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ABSTRACT 
The project described in this paper investigates the 
energy-relevant behavior of window control actions 
of the occupants of an office building in Regensburg, 
Germany as a case study. The extensive data 
monitoring regarding energy consumption, indoor as 
well as outdoor climate, and window control actions 
(state of the window handle) started in 2017.  

Different machine learning classification algorithms 
are used together with the measured data to train 
models for the prediction of window openings and 
closings. The procedure is designed to identify the 
potentials and limitations of the realistic forecasting 
of occupant behavior based on the available data. 

INTRODUCTION  
The building sector plays a major role in today’s 
strive for a more sustainable future. It is responsible 
for more than one-third of global resource 
consumption. Additionally, the energy consumption 
taking place in buildings represents approximately 
one-third of the global end-use energy consumption 
(Abergel et al. 2017). 

Beyond the properties of the construction and the 
building technology, the occupants’ interactions 
with the building control elements are relevant for 
the resulting energy demand. Especially the window 
control behavior impacts the amount of energy 
needed to maintain a comfortable indoor climate 
(Gaetani et al. 2018).  

The anticipation of the window control behavior is 
crucial for the two application cases of thermal 
building simulations and building automation. 

In thermal building simulations, the window control 
behavior is modeled according to appropriate 
standards or through rule-based functions e.g. 
according to DIN V 18599-10 (DIN, V. 18599-10: 
2018-19) or DIN EN 15251 (DIN, EN 15251:2012-
12). The underlying assumptions are unrealistic (e.g. 
natural ventilation is not considered in DIN V 
18599), which leads to an inadequate representation 
of the true occupant indoor behavior. Thermal 
building simulations are often used to determine the 
best measures to increase energy efficiency, reduce 
resource consumption, and increase thermal 
comfort. Unrealistic modeling of the window control 
behavior generates a performance gap between the 

estimated energy demand and the real energy 
consumption and there is thus no guarantee that the 
best possible measures are identified (Moeller et al. 
2020).  

In the field of building automation, the aim is to 
control the building technology in such a way that 
the occupant feels comfortable and that the energy 
consumption is minimized. In case of a need for 
fresh air at some point during the cold season, it is 
more efficient to use the ventilation system with heat 
recovery than to open the window. To prevent the 
occupants from opening the window, the building 
automation must anticipate the occupant behavior as 
early as practicable and adapt the indoor climatic 
conditions in time.  

A new approach for the more realistic prediction of 
occupant behavior is offered by the application of 
machine learning algorithms. The following factors 
are known to influence the window opening and 
closing behavior: air temperature, mean radiant 
temperature, air velocity, relative humidity, air 
quality (measured by the indicator of CO2-
concentration), outdoor conditions (noise, 
temperature, humidity, and wind), current window 
state (closed, open, tilted), clothing insulation, level 
of activity / metabolic rate, routines, habits and 
mental states (Fabi et al. 2012). These aspects 
strongly depend on the respective person, location, 
and situation.  

PROBLEM DEFINITION, GOAL, AND 
SCOPE  
The goal of this study is to identify the potentials and 
limitations of using machine learning classifiers to 
detect patterns and predict the occupants’ window 
control behavior. In accordance with the principle of 
Occam’s Razor, it is common practice in the field of 
machine learning to first try the simplest approach 
and evaluate its performance (Sammut et al. 2010). 
It is therefore investigated how well machine 
learning models perform when the only available 
input variables are frequently monitored standard 
measurements even though it is known that a high 
number of additional factors influence the window 
control behavior. For the application of a predictive 
model in building automation, predictions must be 
made long enough in advance to ensure sufficient 
reaction time for the building technology. This 
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study, however, does not focus on a specific 
application but rather on drawing conclusions about 
general potentials and limitations. Therefore, the 
simplest case of predicting the behavior directly after 
the current minute is defined as a first approach. The 
machine learning models are trained on data of one 
zone and thus predict the behavior of the occupants 
of that zone.   

PROJECT AND DATA DESCRIPTION 
The data used for this study is collected within the 
scope of the research project ‘Ferdinand 
Tausendpfund -- Lebenszyklusanalyse und 
Gebäudemonitoring’ of the Institute of Energy 
Efficient and Sustainable Design and Building of TU 
Munich in cooperation with the construction 
company Ferdinand Tausendpfund GmbH & Co. 
KG (Vollmer et al. 2019). In the scope of this project, 
an innovative three-story office building is 
monitored over a time span of four years. The outer 
walls of the three stories are realized using different 
solid construction methods. The ground floor is 
constructed out of reinforced concrete, the 1st floor 
out of heat-insulating bricks, and the 2nd floor out of 
sand-lime bricks. All outer walls have an identical 
U-value of U = 0.18W/m²K. Characteristic 
parameters of the building are: 

 area thermal envelope:  
A = 1,720m³  

 gross volume:  
Ve = 4,246m³  

 air volume:  
V = 3,397m³  

 net floor area:  
ANF = 1,097m²  

The monitoring concept of the research project 
provides one monitored reference room per story 
with the following indoor climatic parameters being 
recorded: 

 operative temperature (°C) 

 air temperature (°C) 

 relative humidity (%RH)  

For this study, data of a room on the second floor 
with one desk and one window is used. The room is 
climatically isolated from the rest of the building 
except for the door leading to the hallway. The 
positions of the window handles (closed, tilted, or 
open) are recorded through EnOcean contacts 
(EnOcean GmbH). These contacts send a signal to a 
data recorder, which documents the position of the 
window handle and the time stamp of each 
transition. 

 
Figure 1:  North oriented ground floor plan of the 

2nd story 

Figure 1 illustrates a north-oriented floor plan of the 
2nd floor of the object of investigation where the 
examined zone is marked in red. Characteristic 
parameters of the zone are: 

 window area:   
AW = 2.40m³ 

 window orientation:  
West 

 total energy transmittance: 
g = 0.50 

 heat transmission coefficient: 
U = 0.87W/m²K 

 net floor area:   
ANF = 14.4m² 

The outdoor climatic parameters are recorded by a 
weather station on the roof of the building. The 
following data is recorded by the weather station: 

 outdoor air temperature (°C) 

 relative humidity (%RH) 

 global radiation (W/m²) 

 wind speed (m/s)  

 precipitation (mm)  

The measured data is centrally combined and stored 
in a Beckhoff measurement system and uploaded to 
an SQL database on an external server at regular 
intervals of one minute (Beckhoff Information 
System). The monitoring started at the beginning of 
2017 and is running until the end of 2020. 

RELATED RESEARCH  
In a study carried out by Markovic et al. (Markovic 
et al. 2017), machine learning classification models 
are trained to determine the window state during a 
ten-minute time step, given the corresponding values 
of the input variables (indoor and outdoor climate, 
occupancy). The trained models can be applied in 
cases where only the measured variables are known 
and the goal is to determine the window state for 
each ten-minute time step. To predict future window 
control actions, the focus must shift away from the 
classification of current window states and towards 
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the prediction of window state transitions (Fabi et al. 
2012).  

Only by identifying future window state transitions, 
energetic precautions (e.g. regulation of heating and 
ventilation systems) can be implemented. The 
present study focuses on the prediction of window 
openings and closings.  

CONVERSION INTO A MACHINE 
LEARNING TASK  
The nature of the described problem can be assigned 
to the field of supervised machine learning. It is the 
subfield of machine learning that learns from data 
where the output is already known and the goal is to 
predict the output for unseen data (Burkov 2019). 
The target outcome is the action on the window 
handle after each minute. When a window is only 
slightly open, the ventilating effect may be 
comparable to the tilted state. For the sake of 
simplicity, the window state is binarized by only 
differentiating between the open and closed state. 
The possible actions after each time step are ‘no 
action’, ‘window opening’, and ‘window closing’. 
Each action can be interpreted as a category, which 
means that the problem has to be solved by the 
approach of classification (Burkov 2019). Among 
the variables measured within the scope of the 
project, only the following variables are known to 
have an influence on the ventilation behavior and are 
therefore selected as input features: 

 interior operative temperature (ºC)  

 interior air temperature (ºC) 

 interior relative humidity (%) 

 exterior ambient relative humidity (%) 

 exterior air temperature (ºC)  

 exterior wind speed (m/s)  

In addition to the measured values, the current state 
of the window is included as a categorical feature. 
The day of the year and the minute of the day are 
added to cover the seasonal and daily behavioral 
patterns. To represent the cyclicality of these 
variables accordingly, they are transformed into two 
features respectively by applying the sine and cosine 
functions. The day of the week is also added as it 
contains information about weekly patterns and 
about the instance being on the weekend or not. 
Since the cyclicality and continuousness of the 
values are irrelevant in this case, the variable is 
transformed into a categorical feature.  

All described input variables are preprocessed and 
combined into one feature vector with a 
corresponding label vector containing the classes of 
‘no action’, ‘window opening’, and ‘window 
closing’. 

 

SELECTION OF MACHINE LEARNING 
ALGORITHMS 
To build a model for the prediction of the target 
output, different machine learning algorithms from 
the scikit-learn library in python are tested and 
compared to each other in the process called ‘spot-
checking’ (Pedregosa et al. 2011). 

Based on the knowledge about the data and the 
problem at hand, the machine learning algorithms to 
be tested for suitability must meet the following 
requirements:  

 classification algorithms capable of 
handling multiclass problems 

 more computationally intensive algorithms 
(e.g. deep learning) are excluded 

 able to handle large data sets of a million 
instances 

 consider class imbalances automatically or 
have a built-in option for setting class 
weights to balanced mode 

When choosing the learning algorithms to spot-
check, it is good practice to pick a mixture of 
parametric and non-parametric algorithms, model-
based, tree-based, and instance-based algorithms, 
linear and nonlinear functions (in case of model-
based algorithms) and different learning algorithms 
for the same type of representation. Under 
consideration of all described aspects, the following 
machine learning algorithms are selected for the 
spot-checking process (Burkov 2019; Perner 2013): 

 Decision Tree  

 Random Forest  

 Gradient Tree Boosting  

 k Nearest Neighbors  

 Gaussian Naïve Bayes  

 Support Vector Machine with Stochastic 
Gradient Descent  

 Logistic Regression 

PERFORMANCE EVALUATION 
METRICS  
To be able to test the performance on unseen data, 
the data set must be split into a training set and a 
holdout set (test set) with comparable properties. The 
usual approach to split a dataset is to shuffle the 
entire dataset and then split it into subsets. For the 
case of time series data, this approach is unsuitable. 
The model is only useful if it is trained exclusively 
on data from the past. The data set is first split while 
still in its chronological order. In the next step, the 
examples of each subset are randomly shuffled. The 
performance on the unseen examples of the test set 
is decisive for the selection of the best model.  

For the quantitative performance evaluation and 
comparison of different models, one single decision 
criterion must be defined (Ng 2018). The simplest 
and most commonly used evaluation metric for 
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classification problems is the overall accuracy. It 
represents the ratio of correct predictions to the total 
number of examples (Burkov 2019). In the present 
classification problem, the classes are strongly 
imbalanced. On the entire data set 971,430 minutes 
are followed by the event ‘no action’ while opening 
and closing events happen only 190 times 
respectively. Hypothetically, a model that predicts 
the class ‘no action’ for each example 
(independently of the feature values) achieves an 
accuracy of 99.96% and all predictions for the 
examples of the underrepresented classes of window 
openings and closings are wrong. This shows that the 
accuracy as a single metric is insufficient for the 
evaluation of the models. It is thus necessary to 
additionally focus on the underrepresented classes. 
The recall value of a class is defined as the 
percentage of all examples of that class which are 
classified correctly by the trained model (Raschka et 
al. 2017). In the described case of only predicting the 
class ‘no action’, the recall value of both 
underrepresented classes would be 0%. The recall 
values of the underrepresented classes are a suitable 
metric for the evaluation of how well the opening 
and closing events are detected. A different 
hypothetical model that always predicts the shift 
towards an open window when the window is closed 
and towards a closed window when the window is 
open achieves a recall value of 100% for both 
underrepresented classes. As a single evaluation 
metric, the recall value of the underrepresented 
classes is thus also insufficient. Therefore, an 
evaluation of the models in two steps is carried out. 
In the first step, the recall value of the 
underrepresented classes is inspected, to see if the 
model recognizes the opening and closing events. 
Only those models that reach a determined threshold 
recall value of both underrepresented classes are 
evaluated further. Since there are currently no 
predictive models for the problem at hand, there are 
no comparative values for the achievable success 
and the threshold recall value must be chosen 
intuitively. For the purpose of this study, it is decided 
that a minimum recall value of 80% must be 
achieved for both underrepresented classes. 
Optimizing the models towards a high recall value of 
the underrepresented classes may come at the cost of 
misclassification of the overrepresented class of ‘no 
action’. The performance of the models achieving 
the threshold is thus compared at the overall 
accuracy in order to determine the best model.  

In summary, the two steps for the comparison of the 
performance of the different classification models 
are  

1. the selection of models that achieve recall 
values of at least 80% for both 
underrepresented classes and  

2. the comparison of the overall accuracy of 
only the selected models. 

APPROACH FOR TRAINING 
In an iterative process, machine learning models are 
trained for each algorithm, the predictions are 
evaluated, and optimization techniques are 
implemented.  

The models built by the algorithms Decision Tree, 
Random Forest, and k Nearest Neighbors are 
strongly overfitted. The complexity of those models 
is therefore reduced by adjusting a corresponding 
built-in hyper parameter. For the adaptation of the 
hyper parameter, an additional validation set is 
created. Instead of using 70% of the data, only 60% 
are used for training and the remaining 10% serve as 
the validation set.  

As an attempt to improve the predictive power of all 
models, a dimensionality reduction is implemented. 
This approach leads to a deterioration of the 
performance of all models and is discarded.  

Another applied potential optimization is creating 
additional informative features from the 
chronologically previous values. At first, the 
variable of the duration of the current window state 
is added to the feature vector. If, for example, the 
occupant has a routine of briefly ventilating every 
morning and usually closes the window after about 
five minutes, this information is contained in the new 
feature.  

The duration of the current window state is not the 
only information about the short-term past that may 
be relevant for the occupant behavior prediction. The 
development of the climatic conditions in the room 
can also have an influence on the sensation and 
accordingly on the occupant’s behavior. Since the air 
temperature and the operative temperature correlate 
strongly, only the previous values of the operative 
temperature and the relative humidity inside the 
room are considered for the new features. 
Characteristic values are calculated for the period 
before each example. Regarding the length of this 
period, the four versions of ten, twenty, thirty, and 
forty minutes are examined.  

First, only the differences between the first and last 
values of this period are added as a feature. The value 
difference represents the trend of the parameter 
during the given period.  

As a final attempt of optimization, further variables 
are created from the periods before each example. 
Beyond the value difference between the first and 
last minute of the period, the mean value, the 
maximum value, and the minimum value are 
calculated and added as new features.  
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RESULTS 
The best accuracy on unseen data under the 
condition of achieving a recall of 80% for the classes 
of window state transitions is 81.16% and is 
achieved by the Random Forest model after adding 
the feature of the duration of the current window 
state. The Gaussian Naïve Bayes model achieves an 
accuracy of 32.36% on the test set after the 
optimization steps of adding the duration of the 
current window state and the characteristic values of 
the period of ten minutes before each example. The 
two models built by Logistic Regression with the 
solvers ‘newton cg’ and ‘lbfgs’ both achieve an 
accuracy of 77.04%. This performance is reached 
after adding the features of the duration of the current 
window state and the characteristic values of the 
previous period of 40 minutes. The Logistic 
Regression model with the solver ‘saga’ achieves an 
accuracy of 71.48% on the test set after adding the 
duration of the current window state and the 
characteristic values of the period of ten minutes 
before each time step as features. The learning 
algorithms Decision Tree, Gradient Boosting, k 
Nearest Neighbors, Logistic Regression with the 
solvers ‘sag’ and ‘liblinear’, as well as Support 
Vector Machine with Stochastic Gradient Descent 
(with and without kernel approximation), are 
incapable of reaching the minimum requirement of a 
recall value of 80% for the underrepresented classes. 
Table 1 shows the comparison of the results of the 
successful algorithms. 

 
Table 1: 

 Comparison of achieved accuracy scores on 
unseen data 

Rando
m 

Forest 

Gaussia
n Naïve 
Bayes 

Logistic 
Regressio

n 
(‘newton 
cg’ and 
‘lbfgs’) 

Logistic 
Regressio

n 
(‘saga’) 

81.16% 32.36% 77.04% 71.48% 

 

ALTERNATIVE PROBLEM 
DEFINITIONS 
The previously described approaches attempt to 
optimize the creation of a predictive model for the 
window control behavior in a specific office room 
after each minute. To find out whether better results 
can be obtained with the existing data, alternative 
problem definitions are tested. The results cannot 
directly be compared to the original version but they 
indicate whether the alternative approaches are more 
promising. The feature vector used for these tests is 
the one having achieved the best result in the original 
problem definition.  

One new problem definition is training machine 
learning models on the data of an alternative office 
room with more than one occupant. The goal is to 
determine whether several occupants together show 
an averaged behavior with clearer patterns that can 
more easily be detected by learning algorithms. The 
data used for this approach is collected in an office 
room on the eastern side of the ground floor of the 
same building. It is shared by two occupants and has 
two windows. No distinction is made whether one or 
two windows are open. The same evaluation metrics 
are used as for the original problem definition. 
Compared to the performance of the original version, 
two more models achieve the minimum requirement. 
Furthermore, the performance increases for three of 
the models that already achieve the minimum 
requirement in the original problem definition and 
decreases for two of them. The predictions are 
generally better for most models for the alternative 
office room with two occupants. The best achieved 
accuracy of 80.49%, however, is below the best 
performance for the original problem definition 
(81.16%). 

The originally defined task of predicting the window 
control behavior to the minute is very complex. Even 
if the thermal conditions inside a room are known to 
be outside the comfort range, it does not necessarily 
mean that the occupants will directly act on it. Their 
reaction time can also depend on the type of activity 
they are involved in at that moment. One more 
attempt to simplify the problem definition is down 
sampling the time steps of one minute to time steps 
of ten minutes. The information on whether the 
window will be opened at one point during the 
subsequent period or not is defined as the new label. 
The closing events are no longer considered. The 
predictions of these models would be useful for the 
field of building automation but cannot be applied 
for modeling the occupant behavior in thermal 
building simulations. In this version as well, a recall 
value of 80% for the class of ‘window will be opened 
in the following ten minutes’ is set as a requirement. 
The best overall accuracy for this approach of 
84.96% is achieved with the Logistic Regression 
model with the solver ‘sag’.  

The exploration of the ground-truth input data shows 
that window state transitions only happen on 
weekdays between minute 370 and 1,126 of the day, 
which is thus the time where window control actions 
can generally happen. One way to change the 
problem definition is therefore to eliminate the 
examples from periods where the window state 
always stays the same before using the data set for 
training. Intuitively, what changes is that the model 
doesn’t need to focus on learning the times when 
events can potentially happen and can instead focus 
on detecting the patterns during the times of possible 
actions. The resulting model can only be used to 
predict the window control behavior from Monday 
to Friday between 6:10 a.m. and 6:46 p.m. The 
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number of opening and closing events (examples of 
the underrepresented classes) remains the same in 
the new data set and it is, again, required that at least 
80% of them are classified correctly. Among all 
models that achieve this requirement, the best overall 
accuracy on unseen data of 54.71% is achieved by 
the model trained by the algorithm Logistic 
Regression with the solver ‘sag’.  

INTERPRETATION  
The predictions of the model with the best achieved 
accuracy score for the original problem definition of 
81.16% (an optimized Random Forest model) are 
inspected and interpreted. 

The model classifies all window closing events of 
the test set and 34 out of the 42 window opening 
events correctly. The focus on the correct 
classification of the underrepresented classes leads 
to the prediction of both window state transitions 
more than 600 times as often as they occur. 

The overall accuracy of over 80% may appear 
satisfying but it is mainly achieved because the 
model recognizes that the window state is never 
changed during certain periods. When only 
considering the predictions for the time during the 
nights and the weekends, the achieved accuracy is 
94.96% and only 52.06% for the period of possible 
window control actions (workdays between 6:10 
a.m. and 6:46 p.m.). 

For each day of the 202 days of the test set, a plot is 
generated showing the window state, the ground-
truth label, and the predicted label for each minute 
for further interpretation of the results.  

The first pattern detected from the plots is the 
prediction of a window opening action every 
morning around minute 400 of the day (6:40 a.m.) 
for 15 to 120 continuous minutes. The exploration of 
the entire dataset shows that window opening events 
mostly happen in the morning around minute 400 of 
the day. By predicting window openings every 
morning, the model successfully detects all actual 
window openings that correspond to this morning 
routine. 

The predictions for the examples when the window 
is open are examined. Whenever the time is within 
the period of potential activity, a window closing is 
predicted. Only when the window remains open 
during the night, it is predicted that the window state 
remains the same.  

On 40 of the 202 days of the test set, the model 
predicts an opening for almost every minute between 
approximately 6 a.m. and 7 p.m. whenever the 
window is closed. On 25 of these days, window 
openings do happen at some point. The predictions 
for those days are therefore wrong for almost all 
minutes, but the occurring opening events are 
classified correctly. On the remaining 15 days of the 
40 days, the window remains closed the entire day. 
These 15 days do, however, show a pattern. They are 

all on a weekday that is either one day before or after 
a day where opening events occur. It can thus be 
concluded that the model does recognize a pattern in 
the feature values that indicates a higher probability 
of window opening events occurring on specific 
days. 

SUMMARY AND CONCLUSION  
Regarding the life cycle-based resource 
consumption as well as the environmental impacts, 
the building sector plays a major role in today’s 
strive for a more sustainable future. A life cycle-
based assessment and optimization of buildings is 
key in finding sustainable solutions. Within the life 
cycle of a building, the use stage is still responsible 
for a major share (de Larriva et al. 2014). During the 
planning phases of a building, the energy demand 
can be estimated using different methods, e.g. static 
calculations or dynamic thermal building 
simulations. There is, however, a discrepancy 
between the estimated energy demand and real 
energy consumption due to different aspects. One of 
the main aspects is the energy-relevant occupant 
behavior, especially regarding natural ventilation 
(Moeller et al. 2020). Therefore, a need for a deeper 
understanding and accurate prediction of the 
occupant behavior arises. This paper identifies the 
potentials and limitations of using machine learning 
classifiers to detect patterns and predict the 
occupants’ window control behavior. To make use 
of the possibilities machine learning provides, actual 
data of parameters that potentially impact the 
occupants’ behavior is needed. Within the 
framework of this study, an extensive energy and 
occupant behavior monitoring was and still is carried 
out over four years and data regarding the indoor 
climate, the outdoor climate, and the window handle 
state is collected. 

In the first step, the data and the problem are 
analyzed and suitable machine learning algorithms 
are identified. As an attempt to improve the 
predictive power of all models, different 
optimization techniques such as dimensionality 
reduction, an adaptation of built-in hyper 
parameters, and the creation of additional features 
are implemented.  

The accuracy and recall values are chosen as 
performance evaluation metrics. For the recall value, 
a minimum value of 80% is required for both 
underrepresented classes of the opening and closing 
events on unseen data of the test set.  

Overall, only the models built by the Random Forest, 
Gaussian Naïve Bayes, and Logistic Regression 
algorithms are capable of meeting the minimum 
requirement. The achieved accuracy is 81.16% for 
the Random Forest model, 32.36% for the Gaussian 
Naïve Bayes model, 71.48% for the Logistic 
Regression model with the solver ‘saga’ and 77.04% 
for the two models built by the Logistic Regression 
algorithm with the solvers ‘newton cg’ and ‘lbfgs’. 
The learning algorithms Decision Tree, Gradient 
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Boosting, k Nearest Neighbors, and Support Vector 
Machine with Stochastic Gradient Descent are 
unsuited for the task. 

Some of the implemented optimization techniques 
contribute significantly to improved predictive 
performance. There is, however, no combination of 
adaptations that works best with all algorithms. 
Some of the optimization techniques improve the 
performance of certain models and deteriorate 
others.   

At first sight, the achieved accuracy of over 80% 
appears to be a satisfactory result. Closer inspection 
reveals that almost half of all predictions during the 
potential occupancy period (workdays between 
6:10 a.m. and 6:46 p.m.) are wrong. However, 
certain patterns are recognized successfully. For 
instance, the model detects the times when nothing 
ever happens, the morning ventilation routine, and 
the days when window openings are likely to occur. 
Attempting to improve the models with the same 
data but alternative problem definitions does not lead 
to significant improvements.  

Overall, the approaches tested in this study cannot be 
used for practical applications in thermal building 
simulations and building automation. It can be 
assumed that the available data is insufficient for a 
solution to the described problem.  

OUTLOOK AND POSSIBLE FURTHER 
APPROACHES  
To further explore the field of predicting window 
opening behavior based on the described findings, 
several additional approaches can be carried out.  

One approach could be the training of models with 
learning algorithms of the field of deep learning. 
This could make sense given the high dimensionality 
of the feature vector and the complexity of the 
problem. Statistical methods from the field of 
statistical modeling have been developed 
specifically for multivariate time series data. These 
methods do not belong to the field of machine 
learning, but they could potentially be appropriate 
solutions for the problem at hand.  

Furthermore, the problem could be redefined 
accordingly to one specific application case. For 
thermal building simulations, the realistic 
representation of window opening durations is 
important. It is therefore not particularly important 
to detect the exact time of the window state 
transition. A new problem definition could be the 
prediction of the number of minutes with an open 
window within a defined time as a regression 
problem. For the field of building automation, the 
duration of window openings is less relevant. What 
is more important is to recognize in advance when 
the window will be opened in the future. This could 
also be defined as a regression problem, which 
predicts the number of minutes until the next 
window opening event.  

Despite applying all described optimizations and 
simplifications, it may still not be possible to 
develop a successful model with the available data. 
As explained in the introduction, the parameters 
monitored in this study are not the only factors 
known to influence the window control behavior. 
For future projects, more information could be 
gathered as input variables. Sensors detecting the 
CO2-concentration, the air velocity, and the presence 
of occupants inside the room could be installed. The 
degree of clothing, activity level, and mental state of 
the occupants also influence the behavior but are 
challenging to measure. Another aspect that might 
influence the decision to open the window is the 
weather forecast for the same and following day. 

Based on the findings of this project, a self-sufficient 
mobile measurement box is currently being 
developed at the Institute of Energy Efficient and 
Sustainable Design and Building of TU Munich to 
address the need to measure more parameters (e.g. 
CO2-concentration, air velocity, sound pressure 
level, indoor air quality) and to be able to measure 
the indoor climate closer to the occupants. The box 
will be used in two future research projects.  

First of all the box will be used in the research project 
‘NuOpt Office’ which is a project based on an 
already finished research project called ‘Eco+Office 
ASBau’ where a life cycle-based plus-energy and 
CO2-neutral office building was developed (Harter et 
al. 2019). Since the use stage plays a major role, the 
energy consumption, the indoor climate, and the 
energy-relevant occupant behavior will be 
monitored extensively. Special focus will be placed 
on the occupant-oriented determination of relevant 
indoor climatic parameters. As a case study, an 
office building in Hof, Germany will be used.  

In regard to the goal of achieving climate-neutral 
buildings, the building stock also has a major share. 
The second research project ‘NuData Campus’ 
therefore aimes to optimize existing buildings and 
facilities. As a case study buildings of the University 
of Applied Sciences Munich will first be analyzed 
and classified in terms of energy consumption and 
the type of use. The Institute of Energy Efficient and 
Sustainable Design and Building of TU Munich is 
researching the partial aspects of socio-economic 
modeling of occupant influences and sustainable 
reference system concepts.  
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