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Abstract. Object detectors based on deep neural
networks have revolutionized the way we look for
objects in an image, outperforming traditional im-
age processing techniques. These detectors are of-
ten trained on huge datasets of labelled images and
are used to detect objects of different classes. We ex-
plore how they perform at detecting custom objects
and show how shape and deformability of an object
affect the detection performance. We propose an au-
tomated method for synthesizing the training images
and target the real-time scenario using YOLOv3 as
the baseline for object detection. We show that rigid
objects have a high chance of being detected with
an AP (average precision) of 87.38%. Slightly de-
formable objects like scissors and headphones show
a drop in detection performance with precision aver-
aging at 49.54%. Highly deformable objects like a
chain or earphones show an even further drop in AP
10 26.58%.

1. Introduction

Object detection in RGB images has received a lot
of attention in the previous years due to advances
in deep neural networks (DNN) research. Classi-
cal techniques usually rely on searching for features
in an image that were hand-crafted by a human.
Deep neural networks on the other hand use huge
datasets of hand-labelled images to learn these fea-
tures. These labels are either a bounding box of an
object or its mask. This approach has shown great ef-
ficiency. In general there are two types of DNN based
object detectors. The first group performs the detec-
tion in a single run through a network. These meth-
ods are generally fast and can even run in real-time
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with standard hardware. Second group has a separate
region proposal and detection stage, which usually
makes the execution of the methods slower but more
precise than the first group of methods. Recently,
a combination of CBNet and Cascade R-CNN has
achieved a new state of the art result on the COCO
dataset [9] with an impressive AP50 of 71.9%. [10]

Detecting custom objects is a common problem
in robotics. DNN or more precisely Convolutional
Neural Networks (CNN) require large amounts of
data for training. Having that data hand-labelled by
a human is extremely time consuming so there is a
lot of research going on in the field of synthesizing
training data. This is typically done by first making
a 3D reconstruction of the objects and then placing
them in a virtual environment which allows the sim-
ulation of artificial deformations and the creation of
arbitrary synthetic views where labels are taken from
the 3D template. However, obtaining a full 3D recon-
struction is not possible with all objects, especially



in the case of deformable objects. Objects like fold-
ing headphones, scissors, chains, cables can vary in
appearance depending on their current usage. This
poses a problem for CNN based object detectors. We
propose a simple RGB based method for recognition
of rigid but also deformable objects and synthesize
images for training a neural network. We then test
this method by training the YOLOv3 [13] network
with the fully synthetic dataset and explore how does
the shape of an object, ie. it’s symmetry and de-
formability affect the detection performance.
The contributions of the work include:

e An automated pipeline on synthetic data gener-
ation used for detection and recognition of both
rigid and deformable objects.

e A novel RGB based method for quick and ef-
fortless acquisition of object masks.

e We explore the effect of deformability of an ob-
ject to its detection performance.

2. Related work

Computer vision tasks depend on large amounts of
annotated training data. For the tasks of detecting ob-
ject classes such as cars or airplanes there are numer-
ous hand-annotated datasets available: COCO [9],
PASCAL VOC [3] and Open Image Dataset [7].
These datasets are built by researchers or companies
and consist of a large number of images. Each image
has annotations of objects of interest. This may be a
bounding box only or contain the mask of the object
as well. The COCO (Common Objects in Context)
dataset consists of over 330 thousand images con-
taining objects that are split into 80 classes. How-
ever, sometimes, especially in robotics related tasks,
we are interested in detecting a specific object. For
example not any mug but the user’s favourite coffee
mug. The mentioned datasets are of little use in these
cases, so there is a necessity for a specialized dataset.
Datasets are normally difficult to obtain so there is a
lot of research concerning synthesizing datasets.

Jungwoo Huh et al. [6] proposed a method for syn-
thesizing training data that, similarly to ours, relies
on obtaining masks of an object. In order to produce
the synthetic images they use pure pasting, whereas
we use a combination of pasting and Poisson image
editing. Additionally they evaluate their method on
rigid objects only, for example a baseball bat, a bot-
tle, a toy rifle etc. The only deformable object that
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they use is an umbrella but they keep it closed dur-
ing the training and testing so we can consider it as
a rigid object in this case. Additionally, they use
YOLOV2, which has a lower mAP (Mean Average
Precision) than the YOLOv3 while also preserving
the ability to process the images in real-time. For
obtaining the masks of the objects they use a semi-
automatic segmentation method while ours is fully
automated and does not involve any manual post-
processing.

Debidatta Dwibedi et al. [2] assume that object
images, which cover diverse viewpoints, are avail-
able. They apply a CNN to obtain a mask of the
object. They then randomly place the object into
a scene image using Poisson cloning. Next, they
train the Faster R-CNN [14] network using the syn-
thetic images and evaluate the method on the GMU-
Kitchens dataset [5]. For the evaluation of the
method they also use exclusively rigid objects like
bottles, detergents, cups, cornflakes packages etc.
Although simple, the method achieves an mAP of
88%, which is similar to what we report on detection
of rigid objects.

Georgakis et al. [4] propose a method for syn-
thesizing training data that takes into consideration
the geometry and semantic information of the scene.
They use publicly available RGB-D datasets, the
GMU-Kitchens [5] and the Washington Washington
RGB-D Scenes v2 [8], as backgrounds for the object
images. Using RANSAC they detect planes in the
image and artificially place objects on top of them,
while also scaling their size according to the dis-
tance from the camera. This method produces nat-
ural looking images, because instead of being placed
randomly in an image, the objects such as a cup
or a bottle are placed on a flat desk surface or on
the ground. They test their method using SSD and
Faster R-CNN [14] and report an mAP between 70%
and 85% depending on how much real data they use.
Considering the fact that the scenes they use for eval-
uation are cluttered this is a good results. The objects
used for evaluation are a bowl, a cup, a cereal box, a
coffee mug and a soda can. These are all non de-
formable objects.

3. Synthetic Data Generation

Object detection is required in cases such as self-
driving cars, unmanned aerial vehicles, robotics etc.
Except for detecting rigid objects like cars, chairs
or cups it is often needed to detect deformable ob-



jects like chains or cables. Most of the previous
work on object detection focuses on detecting rigid
objects[3, 15, 6, 2]. Our goal is to expand this re-
search to deformable objects as well. We train an
object detector based on CNN to detect both rigid
and deformable objects. For this task a big amount
of training images is required. Obtaining this data
manually is time consuming, therefore we propose a
method for synthesizing the training data which in-
cludes an RGB based segmentation procedure that is
able to handle deformable objects. We then use pub-
licly available datasets as background for the syn-
thetic images and augmentation techniques to in-
crease the variability of the dataset.

Figure 2. Illustration of the mask acquiring process. Top
left image shows the original RGB image. Top right im-
age shows the result of appyling k-means method to the
original RGB image. Bottom left image shows the auto-
matically selected contour and the area inside of it colored
in green. Bottom right image shows the final extracted ob-
ject masks.

3.1. Data acquisition

Publicly available datasets which contain anno-
tated objects are suitable for training CNN to detect
object classes. However, when it comes to detecting
specific objects, a specialized dataset is required. We
synthesize a dataset by capturing the images of the
objects and develop a method to segment them from
the flat surface on top of which they were placed.

For the recording of objects a Kinect camera by
Microsoft mounted on a tripod is used. The cam-
era is placed at approximately 30 cm above the flat
surface and facing the object at an angle of approx-
imately 45 degrees. During the recording, both the
camera and the flat surface are stationary. The flat
surface should preferably be unicolor so that the ob-
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ject is clearly distinguishable from it.

After the recording was initiated, the object was
manipulated by hand in order to get it to face the
camera from all possible viewing angles. The point
is to get the object to face the camera in as many
unique perspectives as possible. The advantage of
this method is that it is able to capture deformable
objects by simply changing their shape while they
are being recorded.

3.2. Data processing

In order to synthesize images that are needed for
training of the network object masks are needed. Ob-
taining the masks of the object is possible by man-
ually segmenting the object from the background or
by using a segmentation method. Manually segment-
ing objects is inefficient, therefore we devise a simple
method for object segmentation that is used for both
rigid and deformable objects. For the segmentation
of the object from the background a combination of
computer-vision based methods is used. It contains
the following five steps:

1. Firstly, k-means clustering is applied to the im-
age with the k value of 2. This method is suc-
cessful at distinguishing the boundaries of inter-
est. Additionally it is computationally more ef-
ficient than a possible alternative of using Otsu’s
Thresholding.

After application of k-means, morphological
operations like image closing and erosion are
applied to the image in order to connect possible
discontinuities in the border of the object.

. Next, contour detection is applied to the whole
image and locations of gravity centers of the
area inside of the detected contours are deter-
mined. A red circle is drawn on the image com-
ing from the Kinect camera, which is shown
on the screen, in which the center of the object
should be placed in order to automatically start
the capturing process.

The algorithm then determines if the contour
satisfies conditions in terms of its length and
distance from the center of the image and, if
that is the case, the recording is started. Af-
ter the capturing process is initiated a predeter-
mined number of object projections is recorded
at a regular time interval or per keyboard com-
mand. The number of projections recorded is



40, which is usually more than enough to cap-
ture the object from all different angles.

If the object of interest is deformable the cap-
turing process is paused, to capture a deformed
state, and then re-started. Images of segmented
objects are then stored on a hard drive for syn-
thesizing training data.

Figure 2 shows the illustration of the mask acquir-
ing process.

3.3. Synthesizing training data

Figure 3. Examples of synthetic images that are used for
training the YOLOv3 network

In order to synthesize the training images we used
a combination of Poisson image cloning [11] and
pure pasting of the segmented objects onto differ-
ent background images. As background for the syn-
thetic images we used the Indoor Scene Recogni-
tion dataset [12] and Describable Textures Dataset
(DTD) [1]. We used ten different objects for the eval-
uation and generated 2500 synthetic images per ob-
ject. To handle the blur that appears while the ob-
jects are moving, we artificially blurred 20% of the
images by adding horizontal motion blur between 5
and 15 pixels to the objects. As objects move closer
or further away from the camera their relative size
changes, so we introduce artificial scaling of the ob-
ject uniformly distributed between 50% and 125% of
its original size. In order to tackle the occlusion prob-
lem small patches of textures from the DTD dataset
are placed randomly on 10% of the synthetic images.
These cover between 0% and 50% of the object sur-
face. Additionally we introduce multiple objects to
the image and allow them to occlude each other by a
maximum IOU (Intersection Over Union) of 40%.

Figure 3 shows the examples of the synthetic im-
ages that are used for training the YOLOv3 network.
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4. Evaluation

To evaluate the method, we trained the CNN based
object detector YOLOV3 using the synthetic images.
A total of ten objects were used, which differ greatly
in their shape and deformability. We know already
that YOLO performs very well when facing rigid ob-
jects. Therefore our aim was to explore to what ex-
tend the shape of an object can be deformed. As an
example of rigid objects we use a can, two differ-
ent tea boxes, and a lemon juice bottle. Slightly de-
formable are headphones, scissors and a human hand
model. Extremely deformable objects that we used
are earphones, power cable and a piece of chain.

Properties of objects used for evaluation and their
detection precision are presented in Table 1.
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Figure 4. Successful and unsuccessful cases of detection
of different deformable objects

Figure 5. Chain detection success cases

Figure 6. Chain detection failure cases

In order to evaluate the precision of the proposed
method two minute videos of each object being ma-
nipulated were filmed and every 20th frame extracted



Objects Deformability | Precision
lemon juice bottle rigid 89.61
red tomato can rigid 84.52
red tea box rigid 87.65
yellow tea box rigid 87.76
headphones slightly def. 57.32
scissors slightly def 54.15
human hand model | slightly def. 37.16
power cable highly def. 34.66
chain highly def. 30.24
earphones highly def. 14.86

Table 1. Object detection performance, def - deformable

and manually annotated. We then ran the YOLO net-
work trained with the synthetic data and calculated
precision for each object, taking as ground truth the
hand-annotated data. An Intersection Over Union
(IOU) of 50% was considered a successful detection.

As shown in previous work rigid objects like a
can, a tea box or lemon juice bottle have a very good
chance at getting detected with the precision being at
close to 90%. These objects do not change greatly
in appearance when placed in different positions and
it is therefore easy for the network to learn their ap-
pearance. We purposely choose that some of the ob-
jects have similar color, so that, due to lack a of great
number of objects used for evaluation, the detection
performance may not be attributed to simple color
searching.

Slightly deformable objects that we used were
scissors, headphones and a human hand model. We
see that in the case of slightly deformable objects the
detection performance drops significantly with it be-
ing around 55% for the scissors and the headphones.
The chances of detecting the human hand model are
even lower, being 37.16%.

The last three objects that we evaluate are a chain,
a power cable and a pair of earphones. These objects
are considered to be highly deformable. Again there
is a clear drop in detection performance with the
precision of earphones detection being only 14.86%.
Chances that a power cable or a piece of a chain will
be detected are a bit over 30%.

All of the objects used for evaluation can be seen
in Figure 1. Detection of objects used for evaluation
using YOLO trained on COCO dataset was unsuc-
cessful for all of the objects except for the scissors
with the detection rate of 62.35%, similar to our re-
sult. The chain detection success cases can be seen
on Figure 5, whereas the chain failure cases are pre-
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sented in Figure 6.

We can see that the in the cases where chain de-
tection is successful a mask of chain taking a similar
structure can be found in the bottom row of Figure
5. In the cases where the chain detection fails there
are no masks available that resemble the given chain
structure.

We then pose the chain detection problem as sin-
gle link detection problem and try to detect the struc-
ture of the chain by detecting each individual link in
the chain. In order to do so, we use our proposed
method to segment the link in many different orien-
tations and synthesize the training images. We then
connect the individual links into a chain and test de-
tection of individual links while the chain is taking
different configurations. The results of a single link
detection can be seen on the top row of the Figure 7.

Figure 7. Examples of link detection

We also record 100 images of a chain taking dif-
ferent shapes and manually annotate each of the
links on the chain in all of the images and train the
YOLOV3 network with those annotated images. The
results of a single link detection with the manually
annotated links can be seen on the bottom row of the
Figure 7.

We took chain as an example of a highly de-
formable object that is made out of simple rigid ele-
ments. These results show that the detection of an de-
formable object is possible by detecting its elemen-
tary parts.

Successful and unsuccessful cases of object detec-
tion are presented in the Figure 4. As shown, on
the examples of the power cable, the scissors and
the headphones, detection is successful in some of
the configurations. If the configuration is slightly
changed the detection fails. This is due to the big
variability in the appearance of these objects which
is caused by their deformability. Potentially, mod-
elling of deformable objects such as a power cable or
a chain could be used to generate big amounts of dif-



ferent object masks. This would enable the network
to learn a bigger amount of object views, than those
that a human demonstrator can show in a reasonable
time.

Our method works well when facing rigid objects,
when the number of unique views is limited. How-
ever, when it comes to deformable objects, number
of unique views increases dramatically. Therefore,
in those cases the efficiency of our method drops sig-
nificantly.

5. Conclusion

In this paper we intend to highlight open prob-
lems of a standard object detector when applied to
slightly and highly deformable objects. We specifi-
cally trained the YOLOv3 detector to cope with these
cases. To reduce the time consuming effort of image
annotations, we proposed an automated method for
synthesizing the training images. The idea is to show
objects on simple background and use a short videos
and a few annotations with augmentation of training
data to obtain better performance. While this works
well for rigid objects with an AP of 87.38%, we show
that for slightly deformable objects like scissors and
headphones the detection performance drops signifi-
cantly to 49.54%. The drop is, as expected even more
drastic for highly deformable objects like a chain or
earphones, down to AP of 26.58%.

Using the example of a chain we show that it is
possible to pose the problem of detection of the de-
formable objects as detection of its elementary rigid
element - a link. To further tackle this problem, mod-
elling of deformable objects could be used for syn-
thetic data generation.
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