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Abstract. We propose a method to automatically
generate high quality ground truth annotations for
grasping point prediction and show the usefulness of
these annotations by training a deep neural network
to predict grasping candidates for objects in a clut-
tered environment. First, we acquire sequences of
RGBD images of a real world picking scenario and
leverage the sequential depth information to extract
labels for grasping point prediction. Afterwards,
we train a deep neural network to predict grasping
points, establishing a fully automatic pipeline from
acquiring data to a trained network without the need
of human annotators. We show in our experiments
that our network trained with automatically gener-
ated labels delivers high quality results for predicting
grasping candidates, on par with a trained network
which uses human annotated data. This work low-
ers the cost/complexity of creating specific datasets
for grasping and makes it easy to expand the existing
dataset without additional effort.

1. Introduction

Automated grasping is a very active field of re-
search in robotics. The process of having a robot
manipulator successfully grasp objects in a cluttered
environment is still a challenging problem. Re-
cent state-of-the-art for grasping position computa-
tion often use deep learning techniques and super-
vised learning. However, these methods usually need
to be trained on a large amount of labeled data.
Therefore, it is of high interest to find techniques to
automatically label data for robotic grasping. Previ-
ous work [17, 19] focused on using raw RGBD data
for automatic object segmentation by leveraging se-
quential depth information from the scene. However,
the segmentation mask is not sufficient as annotation
for grasping point prediction because many state-of-
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the art approaches define the grasping proposal using
a bounding box representation.

We propose a fully automatic pipeline from raw
RGBD data to a system that predicts grasping point
candidates using our automatically labeled data for
training. Figure 1 shows our workflow. As practical
example, we captured RGBD data from log order-
ing in the wood industry. We will demonstrate the
usefulness of our approach by training a deep neural
network to predict grasping points using our auto-
matically generated labels as ground truth. The main
contributions of this work are:

1. A fully automatic annotation pipeline for grasp-
ing point prediction using sequential RGBD
data.

An automatic annotation method that allows
dense labeling of grasping points for graspable
objects. Additionally, the annotations contain
implicit information about the order of object
removal due to the usage of sequential input
data. These labels can be directly used for train-
ing a supervised learning approach.

. A deep neural network which is able to pre-
dict grasping points in a cluttered environment,
solely trained with a small number of automati-
cally labeled images.

2. Related Work

Grasping point detection. The conventional
method for grasping point detection uses informa-
tion about object geometry, physics models and
force analytics [1]. With the rise of deep learning,
data-driven methods [2] became more common.
Methods like [13, 9, 7, 20] use deep neural networks
and supervised learning to predict multiple grasping
points for a single object. Chu et al. [4] were able



%

Grasp
Prediction
Network

Z

Figure 1. Overall workflow of our method containing data acquisition, automatic grasping point annotation using depth
images and training a deep network for grasping point prediction. (Left) Our dataset is constructed by recording sequences
of RGBD images while a human expert removes wooden logs from the scene. (Middle) The sequence of captured depth
images is used to automatically annotate grasping points in every corresponding RGB image. (Right) This automatically
annotated data are then used to train a deep neural network to predict grasping points.

to predict multiple grasping points for multiple
objects in an image. Zeng et al. [18] showed that
they are able to grasp unseen objects with their
winning contribution for the Amazon Robotics
Challenge in 2017. Other approaches [12, 10] use
Reinforcement Learning (RL) on a real or simulated
robot to perform thousands of grasp attempts and
use the feedback to improve the grasping point
predictions. RL has the advantage that no labeled
data are necessary for training, but it is on the other
hand very time and hardware consuming.

Representations of grasping points in 2D. Sax-
ena et al. [16] described a grasping point as g =
{z,y}, where x and y define the center of the grasp-
ing point proposal. This representation lacks infor-
mation about the opening width of the gripper. Red-
mon and Angelova [13] overcame this limitation by
using a rectangular representation for the grasping
point. This is very similar to the bounding box rep-
resentation of objects in the field of object detec-
tion, with the addition of a rotation angle 6 which
describes the orientation of the bounding box. An
overview about other common representations can be
found in [3].

Automatic label generation. Datasets used for
deep learning are often hand annotated, which is time
consuming and can be error prone due to the involve-
ment of human annotators. In the domain of ob-
ject segmentation, modern tools like DeepExtreme-
Cut [11] or GrapCut [15] significantly reduce the
amount of work for labeling RGB data to a small
number of clicks. However, they are not fully auto-
matic and are not able to work with depth data. Zeng
et al. [19] showed that they are able to use back-
ground subtraction to generate segmentation masks
of new objects in the scene. Suchi et al. [17], most
similar to our approach, use sequences of depth im-
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ages to predict segmentation masks of the objects in
the scene. However, the difference of our method
compared to all previously mentioned approaches is
that we do not only calculate the segmentation mask,
but directly infer grasping proposals. Furthermore,
segmentation masks do not give any information in
which order the objects should be removed, which
can be crucial for grasp success in cluttered environ-
ment.

3. Data Acquisition and Automatic Annota-
tion

This section describes our simple strategy to au-
tomatically label grasping points for scenes with ob-
jects in a cluttered environment.

3.1. Data Acquisition Protocol

The process requires a statically mounted RGBD
camera which records color and depth information
from the scene. We then ask human experts to re-
move one object after the other from the scene. Af-
ter each successful grasp, we capture depth and color
images. Figure 2 shows a sequence of recorded RGB
images. This method provides us not only with con-
secutive RGBD images of the picking procedure, but
also gives implicit information about the optimal or-
der of object removal according to a human expert.
This information is highly important because not all
objects are equally easy to grasp due to their random
placement (e.g. objects on top of one another).

3.2. Automatic Label Generation

As illustrated in Figure 3, we perform auto-
matic grasping point annotation through an 3-stage
pipeline. Our algorithm takes two consecutive depth
images from the scene as input and calculates grasp
proposals for the object which was removed. A grasp



Figure 2. Sequence of recorded RGB images. The sequence starts in the top left with the full stack of objects and we
record an RGB image after each object removal. We also record the corresponding depth image for every RGB frame.

proposal g is defined as Automatic grasping point annotation. The re-
fined segmentation mask is then used to calculate

g ={z,y,0,w, h}, (1) geometric features of the object. The skeleton of

the object mask is calculated by using [8] to remove

where 2 and y describe the center of the grasp pro- boarder pixels as long as the connectivity does not
posal, 0 describes the angle of the rotated bounding break. The resulting skeleton of the object is approx-
box, and w and h describe the width and height of imated with a line segment, which makes it more ro-
the predicted box. bust to outliers. Each point on this line segment can
Initial depth segmentation. The main focus of our then be used as a possible center of a grasp proposal.

The height h and the rotation angle ¢ of a grasp pro-

algorithm is to detect depth changes in the scene af- - ) : : i
posal is determined by calculating the intersection

ter a successful grasp was performed by a human ex- ! A
pert. Therefore, we calculate the depth difference I* between a line, which is normal to the skeleton and

of two consecutive depth images as passes through the center of a grasp proposal, and
the edges of the mask. The bounding box width w

I* = |I; — Iy, ) is directly dependent on the used gripper and we set

this parameter manually to suit our robotic gripper.

where 7 and I5 are the depth images previously nor- All this information are then combined and used to

malized between 0 to 255. The output I* is a rough generate the final grasping proposals. The proposals
estimate of the segmentation mask of the removed have certain characteristics:

object. 1. The center of a bounding box is located at the

Segmentation mask refinement. The intermedi- spine of the object.
ate segmentation is coarse and contains noise mainly
due to inaccurate sensor values and small movements
of the objects. Therefore, further refinement of the

2. The height of the bounding boxes are bounded
to the edges of the object mask.

segmentation mask is needed. We apply binary im- 3. The width of the bounding boxes can be set
age morphology to remove the majority of noise and manually, because this parameter highly de-
smooth the mask edges. A Gaussian filter is then ap- pends on the gripper characteristics.

plied for further noise reduction and to create the re-
fined mask which is used for further processing. The
Gaussian filter g ;jse, is defined as

4. The majority of the grasp proposals are gener-
ated near the center of mass, which is based
on the assumption that these points more likely

1 2242 lead to an successful grasp.
= 2n02¢ s ®)

Gfilter (.T, Y, 0)
Results. Our automatic annotation pipeline allows

where x and y are the spatial dimensions of the inter- us to generate a high number of grasping labels with-
mediate mask I*, and o is defined as the standard de- out any supervision of human annotators. Further-
viation for the Gaussian kernel. In our experiments, more, due to the fact that the data is recorded while
we set 0 = 1, which means that it is equal for both an expert did the grasping, we implicitly have super-
axes. vision about which object should be removed from
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Figure 3. Our automatic annotation pipeline. a) Two consecutive depth images with one object removed (marked in red).
Calculating the difference of the depth images gives a rough segmentation mask of the removed object. b) Refinement
of the mask using morphological operations and Gaussian filtering. c) Geometric features (object edges, skeleton, center
of mass) are calculated using the refined segmentation mask and are used afterwards to calculate the final position of the
grasping point proposals. The last step transfers the proposed bounding boxes to the corresponding RGB image.

the scene, without any additional costs. The only
time humans are involved is, when checking all the
predicted labels via manual inspection to find images
which contain erroneous labels. In this process we
roughly drop 10% of the images to avoid inaccurate
labeled training data. Figure 4 shows results of our
automatically labeled dataset.

3.3. Human-based Data Annotation

Additionally to our automatic labeling approach,
we also labeled the whole dataset manually. The idea
is to train a grasp prediction network on both types
of labels independently, and then compare the per-
formance of both approaches. All hand labeled data
were checked by human experts with domain knowl-
edge to verify the correctness of the annotations.

4. Grasping Point Prediction in a Cluttered
Environment

Chu et al. [4] proposed a deep neural network to
predict multiple grasping points for multiple objects
in the scene. We adapted their approach and retrained
the network with our specific dataset.

4.1. Network Architecture and Loss Function

The network architecture is based on the Faster
R-CNN object detection framework [14] using a
ResNet-50 [6] as backbone. It takes a three chan-
nel RGB image as input and predicts a number of
grasping point candidates, whereas one candidate g
is defined as described in Equation 1. Note that the
rotation angle 6 is quantized into R = 19 intervals,
which makes the prediction of this parameter a clas-
sification problem. All other parameters (see Equa-
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tion 1) are predicted using regression. During train-
ing, the composite loss function L, is defined as

[’total = Lgpn + EgCT'a (4)

where L, describes the loss according to the grasp
proposal net and L., is the grasp configuration pre-
diction loss. The loss term L, is used to define
initial rectangular bounding box proposals without
orientation ({z,y,w, h}), whereas L, is used to
define the orientation and the refined bounding box
prediction {x,y,0,w,h}. Figure 5 shows the struc-
ture of the prediction network and indicates how the
loss parts Ly, and Ly, are calculated. Further in-
formation about the network architecture and the loss
function can be found in [4].

4.2. Data Preprocessing and Augmentation

Our dataset for training the prediction network
consists of only 52 images. Therefore, data augmen-
tation is used to increase the size of the training data
by the factor of 100. Figure 6 shows examples of the
augmented data. This increases the variation in the
training data and decreases the possibility of overfit-
ting during training. After augmentation, each image
was resized to 227 x 227px to fit the input dimension
of the network.

4.3. Training Schedule

Pre-trained ImageNet [5] weights are used as ini-
tialization for the ResNet-50 backbone to avoid over-
fitting and ease the training process. All other lay-
ers beyond ResNet-50 are trained from scratch. The
whole structure of the network can be seen in Fig-
ure 5. We used the Adam Optimizer and trained our



Figure 4. Visualization of automatically generated labels. Each edge of one grasping point proposal is visualized with a

different color to show the orientation of the box. Our method allows dense labeling of the object but only four grasping
point proposals are visualized in each image to guarantee the clarity of the visualization. Note that only one object per
image is labeled which implicitly adds expert knowledge about the optimal order of object removal.
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Figure 5. Architecture of the grasping point prediction network. The network takes RGB images as input, and predicts
multiple grasping candidates. The grasping candidates are defined as an oriented rectangular bounding box. The output
bounding boxes are drawn with different colors, whereas the red edges denote the parallel plates of the gripper and the
black lines indicate the opening width of the gripper. Figure was taken from [4].
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Figure 6. Data Augmentation. (Left) RGB input image,
(others) randomly shifted and rotated input image.

network for 50000 iterations with a initial learning
rate « = 0.0001. The anchor sizes for the bound-
ing box proposals are chosen according to the size of
the objects in our dataset using [8, 16, 24, 28|px, with
anchor ratios of [0.5,1,2]. All other hyperparame-
ters were taken from [4]. Note that the goal of these
experiments was to show the practical benefit of our
method for automatic label generation, rather than to
compete for the best possible performance for grasp-
ing point prediction. We believe that a more care-
ful selection of hyperparameters, combined with an
optimized training schedule could further boost the
results.

5. Experiments and Evaluation

We trained the previously described prediction
network two times separately, once with automati-
cally annotated data and once with the same data la-
beled by hand. Both networks were evaluated using a
test set containing 22 images which are independent
from the training data (different camera position, ran-
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dom placement of objects) to verify the generaliza-
tion capabilities of our network. We used the same
training schedule for both methods, as well as the
same parameters for non-maximum suppression for
both experiments to ensure a fair comparison. The
evaluation of our predicted grasping candidates is di-
vided into two parts:

1. Quantitative evaluation of the predicted grasp-
ing points by calculating the ratio of graspable /
non-graspable candidates.

2. Qualitative evaluation by visualizing the pre-
dicted grasping candidates.

5.1. Quantitative Evaluation

For quantitative evaluation we decided to calcu-
late the relative number of predicted grasp candidates
that are non-graspable for both networks trained with
manually/automatically labeled data. We define a
non-graspable prediction as 1) the size of the pre-
dicted bounding box is unsuitable ( either too big or
too small) or 2) grasping is not feasible due to partial
occlusion of the object. Figure 8 shows examples of
non-graspable candidates. Table 1 shows the quan-
titative results indicating that a deep network trained
with automatically labeled data can achieve similar
performance compared to the same network trained
with manually labeled data.



Figure 7. Comparison of predicted grasping candidates for both networks trained on automatically labeled data (top two
rows) and manually labeled data (bottom two rows). We apply non-maximum suppression to reduce the number of
visualized boxes and to ensure the clarity of the visualization.

Method Valid grasping candidates in %
Auto-Label 81.17
Man-Label 83.43

Table 1. Relative number of valid grasping candidates for
both approaches. The network trained with automatically
labeled data is named Auto-Label, whereas the network
trained with manually labeled data is named Man-Label.
Both networks show similar performance which empha-
sizes the usefulness of our automatically labeled data.

Figure 8. Examples for non-graspable predictions. (Left)
predicted bounding box not graspable because another ob-
ject is on top; (middle) box too big; (right) box too small.

5.2. Qualitative Results

Qualitative results of our grasping point predic-
tions are shown in Figure 7 for the networks trained
with the manually annotated data and the automati-
cally generated labels respectively.
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6. Conclusion

We have proposed an automatic annotation

method for easily generating grasp proposals for
robotic manipulations using only one RGBD cam-
era. Our annotation method requires minimal human
interaction and is highly cost effective. With the pro-
posed method, we generated ground truth data and
successfully trained a deep neural network to predict
grasping candidates. To underline the usefulness of
our approach, we trained our grasp prediction net-
work with hand annotated and automatically anno-
tated data separately, and our experiments showed
similar performance for both attempts. This leads to
the conclusion that our automatically generated la-
bels are highly accurate.
We believe that the best strategy to train a deep net-
work for grasping point predictions is to initially
train with a large number of automatically annotated
frames using our method, and afterwards fine-tune it
with a small number of frames annotated by human
experts. This strategy can lead to highly accurate re-
sults with minimal human interaction.
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