh)

]
mt∂Γ(vh) ds . (4.54)

Adding these terms to the RHS of Eq. 4.24 with the discrete displacement field uh and
its corresponding test function vh and reordering terms yields

a(uh,vh) −
∫

∂ΓD,u
vh · p̃(uh) ds+ vh · nΓmn∂Γ(uh)

∣∣∣
−C
+C

+
∫

∂ΓD,u
uh · p̃(vh) ds− uh · nΓmn∂Γ(vh)

∣∣∣
−C
+C

−
∫

∂ΓD,ω
ωt∂Γ(vh)mt∂Γ(uh) ds+

∫

∂ΓD,ω
ωt∂Γ(uh)mt∂Γ(vh) ds

= 〈F , vh〉+
∫

∂ΓD,u
ĝu · p̃(vh) ds+ ĝu · nΓmn∂Γ(vh)

∣∣∣
−C
+C

∫

∂ΓD,ω
ĝωmt∂Γ(vh) ds .

(4.55)
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Applying integration by parts on the effective normal force p̃nΓ , we can get rid of the
corner forces. Furthermore, a shift of the rather cumbersome derivative on the drilling
moment mn∂Γ in p̃nΓ , see Eq. 4.36, simplifies the obtained terms in Eq. 4.55 significantly.
The resulting discrete weak form for the Kirchhoff-Love shell with the non-symmetric
version of Nitsche’s method reads as follows: Given Young’s modulus E ∈ R+, Poisson’s
ratio ν ∈ [0, 0.5], surface load f on Γ, traction and corner forces (p̂, F̂c) on ∂ΓN,u,
bending moments m̂ on ∂ΓN,ω and boundary conditions ĝu on ∂ΓD,u, ĝω on ∂ΓD,ω, find
the displacement field uh ∈ SKL,h,N

u such that for all test function vh ∈ VKL,h,N
u , there

holds in Γ
∫

Γ
∇dir

Γ v
h : ñΓ(uh)− εdirΓ,B(vh) : mΓ(uh) dA

−
∫

∂ΓD,u
ωn∂Γ(vh)mn∂Γ(uh) + vh · p(uh) ds

︸ ︷︷ ︸
bound. terms due to v 6= 0 on ∂ΓD,u

−
∫

∂ΓD,ω
ωt∂Γ(vh)mt∂Γ(uh) ds

︸ ︷︷ ︸
bound. term due to v 6= 0 on ∂ΓD,ω

+
∫

∂ΓD,u
ωn∂Γ(uh)mn∂Γ(vh) + uh · p(vh) ds

︸ ︷︷ ︸
Nitsche terms for displ. on LHS

+
∫

∂ΓD,ω
ωt∂Γ(uh)mt∂Γ(vh) ds

︸ ︷︷ ︸
Nitsche term for rot. on LHS

=
∫

Γ
f · vh dA+

∫

∂ΓN,u
vh · p̂ ds+

∫

∂ΓN,ω
ωt∂Γ(vh)m̂ ds− (vh · nΓ)F̂c

+
∫

∂ΓD,u
ĝu · p(vh) + ωn∂Γ(ĝu)mn∂Γ(vh) ds

︸ ︷︷ ︸
Nitsche terms for displ. on RHS

+
∫

∂ΓD,ω
ĝωmt∂Γ(vh) ds

︸ ︷︷ ︸
Nitsche term for rot. on RHS

,

(4.56)

where p are the standard boundary forces from Eq. 4.31 and (SKL,h,N
u ,VKL,h,N

u ) are the
discrete function spaces for the Nitsche’s method with the order k ≥ 3 in Eq. 4.39. The
reason for the higher continuity requirements are that in pnΓ , third-order derivatives of
uh occur. A detailed discussion regarding the function spaces and analysis of Nitsche’s
method for Kirchhoff-Love shells is presented in [11].

Circumventing the corner forces and shifting the tangent derivative on the drilling mo-
ment has already been presented for the Kirchhoff plate in [121] and is, herein, straight-
forwardly extended to the Kirchhoff-Love shell. Compared to [78] this may lead to a more
compact implementation of the Nitsche terms because the effective boundary forces are
not needed explicitly in the implementation. Another approach for the symmetric ver-
sion of Nitsche’s method, where the corner forces explicitly appear in the variational
formulation, is presented in [11]. Note that, in case of slip supports, e.g., membrane
support, or displacement constraints in a selected, arbitrary unit direction d with the
magnitude Ĝd, the involved terms for the displacement along ∂ΓD,u in Eq. 4.56 have to
be converted accordingly.

The usual element assembly yields a non-symmetric, linear system of equations in the
form

(KStiff + KNitsche)︸ ︷︷ ︸
K

· û = (bLoad + bNitsche)︸ ︷︷ ︸
b

, (4.57)
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with û being the sought displacements of the control points. Note that the terms
(KStiff, bLoad) are identical as in Eq. 4.43 and in case of homogeneous boundary con-
ditions, the term bNitsche vanishes.

4.3 Numerical results

In this section the obtained shell equations in the frame of the TDC are carefully verified
and compared to the classical approach with different test cases. As already mentioned
above, the use of the Surface FEM in this isogeometric context leads to an equivalent
stiffness matrix for arbitrarily curved and flat shells. Consequently, the same conver-
gence properties as shown, e.g., in [33], [94] are expected. In the following, the results
of the convergence analyses of a flat shell embedded in R3, the Scordelis-Lo roof, and
the pinched cylinder test (part of the shell obstacle course proposed by Belytschko et
al. [9]) are shown. Furthermore, a new test case with a challenging geometry is pro-
posed which features smooth solutions enabling higher-order convergence rates. These
rates are confirmed in the residual error as no analytic solution exists, see Section 4.3.4.
Other examples (e.g., pinched hemispherical shell, shells of revolution, etc.) have been
considered but are omitted as these performed equally well.

In the convergence studies, NURBS patches with different orders and numbers of knot
spans in each direction are employed. This is equivalent to meshes with higher-order
elements and n ∈ {2, 4, 8, 16, 32} elements per side are used. The orders are varied
as p ∈ {2, 3, 4, 5, 6}, p = 1 is not suitable as the resulting shape functions fail the
continuity requirements. In the convergence analyses, the essential boundary conditions
are enforced with both the Lagrange multiplier approach and the non-symmetric version
of Nitsche’s method. Both methods perform as expected and give optimal convergence
rates if the involved fields are sufficiently smooth. In the following, the results obtained
with the Lagrange multiplier approach are presented and the analogous results with the
non-symmetric version of Nitsche’s method are omitted for brevity.

4.3.1 Flat shell embedded in R3

Following a similar rationale as in [82], as a first test case, we consider a simple quadri-
lateral, flat shell with the normal vector nΓ = [−1/4, −√3/2,

√
3/4]T in R3, see Fig. 4.3.

The shell is simply supported at all edges. For verification, the load vector f is split into
tangential f t and normal fn loads. The tangential loads are obtained with the method of
manufactured solutions for a given displacement field ut(x) =

[
[1, 1]T · 1/4 sin(πr) sin(πs)

]
◦

χ−1(x). In normal direction, a sinusoidal load fn(x) = [−D sin(πr) sin(πs)] ◦ χ−1(x) is
applied to the shell. Herein, χ is an affine mapping function (rigid-body rotation) from
the horizontal parameter space to the real domain. An analytic solution for the normal
displacements is easily obtained with un(x) = [−(sin(πr) sin(πs))/(4π4)]◦χ−1(x), [136].
The shell is defined with L = 1 and the thickness is set to t = 0.01. The material
parameters are: Young’s modulus E = 10 000 and the Poisson’s ratio ν = 0.3.
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Geometry: Quadrilateral flat shell
L = 1
t = 0.01
nΓ = [−1/4, −√3/2,

√
3/4]T

Material parameters: E = 10 000
ν = 0.3

Load: f t and fn

Support: Simple support on all edges

Fig. 4.3: Definition of flat shell problem.

(a) front view (b) rotated view

Fig. 4.4: Displacement u of arbitrarily orientated flat shell, scaled by two orders of magnitude.

In Fig. 4.4, the solution of the shell is illustrated. The displacements are scaled by two
orders of magnitude. The colours on the deformed surface indicate the Euclidean norm
of the displacement field ‖u‖. In the convergence analyses, the relative L2-error of the
displacements u, normal forces nreal

Γ , bending moments mΓ and transverse shear forces
q are considered. The theoretical, optimal orders of convergence w.r.t. the element size
1/n for the displacements, normal forces, bending moments and transverse shear forces
are O(p+ 1),O(p),O(p− 1),O(p− 2), respectively.

The results of the convergence analysis are shown in Fig. 4.5. The curves are plotted as a
function of the element size 1/n (which is rather a characteristic length of the knot spans).
The dotted lines indicate the theoretical optimal order of convergence. In Fig. 4.5(a), the
relative L2-error of the primal variable (displacements) is shown. Optimal higher-order
convergence rates for p ≥ 3 are achieved. In Fig. 4.5(b) to Fig. 4.5(d), the relative L2-
errors of the normal forces (membrane forces), bending moments and transverse shear
forces are plotted. For all stress resultants and orders, the theoretical optimal orders of
convergence are achieved. One may observe suboptimal convergence rates for p = 2 in
the primal variable, while the convergence rates in the stress resultant are optimal. This
phenomena has also been reported in [11]. It is clear that the same results were obtained
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(a) relative L2-norm of displacements u (b) relative L2-norm of normal forces
nreal

Γ

(c) relative L2-norm of bending mo-
ments mΓ

(d) relative L2-norm of transverse shear
forces q

Fig. 4.5: Convergence results for the rotated, flat shell.

if the results are computed for the purely two-dimensional case as, e.g., in [33].
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4.3.2 Scordelis-Lo roof

The Scordelis-Lo roof is a cylindrical shell and is supported with two rigid diaphragms at
the ends. The shell is loaded by gravity forces, see Fig. 4.6. The cylinder is defined with
L = 50, R = 25 and the angle subtended by the roof is φ = 80°. The thickness of the
shell is set to t = 0.25. The material parameters are: Young’s modulus E = 4.32× 108

and the Poisson’s ratio ν = 0.0. In contrast to the first example, the maximum vertical
displacement uz,max is compared to the reference solution uz,max,Ref = 0.3024 as given in
reference [9]. The largest vertical displacement occurs in the midpoint of the free edges
at [±R cos(50°), 25, R sin(50°)]T.

Geometry: Cylindrical shell
L = 50
R = 25
φ = 80°
t = 0.25

Material parameters: E = 4.32× 108

ν = 0.0

Load: Gravity load f = [0, 0, −90]T

Support: Rigid diaphragms at it ends

Fig. 4.6: Definition of Scordelis-Lo roof problem.

In Fig. 4.7(a), the numerical solution of the Scordelis-Lo roof is illustrated. The colours
on the deformed surface indicate the Euclidean norm of the displacement field ‖u‖. The
displacements are magnified by one order of magnitude. In Fig. 4.7(b), the convergence

(a) displacement u (b) convergence

Fig. 4.7: Scordelis-Lo roof modelled as Kirchhoff-Love shell: (a) Displacement field u scaled
by one order of magnitude, and (b) normalized convergence of reference displacement
uz,max,Ref = 0.3024.
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of the maximum displacement uz,max is plotted up to an order of p = 6 as a function of
the element (knot span) size. It is clearly seen that the expected results are achieved,
with increasing accuracy for higher-order NURBS. Due to the lack of a more accurate
reference solution, it is not useful to show these results in a double-logarithmic diagram
as usual for error plots. The style of presentation follows those of many other references
such as, e.g., in [9], [33], [94].

4.3.3 Pinched cylinder

The next test case is a cylindrical shell pinched with two diametrically opposite unit
loads located within the middle of the shell, see Fig. 4.8. The cylinder is defined with
L = 600, R = 300. The thickness is set to t = 3. The material properties are: Young’s
modulus E = 3× 106 and the Poisson’s ratio ν = 0.3. The reference displacement at
the loading points are uRef = 1.824 88× 10−5 as given in reference [9]. Due to symmetry
only one eighth of the geometry is modelled.

Geometry: Cylinder
(one eighth of cylinder modeled)
L/2 = 300
R = 300
φ = 90°
t = 3

Material parameters: E = 3× 106

ν = 0.3

Load: Single unit forces

Support: Rigid diaphragms at the top and
symmetry boundary conditions

Fig. 4.8: Definition of the pinched cylinder problem.

In Fig. 4.9(a), the numerical solution of the pinched cylinder is illustrated with scaled
displacements by a factor of 5× 106. Similar as above, the colours on the deformed
surface indicate the Euclidean norm of the displacement field ‖u‖.
As in the example before, in Fig. 4.9(b), the convergence to a normalized reference dis-
placement as a function of the element size is plotted. The results confirm with the
expected convergence behaviour as shown in [33], [94]. It is noted that due to the sin-
gularity in some mechanical quantities due to the single force, higher-order convergence
rates are not possible here. However, the improvement for increasing the order of the
NURBS is still seen in the figure. An additional grading of the elements in order to
better resolve the singularity would have further improved the situation but is omitted
here.

4.3.4 Flower-shaped shell

As a last example, a more complex geometry is considered, which enables smooth me-
chanical fields and thereby enables higher-order convergence rates. The geometry of the
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(a) displacement u (b) convergence

Fig. 4.9: Pinched cylinder: (a) Displacement u of one eighth of the geometry (scaled by
a factor of 5× 106), and (b) normalized convergence of reference displacement
uRadial,Ref = 1.824 88× 10−5 at loading points.

mid-surface is given with

xΓ(r, s) =




(A− C) cos(θ)
(A− C) sin(θ)

1− s2


 , (4.58)

where

r, s ∈ [−1, 1] , A = 2.3 , B = 0.8 ,
θ(r) = π(r + 1) ,
C(r, s) = s[B + 0.3 cos(6θ)] ,

and is illustrated in Fig. 4.10. On the right side of the figure, the boundary conditions
and material parameters are defined. The mid-surface of the shell features varying
principal curvatures and curved boundaries. The curved boundaries are clamped and

Geometry: Flower shaped shell
see Eq. 4.58
t = 0.1 m

Material parameters: E = 1× 105 kN m−2

ν = 0.3

Load: f = [1, 2, −10]TkN m−2

Support: Clamped edges at inner and
outer boundary

Fig. 4.10: Definition of flower shaped shell problem for the Kirchhoff-Love shell.

the corresponding conditions (from Tab. 4.1) have to be properly enforced. An analytical
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solution or reference displacement is not available. Therefore, the error is measured in
the strong form of the equilibrium from Eq. 4.18 which may be called residual error as
done above in Section 3.3. In particular, this residual error is calculated as

ε2
rel,residual =

∫
Γ

[
divΓnreal

Γ + nΓdivΓ(P · divΓmΓ) + H · divΓmΓ + f
]2

dA
∫

Γ f
2 dA . (4.59)

The computation of the residual error requires the evaluation of fourth-order surface
derivatives. It is noteworthy that the implementation of these higher-order derivatives
is not without efforts. For example, recall that mixed directional surface derivatives are
not symmetric. That is, there are 34 = 81 partial fourth-order derivatives. Nevertheless,
provided that the displacement field is smooth enough, this error measure is a suitable
quantity for the convergence analysis.
In Fig. 4.11(a), the deformed shell is illustrated. The displacement field is scaled by one
order of magnitude. In Fig. 4.11(b), the results of the convergence analysis are plotted.
Due to the fact that fourth-order derivatives need to be computed, at least fourth-order
shape functions are required. The theoretical optimal order of convergence is O(p− 3) if
the solution is smooth enough. One may observe that higher-order convergence rates are
achieved, however, rounding-off errors and the conditioning may slightly influence the
convergence. Nevertheless, the results are excellent also given the fact that higher-order
accurate results for shells (given in double-logarithmic error plots) are rare.
The stored elastic energy at the finest level with a polynomial order p = 8, which may be
seen as an overkill solution, is e = 1.7635958± 1× 10−7 kN m. This stored elastic energy
may be used for future benchmark tests, without the hassle to implement fourth-order
derivatives on manifolds.

(a) displacement u (b) convergence

Fig. 4.11: Flower shaped shell modelled as Kirchhoff-Love shell: (a) Displacement u of flower
shaped shell (scaled by one order of magnitude), and (b) residual error εrel,residual.





5 Linear Reissner-Mindlin shells
In this chapter, the linear Reissner-Mindlin shell, suitable to model thin and moderately
thick shells, is reformulated in the frame of the TDC using a global Cartesian coordinate
system. The rotation of the normal vector is modelled with a difference vector approach.
As before, the reformulation includes all relevant mechanical quantities such as stress
results and the computation of invariant quantities, e.g., principal moments. The re-
sulting BVP in strong form is a set of second-order PDEs and is valid for explicitly and
implicitly defined shells which generalizes the classical shell equations. In the numerical
treatment, the shell BVP is discretized with both isogeometric analysis (IGA) as a vari-
ant of the Surface FEM on the one hand and the Trace FEM on the other. Therefore,
the discrete weak forms for both finite element methods are introduced. The essential
boundary conditions are enforced with Lagrange multipliers and the non-symmetric ver-
sion of Nitsche’s method, respectively. For the discretization of the tangential difference
vector, different approaches which do not necessarily rely on a parametrization are elab-
orated in detail. The numerical results confirm higher-order convergence rates for both
FEMs provided that the involved mechanical fields are sufficiently smooth.
The major content of this chapter follows our own articles in [127], [129].

5.1 Governing equations

In this section, we derive the linear Reissner-Mindlin shell theory or first-order shear
deformation theory in the frame of tangential operators based on a global Cartesian
coordinate system. As mentioned above, this has the advantage over classical shell
theory that the resulting model is valid no matter whether a parametrization is available
or not.
We restrict ourselves to infinitesimal deformations and rotations, which means that the
reference and spatial configuration are indistinguishable. For simplicity, a linear elastic
material governed by Hooke’s law is assumed. In contrast to the Kirchhoff-Love shells,
the additional constraint on the shell director is omitted, thus allowing transverse shear
strains, leading to the well-known five-parameter shell models, e.g., [14]. Furthermore, we
assume a constant shifter in the material law, which enables an analytical pre-integration
in thickness direction.
Just as for the Kirchhoff-Love shells, the shell continuum Ω of thickness t may be defined
implicitly with a signed distance function φSDF(x),

Ω =
{
x ∈ R3 : |φSDF(x)| ≤ t

2

}
. (5.1)
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Alternatively, when the mid-surface Γ is parametrized with a map xΓ(r), the domain of
the shell is defined by

x = xΓ + ζnΓ(xΓ) , (5.2)

where ζ is the coordinate in thickness direction |ζ| ≤ t/2. Further details regarding the
geometry definition are presented in Section 2.1.

5.1.1 Kinematics

For Reissner-Mindlin shells, the cross section remains straight after the deformation,
but not necessarily normal to the mid-surface due to transverse shear deformations.
Herein, the rotation of the normal vector is modelled with a standard difference vector
formulation [53], [95]. Other approaches such as exponential maps, rotation tensors,
etc. have been proposed, e.g., in [7], [14], [47], [132], [133], but are not considered here.
The overall displacement of a point P ∈ Ω is the difference between the spatial and
reference configuration

uΩ(x) = P̄ (x)− P (x) ,

which takes the form

uΩ(xΓ, ζ) = u(xΓ) + ζw(xΓ) , (5.3)

with u(xΓ) : Γ → R3 being the displacement of the mid-surface and w(xΓ) : Γ → TPΓ
being the difference vector, describing the rotation of the normal vector. In contrast
to the Kirchhoff-Love shell, transverse shear deformations γ are not neglected, which
results in an additional rotation of the normal vector nΓ, as illustrated in Fig. 5.1. The

ζ

nΓ
P (xΓ, ζ)

Undeformed
mid-surface Γ

ζζ

n̄Γ

u

uΩ P̄ (xΓ, ζ)
ζw

−ζ(∇dir
Γ u)T · nΓ

ζγ

Deformed
mid-surface Γ̄

y

z

x

xΓxΓ

Fig. 5.1: Displacement field uΩ of the Reissner-Mindlin shell.

difference vector w expressed in terms of the TDC is then defined as in [39], [125] with
additional transverse shear deformations

w(xΓ) = −[∇dir
Γ u(xΓ)]T · nΓ + γ(xΓ) . (5.4)
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Note that the difference vector is a tangential vector as in the classical theory. The
surface gradient of uΩ(x) is given by

∇dir
Γ uΩ(x) = P · ∂uΩ(x)

∂x
· ∂x
∂xΓ

= P · (∇ũ+∇ζ ⊗w + ζ∇w̃) · (I + ζH)
=
(
∇dir

Γ u+ nΓ ⊗w + ζ∇dir
Γ w

)
· (I + ζH) .

with H = ∇dir
Γ nΓ being the Weingarten map and (I + ζH) is the inverse of the shell

shifter, similar to Eq. 4.6. The linearised strain tensor εΓ is defined by the symmetric
part of the surface gradient of uΩ

εΓ(x) = 1
2
[
∇dir

Γ uΩ + (∇dir
Γ uΩ)T

]
= εPΓ(x) + εSΓ(x) , (5.5)

and is split into an in-plane strain εPΓ and a transverse shear strain εSΓ. Neglecting higher-
order terms in thickness direction, as usual in the classical theory [14], the in-plane strain
is defined by

εPΓ = P · εΓ ·P = εPΓ,Mem + ζεPΓ,Bend , (5.6)

which is divided into a membrane and bending strain. The in-plane membrane strain
becomes

εPΓ,Mem(u) = 1
2
[
∇cov

Γ u+ (∇cov
Γ u)T

]
, (5.7)

and the bending strain is

εPΓ,Bend(u,w) = 1
2
[
H · ∇dir

Γ u+ (∇dir
Γ u)T ·H +∇cov

Γ w + (∇cov
Γ w)T

]
. (5.8)

The transverse shear strain is defined in a similar manner as in [84]

εSΓ(u, w) = Q · εΓ + εΓ ·Q (5.9)

= 1
2
[
Q · ∇dir

Γ u+ (∇dir
Γ u)T ·Q + nΓ ⊗w +w ⊗ nΓ

]
. (5.10)

When the shell surface is parametrized, the resulting strain components are equivalent
compared to the classical theory in local coordinates, see, e.g., [7], [14], [53], [95]. In
the case of flat shell structures, the membrane strain is only a function of the tangential
part of the mid-surface displacement ut = P ·u. Since the curvature is zero in this case,
the Weingarten map H vanishes. Therefore, the bending strain is only a function of the
difference vector w and the transverse shear strain becomes a function of the normal
displacement un = u · nΓ and w, resulting into the well-known Reissner-Mindlin plate,
see, e.g., [112].
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5.1.2 Constitutive equations and stress resultants

The shell is assumed to be linear elastic and, as usual for thin structures, the Lamé
constants are chosen such that the normal stress in thickness direction is eliminated,
hence,

σΓ(x) = 2µεΓ(x) + λtr[εΓ(x)]I (5.11)

where µ = E
2(1+ν) and λ = Eν

1−ν2 . The stress tensor is decomposed in a similar manner
than above into in-plane (membrane and bending) stresses

σP
Γ (x) = P ·

[
2µεPΓ(x) + λtr[εPΓ(x)]I

]
·P , (5.12)

and transverse shear stresses

σS
Γ(xΓ) = 2µ

[
Q · εSΓ(xΓ) + εSΓ(xΓ) ·Q

]
+ λtr

[
εSΓ(xΓ)

]
Q ,

= 2µαs ε
S
Γ(xΓ) .

(5.13)

As readily seen, the transverse shear stress is only a function of xΓ, which results in a
constant transverse shear stress in thickness direction within the Reissner-Mindlin shell
theory. In order to account for this, a shear correction factor αs is introduced [14]. A
common choice of the shear correction factor is αs = 5/6. Note that due to the double
projection with P in Eq. 5.12 of the in-plane stress, also directional gradients can be
used, which is beneficial from an implementational point of view, see Eq. 4.13.

Assuming a constant shifter in the material law, the stress tensor σΓ(x) is only a function
of the deflection of the mid-surface u, the difference vector w and linear in thickness
direction. This enables an analytical pre-integration with respect to the thickness and
stress resultants such as effective membrane forces, bending moments, and transverse
shear forces are identified. The following quantities are expressed in terms of the TDC
using a global Cartesian coordinate system and are equivalent to the stress resultants in
the classical theory using curvilinear coordinates, e.g., [7], [14].

The symmetric, in-plane moment tensor mΓ is defined as

mΓ =
∫ t/2

−t/2
ζσP

Γ (x) dζ = t3

12σΓ(εPΓ,Bend) = P ·mdir
Γ ·P , (5.14)
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resulting in the components
[
mdir

Γ

]
11

= DB
[
wΓ
x,x + [H]1j · udir

,x + ν(wΓ
y,y + wΓ

z,z + [H]2j · udir
,y + [H]3j · udir

,z )
]
,

[
mdir

Γ

]
22

= DB
[
wΓ
y,y + [H]2j · udir

,y + ν(wΓ
x,x + wΓ

z,z + [H]1j · udir
,x + [H]3j · udir

,z )
]
,

[
mdir

Γ

]
33

= DB
[
wΓ
z,z + [H]3j · udir

,z + ν(wΓ
x,x + wΓ

y,y + [H]1j · udir
,x + [H]2j · udir

,y )
]
,

[
mdir

Γ

]
12

= DB
1− ν

2
[
wΓ
x,y + wΓ

y,x + [H]1j · udir
,y + [H]2j · udir

,x

]
,

[
mdir

Γ

]
13

= DB
1− ν

2
[
wΓ
x,z + wΓ

z,x + [H]1j · udir
,z + [H]3j · udir

,x

]
,

[
mdir

Γ

]
23

= DB
1− ν

2
[
wΓ
y,z + wΓ

z,y + [H]2j · udir
,z + [H]3j · udir

,y

]
,

with j = 1, 2, 3 and DB = Et3

12(1−ν2) being the flexural rigidity of the shell. The two non-
zero eigenvalues of mΓ are the principal moments m1 and m2. The effective membrane
(normal) force tensor ñΓ is defined as

ñΓ =
∫ t/2

−t/2
σP

Γ (x) dζ = tσΓ(εPΓ,Mem) = P · ndir
Γ ·P , (5.15)

with components
[
ndir

Γ

]
11

= DM
[
uΓ
x,x + ν(uΓ

y,y + uΓ
z,z)

]
,

[
ndir

Γ

]
22

= DM
[
uΓ
y,y + ν(uΓ

x,x + uΓ
z,z)

]
,

[
ndir

Γ

]
33

= DM
[
uΓ
z,z + ν(uΓ

x,x + uΓ
y,y)

]
,

[
ndir

Γ

]
12

= DM

[1− ν
2 (uΓ

x,y + uΓ
y,x)

]
,

[
ndir

Γ

]
13

= DM

[1− ν
2 (uΓ

x,z + uΓ
z,x)

]
,

[
ndir

Γ

]
23

= DM

[1− ν
2 (uΓ

y,z + uΓ
z,y)

]
,

where DM = Et
1−ν2 is the membrane stiffness. Analogously to the moment tensor, the

effective normal force tensor is also a symmetric, in-plane tensor. For curved shells,
this tensor is not the physical normal force tensor but occurs in the weak form, see
Section 5.1.3.2. Similar to the Kirchhoff-Love shell, the physical normal force tensor
nreal

Γ is defined by

nreal
Γ = ñΓ + H ·mΓ

and is, in general, not symmetric but features one zero eigenvalue just as ñΓ. With
Eq. 5.13, the resulting transverse shear force tensor is

qΓ =
∫ t/2

−t/2
σS

Γ(x) dζ = tσΓ(εSΓ) = 2DShear ε
S
Γ , (5.16)
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with components

[qΓ]11 = 2DShear
[
nxwx + [Q]1j · udir

,x

]
,

[qΓ]22 = 2DShear
[
nywy + [Q]2j · udir

,y

]
,

[qΓ]33 = 2DShear
[
nzwz + [Q]3j · udir

,z

]
,

[qΓ]12 = DShear
[
nxwy + nywx + [Q]1j · udir

,y + [Q]2j · udir
,x

]
,

[qΓ]13 = DShear
[
nxwz + nzwx + [Q]1j · udir

,z + [Q]3j · udir
,x

]
,

[qΓ]23 = DShear
[
nywz + nzwy + [Q]2j · udir

,z + [Q]3j · udir
,y

]
,

where DShear = αsµt = αs
Et

2(1+ν) is the transverse shear stiffness.

5.1.3 Equilibrium

5.1.3.1 Equilibrium in strong form

Based on the stress resultants from above, one obtains the force and moment equilib-
rium for a curved Reissner-Mindlin shell in terms of the TDC using a global Cartesian
coordinate system in strong form as

divΓnreal
Γ + Q · divΓqΓ + H · (qΓ · nΓ) = −f , (5.17)

P · divΓmΓ − qΓ · nΓ = −c , (5.18)

with f being the load vector per area and c being a distributed moment vector on
the mid-surface Γ. One may split the force equilibrium into the tangential and normal
direction

P · divΓnreal
Γ + H · (qΓ · nΓ) = −f t , (5.19)

−H : nreal
Γ + nΓ · divΓqΓ = −fn . (5.20)

Alternatively, Eq. 5.17 can be rewritten in terms of the effective normal force tensor by
substituting nreal

Γ with Eq. 4.17

divΓñΓ + H · divΓmΓ +
3∑

i,j=1
[H,i]jk[mΓ]ji + Q · divΓqΓ + H · (qΓ · nΓ) = −f . (5.21)

Assuming a bounded shell with boundary ∂Γ, there exist for each field (deflection of
the mid-surface u and difference vector w) two non-overlapping parts, the Dirichlet
boundary ∂ΓD,i and the Neumann boundary ∂ΓN,i, with i ∈ {u, w}. The corresponding
boundary conditions for the displacements u are

u = ĝu on ∂ΓD,u ,

nreal
Γ · n∂Γ + (nΓ · qΓ · n∂Γ) · nΓ = p̂ on ∂ΓN,u .

(5.22)
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For the rotation of the normal vector, the boundary conditions are

w = ĝw on ∂ΓD,w ,

mΓ · n∂Γ = m̂∂Γ on ∂ΓN,w .
(5.23)

In Fig. 5.2, the possible boundary conditions are illustrated. In Fig. 5.2(a), the displace-
ment field u at the boundary is expressed in terms of the local triad (t∂Γ, n∂Γ, nΓ) and,
since the difference vector is tangential, the rotation of the normal vector may be written
in terms of (t∂Γ, n∂Γ)

w = (w · n∂Γ)
︸ ︷︷ ︸

ωt∂Γ

n∂Γ + (w · t∂Γ)
︸ ︷︷ ︸

ωn∂Γ

t∂Γ , (5.24)

where (ωt∂Γ , ωn∂Γ) are the rotations around t∂Γ and n∂Γ, respectively. The decomposition
of mΓ · n∂Γ = m̂∂Γ is similar to Eq. 4.30. The conjugated forces (pt∂Γ , pn∂Γ , pnΓ) and
bending moments (mt∂Γ , mn∂Γ) at the boundary are shown in Fig. 5.2(b). A set of

ut∂Γ

un∂Γ

unΓunΓ

ωn∂Γ

ωt∂Γ

Γ∂Γ

y

z

x

(a) displacements and rotations

pt∂Γ

pn∂Γ

pnΓpnΓ

mn∂Γ

mt∂Γ

Γ∂Γ

y

z

x

(b) forces and moments

Fig. 5.2: Decomposition of the mid-surface displacement u, difference vector w, forces and
bending moments along the boundary ∂Γ in terms of t∂Γ, n∂Γ and nΓ: (a) Displace-
ments and rotations at the boundary, and (b) forces and bending moments at the
boundary.

common support types is given in Tab. 4.1. Other boundary conditions (e.g., membrane
support, etc.) can be found, e.g., in [7].

Clamped edge ĝu,t∂Γ = 0 ĝu,n∂Γ = 0 ĝu,nΓ = 0 ω̂t∂Γ = 0 ω̂n∂Γ = 0
Simply supported edge ĝu,t∂Γ = 0 ĝu,n∂Γ = 0 ĝu,nΓ = 0 m̂t∂Γ = 0 m̂n∂Γ = 0
Symmetry support p̂t∂Γ = 0 ĝu,n∂Γ = 0 p̂nΓ = 0 ω̂t∂Γ = 0 m̂n∂Γ = 0
Free edge p̂t∂Γ = 0 p̂n∂Γ = 0 p̂nΓ = 0 m̂t∂Γ = 0 m̂n∂Γ = 0

Tab. 5.1: Set of common boundary conditions for Reissner-Mindlin shells.

With the boundary conditions for the displacements and rotations, the complete second-
order BVP is defined. The obtained BVP in terms of the TDC is valid in the case
of implicitly and explicitly defined surfaces. In the case of parametrized shells, the
equilibrium in strong form is equivalent to the strong form formulated in local coordinates
[7], [95], [139]. However, because the obtained BVP does not rely on a parametrized mid-
surface of the shell, the formulation in the frame of the TDC is more general.
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5.1.3.2 Equilibrium in weak form

In order to convert the equilibrium in strong form to the weak form, we introduce the
following function spaces

SRMu =
{
v ∈

[
H1(Γ)

]3
: v = ĝu on ∂ΓD,u

}
, (5.25)

VRM
u =

{
v ∈

[
H1(Γ)

]3
: v = 0 on ∂ΓD,u

}
, (5.26)

SRMw =
{
v ∈

[
H1(Γ)

]3
: v · nΓ = 0 ; v = ĝw on ∂ΓD,w

}
, (5.27)

VRM
w =

{
v ∈

[
H1(Γ)

]3
: v · nΓ = 0 ; v = 0 on ∂ΓD,w

}
, (5.28)

where H1 is the space of functions with square integrable first derivatives. Note that
the functions are 3D functions on the mid-surface, i.e., v(x) : Γ → R3,x ∈ Γ ⊂ R3.
The non-tangential spaces (SRMu ,VRM

u ) are employed for the trial and test functions of
the mid-surface displacement, whereas the tangential function spaces (SRMw ,VRM

w ) are
used for the trial and test functions of the difference vector, which need to be tangential
according to the Reissner-Mindlin kinematics. Later on for the discrete problem in the
frame of the Trace FEM, these functions are defined in the physical space R3 and then
restricted to Γ, with the additional condition that the functions need to be in [H1(Γ)]3.
It is emphasized that the definition of the functions in the higher-dimensional space and
then restricting them to the trace (mid-surface) is an important difference compared to
classical Surface FEM.

With the above defined function spaces, see Eq. 5.25 to Eq. 5.28, the weak form of the
equilibrium reads as follows: Given Young’s modulus E ∈ R+, Poisson’s ratio ν ∈ [0, 0.5],
body forces f on Γ, tractions p̂ on ∂ΓN,u, find u ∈ SRMu and w ∈ SRMw such that for all
vu ∈ VRM

u , there holds
∫

Γ
∇dir

Γ vu : ñΓ + (H · ∇dir
Γ vu) : mΓ+(Q · ∇dir

Γ vu) : qΓ dA

=
∫

Γ
vu · f dA+

∫

∂ΓN,u
vu · p̂ ds .

(5.29)

Note that, in order to obtain Eq. 5.29, the identities (H·∇dir
Γ vu) : mΓ = ∇dir

Γ vu : (H·mΓ)
and [QΓ

,x ·vu QΓ
,y ·vu QΓ

,z ·vu] : qΓ = vT
u ·H·(qΓ ·nΓ) are used. As previously mentioned,

in the weak form of the force equilibrium, only the effective normal force tensor appears
instead of the non-symmetric, physical normal force tensor.

The weak form of the moment equilibrium reads as follows: Given Young’s modulus
E ∈ R+, Poisson’s ratio ν ∈ [0, 0.5], distributed moments c ∈ TPΓ on Γ, bending
moments m̂∂Γ on ∂ΓN,w, find u ∈ SRMu and w ∈ SRMw such that for all vw ∈ VRM

w , there
holds

∫

Γ
∇dir

Γ vw : mΓ + vw · (qΓ · nΓ) dA =
∫

Γ
vw · c dA+

∫

∂ΓN,w
vw · m̂∂Γ ds . (5.30)
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5.2 Discretization

In the following, the obtained continuous weak form from Section 5.1.3.2 is discretized
with the Surface and the Trace FEM. For the Surface FEM, similar to Section 4.2, iso-
geometric analysis (IGA) is employed. It is pointed out that continuity requirements
would also allow a standard finite element approach using C0-continuous shape func-
tions as presented in Section 3.1. Nevertheless, we prefer the use of NURBS here, for
example, due to the improved convergence properties and higher smoothness of the re-
sults (including smooth forces and moments). Furthermore, the discrete weak form for a
higher-order Trace FEM is presented in detail. The major ingredients of the Trace FEM
are introduced in Section 3.2. The discretization of the difference vector must satisfy the
tangentiality constraint which requires special attention as outlined below.

5.2.1 Surface FEM

As mentioned above, similar to the Kirchhoff-Love shell, NURBS-based shape functions
are employed. The general finite element function space is defined in Eq. 4.38. The
discrete displacement of the mid-surface results in uh = uh,iEi, with Ei being Cartesian
base vectors, with i = 1, 2, 3 and uh,i = MT

u · ûi. In contrast to u, the difference vector
w is a tangential vector, describing the rotation of the normal vector. The discretization
of a tangential vector is, in general, not straightforward and, in the following, different
strategies are examined:
(1) In the case of a parametrized surface, the covariant base vectors Aα, α = 1, 2, which
are by construction tangential, may be used to define the difference vectorwh = wh, αAα,
where wh, α = MT

w · ŵα. This approach is used in the classical five-parameter models
[14], however, it does not extend to implicitly defined shell surfaces.
(2) Alternatively, the directions of the principal curvatures, which are eigenvectors of the
Weingarten map H, can be used as basis vectors. These vectors are perpendicular and
also tangential by construction. This might be a reasonable choice in the case of curved,
implicitly defined surfaces, where a parametrization is not available. Compared to the
first approach, the crucial requirement of a parametrization is circumvented without
changing the number of degrees of freedom per control point or node respectively.
(3) Another possibility is to define the difference vector in the global Cartesian coordinate
system wh = wh,iEi, with i = 1, 2, 3 and wh,i = MT

w · ŵi and enforce the constraint
wh · nΓ = 0 weakly using a Lagrange multiplier or penalty method.
(4) A variant of (3), is to project the difference vector onto the tangent space of the
mid-surface wh = P · wh,iEi. An advantage of this approach is that the additional
Lagrange multiplier field is not needed. On the other hand, due to the projection,
conditioning issues occur, which may be addressed with an additional stabilization term.
This approach is employed in the Trace FEM approach, see Section 5.2.2 for details.
For the Surface FEM, the third approach, where the difference vector is globally defined
and the constraint is enforced with a Lagrange multiplier, is chosen. Note that the
fourth approach is also considered in the Surface FEM. The performance and convergence
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behaviour is analogously compared to the third approach and will be omitted for brevity.
The shape functions of the discrete Lagrange multiplier λhn = MT

λn · λ̂n for the constraint
on the difference vector is defined in the same manner as the components of the mid-
surface displacement. Furthermore, the boundary conditions shall be enforced weakly
with Lagrange multipliers [144]. The shape functions of the discrete Lagrange multiplier
field for the displacements are defined asMλu = {Mu|∂ΓD,u} and for the difference vector
as Mλw = {Mw|∂ΓD,w} in the sense of a trace.

Based on this, the following discrete trial and test functions spaces for the discrete weak
form of the Reissner-Mindlin shell are defined

SRM,hu = VRM,h
u = SRM,hw = VRM,h

w =
{
vh ∈

[
N k

Γ

]3}
, (5.31)

LRM,hλn
= VRM,h

λn
=
{
λhn ∈ N k

Γ

}
, (5.32)

LRM,hλu
= VRM,h

λu
=
{
λhu|∂ΓD,u : λhu ∈ SRM,hu

}
, (5.33)

LRM,hλw
= VRM,h

λw
=
{
λhw|∂ΓD,w : λhw ∈ SRM,hw

}
. (5.34)

The discrete weak form of the Reissner-Mindlin shell with Lagrange multipliers for enforc-
ing the tangentiality of the difference vector and the essential boundary conditions reads:
Given Young’s modulus E ∈ R+, Poisson’s ratio ν ∈ [0, 0.5], surface load and moment
(f , c) on Γ, traction p̂ on ∂ΓN,u, bending moments m̂∂Γ on ∂ΓN,w and boundary condi-
tions ĝu in ∂ΓD,u, ĝw on ∂ΓD,w, find the displacement field uh ∈ SRM,hu , the difference vec-
torwh ∈ SRM,hw , and the Lagrange multiplier fields (λhn, λhu, λhw) ∈ LRM,hλn

×LRM,hλu
×LRM,hλw

such that for all test functions (vhu, vhw, vhλn , vhλu
, vhλw

) ∈ VRM,h
u ×VRM,h

w ×VRM,h
λn
×VRM,h

λu
×

VRM,h
λw

, there holds in Γ
∫

Γ
∇dir

Γ v
h
u : ñΓ + (H · ∇dir

Γ v
h
u) : mΓ + (Q · ∇dir

Γ v
h
u) : qΓ dA+

∫

∂ΓD,u
vhu · λhuds

=
∫

Γ
vhu · f dA+

∫

∂ΓN,u
vhu · p̂ ds ,

∫

Γ
∇dir

Γ v
h
w : mΓ + vhw · (qΓ · nΓ) + λhn(vhw · nΓ) dA+

∫

∂ΓD,w
vhw · λhwds

=
∫

Γ
vhw · c dΓ +

∫

∂ΓN,w
vhw · m̂∂Γ ds ,

∫

Γ
vhλnw

h · nΓ dA = 0 ,
∫

∂ΓD,u
vhλu
· uh ds =

∫

∂ΓD,u
vhλu
· gu ds ,

∫

∂ΓD,w
vhλw
·wh ds =

∫

∂ΓD,w
vhλw
· gw ds .

(5.35)

The usual element assembly yields a linear system of equations (if displacements and
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rotations are prescribed) in the form



Kuu Kuw 0 Cλu 0
KT
uw Kww Cλn 0 Cλw

0 CT
λn 0 0 0

CT
λu

0 0 0 0
0 CT

λw
0 0 0



·




û
ŵ

λ̂n
λ̂u
λ̂w




=




bf
bc
0
bλu

bλw



, (5.36)

with [û, ŵ, λ̂n, λ̂u, λ̂w]T being the sought displacements and rotations of the control
points and Lagrange multipliers. The procedure for the definition of the stiffness matrices
Kij and constraint matrices Ck is analogously to Section 4.2 and is omitted for brevity.
As usual in the context of Lagrange multiplier methods, Eq. 5.36 has a saddle point
structure and the well-known Babuška-Brezzi condition [4], [17], [60] must be satisfied
in order to obtain useful solutions in all involved fields. The same order of the trial and
test functions are employed for all fields. With this choice of discrete functions spaces,
see Eq. 5.31 to Eq. 5.34, bounded condition numbers, unique solutions, and the expected
rates of convergence for the presented test cases in Section 5.3.1 are observed. Based on
this observations, the discrete inf-sup condition seems to be satisfied herein.

5.2.2 Trace FEM

In this section, the continuous weak form of the equilibrium, see Eq. 5.29 and Eq. 5.30
is discretized with the Trace FEM as described above. The discrete function spaces for
the trial and test functions of the mid-surface displacements are

S̄RM,hu =
{
uh ∈ [Th]3

}
, (5.37)

V̄RM,h
u =

{
vhu ∈ [Th]3

}
, (5.38)

with Th from Eq. 3.7. Note that the corresponding function spaces in the Trace FEM for
the trial and test functions are denoted with a bar in comparison to their counterpart in
the Surface FEM, see Eq. 5.31.

For the discrete difference vector wh, the situation is more complicated due to the kine-
matic assumptions that the difference vector needs to be tangential. Different approaches
for the discretization of tangent vector fields are presented in, e.g., in [91], [107], [127].
Herein, the difference vector wh and its corresponding test function vhw are defined using
the fourth approach in Section 5.2.1. Alternatively, one may also employ the third ap-
proach with the Lagrange multiplier for the Trace FEM similar to the above presented
approach with the Surface FEM. Note that the a suitable discretization of the auxiliary
field need to be available which may become a non-trivial task in the Trace FEM. The
situation is analogously to the elaborated issue in Section 3.3.2.1 where Lagrange multi-
pliers in the Trace FEM in the context of essential boundary conditions are considered.
In the employed approach for the discretization of the difference vector, auxiliary fields
are not required. In particular, the discrete difference vector is first defined in the general
Trace FEM function space without the tangentiality constraint, similar to [107]. The
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corresponding function spaces are

S̄RM,hw =
{
wh ∈ [Th]3

}
, (5.39)

V̄RM,h
w =

{
vhw ∈ [Th]3

}
, (5.40)

but in the discrete weak form, see Eq. 5.45 and Eq. 5.46, only the projected difference
vector and test functions are used, i.e., w̃h = P ·wh , ṽhw = P · vhw. The directional and
covariant gradient of the discrete, projected difference vector ∇dir

Γ w̃
h and ∇cov

Γ w̃h can be
directly computed with the product rule

∇dir
Γ w̃

h = ∇dir
Γ

(
P ·wh

)
=
[
∇dir

ΓxP ·wh ∇dir
Γ yP ·wh ∇dir

Γ zP ·wh
]

+∇cov
Γ wh , (5.41)

∇cov
Γ w̃h = P · ∇dir

Γ w̃
h = P ·

[
∇dir

ΓxP ·wh ∇dir
Γ yP ·wh ∇dir

Γ zP ·wh
]

+∇cov
Γ wh . (5.42)

One may argue that in this approach, the derivatives of the projector P occur which
involves surface derivatives of the normal vector nhΓ. This does not lead to additional
computational costs, because in the case of the Reissner-Mindlin shell, the Weingarten
map H directly appears in the weak form and, therefore, the surface derivatives of the
normal vector nhΓ are required anyway.

As a result of this projection, only the tangential part of wh and vhw is considered in the
discrete weak form and, therefore, the tangentiality constraint is built-in automatically.
The employed stabilization technique, i.e., normal derivative volume stabilization, see
Section 3.2.3, ensures unique nodal values and prevents an ill-conditioned system of
equations due to small supports for general vector fields. However, due to the projection,
the normal part of wh, i.e., whn = wh ·nhΓ, does not appear in the discrete weak form and,
therefore, whn is not unique. It is clear, that without any further measures this would
lead to an ill-conditioned system of equations as a consequence. In order to address this
issue, a simple and consistent additional stabilization term, similar to the penalty term
in [107], is introduced

sw,h := ρw

∫

Γh

(
wh · nhΓ

) (
vhw · nhΓ

)
dA , (5.43)

where ρw is a suitable stabilization parameter. In other words, for the stabilization of the
projected, discrete difference vector w̃h, a combination of the normal derivative volume
stabilization and the above introduced stabilization term for the normal part of wh is
employed, see Eq. 5.46.

A series of numerical studies regarding the choice of the stabilization parameter ρw for the
Reissner-Mindlin shell has been conducted on flat and curved shell geometries. In detail,
the dependency on the (1) material parameter E, (2) thickness t and (3) element size
on h w.r.t. the condition number of the stiffness matrix and the influence on the results
were investigated. Summarizing the outcome of the numerical studies, the stabilization
parameter can be chosen independently of h and, for a suitable scaling of the stabilization
term, the parameter is set to

ρw = E · t . (5.44)



5.2 Discretization 87

A difference of the proposed approach and the method shown in [107] is that only the
projected part of the vector field, i.e., w̃h = P·wh, is used in the discrete weak form which
directly enforces the tangentiality constraint. Furthermore, the stabilization parameter
used herein, which is in [91], [107] a penalty parameter, does not depend on h and only
a suitable constant scaling of the stabilization term as in Eq. 5.44 is required.

The essential boundary conditions are enforced with the non-symmetric version of Nitsche’s
method. As mentioned before, the advantage of this method in the context of FDMs is
that it does not require additional stabilization terms and the discretization of auxiliary
fields such as Lagrange multipliers is not needed. Furthermore, Nitsche’s method is a
consistent approach to enforce essential boundary conditions which may be an advan-
tage if higher-order convergence rates shall be achieved. Further details regarding the
enforcement of essential boundary conditions within the Trace FEM are presented in
Section 3.2.4. The additional terms resulting from Nitsche’s method are directly added
to the discrete weak form, see Eq. 5.45 and Eq. 5.46.

Based on the previous definitions, the discrete weak form of the force equilibrium in the
context of the Trace FEM reads: Given Young’s modulus E ∈ R+, Poisson’s ratio ν ∈
[0, 0.5], body forces f on Γh, tractions p̂ on ∂ΓhN,u, stabilization parameter ρ ∈ R+ and
boundary conditions ĝu in ∂ΓD,u, find the displacement fields (uh,wh) ∈ S̄RM,hu × S̄RM,hw

such that for all test functions (vhu,vhw) ∈ V̄RM,h
u × V̄RM,h

w there holds in Γh
∫

Γh
∇dir

Γ vu : ñΓ(uh) + (H · ∇dir
Γ vu) : mΓ(uh, w̃h) + (Q · ∇dir

Γ vu) : qΓ(uh, w̃h) dA

−
∫

∂ΓhD,u
vu · p(uh, w̃h) ds

︸ ︷︷ ︸
boundary term due to vhu 6=0 on ∂ΓD,u

+
∫

∂ΓhD,u
uh · p(vhu, ṽhw) ds

︸ ︷︷ ︸
Nitsche term for displ. on LHS

+ ρ
∫

ΩΓ
h

(
∇uh · ne,hΓ

)
·
(
∇vhu · ne,hΓ

)
dV

︸ ︷︷ ︸
Trace FEM stabilization, see Section 3.2.3

=
∫

Γh
vhu · f dA+

∫

∂ΓhD,u
ĝu · p(vhu, ṽhw) ds

︸ ︷︷ ︸
Nitsche term for displ. on RHS

+
∫

∂ΓhN,u
vhu · p̂ ds ,

(5.45)

where p = nreal
Γ ·nh∂Γ +

(
nhΓ · qΓ · nh∂Γ

)
nhΓ, see Eq. 4.37, are the conjugated forces at the

Dirichlet boundary ∂ΓhD,u.

The discrete weak form of the moment equilibrium states: Given Young’s modulus E ∈
R+, Poisson’s ratio ν ∈ [0, 0.5], distributed moments c ∈ TPΓh on Γh, bending moments
m̂∂Γ on ∂ΓhN,w, stabilization parameters (ρ, ρw) ∈ R+×R+ and boundary conditions ĝw
on ∂ΓD,w, find the displacement fields (uh,wh) ∈ S̄RM,hu × S̄RM,hw such that for all test
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functions (vhu,vhw) ∈ V̄RM,h
u × V̄RM,h

w there holds in Γh
∫

Γh
∇dir

Γ ṽ
h
w : mΓ(uh, w̃h) + ṽhw ·

[
qΓ(uh, w̃h) · nΓ

]
dA

−
∫

∂ΓD,w
ṽhw ·m∂Γ(uh, w̃h) ds

︸ ︷︷ ︸
boundary term due to vhw 6=0 on ∂ΓD,w

+
∫

∂ΓD,w
w̃h ·m∂Γ(vhu, ṽhw) ds

︸ ︷︷ ︸
Nitsche term for rot. on LHS

+ ρ
∫

ΩΓ
h

(
∇wh · ne,hΓ

)
·
(
∇vhw · ne,hΓ

)
dV

︸ ︷︷ ︸
Trace FEM stabilization, see Section 3.2.3

+ ρw

∫

Γh

(
wh · nhΓ

) (
vhw · nhΓ

)
dA

︸ ︷︷ ︸
stabilization term for w̃h

=
∫

Γh
vhw · c dA+

∫

∂ΓhD,w
ĝw ·m∂Γ(vhu, ṽhw) ds

︸ ︷︷ ︸
Nitsche term for rot. on RHS

+
∫

∂ΓhN,w
vhw · m̂∂Γ ds ,

(5.46)

where m∂Γ = mΓ · nh∂Γ, see Eq. 4.37, are the conjugated bending moments at the
Dirichlet boundary ∂ΓhD,w. Note that in the implementation, one may employ the identity
A : B = (P · A · P) : Bdir with (A,B) ∈ R3×3 and B = P · Bdir · P in order to
further simplify the obtained terms with the projected difference vector. As a result,
only directional derivatives of the discrete, projected difference vector are required which
simplifies the implementation significantly.

The usual element assembly w.r.t. the active elements yields a linear system of equations
in the following form

(KStiff + KNitsche + KStab)
︸ ︷︷ ︸

K

·
[
û
ŵ

]
= (bLoad + bNitsche)︸ ︷︷ ︸

b

, (5.47)

with [û, ŵ] being the sought displacements and rotations of the normal vector at the
nodes of the active elements. The matrix K and the load vector b are split into: (1)
standard terms for the stiffness matrix, (2) boundary terms and (3) stabilization terms,
respectively.

5.3 Numerical results

In the following, numerical results for both finite element approaches are presented. The
proposed shell formulations in the frame of the TDC with the Surface and Trace FEM
are applied to a set of classical and new benchmark examples. In the presented test
cases, the thickness of the shell is rather thin and locking phenomena may be expected,
especially in the case of low ansatz orders. However, when increasing the order p, it is
well-known (and confirmed herein) that locking phenomena decrease significantly and,
therefore, no further measures against locking phenomena are considered herein.
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5.3.1 Surface FEM

The set of benchmark examples for the Surface FEM consists of the well-known Scordelis-
Lo roof from [9], the partly clamped hyperbolic paraboloid from [8], [29] and the clamped
flower shaped shell from [125]. In the convergence studies, uniform NURBS patches
with different orders and numbers of knot spans in each direction are employed. This
is equivalent to meshes with higher-order elements and n ∈ {2, 4, 8, 16, 32, 64, 128}
elements per side are used. The orders are varied as p ∈ {2, 3, 4, 5, 6}.

5.3.1.1 Scordelis-Lo roof

The Scordelis-Lo roof problem is presented in Section 4.3.2, see also Fig. 4.6. In Fig. 5.3(a),
the numerical solution obtained with the Reissner-Mindlin shell theory of the Scordelis-
Lo roof is illustrated. The displacements are magnified by one order of magnitude. The
colors on the deformed surface indicate the Euclidean norm of the displacement field
u. In Fig. 5.3(b), the normalized convergence of the maximum displacement uz,max is
plotted up to polynomial order of p = 6 as a function of the element (knot span) size.
It is clearly seen that the results improve upon increasing the order of the NURBS. The
style of presentation is analogously to the test case in Section 4.3.2. Except for the order
p = 2, the locking phenomena are not very pronounced. Hence, it is not necessary to
employ graded meshes as used, e.g., in [95] in order to resolve the boundary layers.

(a) displacement u (b) convergence

Fig. 5.3: Scordelis-Lo roof modelled as Reissner-Mindlin shell and IGA: (a) Displacement field
u scaled by one order of magnitude, and (b) normalized convergence of reference
displacement uz,max,Ref = 0.3024.

5.3.1.2 Hyperbolic paraboloid

The next test case is a partly clamped hyperbolic paraboloid and is taken from [8], [29].
The shell is defined by z = x2−y2 with (x, y) ∈ [−1/2, 1/2]2, the thickness is set to t = 0.01
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and is loaded by gravity, see Fig. 5.4. The edge at x = −1/2 is clamped and the other
three edges are free. The material parameters are Young’s modulus E = 2.0× 1011

and Poisson’s ratio ν = 0.3. Similar to the example before, the displacements are
compared with a reference solution. In particular, the vertical displacement at point
xi = (0.5, 0, 0.25)T is compared with the reference solution uz,Ref = −9.3355× 10−5

given in [8]. In Fig. 5.5(a), the undeformed domain (grey) and the deformed shell is

Geometry: Hyperbolic paraboloid
Lx = Ly = 1 (center is at origin)
z = x2 − y2

t = 0.01

Material parameters: E = 2.0× 1011

ν = 0.3
αs = 1.0

Load: Gravity load f = [0, 0, −8000 · t]T
c = 0

Support: Clamped edge at x = −1/2

Fig. 5.4: Definition of the hyperbolic paraboloid problem for the Reissner-Mindlin shell and
IGA.

presented, with displacements scaled by a factor of 2000. In Fig. 5.5(b), analogously to
the example before, the normalized convergence of the vertical displacement uz,i at point
i is plotted up to polynomial order of p = 6 as a function of the element (knot span)
size. For the lower orders p = 2, 3, the expected locking phenomena is more pronounced
compared to the example before. Nevertheless, it is clearly seen that the accuracy
for higher-order NURBS increases significantly and the behaviour of convergence is in
agreement with the results shown, e.g., in [8], [95].

5.3.1.3 Flower-shaped shell

The geometry for this example is similar to Section 4.3.4. The surface is rather complex,
but suitable to feature smooth solutions of all physical fields and, consequently, higher-
order convergence rates can be achieved. In contrast to the example in Section 4.3.4,
the material parameters and loading are modified. A summary of the example is shown
in Fig. 5.6.

Following the same rationale as in Section 4.3.4, the force equilibrium of Eq. 5.17 and
moment equilibrium of Eq. 5.18 are computed in strong form and serve as the basis to
compute residual errors. In particular, the L2-norms of the residual errors are calculated
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(a) displacement u (b) convergence

Fig. 5.5: Hyperbolic paraboloid modelled as Reissner-Mindlin shell and IGA: (a) Displacement
field u scaled by 2000, and (b) normalized convergence of reference displacement
uz,Ref = −9.3355× 10−5 at point xi = (0.5, 0, 0.25)T.

Geometry: Flower shaped shell
see Eq. 4.58
t = 0.1

Material parameters: E = 10
ν = 0.3
αs = 1.0

Load: f = [−1 · t3, −2 · t3, −3 · t3]T

c = 0

Support: Clamped edges at inner and
outer boundary

Fig. 5.6: Definition of flower-shaped shell problem for the Reissner-Mindlin shell with IGA.

as

ε2
rel,residual,F =

∫
Γ

[
divΓnreal

Γ + Q · divΓqΓ + H · (qΓ · nΓ) + f
]2

dA
∫

Γ f
2 dA , (5.48)

ε2
residual,M =

∫

Γ
[P · divΓmΓ − qΓ · nΓ + c]2 dA . (5.49)

The theoretical optimal order of convergence in the residual errors is O(p−1) due to the
presence of second-order derivatives. The numerical solution is presented in Fig. 5.7(a)
and scaled by one order of magnitude. The results of the convergence study are shown
in Fig. 5.7(b) and Fig. 5.7(c). The polynomial orders are varied up to p = 6. Due
to the complex geometry and boundary layer effects, the pre-asymptotic range is rather
pronounced for this particular application. Therefore, the results of the coarser levels n ∈
{2, 4} are omitted in the results. As can be seen, the expected higher-order convergence
rates are achieved in both residual errors Eq. 5.48 and Eq. 5.49. The stored elastic
energy at the finest level with a polynomial order p = 6 is e = 5.052 979 16× 10−4, which
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(a) displacement u (b) force equilibrium (c) moment equilibrium

Fig. 5.7: Flower shaped shell with Reissner-Mindlin shell and IGA: (a) Displacement u scaled
by one order of magnitude, (b) residual error of the force equilibrium εrel,residual,F,
and (c) residual error of the moment equilibrium εresidual,M.

can be seen as an overkill solution. This stored elastic energy may be used for future
benchmarking when the computation of the residual errors is not desired.

5.3.2 Trace FEM

The proposed numerical method for implicitly defined Reissner-Mindlin shells is tested
on a set of benchmark examples, consisting of the partly clamped hyperbolic paraboloid
from [8], [29], the partly clamped gyroid from [70] and a clamped flower-shaped shell
inspired by [125], [127].
In the convergence studies, quasi-regular background meshes consisting of tetrahedral
elements are used. For all unknown fields, i.e., uh,wh, and the interpolation of the
level-set functions, the same order of shape functions are used. The orders are varied as
2 ≤ p ≤ 6. The element size h is proportional to the factor n which is related to the
number of elements and is varied between 2 ≤ n ≤ 128.
In the presented examples, the stabilization parameter ρ for the normal derivative vol-
ume stabilization is set to ρ = 1000/h which is in accordance with the suggested range
mentioned in Section 3.2.3. In order to achieve a proper scaling of the stiffness matrix,
the parameter ρw, is set to ρw = Et, as proposed in Section 5.2.2.

5.3.2.1 Hyperbolic paraboloid

The first example is the partly clamped hyperbolic paraboloid as defined in Section 5.3.1.2.
The problem with the implicitly defined shell body is defined in Fig. 5.8. The yellow
surface is the zero-isosurface of the master level-set function φ and the grey planes are
the zero-isosurfaces of the slave level-set functions ψj, j ∈ {1, . . . , 4}, which define the
boundaries of the shell. The blue line is the clamped edge of the shell. In Fig. 5.9(a),
the active background mesh which contains only cut elements is shown. In Fig. 5.9(b),
the corresponding integration points are illustrated, those in the domain are plotted in
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Geometry: Hyperbolic paraboloid
φ(x) = x2 − y2 − z
x ∈ [−0.5, 0.5]
y ∈ [−0.5, 0.5]
t = 0.01

Material parameters: E = 2.0× 1011

ν = 0.3
αs = 1.0

Load: Gravity load f = [0, 0, −8000 · t]T

c = 0

Support: Clamped edge at x = −1/2

Ref. displacement: |uz,i,Ref| = 9.3355× 10−5

xi = (0.5, 0, 0.25)T

Fig. 5.8: Definition of the hyperbolic paraboloid problem for the Reissner-Mindlin shell with
Trace FEM.

red and those on the boundaries are blue. In Fig. 5.9(c), the numerical solution of the
partly clamped hyperbolic paraboloid is presented. The grey surface is the undeformed
zero-isosurface and the colors on the deformed mid-surface of the shell are the Euclidean
norm of the displacement field u. The displacements are magnified by a factor of 2× 103.
In the convergence studies, the vertical displacement at xi is compared with the given

(a) active background mesh (b) integration points (c) displacement u

Fig. 5.9: (a) Active background mesh, which consists only of cut elements, (b) automatically
generated integration points in the domain (red) and on the boundaries (blue), and
(c) deformed zero-isosurface with scaled displacements u by a factor of 2× 103.

reference displacement. Due to the moderate complexity of the master level-set func-
tion, the numerical solution converges rather fast and the element factor n is only varied
between 2 ≤ n ≤ 64. In Fig. 5.10(a), the result of the convergence study is presented. In
particular, the normalized displacement uz,i/uz,i,Ref is plotted as a function of the element
size h ∼ 1/n. The behaviour of the convergence is in agreement with the results shown,
e.g., in [8], [95]. In particular, the expected locking behaviour is more pronounced for
p = 2 and decreases significantly for higher orders. In the direct comparison with the
results obtained with the Surface FEM (more precisely, IGA) in Section 5.3.1.2, the re-
sults w.r.t. the element scale factor n are quite similar. One may observe that for the
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higher orders p ≥ 3, the locking is less pronounced in the Trace FEM approach. The
overestimation of the displacement at the coarsest level for the orders p ∈ {4, 5, 6} is
caused by rather large errors in the essential boundary conditions which may be traced
back to a rather coarse mesh resolution. As clearly seen in Fig. 5.10(a), this phenomenon
decreases rapidly with finer meshes.
In Fig. 5.10(b), the normalized, estimated condition number of the stiffness matrix is
plotted as a function of the element size h ∼ 1/n. They are obtained with the MATLAB
function condest. It can be seen that the condition numbers increase with quadratic
order as expected for second-order PDEs. The difference between the element orders is
well-known in the context of higher-order finite element approaches, see e.g., in [65].

(a) convergence (b) condition number

Fig. 5.10: (a) Normalized convergence of reference displacement uz,i,Ref = −9.3355× 10−5 at
point xi = (0.5, 0, 0.25)T, (b) normalized condition numbers, the reference value
is 1.0797× 1010, which is the condition number at n = p = 2.

5.3.2.2 Gyroid

The next test case is a partly clamped gyroid and is taken from [70]. The problem is
defined in Fig. 5.11. Similar to above, the yellow surface is the zero-isosurface of the
master level-set function φ, the grey planes are the zero-isosurfaces of the slave level-set
functions ψj, j ∈ {1, . . . , 6}, which bound the master leve-set function. The blue curve
is the clamped edge of the shell.
In contrast to [70], a factor π is inserted into the arguments of the trigonometric functions
of the master level-set function, which is given in [70, Eq. 43]. Otherwise, the obtained
geometry is not in agreement with the presented geometry in [70, Fig. 12]. In addition,
the load is decreased by one order of magnitude in order to decrease the deformations,
which shall be significantly smaller than the dimensions of the shell. Therefore, the given
reference displacement needs to be scaled accordingly to 0.18812. However, in [70], a
different shell model (seven-parameter shell model) is used. Herein, the classical Reissner-
Mindlin shell which is often labelled as five-parameter model, is used and, therefore, we
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Geometry: Gyroid
φ(x) = sin(πx) cos(πy) +

sin(πy) cos(πz) +
sin(πz) cos(πx)

x ∈ [0, 2]
y ∈ [−0.5, 0.5]
z ∈ [−0.5, 0.5]
t = 0.03

Material parameters: E = 70× 109

ν = 0.3
αs = 1.0

Load: Gravity load f = [0, 0, 107 · t]T

c = 0

Support: Clamped edge at x = 0

Ref. displacement: |uz,i,Ref| = 0.182661
xi = (2, 0.5, −0.25)T

Fig. 5.11: Definition of the partly clamped gyroid problem.

can expect small differences in the displacements. For the Reissner-Mindlin shell model,
the converged reference displacement is 0.182661, which is a relative difference of 2.9%
compared to the seven-parameter model. This can be explained by the differences in
the kinematic assumptions between the two shell models. This discrepancy could be
decreased with a suitable shear correction factor.
Analogously to the example above, in Fig. 5.12, the active background mesh and the
corresponding integration points are shown, where the domain integrations points are
plotted in red and the integration points on the boundaries are blue. The deformed zero-
isosurface of the shell is plotted in a similar manner as in the first example in Fig. 5.13(a),
where the colors on the surface are the Euclidean norm of the displacement field u and
the grey surface indicates the undeformed zero-isosurface.

(a) active background mesh (b) integration points

Fig. 5.12: (a) Active background mesh, which consists only of cut elements, and (b) auto-
matically generated integration points in the domain (red) and on the boundaries
(blue).
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(a) displacement u (b) convergence

Fig. 5.13: (a) Deformed zero-isosurface, and (b) normalized convergence of reference displace-
ment uz,i,Ref = 0.182661 at point xi = (2, 0.5, −0.25)T.

In the convergence study, the parameter n is varied between 8 ≤ n ≤ 128. In Fig. 5.13(b),
the results of the convergence analyses are presented. Similar to the first test case, the
normalized displacement uz,i/uz,i,Ref is plotted as a function of the element size h ∼ 1/n.
For the lower orders p ∈ {2, 3} the expected locking phenomena is more pronounced
compared to the example before. Nevertheless, it is clearly seen that the accuracy for
higher orders increases significantly and the behaviour of convergence is in agreement
with the results shown, e.g., in [70]. The condition numbers for this example behave in a
similar manner as in Fig. 5.10(b) and, therefore, a visualization is omitted for brevity.

5.3.2.3 Flower-shaped shell

The geometry of the last example is inspired from [127]. The problem is defined in
Fig. 5.14. Analogously to above, the yellow surface is the zero-isosurface of the master
level-set function φ and the intersection with the slave level-set function ψ (grey surface)
defines the boundaries of the shell.
A characteristic feature of this test case is that smooth solutions in all involved fields
can be expected and, therefore, optimal higher-order convergences rates are enabled.
In contrast to the examples before, a reference displacement is not available for this
example. For the error measurement, we employ the concept of residual errors in a
similar manner than above. In particular, the summed element-wise L2-errors of the
force and moment equilibrium are computed in the convergence analyses

ε2
rel,residual,F =

∑

T∈τΓ
Ω,h

∫
T

[
divΓnreal

Γ + Q · divΓqΓ + H · (qΓ · nΓ) + f
]2

dA
∫
T f

2 dA , (5.50)

ε2
residual,M =

∑

T∈τΓ
Ω,h

∫

T
[P · divΓmΓ − qΓ · nΓ + c]2 dA . (5.51)
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Geometry: Flower shell
φ(x) = 1/3

(
1− s2

)
+

1/40
(
x2 − y2

)
− z

s = r−2.3
0.8+0.3 cos(4θ)

r, θ are polar coordinates of x, y

ψ(x) = 1/40
(
x2 − y2

)
− z

t = 0.05

Material parameters: E = 1.05× 108

ν = 0.33
αs = 1.0

Load: f = −102[1, 2, 3]T

c = 0

Support: Clamped edges

Error measurement Residual errors

Fig. 5.14: Definition of shallow flower-shaped shell problem.

For the computation of the residual errors, second-order surface derivatives are required
which implies a theoretical optimal order of convergenceO(p−1). The numerical solution
of the problem is visualized in Fig. 5.15(b). The displacements are scaled by a factor
of 5× 102. The colors on the deformed zero-isosurface are the Euclidean norm of the
displacement field u. The corresponding integration points are shown in Fig. 5.15(a) in
the same style than before.

(a) integration points (b) displacements

Fig. 5.15: (a) Automatically generated integration points in the domain (red) and on the
boundaries (blue), and (b) deformed zero-isosurface with scaled displacements u
by a factor of 5× 102.

In the convergence analyses, the parameter n is varied between 2 ≤ n ≤ 64. The
results are plotted in Fig. 5.16. It is noticeable that the pre-asymptotic range is more
pronounced for the lower ansatz orders p ∈ {2, 3}. Nevertheless, it is clear that higher-
order convergence rates are achieved in both residual errors of Eqs. 5.50 and 5.51. In
comparison to the test case for the Reissner-Mindlin shell presented in Section 5.3.1.3,
the convergence in the residual errors obtained here with the Trace FEM is very similar
to the results obtained with isogeometric analysis. Note that the residual error of the
moment equilibrium is the absolute, summed element-wise L2-norm, due to c = 0. When
comparing εresidual,M in Fig. 5.16(b) with results obtained by the authors in Fig. 5.7(c),
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the difference in the magnitudes is traced back to the material parameters and a modified
geometry.

(a) force equilibrium (b) moment equilibrium

Fig. 5.16: (a) Residual error of the force equilibrium εrel,residual,F, and (b) residual error of the
moment equilibrium εresidual,M.







6 Large deformation membranes

In the following, the previously proposed approach of reformulating the equilibrium equa-
tions of shells in the frame of the TDC is extended to membranes undergoing large de-
formations. In the mechanical modelling of membranes, the flexural rigidity is neglected
and loads can only be carried through in-plane (membrane) stresses. Consequently,
bending moments and transverse shear stresses do not occur in the equilibrium. In con-
trast to shells, this automatically implies that the support forces at the boundaries must
be tangential to the deformed membrane to satisfy the equilibrium.

Considering large deformations, a major difference compared to linear elasticity is that
one carefully distinguishes between the undeformed (reference) configuration and the
deformed (spatial) configuration. Furthermore, in the kinematics, the assumption of in-
finitesimal strains is abandoned. As a result of the more realistic kinematics, rigid body
motions are modelled correctly and do not produce spurious stresses as in linear elasticity.
The resulting strain measures are typically non-linear and, therefore, the obtained BVP
results in a non-linear, vector-valued, second-order PDE where the equilibrium is to be
fulfilled in the deformed configuration. The BVP is discretized with a higher-order Sur-
face and Trace FEM. The numerical results show that the proposed finite strain theory
yields higher-order convergence rates independent of the numerical methodology.

The major content of this chapter follows our own article in [66].

6.1 Governing equations

In this section, the governing equations of structural membranes are derived in the
finite strain theory in the frame of the TDC. For the sake of simplicity, only a Saint
Vernant-Kirchhoff material model is considered herein which may be seen as the simplest
extension of linear elastic materials governed by Hooke’s law to large deformations. The
advantages of the reformulation of the membrane equations in the frame of the TDC are
similar to shells. Furthermore, as shown in [66], the resulting BVP for membranes can
easily be adopted to cables and ropes which, however, is omitted here for brevity.

The geometric definition of the membrane is analogously to the previous chapters. The
membrane continuum Ω of thickness t can be defined implicitly with a signed distance
function φSDF(x),

Ω =
{
x ∈ R3 : |φSDF(x)| ≤ t

2

}
. (6.1)

Alternatively, when the mid-surface Γ is parametrized with a map xΓ(r), the domain of
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the membrane is defined by

x = xΓ + ζnΓ(xΓ) , (6.2)

where ζ is the coordinate in thickness direction |ζ| ≤ t/2. Further details regarding the
geometry definition are discussed in Section 2.1. In the following, the subscript Γ in the
notation of the normal vector is omitted for a more compact presentation.

6.1.1 Kinematics

As usual in finite strain theory, we consider an undeformed material configuration and
a deformed spatial configuration. These are represented by ΓX and Γx, respectively,
both are immersed in the physcial space R3. We follow the usual notation to relate
uppercase letters in variable and operator names with the undeformed configuration and
lowercase letters with the deformed one. The displacement field u(X) relates the two
configurations via

x = X + u(X) , withX ∈ ΓX ⊂ R3 and x ∈ Γx ⊂ R3. (6.3)

In Fig. 6.1(a), the two configurations of a membrane undergoing large deformations are
illustrated. As an example, the membrane is explicitly defined by a mapX(r) : Ω̂→ ΓX ,
where the coordinates in the parameter space are labelled r = [r, s]T. For further
details regarding the explicit and implicit geometry definition, we refer to Section 2.1. In

T 2T 2

T 1T 1

u(X(r))u(X(r))

t2t2

t1t1

X(r)X(r)

x(X)x(X)

ΓXΓX

ΓxΓx

E1

E2

E3

(a) def. and undef. configuration, ΓX and Γx

u(X)u(X)
NN

NN T ∂ΓT ∂Γ

N∂ΓN∂Γ nn

nn
t∂Γt∂Γ

n∂Γn∂Γ
(b) normal vector and local triads

Fig. 6.1: (a) Undeformed and deformed configuration of a membrane undergoing large defor-
mations with x = X+u. (b) Normal vectors, N and n, and conormal vectors, N∂Γ
and n∂Γ, in undeformed and deformed manifolds. The vectors T ∂Γ and t∂Γ point in
tangential direction along the boundary.

Fig. 6.1(b), the normal vectors and local triads for both configurations are illustrated.
In the case of a parametrized membrane, one may easily obtain two vectors T ?

1 = ∂X
∂r

and
T ?

2 = ∂X
∂s

from the columns of the Jacobi matrix J, being tangential to ΓX at a mapped
point X. As defined in Section 2.2.2, the first fundamental form in the undeformed
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configuration is G = JT · J. Normalizing (T ?
1,T

?
2) gives the tangent vectors (T 1,T 2) as

visualized in Fig. 6.1(a). The tangent vectors (t1, t2) in the deformed configuration are
given by ti = FΓ ·T i, where i = 1, 2 and FΓ is the surface deformation gradient which is
defined in the subsequent section. Similar to Section 2.1, the cross product of the tangent
vectors leads to the normal vector in the undeformed and deformed configuration

N = N ?

‖N ?‖ with N ? = T ?
1 × T ?

2 , (6.4)

n = n?

‖n?‖ with n? = t?1 × t?2 . (6.5)

Next, we focus on the situation in large displacement theory for the implicit setup. The
normal vector of the undeformed configuration is obtained by the gradient of the level-set
function,

N ?(X) = ∇Xφ(X) forX ∈ ΓX . (6.6)

Let there be a displacement field u(X) which lives in the full 3-dimensional space (instead
of only the manifold itself as for parametric manifolds) so that the classical gradient
∇Xu(X) is available. Note that capital subscript X in ∇X is the gradient w.r.t. the
undeformed configuration. The resulting deformation gradient is

FΩ(X) = ∇Xx(X) = I +∇Xu(X) . (6.7)

Based on this, one may compute the normal vector of the deformed configuration at
x = X + u(X) as

n?(x) = ∇xφ(X(x)) = F−T
Ω ·N ? for x ∈ Γx, (6.8)

which follows by the chain rule. Normalizing (N ?,n?) leads to the unit normal vectors
(N ,n) in the implicit setup as visualized in Fig. 6.1(b). The definition of the local triad
on the boundary of the membrane is elaborated in Section 2.1 and is omitted here for
brevity.

6.1.1.1 Tangential differential calculus in finite strain theory

Let us extend the surface operators in the TDC to the situation in the finite strain
theory. In particular, the orthogonal projection operator, differential operators, surface
deformation gradient etc. have to be distinguished in the deformed and undeformed
configuration. Moreover, the area stretch and line stretch along the boundaries which
are important in the mechanical modelling are introduced. The situation is described
for both explicitly and implicitly defined membranes next.
Firstly, the projection operators P(X) and p(x) are introduced

P = I−N ⊗N , (6.9)
p = I− n⊗ n. (6.10)
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The projector P at some pointX maps an arbitrary vector in R3 to the tangent space at
ΓX (analogously for p in the deformed configuration). The properties of the projectors
are equivalent to those discussed in Section 2.2.1.

Secondly, the differential operators in the case of parametrized membranes are defined.
Let us consider a displacement field u(r) assuming that a point r is given which may
also be seen as a function u(r(X)) when a point X ∈ ΓX is given (and back-projected
to the reference domain inverting the map X(r)). We emphasize that in both cases, the
displacement field only lives on the manifold ΓX . For some scalar function f(r), e.g.,
each displacement component, the surface gradient w.r.t. the undeformed domain is

∇Γ
Xf(r) = J+ · ∇rf(r) ⇔



∂Γ
Xf
∂Γ
Y f
∂Γ
Zf


 = J+ ·

[
∂rf
∂sf

]
(6.11)

and for vector-valued functions u(r) = [ux, uy, uz]T ∈ R3, we have the directional surface
gradient

∇Γ,dir
X u(r) = ∇Γ,dir

X



ux(r)
uy(r)
uz(r)


 =



∂Γ
Xux ∂Γ

Y ux ∂Γ
Zux

∂Γ
Xuy ∂Γ

Y uy ∂Γ
Zuy

∂Γ
Xuz ∂Γ

Y uz ∂Γ
Zuz


 = ∇ru(r) · J+T

, (6.12)

which is to be distinguished from the covariant surface gradient of a vector field as
defined in Section 2.2.2. The related Jacobi matrix of the map from the undeformed to
the deformed configuration, see Eq. 6.3, is also called surface deformation gradient,

FΓ (X) = ∇Γ,dir
X x (X) = I +∇Γ,dir

X u (X) . (6.13)

Employing the surface deformation gradient, one may obtain the Jacobi-matrix from
the reference to the deformed configuration j = FΓ · J whose columns are the tangent
vectors t?1, t?2 to the deformed configuration Γx. Furthermore, the first fundamental form
is g = jT · j and the operator j+ = j · g−1 relates the classical gradient in the reference
configuration with the surface gradient in the deformed configuration as ∇Γ

xf = j+ ·∇rf .
The link between the surface gradients w.r.t. the undeformed and deformed configuration
is accomplished with the operator W and defined by

∇Γ
xf = W · ∇Γ

Xf , with W = j+ ·
(
J+T · J+

)−1 · J+T
. (6.14)

This result is obtained using ∇Γ
Xf = J+ · ∇rf and ∇Γ

xf = j+ · ∇rf .

Next, the equivalent quantities for the implicit setup are introduced. The surface gra-
dient (with respect to the undeformed configuration) of a scalar-valued function f (X)
with X ∈ R3 results in

∇Γ
Xf = P · ∇Xf. (6.15)

As before, ∇Xf is the classical gradient in the 3-dimensional space. The situation is
analogous for each component ui of a vector-valued function u(X), so that one obtains
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the directional surface gradient

∇Γ,dir
X u = ∇Xu ·P =



∂Γ
Xux ∂Γ

Y ux ∂Γ
Zux

∂Γ
Xuy ∂Γ

Y uy ∂Γ
Zuy

∂Γ
Xuz ∂Γ

Y uz ∂Γ
Zuz


 . (6.16)

The definition of the covariant gradient is analogously to Section 2.2.2. The surface de-
formation gradient FΓ is directly obtained with Eq. 6.14 employing the surface gradients
for implicitly defined membranes. The equivalent expression of the operator W which
relates the gradients between undeformed and deformed configuration is

∇Γ
xf = W · ∇Γ

Xf , with W = p · F−T
Ω . (6.17)

Finally, we are interested in the stretch of a differential element of the membrane when
undergoing the deformation. This is interpreted as an area stretch Λ inside the domain
and at the boundaries as line stretch Λ̄. For explicitly defined membranes the stretch
measures are

Λ =
√

det g√
det G

= ‖n
?‖

‖N ?‖ = ‖t?1 × t?2‖
‖T ?

1 × T ?
2‖

, (6.18)

Λ̄ = ‖t?‖
‖T ?‖ , (6.19)

where T ? is a tangent vector along the boundary and for the tangent vector in the
deformed configuration follows t? = FΓ · T ?. For implicit membranes the equivalent
representation of the stretch measures are

Λ = ‖∇xφ‖‖∇Xφ‖
· det FΩ = ‖n

?‖
‖N ?‖ · det FΩ , (6.20)

Λ̄ = ‖t?‖
‖T ?‖ · det FΩ = ‖n?2 × n?1‖

‖N ?
2 ×N ?

1‖
· det FΩ , (6.21)

where (N ?
1,N

?
2) are the gradients of the master level-set and corresponding slave level-

set function. The normal vectors in the deformed configuration may be obtained with
Eq. 6.8.

6.1.1.2 Strain tensors

Above, a number of geometric quantities (such as normal vectors, projectors, area/line
stretches, etc.) and differential operators related to (surface) gradients are introduced.
It was shown how these quantities are obtained for parametrized and implicitly defined
manifolds. The focus is now turned to the mechanics and the procedure follows the
classical outline, however, it is based on the TDC here. It is emphasized that all tensors
considered in the following refer to the parametric as well as implicit situation. A tensor
A ∈ R3×3 is called “in-plane” or “tangential” to the undeformed configuration ΓX if
A = P · A · P and to the deformed configuration Γx if A = p · A · p. Every in-
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plane (3 × 3)-tensor, except the null tensor, has 2 non-zero eigenvalues representing the
principal mechanical quantity.

Starting point is the surface deformation gradient FΓ (X) at X ∈ ΓX , specified previ-
ously in Eq. 6.13. It may also be seen as a geometrical quantity mapping tangent vectors
from the undeformed to the deformed configuration. Based on the surface deformation
gradient, the directional and tangential Green-Lagrange strain tensors are defined as

Edir =
1

2

(
FT

Γ · FΓ − I
)
, (6.22)

Etang = P · Edir · P , (6.23)

respectively. The Euler-Almansi strain tensors are

edir =
1

2

[
I −

(
FΓ · FT

Γ

)−1
]
, (6.24)

etang = p · edir · p , (6.25)

where etang is tangential to the deformed configuration Γx. As usual, there holds edir =
F−T

Γ · Edir · F−1
Γ (which is not true for the tangential versions of these strain tensors).

6.1.2 Constitutive equations

Conjugated stress tensors are introduced next and only the tangential versions are consid-
ered. Generally speaking, we assume some hyper-elastic material with an elastic energy
function Ψ (Etang) and obtain the second Piola-Kirchhoff stress tensor as S = ∂Ψ

∂Etang
. In

[83] a compressible hyper-elastic material model, i.e., Mooney-Rivlin, is employed. Note
that in the application of general hyper-elastic material models to thin-walled struc-
tures (membranes), one may carefully enforce the plane stress condition which is not as
straightforward as in linear elasticity, for details we refer to, e.g., [83]. For simplicity,
only Saint Venant-Kirchhoff solids are considered herein and the enforcement of plane
stress remains analogously to linear elasticity. The second Piola-Kirchhoff stress tensor
then follows

S = λ tr (Etang) P + 2µEtang

= P · (λ tr (Edir) I + 2µEdir) · P ,
(6.26)

with S being tangential to ΓX , λ and µ are the Lamé constants. For given Young’s
modulus E and Poisson’s ratio ν, we have, for membranes, the modified Lamé constants
λ = Eν

1−ν2 and µ = E
2(1+ν)

. The Cauchy stress tensor reads

σ =
1

Λ
FΓ · S · FT

Γ , (6.27)

where Λ is an area stretch for membranes when undergoing the displacement, see Sec-
tion 6.1.1.1. The Cauchy stress is tangential to the deformed configuration Γx since
FΓ · P = p · FΓ · P and P · FT

Γ = P · FT
Γ · p, hence σ = p · σ · p. The first Piola-Kirchhoff
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stress tensor is given by
K = FΓ · S (6.28)

and there holds K = K ·P = p ·K.

6.1.2.1 Relation of stress and strain tensors

For every point X ∈ ΓX and its mapped counterpart x(X) ∈ Γx, we have the following
equality,

S(X) : Etang(X) = (σ(x) : etang(x)) Λ(X) , (6.29)
where : is the contraction operator. In this sense the two stress tensors S and σ are
conjugated to their related strain tensors Etang and etang, respectively. It is noted that

S : Etang = S : Edir and σ : etang = σ : edir

which will be important later. Furthermore, the result of these matrix contractions may
also be derived by the non-zero eigenvalues Si, Etang,i, σi, etang,i, i = 1, 2, of the tangential
tensors S, Etang, σ, etang, respectively. Hence, we obtain

S : Etang =
2∑

i=1
SiEtang,i and σ : etang =

2∑

i=1
σi etang,i .

6.1.2.2 Energy relation

An immediate consequence of Eq. 6.29 is that one may obtain the same stored potential
energy of the deformed body by integrating over the undeformed or deformed configu-
ration as follows

e(u) = t

2

∫

Γx

etang(u) : σ(u) dA , (6.30)

= t

2

∫

ΓX

Etang(u) : S (u) dA . (6.31)

6.1.3 Equilibrium

6.1.3.1 Equilibrium in strong form

A crucial aspect of finite strain theory is that equilibrium is to be fulfilled in the deformed
configuration which is expressed in strong form as

divΓ σ(x) = −f(x) ∀x ∈ Γx , (6.32)

where f are body forces and divΓ σ = ∇Γ,dir
x · σ = ∇Γ,cov

x · σ is the divergence of the
Cauchy stress tensor with respect to Γx. Furthermore, we have the identity

DivΓ K(X) = divΓ σ(x(X)) Λ(X) , (6.33)
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with DivΓ K = ∇Γ,dir
X ·K = ∇Γ,cov

X ·K being the divergence of the first Piola-Kirchhoff
stress tensor from Eq. 6.28 with respect to ΓX . In order to transform the deriva-
tives in the divergence operators from the undeformed to the deformed situation, use
Eqs. (6.14) and (6.17) for parametric and implicit manifolds, respectively. Due to
F (X) = f(x(X)) Λ(X), the equilibrium in Γx can be stated equivalently to Eq. (6.32)
based on quantities in the undeformed configuration as

DivΓ K(X) = −F (X) ∀X ∈ ΓX . (6.34)

The domain of interest is a bounded manifold where the boundary ∂Γ falls into the
two non-overlapping parts ∂ΓD and ∂ΓN, which holds in the deformed and undeformed
configuration ΓX and Γx, respectively. Hence, the boundary conditions in the deformed
configuration are

u(x) = ĝ(x) on ∂Γx,D , (6.35)
σ(x) · n∂Γ(x) = ĥ(x) on ∂Γx,N , (6.36)

where ĝ are prescribed displacements and ĥ are tractions per length for membranes. Note
that for membranes, ĥ must be in the tangent space of the deformed manifold in order to
satisfy the equilibrium due to the absence of bending stresses or transverse shear stresses.
The equivalent boundary conditions formulated in the undeformed configuration are

u(X) = Ĝ(X) on ∂ΓX,D , (6.37)
K(X) ·N ∂Γ(X) = Ĥ(X) on ∂ΓX,N , (6.38)

where Ĝ and Ĥ have similar interpretations than before. The relation between ĥ and
Ĥ is Ĥ(X) = Λ̄(X) ĥ(x), where Λ̄ is the line stretch along the boundary. Further
information about boundary conditions for membranes are given in [27].

With the boundary conditions above, the complete second-order BVP is defined in the
deformed and undeformed configuration. The obtained BVP in the frame of the TDC
is valid for explicitly and implicitly defined manifolds and does not rely on curvilinear
coordinates implied by a parametrization which are typically used in classical approaches,
see, e.g., [27], [31]. Therefore, the proposed formulation in the frame of the TDC is more
general compared to the classical theory.

6.1.3.2 Equilibrium in weak form

For stating the governing equations in weak form, the following test and trial function
spaces are introduced

SMu =
{
v ∈

[
H1(ΓX)

]3
: v = Ĝ on ∂ΓX,D

}
, (6.39)

VM
u =

{
v ∈

[
H1(ΓX)

]3
: v = 0 on ∂ΓX,D

}
, (6.40)
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where H1(ΓX) is the Sobolev space of functions with square integrable first derivatives
in the undeformed domain ΓX . The task is to find u ∈ SMu such that for all v ∈ VM

u ,
there holds

t
∫

ΓX

∇Γ,dir
X v : K (u) dA = t

∫

ΓX

v · F dA+
∫

∂ΓX,N
v · Ĥ ds . (6.41)

In order to obtain Eq. 6.41, we applied the usual procedure for converting the strong
form to a weak form: Multiply Eq. 6.34 with test functions, integrate over the domain
ΓX , and apply the divergence theorem from Eq. 2.29. It is noteworthy that the curvature
term from Eq. 2.29 vanishes due to K ·N = 0. Note that the weak form stated above
is related to energy minimization in the sense that

∫

ΓX

∇Γ,dir
X v : K(u) dA =

∫

ΓX

δEtang(u) : S(u) dA ,

where δ is the variational operator.

6.2 Discretization

In the following, the obtained continuous weak form from Eq. 6.41 is discretized with the
Surface and the Trace FEM. For the Surface FEM, C0-continuous shape functions as de-
fined in Section 3.1 are employed. In particular, two-dimensional higher-order Lagrange
elements are used and the essential boundary conditions are enforced in a strong sense
by prescribing the nodal values. Instead, for the Trace FEM as defined in Section 3.2,
three-dimensional Lagrange elements are used in the background mesh. The boundary
conditions are weakly enforced with the penalty method and the non-symmetric version
of Nitsche’s method. In Fig. 6.2, the situations of a deformed membrane discretized with
Surface and Trace FEM are illustrated.

(a) Surface FEM (b) Trace FEM

Fig. 6.2: The situations of discretized domains and their corresponding displacement fields
u(X) are shown for the undeformed and deformed configuration for: (a) Surface
FEM, and (b) Trace FEM, respectively.
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6.2.1 Surface FEM

As mentioned above, similar to the model problem in Section 3.3, a higher-order Surface
FEM approach with C0-continuous Lagrange elements is employed, see Fig. 6.2(a). The
discrete displacements of the membrane are defined as uh = uh,iEi, with Ei being
Cartesian base vectors, i = 1, 2, 3 and uh,i = MT · ûi. Based on Eq. 3.1, the following
discrete test and trial function spaces are introduced

SM,hu =
{
vh ∈

[
QkΓX

]3
: vh|∂ΓhX,D

= Ĝ
}
, (6.42)

VM,h
u =

{
vh ∈

[
QkΓX

]3
: vh|∂ΓhX,D

= 0
}
. (6.43)

The discrete weak form of Eq. 6.41 reads as follows: Given Lamé constants (λ, µ) ∈ R+,
body forces F ∈ R3 on ΓhX , tractions Ĥ ∈ R3 on ∂ΓhX,N, find the displacement field
uh ∈ SM,hu such that for all test functions vh ∈ VM,h

u there holds in ΓhX

t
∫

ΓhX
∇Γ,dir
X vh : K

(
uh
)

dA = t
∫

ΓhX
vh · F dA+

∫

∂ΓhX,N

vh · Ĥ ds . (6.44)

The sought discrete displacement field uh(X) is obtained solving a non-linear system of
equations for the nDOF = 3n nodal values (degrees of freedom) as usual in the context
of finite strain theory.

In the following, an iterative scheme for the numerical solution of the obtained non-
linear system of equations is sketched. With a set of nDOF independent test functions
ṽh ∈ {vh,i}, where i = 1, . . . , nDOF, Eq. 6.44 leads to a system of non-linear equations,
which shall be solved with a Newton-Raphson iteration scheme. Therefore, the residuum
from Eq. 6.44 is

fres(û) := t
∫

ΓhX
∇Γ,dir
X ṽh : K

(
uh(û)

)
dA− t

∫

ΓhX
ṽh · F dA

−
∫

∂ΓhX,N

ṽh · Ĥ ds != 0 ∈ RnDOF .
(6.45)

With a suitable start-vector û0 and stop criterion the system of non-linear equations can
be iteratively solved as

Ab ·∆ûb+1 = −fres(ûb) , (6.46)
ûb+1 = ∆ûb+1 + ûb , (6.47)

where Ab is the tangent stiffness matrix (Jacobi-matrix) at the iteration step b. The
tangent stiffness matrix is determined by

[Ab]ij = [∂fres(ûb)]i
∂ûj

with (i, j) ∈ {1, . . . , nDOF}2 , (6.48)

where the index i refers to the corresponding test function and j to the nodal value ûj.
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6.2.2 Trace FEM

In this section, the continuous weak form of the equilibrium, see Eq. 6.41, is discretized
with the Trace FEM. The discrete function spaces for the trial and test functions of the
membrane displacement field are

S̄M,hu =
{
vh ∈

[
TΓhX

]3}
, (6.49)

V̄M,h
u =

{
vh ∈

[
TΓhX

]3}
, (6.50)

with TΓhX
from Eq. 3.7 where ΓhX refers to the undeformed domain. Note that the

corresponding function spaces in the Trace FEM for the trial and test functions are
denoted by a bar in comparison to their counterpart in the Surface FEM, see Eqs. (6.42)
and (6.43). An example of a discrete displacement field in the Trace FEM is visualized
in Fig. 6.2(b).
Enforcing the essential boundary conditions with the non-symmetric version of Nitsche’s
method, the discrete weak form of Eq. 6.41 with the Trace FEM reads as follows: Given
Lamé constants (λ, µ) ∈ R+, body forces F ∈ R3 on ΓhX , tractions Ĥ ∈ R3 on ∂ΓhX,N,
and stabilization parameter ρ ∈ R+ and boundary conditions Ĝ on ∂ΓhX,D, find the
displacement field uh ∈ S̄M,hu such that for all test functions vh ∈ V̄M,h

u there holds in
ΓhX

t
∫

ΓhX
∇Γ,dir
X vh : K

(
uh
)

dA−
∫

∂ΓhX,D

vh ·
[
K(uh) ·N ∂ΓX

]
ds

︸ ︷︷ ︸
boundary term due to vh 6= 0 on ∂ΓhX,D

+

∫

∂ΓhX,D

(
uh − Ĝ

)
·
[
K(vh) ·N ∂ΓX

]
ds

︸ ︷︷ ︸
Nitsche term

+ ρ
∫

ΩΓh
X

(N e · ∇Xuh) · (N e · ∇Xvh) dV
︸ ︷︷ ︸

stabilization term

= t
∫

ΓhX
vh · F dΓ +

∫

∂ΓhX,N

vh · Ĥ ds ,

(6.51)

where ΩΓhX
is the undeformed, active background mesh. In comparison to Eq. 6.44,

additional terms occur in the discrete weak form due to the weak enforcement of essential
boundary conditions with Nitsche’s method and the stabilization. The sought discrete
displacement field uh(X) is obtained just as above by solving a non-linear system of
equations.
Note that the stabilization term is the only term which is not evaluated on the manifold
ΓhX but in the volumetric, active background mesh ΩΓhX

(using standard Gauss inte-
gration). Therefore, one has to extend the normal vector N (X) from the undeformed
manifold ΓhX to the neighborhood, resulting in N e(X) for all ΩΓhX

. This is particularly
simple for implicitly defined manifolds using N e(X) = ∇Xφ

h(X)
‖∇Xφh(X)‖ for all X ∈ ΩΓhX

. Fur-
thermore, in the stabilization term, the classical gradient operator ∇X is used instead
of the surface operators used in the other terms. In [73], it is recommended that the
stabilization parameter should be chosen in the range O (h) . ρ . O (h−1), where h is
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the element size of the active background mesh.

A remark is added concerning slip supports because the above mentioned weak form
rather expects that all displacement components are prescribed through Ĝ along the
Dirichlet boundary ∂ΓhX,D. In the Nitsche’s method, displacement constraints in se-
lected, arbitrary unit directions vd with magnitude Ĝ may be prescribed by replacing
the corresponding terms in Eq. (6.51) with

−
∫

∂ΓhX,D

(
vh · vd

) [
K(uh) ·N ∂ΓX

]
· vd ds

+
∫

∂ΓhX,D

(
uh · vd − Ĝ

) [
K(vh) ·N ∂ΓX

]
· vd ds .

(6.52)

Depending on the test case, robustness of the numerical scheme for the approximate
solution of the sought displacement field uh(X) becomes more important, especially if
the quality of the initial guess û0 is not good. In this situation, it may be beneficial to
enforce the essential boundary conditions with the penalty method, although the overall
approach is inconsistent in this case. The discrete weak form of Eq. 6.41 with the penalty
method reads as follows: Given Lamé constants (λ, µ) ∈ R+, body forces F ∈ R3 on
ΓhX , tractions Ĥ ∈ R3 on ∂ΓhX,N, and stabilization parameter ρ ∈ R+, penalty parameter
α ∈ R+ and boundary conditions Ĝ on ∂ΓhX,D, find the displacement field uh ∈ S̄M,hu

such that for all test functions vh ∈ V̄M,h
u there holds in ΓhX

t
∫

ΓhX
∇Γ,dir
X vh : K

(
uh
)

dA+α
∫

∂ΓhX,D

vh ·
(
uh − Ĝ

)
ds

︸ ︷︷ ︸
penalty term

+ ρ
∫

ΩΓh
X

(N e · ∇Xuh) · (N e · ∇Xvh) dV
︸ ︷︷ ︸

stabilization term

= t
∫

ΓhX
vh · F dΓ +

∫

∂ΓhX,N

vh · Ĥ ds .

(6.53)

6.3 Numerical results

A number of test cases for membranes in three dimensions are considered in this section.
The numerical results focus on the convergence rates for two different types of errors. The
“energy error” εe compares the approximated stored elastic energy with the analytical
one,

εe = |e (u)− e (uh)| , (6.54)
with e computed based on Eq. 6.30. The analytical energy e(u) may also be computed
by an overkill approximation, i.e., based on an extremely fine mesh with higher-order
elements. Provided that geometry and boundary conditions allow for sufficiently smooth
solutions, the expected convergence rates in this error norm are p + 1 with p being the
order of the elements.
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The “residual error” εres integrates the error in the equilibrium as stated in Eq. 6.32,
that is,

εres =

√√√√
nel∑

e=1

∫

Γh,eX

r
(
uh
)
· r
(
uh
)

dA , with r
(
uh
)

= divΓ σ
(
uh
)

+ f(x) . (6.55)

This error obviously vanishes for the analytical solution. It is important to note that
the integrand in (6.55) involves second-order derivatives. Therefore, the integral must
not be carried out over the whole (discretized) domain ΓhX but integrated element by
element as indicated by the summation. That is, element boundaries, where already
the first derivatives of the C0-continuous shape functions feature jumps, are neglected
in computing εres. Due to the presence of second-order derivatives, the expected con-
vergence rates are p − 1 which also indicates that higher-order elements are crucial for
convergence in εres.

6.3.1 Membrane with given deformation

In the first test case, a membrane in the shape of a half sphere with radius r = 1.0
undergoes a prescribed displacement and the stored elastic energy is computed from the
viewpoint of the Surface FEM and the Trace FEM. That is, in the Surface FEM, surface
meshes with different resolutions and element orders are generated. See Fig. 6.2(a) for
some example mesh composed by quadratic elements. The displacements

u(X) =




5
2 + 1

5 (X + 1)
−3

2
−1

2 [1− (X2 + Y 2)]− 3
2


 (6.56)

are evaluated at the nodes and interpolated based on the shape functions implied by the
surface meshes, yielding uh(X); see Fig. 6.2(a) for the resulting deformed membrane.
Then, the elastic energy of the deformed configuration e(uh) is computed with Eq. 6.30.
For the Trace FEM viewpoint, background meshes of different resolutions and orders are
generated in ΩX = [−1, 1] × [−1, 1] × [0, 1] and the geometry is defined based on the
level-set function φ (X) = ‖X‖ − r. See Fig. 6.2(b) for a sketch of the situation using
quadratic background elements. Then, the (active) nodes of the background mesh are
deformed by the given displacement field Eq. 6.56, yielding uh(X) based on the shape
functions implied by the background meshes. This displacement field living in the whole
background mesh is only evaluated on the membrane surface in order to compute the
stored energy e(uh) according to the Trace FEM.
We set the Lamé constants to λ = 3 and µ = 2. The resulting energy is given by the
value e(u) = 1.642871443585262. In Fig. 6.3, the convergence results for the various
meshes are shown for the Surface and the Trace FEM. It is seen that in both cases
optimal convergence results are achieved. The energy error converges one order higher
than expected for even element orders. In the Trace FEM, the convergence curves are
less smooth than in the Surface FEM because the approximation spaces are not nested
upon refinement; this is well-known for results obtained with FDMs in general.
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(a) Surface FEM, εe (b) Trace FEM, εe

Fig. 6.3: Convergence results for test case 1: The energy error εe for the (a) Surface FEM,
and (b) Trace FEM.

It is thus seen that the Surface FEM as well as the Trace FEM have the potential to
achieve optimal results. For all other test cases below, we shall now obtain the discrete
displacement fields based on solving the non-linear systems of equations resulting from
the weak forms given in Section 6.2.

6.3.2 Membrane with smooth boundaries

For the next test case, a membrane loaded by gravity with a smooth boundary is consid-
ered. Similar to the example before, numerical solutions are obtained with both Surface
and Trace FEM. The undeformed membrane ΓX is given by the parametrization

X(r) =




3
2 r
s

c sin (r s)


 , with

√
r2 + s2 ∈ [0, 1] , (6.57)

or implicitly by means of multiple level-set functions with

φ(X) = c sin
(2

3X Y
)
− Z , with ψ1(X) =

√(2X
3

)2
+ Y 2 − 1 , (6.58)

where c ∈ R is a scaling parameter in vertical direction. The resulting configurations for
the explicit and implicit definition are visualized in Fig. 6.4(a) and Fig. 6.5(a) for c = 0.4,
respectively. The thickness of the membrane is t = 0.01, Young’s modulus is E = 1 000
and Poisson’s ratio ν = 0.3, which is easily converted into the Lamé parameters. The
loading is gravity acting on the membrane surface with F (X) = [0, 0,−200 t]T for all
X ∈ ΓX . The whole boundary is treated as a Dirichlet boundary with prescribed zero-
displacements. The deformed configuration, obtained with Surface FEM, is displayed in
Fig. 6.4(b) with computed von-Mises stresses based on the Cauchy stress tensor. The
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(a) undeformed conf. (b) deformed conf. (c) displacement uz

Fig. 6.4: Sketch of test case 2 with the Surface FEM: (a) Shows the undeformed configuration
ΓhX with example mesh composed by quadratic elements, (b) the deformed configu-
ration Γhx with von-Mises stresses, and (c) top view of the vertical displacement field
uz. White lines show element edges in ΓhX , black lines in Γhx.

vertical displacement field is given in Fig. 6.4(c) in top view.
Employing the Trace FEM, equivalent results may be obtained. The situation in the
frame of the Trace FEM is sketched in Fig. 6.5. In detail, Fig. 6.5(a) shows the active
background mesh composed by the cut elements, Fig. 6.5(b) the automatically gener-
ated integration points as outlined in Section 3.2.2, and Fig. 6.5(c) the deformed zero-
isosurface where colors on the surface refer to the Euclidean norm of the displacement
field u.

(a) active background mesh (b) integration points (c) displacement u

Fig. 6.5: Sketch of test case 2 with the Trace FEM: (a) Active background mesh and zero-
isosurfaces of φ and ψ1, (b) automatically generated integration points in the domain
(red) and on the boundary (blue), and (c) deformed zero isosurface.

Convergence results for the Surface FEM are given in Fig. 6.6. For this particular
example, where the boundary is smooth, optimal convergence rates are found in the
energy error εe and residual error εres.
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(a) energy error εe (b) residual error εres

Fig. 6.6: Convergence results of the Surface FEM for test case 2 with c = 0.4: (a) Shows the
results for the energy error εe, and (b) gives the residual error εres.

(a) energy error εe (b) residual error εres

Fig. 6.7: Convergence results of the Trace FEM for test case 2 with c = 0.4: (a) Shows the
results for the energy error εe, and (b) for the residual error εres.
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The approximations with the Trace FEM are obtained with a stabilization parameter
ρ = Etp4

h
. That is, as suggested in [72], also the order of the elements is considered in the

scaling of the stabilization parameter. It was found that the scaling with Young’s mod-
ulus E and the thickness t of the membrane is also useful. Furthermore, we found that
using the penalty method instead of Nitsche’s method for considering boundary condi-
tions has a benefitial influence on the convergence behaviour of the Newton-Raphson
scheme for solving the non-linear problem. The stopping criterion in the Newton-
Raphson scheme is based on the relative change in the stored elastic energy rather
than the relative changes in the primal variables. This is useful because for elements
that are only cut slightly, the primal variables may change considerably (compared to
the tolerance of 10−12 in the stopping criterion), yet with a negligible influence on the
displacements and energy of the shell.
The results of the Trace FEM are presented in Fig. 6.7 with a penalty parameter α = 1010.
In agreement to the results with the Surface FEM, see Fig. 6.6, it is confirmed that the
expected optimal convergence rates are achieved. The convergence curves are not as
straight as for the Surface FEM but feature small deviations as usual for FDMs.

6.3.3 Membrane with corners

Lastly, a membrane with corners is taken as an example. The shape of the mid-surface of
the membrane, material parameters and boundary conditions are similar to the previous
example. However, the parameter space and slave level-set functions are modified in
order to change the shape of the boundary. In detail, the geometry is represented as

X(r) =




3
2r
s

c sin (r s)


 , with r, s ∈ [−1, 1] , (6.59)

φ(X) = c sin
(2

3X Y
)
− Z , with ψ1 = X2 − 9

4 , ψ2 = Y 2 − 1 . (6.60)

The resulting membrane is illustrated for the explicit situation in Fig. 6.8(a). Simi-
lar to above, the deformed configuration, obtained with Surface FEM, is displayed in
Fig. 6.8(b) with computed von-Mises stresses and the vertical displacement field is given
in Fig. 6.8(c).
Convergence results for the Surface FEM are given in Fig. 6.9. In contrast to the example
above, corners are present in the membrane geometry, it is seen that the convergence rates
are bounded. Only linear and quadratic elements converge optimally in εe, higher orders
improve the error level, however, not the convergence rates. It is thus confirmed that
corners in membranes have the potential to reduce the convergence rates. We repeated
the same study with the Trace FEM with the same findings than for the Surface FEM,
that is, the corners hinder optimal convergence and are omitted for brevity.
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(a) undeformed conf. (b) deformed conf. (c) displacement uz

Fig. 6.8: Sketch of test case 3 with the Surface FEM: (a) Shows the undeformed configuration
ΓhX with example mesh composed by quadratic elements, (b) the deformed configu-
ration Γhx with von-Mises stresses, and (c) top view of the vertical displacement field
uz. White lines show element edges in ΓhX , black lines in Γhx.

(a) energy error εe (b) residual error εres

Fig. 6.9: Convergence results of the Surface FEM for test case 3 with c = 0.1: (a) Shows the
results for the energy error εe, and (b) gives the residual error εres.







7 Conclusion and Outlook

7.1 Summary

In this thesis, higher-order accurate finite element schemes are presented for explicitly
and implicitly defined thin-walled structures embedded in the three-dimensional space.
In particular, a higher-order Surface FEM using Lagrange elements or isogeometric anal-
ysis and a higher-order accurate fictitious domain method, i.e., the Trace FEM, are
elaborated in detail.
Both finite element approaches are introduced based on the employed function spaces.
Most importantly, the Surface FEM uses two-dimensional shape functions whereas the
Trace FEM employs background meshes implying three-dimensional shape functions.
Major implementational aspects such as (i) higher-order accurate integration, (ii) sta-
bilization and (iii) treatment of essential boundary conditions are discussed. For the
integration on parametrized surfaces, standard Gauß-Legendre integration rules are em-
ployed as usual in the Surface FEM. For implicitly defined manifolds, based on (multiple)
level-set functions, a higher-order accurate and robust procedure is used to identify the
zero-isosurfaces and generate integration points. In the Trace FEM, the so-called “nor-
mal derivative volume stabilization” is employed to address stability issues common in
FDMs. This stabilization technique easily enables higher-order accuracy, is straightfor-
ward in the implementation, the choice of the stabilization parameter is rather flexible,
and the extension to vector-valued problems is trivial. Regarding the treatment of essen-
tial boundary conditions, different methods such as strong enforcement, Lagrange multi-
pliers, penalty method, symmetric and non-symmetric versions of Nitsche’s method are
elaborated. The two fundamentally different finite element schemes, Surface and Trace
FEM, are first applied to a simple model problem, the Poisson equation on compact and
open manifolds, for comparisons w.r.t. accuracy, robustness and efficiency.
The next major part of the thesis is the recast of the classical shell models, such as
Kirchhoff-Love shells and Reissner-Mindlin shells, and large deformation membranes
in the frame of the tangential differential calculus (TDC). This framework, which is
well-established in the context of transport and flow problems, enables the definition of
differential surface operators in the global Cartesian coordinate system so that curvi-
linear coordinates are not necessarily required. As a consequence, the resulting surface
PDEs are valid independently of the concrete geometry definition, enabling the analysis
of explicitly and implicitly defined shells and membranes in a unified sense, whereas the
classical approach is limited to parametrized surfaces. In this sense, the reformulated
PDEs are more general than the classical theories and naturally yield in a symbolic nota-
tion, whereas the classical approach is typically formulated in index notation. Moreover,
the formulation of the PDEs in the frame of the TDC enables a sharper split between
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finite element technology and the concrete application, which may be beneficial for multi-
purpose finite element implementations.

The recast of the shell and membrane equations includes all relevant mechanical aspects.
In particular, the equilibrium in strong form and all mechanical meaningful boundary
conditions are derived. In addition, the stress resultants, such as normal forces, bending
moments and transverse shear forces are formulated in the global Cartesian coordinate
system and it is shown how (parametrization-)invariant quantities, e.g., principal mo-
ments are computed. The obtained boundary value problems are discretized with both
higher-order Surface FEM and higher-order Trace FEM. The continuous and discrete
weak forms are given. The essential boundary conditions are enforced with Lagrange
multipliers in case of the Surface FEM and for the Trace FEM, the non-symmetric version
of Nitsche’s method or the penalty method are employed. The resulting implementations
are tested on a set of classical and new benchmarks. In addition to the well-established
code verification procedures in the context of shells and membranes, i.e., reference dis-
placements at selected points or manufactured solutions, the concept of residual errors
is employed. The residual errors are a suitable criteria for higher-order finite element
schemes, where the error in the strong form of the equilibrium is measured. Provided
that the involved mechanical fields are sufficiently smooth, optimal orders of convergence
are achieved for shells and membranes independently of the numerical methodology.

In conclusion, the current thesis generalizes the classical shell and membrane theories
and establishes a new numerical approach, the Trace FEM, in these applications. In
particular, the analysis of implicitly defined geometries is enabled, yet the classical sit-
uation of parametrized surfaces is also covered. The generalized shell and membrane
equations are discretized with higher-order Surface and Trace FEM and the numerical
results confirm optimal higher-order converge rates for both methods.

7.2 Outlook

In future work, the presented reformulation of the shell equations within the linear the-
ory may be extended to the non-linear situation of shells undergoing large deformations
as already shown for structural membranes herein. We believe that the presented formu-
lation has the potential to become the standard notation for shells and membranes and
successively replaces the classical notation. This is justified because the new notation
applies to explicit and implicit surfaces, and enables Surface and Trace FEM and is,
therefore, more general.

The generalization of the shell and membrane equations offers a wide range of future
applications. In the context of embedded domain methods or coupling, the reformulated
shell and membrane equations may be implicitly embedded in the surrounding contin-
uum, e.g., considering for a reinforcement or composite structures. The major advantage
is that a parametrization of the embedded surfaces is not needed. The shape functions of
the continuum are restricted to the manifold and the contribution to the stiffness matrix
can be directly added to the global system. Then, of course, the displacement fields are
not smooth near the embedded structures which could be covered in an XFEM-related
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approach. As an alternative, the implicitly defined structure in the continuum may be
added in a diffusive (smeared) manner in order to avoid a sharp discontinuity. An-
other interesting application field is fluid-structure interaction. In particular, one may
implicitly embed the structure into the fluid resulting into an unfitted fluid-structure
interaction method for curved shells and membranes.
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A Properties and auxiliary relations in
the TDC

In the following, a summary of product rules, useful relations, and properties of important
quantities in the frame of the TDC which are needed to the derive surface PDEs are
presented.

Normal projector

P = I− nΓ ⊗ nΓ (A.1)
P ·P = P (A.2)
P = PT (A.3)
P · nΓ = 0 (A.4)
P · t = t iff t · nΓ = 0 (A.5)
∇cov

Γ,iP = 0 i = 1, 2, 3 (A.6)
divΓP = −κ · nΓ with Eq. A.13 (A.7)
tr (P ·A ·P) = P : A = P : AT ∀ A ∈ R3×3 (A.8)

Weingarten map

H = ∇dir
Γ nΓ = ∇cov

Γ nΓ (A.9)
H = HT (A.10)
H = H ·P = P ·H = P ·H ·P (A.11)
H · nΓ = nT

Γ ·H = 0 (A.12)
tr (H) = κ (A.13)
− eig (H) = κi i = 1, 2 , (κ3 = 0) (A.14)
κ1 · κ2 = K (A.15)
H · ∇dir

Γ u = H · ∇cov
Γ u (A.16)
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Tangential gradient of scalar-valued functions

P · ∇Γf = ∇Γf (A.17)
∇Γf · nΓ = 0 (A.18)

Surface Hessian matrix

Hedir 6= HedirT (A.19)
Hecov = HecovT (A.20)
Hedir 6= Hecov if Γ is flat ⇒ Hedir = Hecov (A.21)
tr(Hedir) = tr(Hecov) (A.22)

Directional gradient of vector-valued functions

∇dir
Γ v 6= (∇dir

Γ v)T (A.23)
∇dir

Γ v ·P = ∇dir
Γ v (A.24)

∇dir
Γ v · nΓ = 0 (A.25)

(∇dir
Γ v)T · nΓ = −H · v +∇Γ(v · nΓ) (A.26)

∇dir
Γ nΓ = (∇dir

Γ nΓ)T (A.27)

Covariant gradient of vector-valued functions

∇cov
Γ v 6= (∇cov

Γ v)T (A.28)
∇cov

Γ v · nΓ = 0 (A.29)
(∇cov

Γ v)T · nΓ = 0 (A.30)
∇cov

Γ nΓ = (∇cov
Γ nΓ)T (A.31)
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Product rules of surface gradients

∇Γ(fg) = ∇Γ(f)g + f∇Γ(g) (A.32)
∇Γ(u · a) = (∇dir

Γ u)T · a+ (∇dir
Γ a)T · u (A.33)

∇Γ(u · nΓ) = (∇dir
Γ u)T · nΓ + H · u (A.34)

∇dir
Γ (fu) = f∇dir

Γ u+ u⊗∇Γf (A.35)
∇cov

Γ (fu) = f∇cov
Γ u+ P · u⊗∇Γf (A.36)

∇dir
Γ (A · u) =

[
∇dir

ΓxA · u ∇dir
Γ yA · u ∇dir

Γ zA · u
]

+ A · ∇dir
Γ u (A.37)

∇cov
Γ (A · u) = P ·

[
∇dir

ΓxA · u ∇dir
Γ yA · u ∇dir

Γ zA · u
]

+ P ·A · ∇dir
Γ u (A.38)

P ·
(
H · ∇dir

Γ u
)
·P = H · ∇dir

Γ u (A.39)

nΓ ·
[
∇dir

ΓxH · [A]i1 ∇dir
Γ yH · [A]i2 ∇dir

Γ zH · [A]i3
]

=

=
[
∇dir

ΓxH · nΓ ∇dir
Γ yH · nΓ ∇dir

Γ zH · nΓ
]

: A
= −A : (H ·H) = − (A ·H) : H = − (H ·A) : H ∀ A ∈ R3×3

(A.40)

Surface divergence

divΓf = tr
(
∇dir

Γ f
)

= tr (∇cov
Γ f) (A.41)

divΓ(fP) = ∇Γf − fκnΓ with Eq. A.13 (A.42)
P · divΓH = ∇Γκ with Eq. A.13 (A.43)

divΓ(A ·B) = A · divΓB +
3∑

i=1

3∑

k=1
[A,i]jk[B]ki (A.44)

divΓ(A · nΓ) = divΓA · nΓ with A = AT , tr(A ·H) = 0 (A.45)
nΓdivΓ(A · nΓ) = Q · divΓA with A = AT , tr(A ·H) = 0 (A.46)
nΓ · divΓA = −H : A with A = P ·A ·P (A.47)

Properties for tangential vectors v ∈ TPΓ

(∇dir
Γ v)T · nΓ = −H · v (A.48)

P · divΓ(∇cov
Γ v)T = ∇ΓdivΓv +Kv with Eq. A.15 (A.49)

[κH−H ·H] · v = Kv with Eq. A.13, Eq. A.15 (A.50)
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