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ABSTRACT 

The prediction of energy demand provides insights to 
improve energy performance and to reduce the 
environmental impact of buildings. In this paper, a 
data-driven prediction model for the energy demand 
of small-scale building stock at two different cities in 
Turkey, by using various prediction methods, i.e., 
Multiple Linear Regression (MLR), Random Forest 
(RF),  Multilayer Neural Networks (NNN), and 
Multiple-Output Multilayer Neural Networks is 
presented. These data-driven models are suitable to 
hasten the simulation process of Urban Building 
Energy Modeling (UBEM), where the model 
complexity is high and requires long-term planning, 
especially for residential buildings. The energy 
demand results are presented based on RMSE, MAE, 
r2, particularly for heating, cooling, and lighting 
demands of the city models.  

INTRODUCTION 

The existing building stock represents 40% of the total 
energy demand by including zone heating, cooling, 
lighting, domestic hot water, and equipment energy 
consumptions (EEA, 2008). On the other hand, as the 
effects of climate change are beginning to make an 
impact on our lives gradually, the urbanization process 
should consider organizing sustainable energy and 
resource use (Stocker et al., 2013). The preparation for 
the retrofit transformation starts with the estimation of 
the future conditions. Urban Building Energy 
Modeling (UBEM) is a useful method to track and 
examine the existing or new building stock at urban 
level. UBEM helps to monitor climate and energy 
demand patterns regarding the adaptation of different 
refurbishment scenarios in terms of energy efficiency 
(Hong et al., 2020; Kontokosta et al., 2018). Various 
studies focused on the energy demand, indoor 
occupant thermal comfort prediction in buildings for 
energy-efficieny design transformation (EIE, 2010; 
McKenna et al., 2013; Suganthi & Samuel, 2012). 

The formation of the estimation process for UBEM 
can be realized with the adaptation of top-down (i.e., 
data-driven) or bottom-up models. The bottom-up 
models are generally applied to simulations methods 
with zone-based thermal models (Kavgic et al., 2010; 
Reinhart et al., 2013), and the top-down models are 

used for comprehending the overall energy demand 
and comfort trends of existing building stocks (Gassar 
et al., 2019; Howard et al., 2012). According to data 
availability, the top-down models are much faster than 
the bottom-up models and also propose a more 
straightforward solution to analyze larger building 
stock archetype datasets. 

There are different top-down models used by 
researchers to predict the energy demands of building 
stock in the framework of UBEM (Kontokosta et al., 
2018). Based on this purpose, several specialized 
algorithms are developed which can forecast the 
energy demand changes over time or estimate the 
retrofit scenarios for future conditions (Moghadam et 
al., 2019; Papadopoulos et al., 2018; Vásquez et al., 
2016). For instance, the linear regression models are 
suitable for understanding the energy demand pattern 
of building stock. However, they are not efficient 
enough to provide a solution for the non-linear 
complex models (Sjögren et al., 2007; Tabasi et al., 
2016). Lately, neural network models have become 
popular, and, these models are potent to estimate the 
energy demand of building stock by dealing with 
larger data sizes and complex models (Gajowniczek et 
al., 2017; Kankal et al., 2011).  

The building stock for the developing countries is 
expected to have drastic changes in the future, e.g., in 
number, area, and energy demand. For climate change 
mitigation, understanding these countries’ future 
energy trajectories is critical to identify future 
environmental challenges. As a developing country, 
Turkey, and its building stock have been started to be 
studied, since city planning and energy issues have 
gained importance in recent years. Several studies 
were conducted to forecast the electricity and gas 
demand of Turkey’s building stock with the neural 
network algorithms (Hamzaçebi, 2007; Kaynar et al., 
2011). 

The main challenge for the top-down models is the 
lack of available the recorded energy usage data or the 
organized the building stock datasets based on 
construction properties, energy demand profiles, and 
the number of occupants (Chen et al., 2018; Duranton 
& Puga, 2014; Pauliuk et al., 2013). Related, various 
researchers have studied the classification of building 
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data (Davila et al., 2016; Filogamo et al., 2014; 
Tardioli et al., 2018), and the several city managament 
shared the building specifications dataset for the the 
urban analytics that could lead the formation of the 
UBEM (IIO, 2020; Nyc.gov, 2020; Paris, 2018).  

This paper aims to apply the different data-driven 
models for two different neighborhood regions and to 
estimate different energy demands for Kültür 
Mahallesi, Izmir, and Bahçelievler, Ankara located in 
Turkey. The simulation-based generated energy 
demand data are used for the training of the top-down 
models. The main aim of this paper to compare four 
different top-down model performance based-on the 
error prediction rate.  

METHODOLOGY 

In this chapter, the methodology of the four different 
data-driven models were presented in terms of the how 
the energy demand data was generated, the specifics 
of the data, the different types of the prediction 
algorithms.  

The Generated Energy Demand Data (kWh/m2)  

The selected zones are one of the most densely 
populated neighborhoods in Turkey, namely Kültür in 
Izmir, and Bahçelievler in Ankara (Figure). Izmir is in 
ASHRAE climate zone 3A (2500 < CDD10ºC (Cooling 
Degree Days) < 3500), therefore, the cooling energy 
demand is an essential objective for the region. Ankara 
is in 4B (CDD10ºC ≤ 250, HDD18ºC (Heating Degree 
Days) ≤ 3000) (Ashrae, 2009), and the heating energy 
demand has the most significant share for the total 
energy demand. The building typology of the two 
regions consists of mostly residential buildings with 
retail units on the ground floors. In the Izmir case, 
there are five-six storey 525 buildings in total 459.567 
m2, Ankara case, there are three-four storey 560 
buildings in total 574.353 m2. 

 

Figure 1: Kültür, Izmir (left); Bahçelievler, Ankara 
(right) 

The publicly sharing option of the city datasets of 
Turkey is under the protection by the law (KVKK, 
2018). Therefore, the training data was generated by 
employing the bottom-up building energy simulation 
method. There is no available energy demand data for 
the selected regions in Turkey (TÜİK, 2010). 
Therefore, the dataset was generated. There are 
different data sources were used about 3d and thermal 
modeling, e.g., geographical information data (.gis) 

for building layouts and number of flats; google 
images for building height, window to wall ratio; and 
statistical information for construction date, occupant 
density, and profiles. The .gis data was taken from the 
local municipality, and buildings’ height information 
was retrieved from the google images. Other essential 
information was derived from the Turkish Statistical 
Government Bureau (TÜİK, 2010) based on city 
researches, e.g., occupant type and density, 
conditioning type.  

The building stock for each neighborhood is modeled 
based on TS-825 and Ashrae standards (ASHRAE, 
2013; TSE, 2008). All of the building energy 
simulations were executed with EnergyPlus 
simulation software which works with python 
(Crawley et al., 2000). All simulations were executed 
separately for each flat unit, and peripherical buildings 
were introduced as context geometries to the 
simulations, thus, the computing cost of the 
simulations decreased.  

The building energy simulations require two essential 
inputs as geometrical and climate data. The climate 
data for each region were selected from the years 
between 2003-2017, which are generated based on 
typical meteorological year (TMY) methodology 
(Jiang, 2010). TMY is useful for representing the 
general climate trends of the region, preventing the 
extreme conditions.  

The Characteristics of the Data 

For Izmir, the data covers the heating, cooling, and 
lighting energy demands, but for Ankara, only heating 
and lighting energy demands were included as 
objective (Y). For Izmir, the features of the number of 
people per sqm for each zone was defined in 
accordance with the function of the zone, e.g., living 
room or bedroom, and only residential building 
typology exists. On the other hand, the number of 
people per sqm is constant for the whole zone, and 
there are two different building typologies as 
residential and retail for Ankara. Therefore, the two 
datasets separate from each other. 

The heating and cooling demand ratios were defined 
according to (TÜİK, 2010), and because of the zone 
cooling system ratio was highly low for the case 
Ankara, the zone with cooling systems were ignored 
for the Ankara. The zone partitioning is made in the 
unit plan as living, service, and bedroom zones, and 
the cooling system was applied as an option for living 
and bedroom. On the other hand, units with only 
heating space conditioning systems were determined 
as a single zone. The objectives and variables for 
training data of the city models can be seen, both for 
Izmir and Ankara, in Table 1. 

 

 

 



Calibration of models and data driven techniques          649 

BauSIM 2020 September 23-25, Online Conference               DOI: 10.3217/978-3-85125-786-1-78 © Creative Commons BY-NC-ND 

Table 1: 
Example of a table features of the generated data, 

train/test/validation, Izmir/Ankara 

Feature Data  Type 
Heating, kWh/m2  Continuous Y1 

Lighting, kWh/m2   Continuous Y2 

Cooling*, kWh/m2 Continuous Y3 
Building Function** Discrete,2 X27 

Floor Area, sqm Continuous X1 
Floor Number Discrete,6 X2 
Number of people per sqm** 
(constant) 

Continuous X23 

Num. of pe. per sqm service* Continuous X24 
Num. of pe. per sqm living* Continuous X25 

Num.. of pe. per sqm bedroom*  Continuous X26 

Construction Type Discrete,2 X3 

Occupancy Schedule  Discrete,3 X4 
Window Count Discrete ,4 X5 
Window Area, sqm Continuous X6 

Window Orientation Discrete,2 X7-X14 

Context Opening Discrete,2 X15-X22 

*only for  Izmir, ** only for Ankara 

The cooling conditioning system ratio is just only 20% 
for the region of Izmir (TÜİK, 2010), and therefore, 
the total number of data for cooling represents 20% 
and heating is 80% of total data. For Ankara, all the 
building units have a heating system, and the total 
number of data is higher than Izmir. On the other hand, 
the objective and zone types are more than one for the 
case of Izmir. The data shape of the Ankara dataset is 
5928,20; and it is 2023,25 for the Izmir dataset. 

Regression for Building Energy Demand  

The data-driven models are practical tools for energy 
simulation models in terms of computing cost and 
alternative interpretation for different cases. 
Regression models can form the functions for inter-
relation between independent variables to estimate the 
dependent variables, which is building energy demand 
in this study (Fumo & Rafe Biswas, 2015). According 
to the number of model variables, the complexity 
could increase, which means that the inclusion of 
different algorithms to train the data and to validate 
the outputs becomes hard to manage. 

Multiple Linear Regression  

The multiple linear regression (MLR) aim to form the 
relationship of the variables by fitting a linear 
mathematical equation to the data. If there is more than 
one predictor variable (X1,…Xn), and these variables 
are related to predicting the response (Y) value, the 
MLR (Freedman, 2009) is suitable for the task.  

 Y = β0 + β1X1 + β2X2 + ……… + βnXn + Ɛ       (1) 

In the given equation (1), Y is the dependent variable, 
X1, X2, … Xn are the predictor variables, β0, β1,….βn are 
the regression coefficients, and  Ɛ is the error term of 
the model.  

Various studies were adapted MLR to predict the 
energy demand of residential stock by using physical 
and operational parameters of buildings (Fumo & Rafe 
Biswas, 2015; Gassar et al., 2019).  

Random Forest  

Random Forest (RF) is a supervised machine learning 
algorithm for the classification or regression purposes 
that contains a large number of decision trees. 
Statistically, the algorithm aims to decrease the 
variance and bias of the model. A decision tree is 
composed of a recursive loop to split the non-
overlapping predictions randomly. The predictions are 
the result of the sum of all trees’ mean value.   

There are different examples of RF in the field of 
building energy modeling to predict the energy 
demand of buildings or to classify the prominent 
features for energy demand (Ahmad et al., 2017; 
Kontokosta & Tull, 2017).  

Neural Network for Regression  

Neural Networks (NN) are the imitated representation 
of the human learning process by using the input data 
to regress or classify output variables. NN is 
composed of multiple layers, i.e., input, hidden, output 
layer. Each layer consists of different nodes that 
transmit the information with weighted connections 
and transfer functions. According to the layer and 
node number, the complexity or learning capacity of 
the model could increase or decrease. Based on the 
output activation function, the model can be used for 
regression or classification. In this study, multi-layer 
perceptron neural networks with single-output (NNS) 
and multiple-output (NNM) examples are used. 

NN can predict the energy demand of building stocks 
because of their capacity to handle complex datasets 
(Howard et al., 2012; Kaynar et al., 2011). For 
building energy models, the predictors can vary from 
the physical to operational characteristics of the data, 
e.g., window area, window direction, occupant 
density. In this study, two different cases contain a 
different number of data sizes and features to compare 
the performance for the urban building energy 
demand’s estimation process, e.g., non-binary and all 
parameters. 

NN models could come across the over-fitting 
problem if the precision of the algorithm reaches 
100%, the state of learning could transform to 
unintended memorization, which decreases the 
predictive performance of the algorithm for new data. 
The problem could be overcome with hyperparameter 
tuning (Østergård et al., 2018). MLR and RF 
algorithms have lower learning capacity rather than 
the NN models. The data size is also directly related to 
the tuning process and learning performance. 
Therefore, the performance of the algorithm could be 
increased by controlling the batch size, training-test 
split ratio, and the number of predictors. Hyper- 
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parameter tuning could lead to balance the loss 
function value to generalize the algorithm 
performance in NN models, e.g., regularization or 
dropout, regulating learning rate or neuron number, 
starting weight with randomization. The selection of 
relevant hyperparameter values could lead to 
acceptable learning ratios for the algorithm—this 
study exemplifies the process of tuning in the aspect 
of the NNM and NNS model training process. 

The difference between NNS and NNM models relies 
on the number of output variables that they estimate. 
In some cases, multiple outputs could be advantageous 
for the learning process because multiple output 
variables work as an extra feature in the learning data. 
For this study, three types of energy demand were 
predicted for the selected region of Izmir in terms of 
cooling, heating, and lighting. The same procedure for 
Ankara was followed for the heating and lighting 
output variables. NNM and NNS results are presented 
with spatial distribution on the observation regions 
and comparative plots (Fonseca & Schlueter, 2015).   

The Evaluation of Performance  

The prediction of the output variables that are based 
on the self and inter-correlation of independent 
variables makes possible the process of regression on 
pre-defined metrics. For this study, Mean Squared 
Error (MSE) is used as evaluation metrics for training 
and validation loss calculation. It is the average of the 
squared difference between the target value and the 
value predicted, and it punishes the small errors that 
could cause over-estimation (2).                   

MSE = 
ଵ

ே
∑ ሺ𝑦 െ 𝑦_𝑝𝑟𝑒𝑑 ሻଶ 

                   (2) 

Three different metrics are used in the study to 
compare the performance of algorithms between 
training and test data, e.g., Root-Mean-Squared-
Error(RMSE) (3), and Coefficient of Determination 
(r2) (4) and Mean Absolute Error (MAE) (5).  

RMSE =ට∑ ሺ௬ି௬_௣௥௘ௗሻమಿ
೔సభ

ே
                        (3) 

                       r2 =1 െ  
௬_௣௥௘ௗ

௬
                              (4) 

MAE = 
ଵ

ே
∑ |𝑦 െ 𝑦௣௥௘ௗ|  

                      (5) 

RESULTS 

The Statistics of the Data  

The training data were generated with EnergyPlus 
building energy simulation software using statistical 
indicators for thermal characteristics of the model and 
.gis information for the building stock geometries. 
Table 2 points out the statistical evaluation of the 
generated data. 

 

 

 

Table 2: 
Statistical representations of objectives, 

Izmir/Ankara 
Izmir (kWh/sqm) - Count:2023 

Feature Mean Min Max Std. Skew Kurt 

Heating  34.65 11.08 117.38 12.04 1.55 4.81 

Lighting  8.01 5.72 13.18 1.73 1.00 0.35 

Cooling 32.00 7.14 94.70 13.88 0.80 0.34 

Ankara (kWh/sqm) - Count:5928 

Feature Mean Min Max Std. Skew Kurt 
Heating  69.99 20.09 152.33 21.72 0.42 -0.43 

Lighting  16.74 15.26 19.67 0.96 0.50 -0.77 

The heating demand of Izmir values was found lower 
than Ankara because of the fewer heating degree days; 
however, the data distribution was found more 
homogenous for the case of Ankara according to the 
kurtosis value. In addition, lower heating demand 
values are dense because there is a positively skewed 
formation for both curves. For the lighting demand, 
the values are higher for Ankara due to less amount of 
solar radiation (W/m²). The cooling values of Izmir are 
similar to the heating values except for the kurtosis 
value, which is 0.34. It states that the data distribution 
curve depth is lower than the normal distribution 
curve. 

The Results for Multi-Linear Regression   

Table 3 points out the MLR algorithm performance 
results. During the training process, different test-ratio 
values were tested; therefore, the most successful 
results were added in the table based on comparison 
metrics. In the first case, which is the binary feature 
extracted data, the window orientation (X7 – X14) and 
context opening parameters (X15 – X22) were taken out 
from the set to observe the performance of the 
algorithm only with continuous and non-binary 
variables.  The other set of training was executed with 
all parameters. As a result, the performance of the 
values was found higher than the non-binary 
continuous and categorical variables as it is expected.  

Table 3: 
The results for Multi-Linear Regression 

Y Parameter r2 MAE RMSE Test 
Set 

Loc. 

Cooling *Non-
binary  

0.564 0.106 0.131 10%  
 

Izm 
Heating 0.407 0.078 0.104 
Lighting 0.376 0.169 0.220 20% 
Cooling All, 25  0.715 0.088 0.111  

10% Heating 0.657 0.066 0.087 
Lighting 0.471 0.163 0.209 
Heating *Non-

binary 
0.826 0.073 0.093 10%  

Ank Lighting 0.779 0.103 0.137 
Heating All, 20  0.969 0.031 0.040 20% 
Lighting 0.811 0.099 0.128 

* X1, X2,  X24, X25, X26, X6 

r2 values state that the learning capacity of the MLR 
model increases when the size of the dataset increases. 
On the other hand, the case of Izmir consists of more 
data features, but it seems that these extra features did 
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not develop any rise for the performance of the model. 
As a result, the performance metrics of  Ankara was 
found more accurate than the case of Izmir for heating 
and lighting output variables. 

The Results for Random Forest  

Table 4 shows the performance of the Random Forest 
(RF) algorithm with a similar comparison strategy to 
MLR. For each output variable, the performance of the 
model increases when the number of the feature 
increases, except the training process of lighting 
energy demand in Ankara. RF algorithm is capable of 
predicting energy demand values if the size of the data 
is at an acceptable level compared to the region of 
Ankara. The difference between the target and the 
predictor variables are highly close to zero for the 
heating and lighting demands of Ankara. On the other 
hand, for the smaller size datasets, the ratio for the test 
data could be increased to obtain similarly distributed 
test and training set.  

Table 4: 
The results for Random Forest 

Y Paramete
r 

r2 MAE RMSE Test 
Set 

Loc. 

Cooling Non-
binary  

0.557 0.105 0.131 20%  
 

Izm 
Heating 0.560 0.064 0.092 20% 
Lighting 0.314 0.180 0.226 20% 
Cooling All, 25  0.699 0.095 0.118 10% 
Heating 0.763 0.052 0.073 20% 
Lighting 0.451 0.167 0.210 20% 
Heating Non-

binary  
0.975 0.029 0.037  

 
10% 

 
Ank Lighting 0.977 0.028 0.035 

Heating All, 20  0.977 0.027 0.036 
Lighting 0.809 0.096 0.128 

The Results for Neural Network   

The architecture of NN was composed differently for 
İzmir and Ankara cases. Ankara case is trained with 
four hidden and one dropout layer, and three layers 
and one dropout for Izmir. As activation function 
rectified linear unit (relu) was selected. The 
hyperparameter tuning was executed for better 
training performance as managing the number of 
hidden layers and neurons, training batch size, training 
time, and learning rate.  

Table 5: 
The results for single-output Neural Network 

Y Parameter r2 MAE RMS
E 

Test 
Set 

Loc. 

Cooling Non-binary 0.424 0.095 0.124  
 

10% 

 
 

Izm 
Heating 0.343 0.064 0.097 
Lighting 0.203 0.181 0.209 
Cooling All, 25 0.700 0.071 0.092 
Heating 0.761 0.042 0.058 
Lighting 0.639 0.107 0.145 
Heating Non-binary  0.770 0.062 0.080 

10% 
 
 

Ank 
Lighting 0.788 0.100 0.134 
Heating All, 20 0.978 0.017 0.024 
Lighting 0.852 0.091 0.117 

 

Table 5 points out that NNS is performed successfully 
for Ankara with all parameters, even it could not pass 
the performance of RF for other comparison cases. 
Similarly, the results of Izmir with non-binary 
parameters were found lower than the Ankara case. 
Consequently, the number of instances was found 
more effective than the number of attributes as the 
results of the Izmir case were less accurate. 

 

Figure 2: Ankara heating demand (left); predicted 
demand error spatial distribution (right), kWh/sqm 

Figure 2 presents the spatial distribution of the 
simulation-based generated heating demand and data-
driven based generated heating demand prediction 
error for the region of Ankara. For the map at the left, 
the heating energy demand changes averagely 
between 72.99 to 99.43 kWh/sqm. The error values are 
distributed close to between 0.80 and 9.52 kWh/sqm 
for Ankara. 

 

Figure 3: Izmir cooling demand (left); predicted 
demand error spatial distribution (right), kWh/sqm 

Figure 3 is the spatial distribution of the simulation-
based generated cooling demand and data-driven 
based generated cooling demand prediction error for 
the region of Izmir. The cooling energy demand 
averagely varies between 24.66 and 42.16 kWh/sqm, 
which is lower than the median value. The error gap is 
close to the yellow bar that is bounded between -3.90 
to 8.42 kWh/sqm for Kültür, Izmir 
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Table 6: 
The results for multiple-output Neural Network 

Y Parameter r2 MAE RMS
E 

Test 
Set 

Loc. 

Cooling Non-binary  0.531 0.093 0.117  
 

10% 

 
 

Izm 
Heating 0.376 0.067 0.092 
Lighting 0.111 0.162 0.211 
Cooling  

All, 25 
0.756 0.065 0.084 

Heating 0.692 0.059 0.075 
Lighting 0.454 0.096 0.139 
Heating Non-binary  0.936 0.030 0.040 

10% 
 
 

Ank 
Lighting 0.635 0.098 0.133 
Heating All, 20 0.976 0.020 0.027 
Lighting 0.690 0.085 0.117 

Table 6 shows the results of Izmir and Ankara for non-
binary and all parameters’ cases with NNM. The 
training performances were found higher for Ankara. 
The non-binary case in Ankara performed better than 
the all parameters case in Izmir. Therefore, the results 
differed more when the data size of the number of 
instances increased for NNM. The difficulty of the 
prediction was more for Izmir as the output variable 
composes of three output variables. Therefore, the 
architecture of NN was found different for two regions 
(Figure 4, top-right). The simpler architecture was 
proposed for the cases of Izmir. However, the 
hyperparameter tuning was found longer for Izmir, 
and the model demanded more time to converge. For 
both of the regions, the estimation of lighting value 
error was higher than the other energy demand types, 
according to Figure 4.  

 

Figure 4: Visualization of target and predicted 
difference for multiple-output Neural Network 

Based on the dataset and the problem, different data-
driven problems could be faced, e.g., under-fitting and 
over-fitting problems. As a suggestion to the problem, 
hyperparameter tuning could be an effective solution. 
Lastly, the prediction performance was found more 
most descriptive for the cooling demand in the Izmir 

case and the heating demand in Ankara for all 
comparative cases.   

DISCUSSION 

The model complexity proceeds in parallel with the 
learning capacity based on the accuracy of the 
comparison metrics of four data-driven algorithms. 
The RF was successful for each case based on 
comparison metrics, i.e., r2, MSE, RMSE. However, if 
the size of the dataset increases in terms of the number 
of instances and attributes, the NNM and NNS 
algorithms could perform better. Due to the shape of 
the output variable for NNM, the algorithm demands 
more complex architecture for the regression. 
However, it is still faster compared to the bottom-up 
simulation-based approaches in the model training 
process. NNS and NNM are capable of managing the 
datasets of this study. Nevertheless, RF and NNM 
reached the most successful results. On the other hand, 
the tuning process was difficult for NNM. For instance, 
the over-fitting problem for the Izmir cases and the 
under-fitting problem for the Ankara cases have 
occurred. In addition, applying the random weight 
initialization as tuning action was helpful for the 
problem; otherwise, the algorithm performance can be 
stuck to lower the performances.  

CONCLUSION 

This paper presents different data-driven models for 
the urban building energy demand prediction by 
comparing different cities’ neighborhoods. The 
selected four data-driven models were used to predict 
heating, cooling, and lighting energy demand of a 
neighborhood in a hot-humid climate of Izmir and 
heating, lighting energy demand of a neighborhood in 
a cold-dry climate of Ankara. The building energy 
simulations were conducted with a simulation-based 
brute-force methodology to produce a training dataset. 
The generated building energy demand data consist of 
the physical and operational properties of the flats in 
the buildings for each district. Then, the two data are 
used for the data-driven models. Two different cases 
are tested for each region with extracting the binary 
parameters from the cluster of features and using all 
available parameters to compare the performance of 
algorithms in terms of different features. The RF and 
NNM have performed the most accurate results in each 
case. The cases of Ankara were found more accurate 
based on the comparison metrics, the size of the 
dataset consist of more instances. In conclusion, the 
data-driven models provide opportunities for the 
UBEM simulations, and the authors developed a broad 
framework for the dataset arrangement for urban 
energy modeling. 
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