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ABSTRACT  
In this paper, a hierarchical Modelica-based Model 
Predictive Control (MPC) is presented in order to 
control complex building energy systems with 
different dynamics. The hierarchical MPC concept 
tackles the problem of controlling buildings with 
slow dynamics such as thermally activated building 
systems (TABS) and fast actuators such as air 
handling units (AHUs). It further addresses 
prediction errors of system disturbances (e.g. 
weather, occupancy) and ensures anticipation, 
reactivity and real-time capability. The benefits 
compared to single MPC, Rule-Based-Control 
(RBC) and Proportional-Integrative-Derivative 
(PID) strategies are demonstrated in simulations on 
nonlinear Modelica models including detailed 
models for solar shading and visual comfort.  

INTRODUCTION 
Energy consumption in building energy systems 
accounts for approximately 40 % of global energy 
consumption. Heating, ventilation and air-
conditioning (HVAC) units are responsible for half 
of the energy consumed in buildings and hence, yield 
a great potential for energy savings and reduction of 
CO2-emissions (Pérez-Lombard et al. 2008). Control 
of HVAC systems is challenging due to inherent 
nonlinear dynamics as well as time-varying system 
dynamics, set-points and disturbances (Afram & 
Janabi-Sharifi 2014). RBC in the form of on/ off or 
bang-bang control action and PID control dominate 
the control approaches currently implemented in 
building energy systems. They mainly represent 
inflexible corrective control concepts, which are 
unable to control inert systems with large time 
delays, to minimize energy to stay between bounds 
and perform badly outside the tuning conditions 
(Afram & Janabi-Sharifi 2014). MPC has gained a 
lot of attention in the building control domain and 
suggests great benefits compared with conventional 
controllers tackling the aforementioned challenges. 
It is capable of considering conflicting optimization 
goals such as energy consumption and occupant 
comfort, makes use of a system model for an 
anticipatory control concept, and handles future 
disturbances and time-varying building dynamics 
with time delays as well as thermal and technical 
constraints.  

The practical implementation of MPC on an office 
building in Prague demonstrated energy 
consumption savings of 15 to 28 % compared to the 
existing control based on a heating curve (Cigler et 
al. 2013). Ma et al. (2012) applied the MPC concept 
on the operation of a large-cooling system in a 
university building in Merced resulting in an 
increase of 19 % in terms of a coefficient of 
performance against a reference control. The figures 
coincide with further energy savings of more than 20 
% in a research laboratory in Illinois (Bengea et al. 
2014), more than 20 % primary energy reduction in 
an office building in Brussels (De Coninck & Helsen 
2016) and primary energy savings of 17 % for a 
large-scale simulation in a Swiss Office Building 
(Sturzenegger et al. 2016). 

Apart from the aforementioned challenges, the 
implementation of MPC in buildings faces the 
complexity of different dynamics and time scales of 
the integrated systems, such as the rather slow and 
inert TABS compared to rather fast AHUs. An 
approach to tackle this complexity is hierarchical 
MPC that divides the optimization problem into 
levels of slow and fast dynamics with adapted 
prediction horizons and sampling times (Touretzky 
& Baldea 2016).  

According to the experiences of experts regarding 
MPC in building control and its practical 
implementation, the modeling part is the most 
essential part of the MPC implementation, taking up 
most of the time and costs (Cigler et al. 2013). 
Findings of the large-scale building control project 
OptiControl-II, which studied seven months of MPC 
in a Swiss office building, conclude that a 
“framework allowing the fast generation of MPC 
suitable models is a key factor to the widespread 
adoption of MPC in building control” (Sturzenegger 
et al. 2016). The language Modelica (Mattsson et al. 
1997) could be a potential candidate for building the 
basis of such a modeling framework for several 
reasons. Modelica is an open-source, equation-
based, acausal and object-oriented modeling 
language with a graphical interface to connect 
components, which underlines its flexibility and 
user-friendliness (Schweiger et al. 2018). Modeling 
of building energy systems in Modelica is advanced 
by international projects such as the IEA EBC Annex 
60 project, from which an open-source library 
emerged, the Modelica IBPSA library (Wetter & van 
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Treeck 2017). Several research groups have used this 
library as the basis for extending and adapting the 
library, for instance, the AixLib (Müller et al. 2016). 
Modelica supports the Functional Mockup Interface 
(FMI) standard that enables model exchange or co-
simulation with different simulation programs and is 
suitable for both simulation and optimization due to 
the language extension Optimica. The ongoing 
IBPSA Project 1 focuses, among other things, on the 
development of a Modelica framework and library 
for both design and operation of building energy 
systems as well as the development of translators 
from Building Information Models (BIM) to 
Modelica (Wetter et al. 2019). Both subprojects aim 
to increase the suitability of Modelica for a wider 
range of practical implementations in building 
control. 
The studies in this work are conducted in an 
extended version of JModelica (Åkesson et al. 2010) 
which enables the derivative-based optimization of 
Modelica models and is capable of solving large-
scale nonlinear problems. A recent work on building 
MPC based on JModelica implements an MPC 
approach for building systems with linear, time-
invariant building envelope and steady-state 
nonlinear HVAC models (Jorissen et al. 2018). It is 
demonstrated in a full-year simulation on a terraced 
house showing approximately 12,8 % energy 
savings compared to a state-of-the-art RBC (Jorissen 
& Helsen 2019). 
In this work, a multi-time scale hierarchical 
Modelica-based MPC concept is presented to control 
complex building energy systems with different 
dynamics. The hierarchical aspect tackles the 
increasing complexity of building systems and the 
increasing importance of storages for the energy 
turnaround. Storages can be both active in the form 
of batteries or thermal storages and passive such as 
TABS. The applied hierarchical concept takes into 
account all time scales and ensures anticipation and 
reactivity. Additionally, this work considers active 
solar shading and visual comfort in the form of a 
norm-based model for Venetian blinds (Fig. 1). 
Blinds constitute an essential part of building control 
as they influence visual and thermal comfort and can 
be controlled to regulate solar gains in winter to 
reduce heating energy or to avoid overheating in 
summer. The use of daylight compared to artificial 
lighting can increase comfort, satisfaction and 
productivity as well as reduce electrical consumption 
in office buildings. To the best of the author´s 
knowledge, the detailed modeling of the blinds, 
which is based on tracking of the sunray paths, is 
novel in building MPC. Generally, the modeling of 
blinds is simplified and the solar heat flow into the 
room is mostly integrated in the form of linear 
dependence on the blind position or as a direct 
control input (Sturzenegger et al. 2016). 

This work is structured as follows. First, the model 
generation procedure for the MPC is described. 
Subsequently, the hierarchical MPC approach is 

outlined by describing the different layers, dynamics 
and the information exchange. The benefits of the 
approach are demonstrated and discussed in several 
AixLib-Modelica-simulation studies. The paper 
concludes with an outlook on further improvements 
and planned extensions of the framework. 
 

 

 

 

 

 

 

Figure 1: Draft of external Venetian blinds for 
solar shading incl. control inputs inclination angle 

uinclAng and vertical position uposShad  
 

MODEL GENERATION APPROACH 
As mentioned in the introduction, the model 
generation is crucial for the implementation of 
building MPC. In this work, the existing open-source 
Modelica simulation library AixLib is used as a 
basis.  The AixLib contains models of HVAC 
systems as well as high and reduced-order building 
models.  An optimization library is generated by 
adapting the AixLib models for compatibility with 
the optimization framework JModelica and inherent 
solver IPOPT (Wächter & Biegler 2005). IPOPT is 
an open-source nonlinear solver capable of solving 
large-scale nonlinear problems. For use in IPOPT, 
models are required to have constraints and cost 
functions that are twice continuously differentiable 
with respect to the optimization variables. 
Accordingly, integer decision variables or non-finite 
entries in the Jacobian are not supported. 
Additionally, the Modelica-specific table look-up 
data reader CombiTimeTable is not supported in 
JModelica as it relies on external C code. In our 
framework, a data reader for external data (weather, 
occupancy, energy prices, etc.) based on the MPCPy 
framework (Blum & Wetter 2017) is integrated.  

As an extension to the AixLib models, a Modelica 
model for active solar shading was developed that 
can be integrated into the AixLib window model. It 
models classical Venetian blinds with slats that can 
be controlled by adjusting the vertical position and 
the inclination angle of the slats. Based on the two 
control inputs and weather data the model calculates 
the total energy and light transmittance for direct and 
diffuse radiation. The model generation is based on 
norms (VDI 6007-2 (2015), DIN CEN ISO/TR 
52022-2 (2018)) and considers tracking of sunray 
paths and varying view factors between the slat and 
opening surfaces as well as interactions between the 
glazing and shading layers. Using this model allows 
for consideration of visual comfort addressing e.g. 
recommended illuminance levels of 500 Lux in 
office buildings and necessary additional artificial 
lighting (DIN EN 12464-1 (2011)). 

𝑢௜௡௖௟஺௡௚ 

𝑢௣௢௦ௌ௛௔ௗ
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MPC CONCEPT 
MPC makes use of a system model to predict the 
future system states and calculates system control 
inputs minimizing a cost function over the prediction 
horizon while considering disturbances and 
constraints. The calculated inputs for the first time 
step are applied to the real system and the MPC 
procedure repeats at the next sampling time step 
(rolling horizon). MPC tries to solve the following 
general optimal control problem (OCP): 

𝑱∗ ൌ 𝒎𝒊𝒏𝒖 𝑱  
(1) 

subject to 

𝐹ሺ𝑡, 𝑥ሶ , 𝑥, 𝑤, 𝑦, 𝑢ሻ ൌ 0  (2)

𝑔ሺ𝑡, 𝑥ሶ  , 𝑥, 𝑦, 𝑢ሻ ൌ 0        (3)

ℎሺ𝑡, 𝑥ሶ , 𝑥, 𝑦, 𝑢ሻ ൒ 0   (4)

𝑥ሺ0ሻ ൌ 𝑥଴   (5)

In this formulation, u are the control inputs, t the 
time, x the states, w the disturbances and y the 
algebraic variables. J is the cost function to minimize 
with respect to the control inputs, F() describes the 
model dynamics in a DAE form, g() the equality and 
h() the inequality constraints. Equation 5 describes 
the initial state condition. 

To handle system dynamics and disturbances of 
different time scales, a hierarchical optimization 
strategy is used. The hierarchical MPC consists of 
two layers: one focusing on the slower dynamics and 
disturbances and one on the faster ones (Fig. 2). 
Slower dynamics characterize storages, both active 
and passive, faster dynamics arise in AHUs, 
convectors or radiators of lower inertia. 
Disturbances regarded as rather fast are e.g. 
occupancy or solar radiation, whereas outdoor 
temperature represents a rather slow disturbance. To 
be able to take all time scales of the overall system 
into account, longer prediction horizons and 
sampling periods are chosen for the slower MPC 
layer, whereas for the fast layer the horizon and 
sampling period are smaller. The slow layer ensures 
the anticipation of the control necessary for inert 
systems with time delay, the fast layer guarantees 
reactivity. A necessity for a reactive MPC can arise 
from forecast errors (e.g. weather or occupancy), 
unpredictable user influences (e.g. window/ door 
opening) as well as model errors and mismatches 
(controller model compared to the real building).  

The layers communicate through interpolated state 
references that are calculated by the slow layer and 
are tracked as good as possible by the fast layer. For 
the slow layer, the cost function includes different 
forms of energy consumption, for the fast layer, it 
includes energy consumption and deviation from the 
reference state trajectories. The combination of the 
two layers increases the probability to preserve the 
real-time capability compared to a single MPC with 

a long prediction horizon and small sampling 
periods. Real-time capability describes the ability to 
solve the optimization problem and to calculate a 
new optimal input for the next control time step 
within the dynamic-specific sampling period. To 
improve the feasibility of the problem, slack 
variables are introduced that penalize leaving the 
comfort ranges in the cost function (“constraint 
softening”).  

The MPC layers each solve a nonlinear 
programming (NLP) problem due to the 
characteristic nonlinearities inherent in the dynamics 
of HVAC systems. For use in building MPC, on the 
one hand, a model has to be simple enough to be 
solved in appropriate time, on the other hand, it has 
to be detailed and complex enough to reproduce the 
dynamics of the real building. Detailed nonlinear 
models enable a higher exploitation of potential 
savings closer to the theoretical performance-bound 
and provide more flexibility in formulating the 
model equations, constraints and cost function 
(Drgoňa & Helsen 2018). The higher model 
accuracy is at the expense of higher computational 
demand; however, optimization algorithms and 
solvers are improved continuously and due to the 
progress and developments of processors and cloud 
computing the available computational power is 
increasing exponentially (Serale et al. 2018). Works 
on nonlinear MPC (Bengea et al. 2014, Touretzky & 
Baldea 2016) are less common compared to linear 
MPC, however, they can have a high potential for 
future high-performant control systems (Drgoňa & 
Helsen 2018). 

The used models in this work are first-principles 
physical white-box models preserving the accuracy 
of the nonlinear models over a wider range of 
operating conditions compared to grey-box or black-
box models. The latter highly depend on the 
available existing training data and perform badly 
outside the training conditions. Studies by Picard et 
al. (2017) show that MPC performance proves 
sensitive to the prediction accuracy of the controller. 
In white-box models, the parameters and state 
variables have a physical meaning and a geometric 
equivalent in contrast to general grey-box and black 
approaches (Drgoňa et al. 2020), ensuring their 
explicit location, improved comprehension of the 
system behavior and fault detection. The white-box 
approach is planned to be extended by a calibration/ 
parametrization module where model parameters are 
calculated or updated in a “parameter estimation” 
optimization problem based on measurement data. 

After solving the optimization problem, the fast 
MPC layer sends the control inputs for the first 
control time step to a simulation model, which 
simulates over one sampling period. The “measured” 
data is sent back to both the slow and fast layer, 
based on which the optimization states are updated 
and the optimization problem is solved again for the 
next sampling period.  
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Figure 2: Overview of hierarchical MPC concept 

SIMULATION 
The hierarchical MPC concept is applied to a 
nonlinear white-box Modelica room model 
including TABS (realized as Concrete Core 
Activation (CCA) in the floor), a convector, pumps 
and a window with external Venetian blinds. A high-
order model is chosen for the building, the wall 
including the window is regarded as external and the 
remaining walls are considered as adiabatic. The 
pumps supply the TABS and the convector with a 
water mass flow at fixed temperatures. Occupancy is 
considered through a model that calculates human 
heat emission according to typical office schedules 
with two occupants from 8 am - 12 pm and 1-6 pm. 
The MPC starts at 8 am with the beginning of the 
occupancy period. Weather data is included through 
an AixLib resource weather file for San Francisco in 
January 1999 (heating period). For the MPC 
approach, a perfect forecast is assumed. 

Control inputs to the model are the heating water 
mass flows 𝑢஼௢௡௩ and 𝑢்஺஻ௌ for convector and 
TABS, the vertical position 𝑢௣௢௦ௌ௛௔ௗ and inclination 
angle 𝑢௜௡௖௟஺௡௚ for the blinds, accounting for thermal 
(air temperature comfort range 293 - 295 K) and 
visual comfort (minimum illuminance level of 500 
lux). Artificial lighting 𝑢௔௟ (luminous flux) is not 
modeled explicitly. The electricity demand to reach 
the comfort illuminance level is considered in the 
cost function and assumed to vary linearly with the 
provided artificial illuminance. The models in both 
MPC layers are identical and coincide with the 
emulator model. 

The cost function for the upper, slow layer 
minimizes energy consumption for the convector, 
TABS and electrical artificial lighting and includes a 
quadratic penalization term for temperatures outside 

the comfort range (through introduced slack 
variables) (Equation 6). The lower, fast layer 
complements these terms by reference tracking, in 
the form of quadratic penalization of deviation from 
the reference temperature states (Equation 7).  

 

 

In these formulations, 𝛼஼௢௡௩ and 𝛼்஺஻ௌ are 
weighting factors for the control inputs of convector 
and TABS including the heat capacity of water, 
𝛼௅௜௚௛௧ a weighting factor for the energy consumption 
of artificial lighting, γ a penalization factor for 
deviations from the reference trajectory and δ a 
factor penalizing room temperatures outside the 
comfort range. ε are slack variables, quantifying 
temperatures outside the comfort ranges. 𝑖𝑙𝑙𝑢𝑚ௗ௟ is 
the daylight, 𝑖𝑙𝑙𝑢𝑚௔௟ the artificial light and 𝑖𝑙𝑙𝑢𝑚௦௘௧ 
the set-point illuminance. The slow layer has a 
prediction horizon of 24 h and a sampling period of 
15 min, the fast layer a horizon of 8 h and a sampling 
period of 5 min.  

To evaluate the performance of the hierarchical 
MPC it is compared with two other control 
strategies. The first strategy is a simplified 
combination of an RBC for solar shading and two PI-
controllers manipulating the heating water mass 
flows of convector and TABS. The blinds are shut 
and closed to an inclination angle of 90° if the direct 
solar radiation hitting the respective façade exceeds 
a value of 200 W/m². The parameters of the two PI 
controllers are tuned to show a smooth behavior with 
higher reactivity for the convector compared to 
TABS and to track the lower bound of the comfort 
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range. The second control strategy is a single MPC 
that is configured in two variations with sampling 
periods of 15 min and 5 min. The prediction horizon 
is 24 h for both variations, consequently, the latter is 
more reactive, but has a greater computational 
demand.  

The MPC strategies are solved in JModelica 2.14, 
with IPOPT 3.13.1 and the linear HSL solver ma97 
(HSL 2013). For solving the MPC problems, an 
OpenStack instance with a Linux machine, Ubuntu 
18.04, 4 VCPUs and 24 GB RAM is used.  

RESULTS 
The different control strategies are compared in 
terms of the performance measures energy 
consumption, discomfort and computation time 
(Table 1). The performance measure for energy 
consumption evaluates the weighted sum of energy 
consumption for TABS, convector and artificial 
lighting. The performance measure for discomfort 
calculates the amount of Kelvin hours (Kh) that the 
indoor temperatures are outside the comfort range. 
Further performance measures quantify the total 
time spent in the optimization as well as the 
computational time ratio, which expresses the 
relation of the computation time to the sampling 
time. If the ratio is smaller than one, the system is 
real-time capable. 

In Figure 3, the results for the combination of the 
RBC and PI-approach are depicted. During the 
period of higher solar radiation between hours 5 - 9 
the indoor temperature exceeds the upper comfort 
bound. The RBC reacts at a direct solar radiation of 
200 W/m² on the façade and closes the shading to 
minimize solar heat gains, however, due to thermal 
delay the room overheats at hours 5-6 and 8. The PI 
controllers increase the mass flows for CCA and 
convector during hour 10 - 24 in a reactive manner 
when demand arises but reach the maximum 
operating limits of 0,2 kg/s resulting in a slight 
undershooting of the temperature. 

In Figure 4, the control performance of the single 
MPC with a sampling period of 15 min is shown. By 
adjusting the shading position before the peak of the 
direct solar radiation on the façade, it partially 
reduces the overheating peaks by increasing the 
shading position but reopens the shading too early. 
The inclination angle remains nearly constant for the 
entire period. The CCA is preheated during the first 
hours in such a way that the heating systems do not 
reach their maximum bounds, whereas the mass flow 
to the convector mass flow just slightly differs. At 
hour 20 indoor temperature slightly leaves the lower 
comfort bound. Compared to the RBC + PI control 
energy consumption is reduced by 6,9 %, but the 
discomfort increases by 37,0 %. 

In Figure 5, the results for the hierarchical MPC are 
depicted. The trajectory of the indoor temperature 
shows very small overheating by dynamically 
increasing the shading position with increasing 
direct radiation on the façade. The inclination angle 

remains nearly constant with an abnormality at hour 
6. The convector mass flow starts with small values 
during the beginning of the period and increases 
slightly to a value where it remains nearly constant. 
Similar to the single MPC, the CCA is preheated 
during the beginning of the period but first, it 
decreases to avoid overheating. During the 
overheating period, the reactive fast layer follows a 
slightly different trajectory to avoid overheating 
compared with the reference trajectory. Similar to 
the single MPC with a sampling period of 15 min, 
indoor temperature undershoots the minimum 
comfort bound around hour 20. Compared to the 
RBC + PI control energy consumption can be 
decreased by 1,8 % and discomfort by 12,7 %. 

The results for the single MPC with a sampling 
period of 5 min are not shown here in a figure. Using 
this approach, the discomfort could be reduced by 
25,4 % compared to the RBC + PI approach at the 
expense of an increase of 12,1 % energy 
consumption and increased computation time of 23,4 
% compared to the hierarchical approach. 

The gained results apply to the studied use case but 
are not necessarily representative of other cases. All 
approaches preserve real-time capability with 
computational time ratios of 0,05 (single MPC with 
sampling of 15 min), 0,19 (single MPC with a 
sampling of 5 min) and 0,15 (hierarchical MPC). 
Accordingly, the hierarchical approach is 6 to 7 
times faster than real-time. 

The MPC approach was tested for different 
configurations of the heating systems, different MPC 
start times and the superimposition of sinusoidal 
curves to the outdoor temperature to examine the 
robustness of the control concept. The obtained 
results were similar to the ones gained in the studied 
case while preserving real-time capability in all 
cases. Different time scales for the upper and lower 
layer do not result in better MPC performance for the 
studied configuration of the heating systems and the 
considered simulation horizon of 24 h. Further 
analysis of varying time scales of the slow and fast 
layer for different configurations of the heating 
systems, consideration of forecast errors and longer 
simulation horizons is part of future work. 
 

Table 1: 
Comparison of performance measures for the 

different controls strategies (in %: compared to 
RBC + PI) 

 Energy 
consump- 
tion 
(kWh) 

Discom- 
fort (Kh) 

Compu- 
tation 
time (s)/  
ratio (-) 

RBC + PI 4,802 1,73 79/ ~0 
Single MPC 
(15 min) 

4,472 
 (-6,9 %) 

2,37 
(+37,0 %) 

2 407/ 
0,03 

Single MPC 
(5 min) 

5,382 
(+12,1 %) 

1,29 
(-25,4 %) 

16 039/ 
0,19 

Hierarchical 
MPC  

4,715 
(-1,8 %) 

1,51 
(-12,7 %) 

13 002/ 
0,15 
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Figure 3: RBC + PI control 
Figure 4: Single MPC (sampling period of 15 min) 
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CONCLUSION 
In this contribution, we present a Modelica-based 
hierarchical MPC approach for building energy 
systems with components of different dynamics. It 
accounts for different time scales within complex 
building energy systems and ensures both reactivity 
to forecast errors or unpredicted disturbances and 
anticipation for systems with time delays and high 
inertia. The presented approach further includes 
visual comfort by integrating a detailed model for 
active solar shading through Venetian blinds. The 
concept is verified on a detailed nonlinear Modelica 
room model including a convector, TABS and a 
window with integrated blinds. It is compared to a 
conventional RBC + PI concept and single MPCs 
with short and long sampling periods in terms of 
energy consumption, discomfort and computation 
time. The results demonstrate the good overall 
results for the proposed approach with preserved 
real-time capability for nonlinear Modelica models 
and underline the benefits of predictive control for 
shading blinds. 

In future versions of the framework, it is planned to 
integrate models of different complexity for the 
different layers, to include more detailed comfort 
models (e.g. for air quality), to improve the shading 
control concerning user acceptance and glare, to 

enable integer optimization, to consider energy 
prices and to implement the approach in a real 
building. 
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