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Abstract. Object detection in natural environments
is still a very challenging task, even though deep
learning has brought a tremendous improvement in
performance over the last years. A fundamental
problem of object detection based on deep learning is
that neither the training data nor the suggested mod-
els are intended for the challenge of fragmented oc-
clusion. Fragmented occlusion is much more chal-
lenging than ordinary partial occlusion and occurs
frequently in natural environments such as forests. A
motivating example of fragmented occlusion is ob-
Jject detection through foliage which is an essential
requirement in green border surveillance. This paper
presents an analysis of state-of-the-art detectors with
imagery of green borders and proposes to train Mask
R-CNN on new training data which captures explic-
itly the problem of fragmented occlusion. The results
show clear improvements of Mask R-CNN with this
new training strategy (also against other detectors)
for data showing slight fragmented occlusion.

1. Introduction

Automated surveillance at green borders has be-
come a hot topic for European border guards. Bor-
der guards today face several challenges in protect-
ing EU borders. One well known occasion in public
is illegal migration which had its peak in 2015.

Border surveillance today limited to 2D imag-
ing sensors consists of color and thermal cameras,
mounted on poles or used as handheld cameras by
the border guards. Innovating these technical sys-
tems by adding further capabilities of automatic in-
ference such as the automatic detection of persons,
vehicles, animals and suspicious objects in general
will need to apply object detectors to such imagery.

However, video of green borders especially at EU
borders show significant differences to typical im-
agery of video surveillance such as indoor video or
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Figure 1: The problem of fragmented occlusion in
object detection. Top Left: no occlusion (level Ly).
Top Right: slight occ. (L1). Bottom Left: moderate
occ. (L9). Bottom Right: heavy occ. (L3) occlusion.

video taken in man-made outdoor scenes. For exam-
ple, green borders are scenes showing dense forest,
hills, harsh weather and climate conditions. Such
scenes draw challenges to automated surveillance
and raise several interesting research questions.

This paper considers a challenge for state-of-
the-art object detection in green border surveillance
which is the problem of through foliage detection.
To the best of our knowledge, none of the current
approaches for object detection allow the detection
of objects through foliage. This problem raises an
interesting scientific question, namely how to detect
objects with fragmented occlusion? This problem is
also different to the problem of partial occlusion in



object detection. Fragmented occlusion occurs by
viewing objects behind tree ans bush leaves. Con-
trary to partial occlusion, fragmented occlusion gives
no clear view on minimal recognisable parts of the
object [10] which is used to detect the object [7].

We show in this work that the state-of-the-art in
object detection fails on fragmented occlusion even
for the moderate case. For this, we created a new
dataset (Figure 1) capturing people behind trees. We
labelled nearly 40,000 images in three representative
videos. This data raises new challenges on the la-
belling and evaluation which we only partially an-
swer in this paper. For example, bounding boxes
are the standard in current evaluation of detectors but
such labels are hard to find in data that contains frag-
mented occlusion. As the state-of-the-art detectors
deliver bounding boxes, fragmented occlusion poses
new questions on the evaluation methodology.

Furthermore, we augmented Microsoft COCO!
training data by occluding the ground truth masks
similarly as leaves occlude people behind bushes and
trees. We then show results on training Mask R-
CNN [4] on this new data showing improvement of
Mask R-CNN trained on the original data with slight
fragmented occlusion.

2. Related Work

State-of-the-art object detection is based on deep
learning. Two-stage detectors work by finding as an
intermediate step bounding box proposals [3, 2] on
the feature maps of the backbone CNN. A region
proposal network further improves efficiency [9, 4].
One-stage detectors regress the bounding boxes di-
rectly [8, 6] which is computationally efficient on
GPUs but this approach is inherently less accurate
as it assumes a coarsely discretised search space. Al-
though these methods show usually excellent perfor-
mance for fully visible objects, they break down in
the case of fragmented occlusion. Fragmented oc-
clusion has not been considered for object detection
so far, however there is literature about this topic in
the field of motion analysis [1].

3. Methodology

We created a dataset recorded in a forest consist-
ing of three videos with a total of 18,360 frames and
33,933 bounding boxes which were manually defined
by human annotators. These bounding boxes are di-

"http://cocodataset.org
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Figure 2: A training image from Microsoft COCO
(http://images.cocodataset.org/
train2017/000000001700. jpg). Top Left:
the image. Top Right: Segmentation mask of the
image. Bottom Left: image overlaid with artificial
trees. Bottom Right: Mask of the overlaid image.

vided into four different occlusion levels including
the unoccluded case (Figure 1).

Then, we extended the Microsoft COCO dataset
by adding artificial trees as foreground to the im-
ages of objects (Figure 2). We chose this dataset,
because it contains pixel-wise segmentation masks in
the ground truth as well as a large number of different
categories including the human person.

The underlying basic idea of our approach is
to add artificial fragmented occlusion to Microsoft
COCO and train Mask R-CNN on this new data.
By this we can adapt the original distribution of
data to the case of fragmentally occluded objects.
Since we are only interested in humans, we apply
this augmentation only to images containing humans
and use only these images for training. The trees
used for the augmentation are generated from real
images we have obtained from the test data. The
method generates whole artificial trees by randomly
adding branches to previously manually segmented
tree trunks. In total 14 such trunks are extracted from
the test dataset. The branches attached to these trunks
are also randomly generated by also adding a few
manually segmented leaves.

The trees are placed in front of objects by ran-
domly selecting the x-coordinate on which they will
be placed and an angle at which the tree will be ro-
tated. The calculated foreground is applied to the im-
age and its negative mask is multiplied by the seg-
mentation mask of the objects in the image. The
Mask R-CNN model is then trained with the aug-



mented images. The selected backbone model is the
Inception v2 [5] network. This network is selected
for its faster computation.

4. Evaluation

To evaluate whether training with the augmented
dataset is useful, the model trained on the augmented
data must be compared with the model not trained on
this data. However, the intersection over Union (IoU)
measure is not meaningful in this case.

Standard evaluation metrics such as the mean av-
erage precision (mAP) define an IoU threshold (e.g.
0.5) and check whether a ground truth object and a
detected object have an IoU value above this value.
If this is the case, the detected object is defined as a
True Positive (TP). If an object is detected but there
is no respective ground truth with an IoU above this
specific threshold, the detected object is defined as
a False Positive (FP). If there is ground truth but no
detected object with an IoU above the threshold, the
object is defined as a False Negative (FN).

These evaluation methods cannot be easily applied
to ground truth showing fragmented occlusion, be-
cause of the following two observations:

IoU too small: Since the data is based on frag-
mented detections, a detector can only detect parts of
the person. An image where this problem occurs is
shown in Figure 3. The bounding box is clearly a TP,
based on the fact, that fragmented objects should be
detected, but due to the occlusion by the branches of
the tree, the whole body cannot be recognized. This
leads to an IoU of only ~ 0.2.

Multiple detections: Another major problem
with the standard evaluation metrics is that exactly
one detected bounding box and one ground truth
bounding box match. However, when handling frag-
mented objects, human heads and/or other body parts
should be detected separately if body parts are cov-
ered. This creates the problem that parts of the body
(like a head) is detected as well as the whole body.
Figure 4 shows some examples.

To tackle these two problems, this paper proposes
a different evaluation metric. For each bounding box
in the evaluation data set, we calculate the maximum
region in the image where there is no overlap with an-
other ground truth bounding box. This region is then
extracted and fed into the model. If the model de-
tects an object, we define it as TP, otherwise as FN.
To assess FPs, we create an additional dataset that
represents the maximum region in an image without
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Figure 3: Ground truth (green) and the detection
(blue) vary substantially due to the occlusion effects.

overlap with any ground truth bounding box. We ex-
tracted in total 45,340 such regions with different as-
pect ratios, different parts of the image and at dif-
ferent time instants. In addition to FPs, we can also
calculate the TNs using this evaluation metrics.

Figure 5 shows these results as recall vs. precision
curve (ROC). There is no significant difference be-
tween Mask R-CNN trained on Microsoft COCO and
on the augmented dataset for L occlusion. However,
clear improvement has been achieved for L; and Lo
occlusion which proves the applicability of the idea
to model fragmented occlusion by the masks. Never-
theless, all approaches basically do not reach the ex-
pected robustness and accuracy for moderate Ly and
heavy L3 occlusion. One reason for this is that our
current technique is not accurate enough to model
fragmented occlusion. Furthermore, clear limits ex-
ist as heavy fragmented occlusion removes local spa-
tial and structural information necessary for current
approaches in object detection.

We further recognise that bounding box labelling
is not the appropriate approach for labelling data
showing fragmented occlusion. Especially for L3
and L4 occlusion, it is frequently impossible to man-
ually define the bounding box. Such occlusion levels
allow an approximate localisation of the object in the
image but make the observation of the object’s extent
impossible. While the recall in Figure 5 is still mean-
ingful, the precision is basically undefined. This ob-
servation has severe consequences on the labelling,



Figure 4: The problem of mul-
tiple detections. Ground truth
is shown in green. Left: state-
of-the-art yields two bounding
boxes of the same, single person.
Middle: two persons are visible.
Detection yields two bounding
boxes which are diffucult to as-
sociate. Right: an even harder
case with three persons.
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Figure 5: This ROC plot shows results of Faster R-

CNN (green), YOLO (blue), Mask R-CNN (red) and
our method (purple) for all occlusion levels.

but also on the evaluation and on the detector which
we leave open for future research.

5. Conclusion

This paper formulates a new scientific question on
object detection with fragmented occlusion which is
different to partial occlusion. We show by a study
that current object detectors fail in this case. We
generated and labelled a new dataset showing people
behind trees in a forestry environment. Such scenes
frequently occur in border surveillance which has be-
come very important in EU security policies. We try
to tackle the occlusion challenge by augmenting Mi-
crosoft COCO including the pixel-wise segmentation
masks to capture the occlusion problem. We show
that Mask R-CNN trained on this data improves on
fragmented occlusion, however, we also observe se-
vere loss of spatial, structural information and that
the bounding box itself is not the appropriate de-
scription to cope with fragmented occlusion. This
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has severe implications on the detection approach it-
self, but also on dataset labelling and evaluation. A
potential solution is left open for future work.
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